
Permutation Optimization by Iterated
Estimation of Random Keys Marginal Product

Factorizations

Peter A.N. Bosman and Dirk Thierens

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{Peter.Bosman, Dirk.Thierens}@cs.uu.nl

Abstract. In IDEAs, the probability distribution of a selection of so-
lutions is estimated each generation. From this probability distribution,
new solutions are drawn. Through the probability distribution, various
relations between problem variables can be exploited to achieve efficient
optimization. For permutation optimization, only real valued probability
distributions have been applied to a real valued encoding of permuta-
tions. In this paper, we present two approaches to estimating marginal
product factorized probability distributions in the space of permuta-
tions directly. The estimated probability distribution is used to identify
crossover positions in a real valued encoding of permutations. The re-
sulting evolutionary algorithm (EA) is capable of more efficient scalable
optimization of deceptive permutation problems of a bounded order of
difficulty than when real valued probability distributions are used.

1 Introduction

Any reasonable optimization problem has some structure. Using this structure
can aid the search for the optimal solution. In black box optimization, this struc-
ture is a priori unknown. In order to still be able to exploit problem structure,
induction must be performed on previously evaluated solutions.

Holland [9] showed that in the simple GA with one point–crossover, problem
structure is only exploited if it is expressed by short substrings of closely located
gene positions. If such related genes are not closely located, they are likely to be
disrupted by one–point crossover. Thierens and Goldberg [18] showed through
the investigation of uniform crossover that the effect of such disruption on prob-
lems with non–linear interactions between groups of bits results in an exponen-
tial growth of the required population size as the problem length l increases. On
the other hand, Harik, Cantú-Paz, Goldberg and Miller [7] showed that for a
crossover operator that does not disrupt such building blocks of related genes,
the required population size scales with

√
l instead of exponentially.

In general, to prevent bad scaling behavior of an EA, we need to respect the
structure of the optimization problem. Describing the structure of a set of sam-
ples can be done by estimating its probability distribution. Subsequently drawing



more samples from this probability distribution leads to a statistical inductive
type of iterated search. Such algorithms have been shown to give promising
results for both binary and real valued spaces [2, 8, 12–17].

Our goal in this paper is to show how this technique can be used for per-
mutation problems. The necessity for problem structure exploitation is found in
permutation spaces as well, since permutation problems can be constructed that
deceive simple permutation GAs [10] in a similar manner as is done for simple
binary GAs [5] on which the simple GA is known to scale–up exponentially [18].

The remainder of this paper is organized as follows. In section 2 we present
the representation of permutations that we will work with along with two per-
mutation problems that are used in the experiments. A brief overview of IDEAs
and its first application to permutation problems is given in section 3. Section 4
describes the estimation of probability distributions over permutations. We test
our new IDEAs in section 5. Some conclusions are drawn in section 6.

2 Random keys and permutation optimization problems

We use the random keys encoding of permutations, which was proposed by
Bean [1]. The main advantage of random keys is that no crossover operator can
create unfeasible solutions. A random key sequence r is a vector of real values.
Each of these real values is usually defined to be in [0, 1]. The integer permutation
p that is encoded by r can be computed in O(|r|log(|r|)) time by sorting r in
ascending order (rp0 ≤ rp1 ≤ . . . ≤ rp|r|−1), which we denote by p = sort(r).
As an example, we have that sort(0.61, 0.51, 0.62, 0.31) = (3, 1, 0, 2).

We will test our algorithms on two problems introduced by Knjazew [11].
Both problems are a sum of subfunctions fsub that regard random key substrings:

f(r) =
|ι|−1∑
j=0

fsub(rιj
) (1)

In eq. 1, ι is a vector of index clusters that defines the indices of the complete
random keys sequence that each subfunction will regard. So rιj indicates the
random keys found at positions (ιj)0, (ιj)1, . . . , (ιj)|ιj |−1. Each random key index
appears in at least one index cluster. For example, if ι = ((0, 1), (2), (2, 3, 4)), we
have f(r) = fsub(r0, r1) + fsub(r2) + fsub(r2, r3, r4).

In the problems that we use in this paper, each index cluster has length κι.
The optimum for the subfunction is a random keys sequence that encodes the
permutation (0, 1, . . . , κι − 1). To define the subfunction, a distance measure is
used. This distance from any permutation p to the optimum equals κι−|lis(p)|,
where lis(p) is the longest increasing subsequence in p. For example, if p =
(1, 2, 0, 4, 3), then lis(p) ∈ {(1, 2, 4), (1, 2, 3)}. Furthermore, κι − |lis(p)| = 5 −
3 = 2. Note that the reverse permutation (κι − 1, κι − 2, . . . , 0) is the only
permutation with a distance of κι − 1. The subfunction is defined as follows:

fsub(r) =
{

1 − |lis(sort(r))|
κι if |lis(sort(r))| < κι

1 if |lis(sort(r))| = κι (2)



The fully deceptiveness of the subfunction makes the problem hard for any
EA that doesn’t identify the boundaries of the index clusters [10, 18] and as a
result disrupts the non–linear relations between the genes imposed by fsub .

In the first problem that we shall use to experiment with, the index clusters
are mutually disjoint. This problem is therefore additively decomposable. To avoid
the possibility that static crossover operators are biased in optimization because
the genes contributing to each subfunction are closely located, the locations for
each ιloosej are chosen loosely, meaning as well spread as possible.

ιloosej = (j, j + |ι|, j + 2|ι|, . . . , j + (κι − 1)|ι|) (3)

In the second problem, the j–th index cluster shares its first position with
index cluster j−1 and its last position with index cluster j +1. This overlapping
property makes the problem significantly more difficult as there are no clear
index cluster boundaries. For simplicity, the overlapping index cluster vector
ιoverlap is encoded tightly. Optimal solutions are now only given by random key
sequences r such that sort(r) = (0, 1, . . . , l− 1), where l is the problem length.

ιoverlapj = (j(κι − 1), j(κι − 1) + 1, j(κι − 1) + 2, . . . , j(κι − 1) + κι − 1) (4)

3 IDEAs and ICE

We assume to have a cost function C(z) of l problem variables z0, z1, . . . , zl−1

that, without loss of generality, should be minimized. For each zi, we introduce a
stochastic random variable Zi and let P θ(Z) be a probability distribution that
is uniform over all z with C(z) ≤ θ and 0 otherwise. Sampling from P θ(Z)
gives more samples with an associated cost ≤ θ. Moreover, if we have access to
P θ∗

(Z) such that θ∗ = minz{C(z)}, drawing only a single sample results in an
optimal solution. This rationale underlies the IDEA (Iterated Density Estimation
Evolutionary Algorithm) framework [2] and other named variants [8, 12–17].

Problem structure in the form of dependencies between the problem variables,
is induced from a vector of selected solutions by finding a suitable probabilistic
model M. A probabilistic model is used as a computational implementation of
a probability distribution PM(Z). A probabilistic model consists of a structure
ς and a vector of parameters θ. The elementary building blocks of the proba-
bilistic model are taken to be probability density functions (pdfs). A structure ς
describes what pdfs are used and the parameter vector θ describes the values for
the parameters of these individual pdfs. A factorization is an example of a struc-
ture ς. A factorization factors the probability distribution over Z into a product
of pdfs. In this paper, we focus on marginal product factorizations (mpfs). In
the binary and real valued case, an mpf is a product of multivariate joint pdfs.
This product is represented by a vector of mutually exclusive vectors of random
variable indices, which we call the node vector ν. An example in the case of
l = 3 and binary random variables Xi, is given by Pν(X ) = P (X0,X1)P (X2),
meaning ν = ((0, 1), (2)). Once a structure ς is given, the parameters for the mul-
tivariate pdfs have to be estimated. The way in which this is done, is predefined



on beforehand. Often, this corresponds to a maximum likelihood estimate, such
as a frequency count for binary random variables. As a probability distribution
can thus be identified using only the structure ς, we denote it by Pς(Z).

These definitions are used in the IDEA by selecting �τn� samples (τ ≥ 1
n )

in each iteration t and by letting θt be the worst selected sample cost. The
probability distribution P̂ θt

ς (Z) of the selected samples is then estimated, which
is an approximation to the uniform probability distribution P θt(Z). New samples
can then be drawn from P̂ θt(Z) to replace some of the current samples.

A special instance of the IDEA framework is obtained if selection is done
by taking the top �τn� best samples from the population, τ ∈ [ 1

n , 1], we draw
n− �τn� new samples, and the new samples replace the current worst n− �τn�
samples in the population. This results in the use of elitism such that θ0 ≥ θ1 ≥
. . . ≥ θtend

. We call the resulting algorithm a monotonic IDEA.
Since the random keys are essentially a real valued domain, real valued IDEAs

can directly be applied to permutation problems. Such an approach based upon
normal probability distributions was proposed by Bosman and Thierens [3] as
well as by Robles, de Miguel and Larrañaga [15]. However, the study by Bosman
and Thierens [3] showed that this does not lead to very effective permutation
optimization. The main problem with this approach is that solutions are not pro-
cessed in the permutation space but in the largely redundant real valued space.
To overcome this problem, a crossover operator was proposed [3]. This crossover
operator reflects the dependency information learned in a factorization. Two
parents are first selected at random. In the case of an mpf, the crossover opera-
tor then copies the values at the positions indicated by a vector in ν from one of
the two parents. This is repeated until all vectors in ν have been regarded. Thus,
whereas the IDEA is used to find the mpf, crossover is used instead of proba-
bilistic sampling to generate new solutions. The resulting algorithm is called ICE

(IDEA Induced Chromosome Elements Exchanger). Using ICE instead of a pure
real valued IDEA gives significantly better results. The results are comparable
with the only other EA that learns permutation structure information, which
is the OmeGA by Knjazew [11]. The OmeGA is essentially a fmGA that works
with random keys. The dependency information in this normal ICE is how-
ever still induced using normal distributions estimated over a largely redundant
space, which may introduce false dependency information. To improve induction
in ICE, we propose to induce these dependencies in the space of permutations
directly by interpreting the random keys as permutations. This is the topic of
the next section.

4 Estimating random keys marginal product factorized
probability distributions from data

For each problem variable ri we introduce a random variable Ri. Since the ran-
dom keys encode permutations, the symantics of the Ri differ from those of bi-
nary or real valued random variables. We let R = (R0, R1, . . . , Rl−1) and write
the vector of selected samples as S = (r0, r1, . . . , r|S|−1), ri = (ri

0, r
i
1, . . . , r

i
l−1).



The multivariate joint pdf over a subset of the random keys Rv is defined by
the probability at a certain random key subsequence rv. It can be computed by
counting the frequency in S of the permutation sort(rv) represented by rv:

P̂ (Rv)(rv) =
1
|S|

|S|−1∑
i=0

{
1 if sort((ri)v) = sort(rv)
0 otherwise (5)

To define the random keys marginal product factorized probability distribu-
tion, it should be noted that the size of the alphabet for a multivariate joint
factor P̂ (Rνi

) is |νi|!. Since the individual factors are taken to be independent
of each other, the alphabet size of the whole mpf is

∏|ν|−1
i=0 |νi|!. However, the

total number of possible permutations equals l!. Therefore, to construct a prob-
ability distribution over all possible permutations of length l, we must normalize
the product of the multivariate marginals

∏|ν|−1
i=0 P̂ (Rνi

)(rνi
). To illustrate, as-

sume that r0 < r1 and r2 < r3. Then there are 4!
2!2! = 6 permutations of length

4 in which this is so, such as r0 < r1 < r2 < r3 and r0 < r2 < r3 < r1.
This implies that the correct factorization of the probability distribution is
given by P̂((0,1),(2,3))(R0, R1, R2, R3) = 2!2!

4! P̂ (R0, R1)P̂ (R2, R3). Concluding, the
marginal product factorized probability distribution over all l variables becomes:

P̂ν(R)(rL) =
∏|ν|−1

i=0 |νi|!
l!

|ν|−1∏
i=0

P̂ (Rνi)(rνi) (6)

To find a factorization given a sample vector S of data, we use an incremental
greedy algorithm to minimize a metric that represents a trade–off between the
likelihood and the complexity of the estimated probability distribution. This is
a common approach that has been observed to give good results [2, 8, 12, 14].

The factorization learning algorithm starts from the univariate factorization
in which all variables are independent of each other ν = ((0), (1), . . . , (l − 1)).
Each iteration, an operation that changes ν is performed such that the value of
the penalization metric decreases. This procedure is repeated until no further
improvement can be made. For the learning of random keys mpfs, we propose
three possible operations. The operation that decreases the penalization metric
the most, is actually performed. The first operation is a splice operation that
replaces νi and νj (i �= j) with νi � νj , increasing the complexity of the fac-
torization. The second operation is a swap operation in which two factors νi

and νj may exchange an index. This operator allows to correct for lower order
decision errors and is therefore always preferred over the application of a splice
operation. The third operation is a transfer operation in which an index is re-
moved from one factor νi and added to another factor νj . This last operator is
able to correct for some additional special cases of lower order decision errors [4].
A metric that has often proved to be successful, is known as the Bayesian In-
formation Criterion (BIC). It scores a model by its negative log–likelihood, but
adds a penalty term that increases with the model complexity (|θ|) and the size
of the sample vector (|S|) [2]:



BIC(M|S) = −
|S|−1∑
i=0

ln
(
P̂M(R)(ri)

)
︸ ︷︷ ︸

+
1
2
ln(|S|)|θ|︸ ︷︷ ︸

Error(P̂M(R)|S) Complexity(P̂M(R)|S)

(7)

The AIC metric is an alternative to the BIC metric. The AIC metric is
similar to the BIC metric, but the complexity term is only given by the number
of parameters |θ|. The penalization in the AIC metric is too weak compared to
that in the BIC metric to give good results when normal probability distributions
are estimated [3]. However, if we use frequency tables to estimate the pdfs in
eq. 6, |θ| grows factorially with an increase of any νi. Therefore, the penalization
in the AIC will in this case most likely not be too weak. Because of the factorial
growth of the number of parameters to be estimated however, we must limit the
maximum factor size κν in any practical application (we used κν = 7).

This direct limitation on the maximum order of interaction that can be pro-
cessed, can be avoided by using default tables [6]. In a default table, the proba-
bilities are explicitly specified for a subset of all available entries. For the absent
entries, a default value is used, which is the average probability of all absent val-
ues. One straightforward way to use default tables, is to only specify the average
frequency for each entry that occurs in the sample vector. By doing so, no factor
can give rise to more parameters than |S|. We may still require |S| = O(κι!)
when there are subproblems with a maximum length of κι that need to be ex-
haustively sampled. However, when we must combine lower order solutions to
get solutions of a higher order, the default tables can give us a much more ef-
ficient representation of the few good solutions to the subproblems. This latter
issue is a important benefit of using local structures in probability distributions.
A local structure allows for a more explicit representation of dependencies be-
tween values that can be assigned to random variables instead of dependencies
between the random variables themselves. As a result, less parameters need to
be estimated. Probabilistic models that are capable of expressing more complex
dependencies now become eligible for selection when using a penalization metric,
whereas otherwise non–local structure models expressing similar dependencies
would never have been regarded because of the large number of (redundant) pa-
rameters the impose [6]. The use of local structures has been shown by Pelikan
and Goldberg [14] to allow for efficient optimization of very difficult hierarchical
deceptive optimization problems that exhibit dependencies between combina-
tions of values for large groups of variables.

To use default tables, the random keys for each factor νi are converted
into integer permutations. The list of selected permutations is then sorted in
O(|νi||S|log(|S|)) time and the frequencies are counted in O(|νi||S|) time. Note
that we can’t map the random keys to integers for faster sorting because the in-
tegers would become too large to efficiently represent as the factor size increases.

An additional operation that can be useful when using crossover on random
keys, is random rescaling. With random rescaling, a block of random keys that
is transferred to an offspring in crossover, is scaled to a subinterval of [0, 1]



with probability p�. If for instance (0.1, 0.2, 0.3) is scaled to [0.9, 0.95], we get
(0.9, 0.925, 0.95). Note that this doesn’t change the permutation that is encoded.
Rescaling allows for dependencies between the building blocks to be exploited and
increases the chance that they are combined properly. To ensure a large enough
number of intervals so that the blocks can be ordered, we set this number to l.

5 Experiments

We have tested the new approach to learning a probability distribution over
random keys by using it in monotonic ICE. We applied the algorithms to the
additively decomposable deceptive permutation problem with κι = 5 and the
overlapping problem with κι = 4. We used the rule of thumb by Mühlenbein
and Mahnig [12] and set τ to 0.3. All results were averaged over 30 runs.

An mpf over random keys as defined in eq. 6, differs from the traditional def-
inition for binary or real valued domains. This difference results in an additional
requirement for using default tables for random keys, which is a cutoff value
ξ ∈ [0, 1] indicating the maximum default table length ξ|S|. During the creation
of a factorization in the greedy factorization learning algorithm, no operation is
allowed to create a factor with a default table longer than ξ|S|. Without this
restriction, there would be an premature drift towards large factors. In this pa-
per, we use a cutoff value of ξ = 0.3. For a thorough explanation, we refer the
interested reader to a specialized technical report [4].

To get a good impression of the impact of different model building choices, we
tested a varied ensemble of combinations. Figure 1 shows the scale–up behavior
of all tested algorithms to obtain the optimal solution in all of the 30 runs on a
log–log scale. A linear relationship on this scale indicates a polynomial scale–up
behavior. Similar figures are obtained for the minimally required population size
and the running time. The actual scaling coefficients are computed with a least
squares line fit. The best scaling behavior is obtained when frequency tables
are used in combination with the AIC metric. The use of the transfer operation
shows a benefit over using only the splice and swap operations.

In figure 2, the results for the overlapping problem are tabulated. The maxi-
mum tested population size was n ≤ 105. The results show the minimal require-
ments on the algorithms to solve the problem optimally or the performance at
n = 105. No algorithm was capable of optimizing the problem without using
random rescaling. If random rescaling is used, the overlapping deceptive prob-
lem can be solved optimally for n ≤ 105 quite efficiently. However, we have now
applied random rescaling, knowing that overlapping subproblems exist. Since
we normally are not aware of this information, it is of great interest to see the
implication of random rescaling on solving the additively decomposable prob-
lems. If the structure of additively decomposable problems is correctly found,
introducing random rescaling should not matter. However, if the index cluster
boundaries are not completely found, random rescaling may introduce additional
disruptiveness to the crossover operation. This can indeed be seen in figure 1 as
the scaling coefficients worsen as p� increases. The variant of ICE that uses nor-



4000

6000

8000
10000

20000

40000

60000

80000
100000

200000

400000

600000

15 30 50 75

A
ve

ra
ge

 r
eq

ui
re

d 
nu

m
be

r 
of

 e
va

lu
at

io
ns

l

Normal ICE BIC S
Frequency Tables ICE AIC SW
Frequency Tables ICE BIC SW

Frequency Tables ICE BIC STW
Default Tables ICE BIC SW

Default Tables ICE BIC STW

Additively decomposable problem
Algorithm O(lx.xx)

ICE Oper. Metric p� n Eval. Time

N S BIC 0.0 1.61 2.06 3.70
N S BIC 0.1 1.71 2.79 4.33
N S BIC 0.5 —— —— ——

P SW AIC 0.0 1.23 1.68 4.07
P SW AIC 0.1 1.42 2.14 4.58
P SW AIC 0.5 1.64 4.14 7.07
P SW BIC 0.0 1.34 1.82 4.26
P SW BIC 0.1 1.43 1.69 4.51
P SW BIC 0.5 2.13 3.87 6.84
P SWT BIC 0.0 1.23 1.68 4.08
P SWT BIC 0.1 1.33 1.71 4.01
P SWT BIC 0.5 1.75 2.77 5.61

PDT SW BIC 0.0 1.25 1.87 4.71
PDT SW BIC 0.1 1.71 2.21 5.13
PDT SW BIC 0.5 3.80 4.36 8.19
PDT SWT BIC 0.0 1.32 1.87 4.80
PDT SWT BIC 0.1 1.81 2.28 4.88
PDT SWT BIC 0.5 3.32 4.45 8.29

Fig. 1. Results on the additively decomposable deceptive problem (κι = 5). On the
left, the required average number of evaluations as a function of the problem length l on
a log–log scale are shown. The straight lines indicate polynomial scale–up behavior. On
the right, the polynomial scaling coefficients with respect to the population size n, the
average required evaluations and the average actual running time for the tested ICE

variants are shown. The algorithms are indicated by N for the use of normal pdfs, P for
the use of permutation pdfs using frequency tables and PDT for the use of permutation
pdfs using default tables. The factorization search operations are indicated by S for
the splice operation, W for the swap operation and T for the transfer operation.

Additively overlapping problem
Algorithm |ι| = 3, κι = 4 |ι| = 6, κι = 4

ICE Oper. Metric p� n subs Eval. n subs Eval.

N S BIC 0.0 100000 2.17 643674 100000 4.07 1579354
N S BIC 0.1 100000 2.70 1066013 100000 4.87 2585035
N S BIC 0.5 100000 2.87 4111057 100000 5.40 45423314

P SW AIC 0.0 21000 3.00 222893 100000 5.20 1654022
P SW AIC 0.1 1900 3.00 21022 16000 6.00 328135
P SW AIC 0.5 1500 3.00 18982 11000 6.00 442256
P SW BIC 0.0 21000 3.00 250336 100000 5.00 1224018
P SW BIC 0.1 1600 3.00 19088 22000 6.00 576436
P SW BIC 0.5 1500 3.00 22520 18000 6.00 1116807
P SWT BIC 0.0 19000 3.00 210534 100000 5.00 1259755
P SWT BIC 0.1 1400 3.00 16998 20000 6.00 538037
P SWT BIC 0.5 1200 3.00 16759 12000 6.00 798334

PDT SW BIC 0.0 70000 3.00 684962 100000 5.00 1374018
PDT SW BIC 0.1 4750 3.00 42999 18000 6.00 302783
PDT SW BIC 0.5 1500 3.00 13586 80000 6.00 1116019
PDT SWT BIC 0.0 50000 3.00 473512 100000 5.00 1416019
PDT SWT BIC 0.1 4000 3.00 35371 13000 6.00 202301
PDT SWT BIC 0.5 1500 3.00 12641 70000 6.00 1050020

Fig. 2. Results for all algorithms on the overlapping deceptive permutation problem
with κι = 4; subs stands for the average number of subfunctions solved optimally. The
abbreviations are the same as those in figure 1.



mal distributions is not capable of solving the problem at all for p� = 0.5. For
p� = 0.1, the scaling behavior is not effected too much, so in general we would
suggest the use of a small p�. However, it would be interesting to see whether
the results can be improved by setting p� adaptively by for instance looking at
the rate of success of applying random rescaling and by changing p� accordingly.

The overhead in the scaling results are smaller for the AIC metric than for
the BIC metric. This is a result of the smaller penalization in the AIC metric,
which results in larger factors for smaller population sizes. This can lead to overly
complex models, for which reason the BIC metric is often preferred. In our case
however, it introduces a useful bias for correctly finding the index clusters. The
best scaling results are expected to be obtained when the AIC metric is used in
combination with the splice, swap and transfer operation.

6 Discussion and conclusions

We have proposed a new tool for finding and using the structure of permuta-
tion problems in evolutionary optimization by estimating mpfs in the space of
permutations. By using this probabilistic information to exchange the random
keys that encode the permutations in a crossover operator, we obtain the ICE

algorithm. ICE has been shown to scale up efficiently on deceptive additively
decomposable permutation problems of a bounded difficulty and to furthermore
give promising results on difficult overlapping deceptive permutation problems.

The use of default tables indicates a slightly larger overall requirement on
the computational resources used by ICE . However, the scaling behavior is not
effected too much. The advantage of default tables in that they allow more
complex models to compete in model selection, is more likely to stand out on
hierarchical deceptive problems. Empirical verification of this expectation, com-
bined with the results presented in this paper, would lead us to conclude that
the use of default tables with a small probability at using random rescaling is the
most effective allround optimization variant of ICE for permutation problems.

Although good results have been obtained, mpfs are not well suited for prob-
lems with overlapping building blocks. To this end, Bayesian factorizations in
which gene positions may be dependent on other gene positions are likely to
be more appropriate. Using the tools proposed in this paper, Bayesian factor-
izations may be learned, although it is to be expected that the use of a greedy
learning algorithm that introduces one dependency at a time, will also have lower
order decision error problems. To overcome this problem, new operators will be
required or some effective means of using the distances between random keys.

Finally, although our results are encouraging, we have only used a limited
number of test problems. An interesting next effort would be to investigate the
performance on real–world problems and provide a comparison with other EAs.

References

1. J. C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing, 6:154–160, 1994.



2. P. A. N. Bosman and D. Thierens. Advancing continuous IDEAs with mixture
distributions and factorization selection metrics. In M. Pelikan and K. Sastry,
editors, Proceedings of the Optimization by Building and Using Probabilistic Mod-
els OBUPM Workshop at the Genetic and Evolutionary Computation Conference
GECCO–2001, pages 208–212. Morgan Kaufmann, 2001.

3. P. A. N. Bosman and D. Thierens. Crossing the road to efficient IDEAs for permu-
tation problems. In L. Spector et al., editor, Proc. of the Genetic and Evolutionary
Computation Conf. – GECCO–2001, pages 219–226. Morgan Kaufmann, 2001.

4. P. A. N. Bosman and D. Thierens. Random keys on ICE : Marginal product fac-
torized probability distributions in permutation optimization. Utrecht University
Technical Report UU–CS–2002–xx., 2002.

5. K. Deb and D. E. Goldberg. Sufficient conditions for deception in arbitrary binary
functions. Annals of Mathematics and Artificial Intelligence, 10(4):385–408, 1994.

6. N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure.
In E. Horvitz and F. Jensen, editors, Proc. of the 12th Conference on Uncertainty
in Artificial Intelligence (UAI-96), pages 252–262. Morgan Kaufmann, 1996.

7. G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s ruin prob-
lem, genetic algorithms, and the sizing of populations. Evolutionary Computation,
7(3):231–253, 1999.

8. G. Harik and D. E. Goldberg. Linkage learning through probabilistic expression.
Comp. methods in applied mechanics and engineering, 186:295–310, 2000.

9. John H. Holland. Adaptation in Natural and Artifical Systems. University of
Michigan Press, Ann Arbor, Michigan, 1975.

10. H. Kargupta, K. Deb, and D. E. Goldberg. Ordering genetic algorithms and de-
ception. In R. Männer and B. Manderick, editors, Parallel Problem Solving from
Nature – PPSN II, pages 47–56. Springer Verlag, 1992.

11. D. Knjazew. Application of the fast messy genetic algorithm to permutation and
scheduling problems. IlliGAL Technical Report 2000022, 2000.

12. H. Mühlenbein and T. Mahnig. FDA – a scalable evolutionary algorithm for the
optimization of additively decomposed functions. Evol. Comp., 7(4):353–376, 1999.

13. A. Ochoa, H. Mühlenbein, and M. Soto. A factorized distribution algorithm us-
ing single connected bayesian networks. In M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature – PPSN VI, pages 787–796. Springer Verlag, 2000.

14. M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent genetic
algorithms. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Pro-
ceedings of the GECCO–2001 Genetic and Evolutionary Computation Conference,
pages 511–518. Morgan Kaufmann, 2001.

15. V. Robles, P. de Miguel, and P. Larrañaga. Solving the traveling salesman problem
with EDAs. In P. Larrañaga and J.A. Lozano, editors, Estimation of Distribution
Algorithms. A new tool for Evolutionary Computation. Kluwer Academic, 2001.

16. R. Santana, A. Ochoa, and M. R. Soto. The mixture of trees factorized distribution
algorithm. In L. Spector et al., editor, Proc. of the GECCO–2001 Genetic and
Evolutionary Computation Conference, pages 543–550. Morgan Kaufmann, 2001.

17. S.-Y. Shin and B.-T. Zhang. Bayesian evolutionary algorithms for continuous
function optimization. In Proceedings of the 2001 Congress on Evolutionary Com-
putation – CEC2001, pages 508–515. IEEE Press, 2001.

18. D. Thierens and D.E. Goldberg. Mixing in genetic algorithms. In S. Forrest,
editor, Proceedings of the fifth conference on Genetic Algorithms, pages 38–45.
Morgan Kaufmann, 1993.


