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Summary. In this chapter we focus on the importance of the use of learning and
anticipation in (online) dynamic optimization. To this end we point out an important
source of problem–difficulty that has so far received significantly less attention than
the traditional shifting of optima. Intuitively put, decisions taken now (i.e. setting
the problem variables to certain values) may influence the score that can be obtained
in the future. We indicate how such time–linkage can deceive an optimizer and cause
it to find a suboptimal solution trajectory. We then propose a means to address
time–linkage: predict the future (i.e. anticipation) by learning from the past. We
formalize this means in an algorithmic framework and indicate why evolutionary
algorithms (EAs) are specifically of interest in this framework. We have performed
experiments with two benchmark problems that feature time–linkage. The results
show, as a proof of principle, that in the presence of time–linkage EAs based on this
framework can obtain better results than classic EAs that do not predict the future.

1 Introduction

The majority of the literature on dynamic optimization [11] involves the
tracking of optima as the search space transforms over time. If evolution-
ary algorithms (EAs) [14] are used to achieve this goal, issues such as
maintaining diversity around (sub)optima and continuously searching for
new regions of interest that may appear over time are the most impor-
tant [1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 19, 23, 25, 29]. The shifting of optima
in dynamic optimization problems is important to study and to (re)design
EAs for. However, there is another feature of dynamic optimization problems
that is common in real–world problems such as scheduling [10] and vehicle
routing [21, 22, 27] that has received less attention in the literature. We will
call this feature time–linkage.

Intuitively put, the presence of time–linkage in a dynamic optimization
problem causes decisions that are made now, which are often made on the
basis of optimizing a certain score right now, to influence the optimal score
that can be obtained in the future. This in turn decreases the overall score
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obtained in the long run. A typical and illustrative example is the case of
dynamic vehicle routing where the locations to visit are announced over time.
If locations are clustered, but the clusters themselves are far apart, routing on
the basis of the currently available locations will likely lead to oscillatory be-
havior of the vehicles if the announced locations oscillate between the clusters.
More efficient routes could be formed by keeping vehicles inside clusters and
only occasionally letting them move to another cluster. In addition, quality
of service (e.g. being on time) as determined by the routing influences future
customer demand. Poor performance for a specific customer will likely not re-
sult in repeated orders from that customer. Hence, the revenue of a company
over time is determined by the current performance, but also by the impact
the current way of routing has on future events.

The most important contribution made in this chapter is that we will
show that dependencies between decisions over time requires their explicit
processing during optimization to ensure the best performance in the long
run. Any approach that does not explicitly process these dependencies and
instead only solves the problem for the current time will never obtain an
optimal result.

In this chapter we also present an algorithmic framework for solving
dynamic optimization problems. The algorithmic framework is specifically
equipped with the possibility of processing time–linkage. To this end, we pro-
pose the incorporation of learning (e.g. statistical [28] or machine [20]) with
the explicit task of predicting the future to prevent being deceived over time.
An evolutionary approach in which the future is predicted for dynamic op-
timization has been proposed before [26]. However, the cited approach only
predicts the future for a single discrete time step. As a result, the algorithm
cannot process longer, arbitrarily sized, time–linkage intervals. Moreover, the
approach was only tested on a problem that doesn’t contain time–linkage. As
a result, no significant difference was observed in using either a good predictor
or a bad predictor. In this chapter, we present two new benchmark problems
that contain time–linkage and show, as a proof of principle, how they can be
solved using an instance of our proposed framework.

It should be noted that it is not our goal in this chapter to propose a new
state–of–the–art EA for dynamic optimization. Instead, we want to point out
the influence that time–linkage can have and how, in a general manner, EAs
can be equipped with tools to cope with time–linkage.

The remainder of this chapter is organized as follows. In Section 2 we char-
acterize online dynamic optimization problems. Next, in Section 3 we discuss
solving these problems. In Section 4 we describe our algorithmic framework
and in Section 5 we present results of running experiments with EAs based
on this framework. Finally, possible directions for future research as well as
conclusions are presented in Section 6.
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2 Defining online dynamic optimization problems

In order to formally define the class of online dynamic optimization problems,
we first give a general definition of optimization problems. Without loss of
generality we assume that the goal is maximization.

Definition 1 (Optimization problem). An optimization problem is defined

as follows:

max
ζ∈P

{Fγ(ζ)} (1)

s.t. Cγ(ζ) = feasible

where Fγ : P → O is the optimization function, P is the parameter space,

O = R
no is the no–dimensional objective space, Cγ : P→ {feasible, infeasible}

is the constraint function and γ ∈ G are problem–specific parameters.

2.1 Static versus dynamic

An optimization problem can either be dynamic or not. If it is not dynamic,
it is said to be static (instead of non–dynamic).

Definition 2 (Static optimization problem). An optimization problem is

said to be static if it cannot be written as a dynamic optimization problem.

Definition 3 (Dynamic optimization problem). An optimization prob-

lem is said to be dynamic if the optimization function has the specific form of

a functional. Moreover, the function space to optimize over consists of func-

tions of a single variable t ∈ T = [0, tend], tend > 0. Variable t is commonly

referred to as time. An optimization problem is said to be dynamic if the op-

timization function and the constraint function can be written as below in

Equation 2 and there are no equivalent definitions of Fγ and Cγ that do not

involve the time variable.

Fγ(ζ) =

tend
∫

0

F
dyn

γdyn(t,Z(t,ζ))

(

ζdyn

ζ (t)
)

dt (2)

Cγ(ζ) =

{

feasible if ∀t ∈ [0, tend] : Cγdyn(t,Z(t,ζ))

(

ζdyn

ζ (t)
)

= feasible

infeasible otherwise

where F
dyn

γdyn(t,Z(t,ζ))
: P

dyn → O
dyn is the dynamic optimization function, P

dyn

is the dynamic parameter space, O
dyn = O = R

no is the no–dimensional

dynamic objective space, ζdyn

ζ : T → P
dyn is the dynamic variable func-

tion that for any time t ∈ T returns the settings for the variables of func-

tion Fdyn, ζ ∈ P are the parameters of function ζdyn, Z : T × P →
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{T × P
dyn} is a function that for any time t ∈ T and any setting ζ ∈ P

of the parameters of function ζdyn returns a set that contains the settings

of the parameters of function ζdyn for all times before t, i.e. Z(t, ζ) =
⋃

0≤t′<t

{(

t′, ζdyn

ζ (t′)
)}

, γdyn : (T, {(T× P
dyn)}) → G

dyn is a function that

for any time t ∈ T and the dynamic variable function restricted to all earlier

times t′ < t returns the problem–specific parameters, Cγdyn(t,Z(t,ζ)) : P
dyn →

{feasible, infeasible} is the dynamic constraint function and tend > 0 is the

horizon of the dynamic optimization problem. Moreover, we use the conven-

tion that
∫ b

a
(f0(x), . . . , fno−1(x)) dx =

(

∫ b

a
f0(x)dx, . . . ,

∫ b

a
fno−1(x)dx

)

Concordantly, the optimization problem to solve can now be written as:

max
ζ∈P











tend
∫

0

F
dyn

γdyn(t,Z(t,ζ))

(

ζdyn

ζ (t)
)

dt











(3)

s.t. ∀t ∈ [0, tend] : Cγdyn(t,Z(t,ζ))

(

ζdyn

ζ (t)
)

= feasible

In the dynamic optimization problem as defined above it is assumed that
time is continuous. However, this does not always have to be the case. If time is
not continuous, the integral can be written as a discrete sum and the dynamic
optimization problem is said to be discrete.

2.2 Offline versus online

A dynamic optimization problem can either be offline or not. If it is not offline
it is said to be online (instead of non–offline).

Definition 4 (Offline dynamic optimization problem). A dynamic op-

timization problem is said to be offline if the dynamic optimization function

can be evaluated completely.

From definition 4 we have that in offline dynamic optimization problems
the optimal dynamic variable function can be found by constructing complete
dynamic variable functions and subsequently evaluating their corresponding
optimization values by integrating over all time. The advantage of solving
offline dynamic optimization problems is that with the exception of a practical
one, there is no time–limit in solving the problem. In a sense, this type of
problem is very close to the traditional definition of optimization problems
in that we have a problem that must be optimized and we can evaluate the
optimization function. The only thing that we know additionally here is that
the optimization problem has the specific form of a dynamic optimization
problem.

Definition 5 (Online dynamic optimization problem). A dynamic op-

timization problem is said to be online if the dynamic optimization function
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cannot be evaluated for all future times t > tnow and the dynamic optimization

problem must therefore be solved as time goes by.

Online dynamic optimization is by far the most practical variant of dy-
namic optimization. It must continually be decided what values to use for the
dynamic variables from one moment to the next. The only thing that can be
evaluated is how well the algorithm has done so far, which we call the history
function.

Definition 6 (History function). The history function is defined as follows:

Hdyn(tnow, ζ) =

tnow
∫

0

F
dyn

γdyn(t,Z(t,ζ))

(

ζdyn

ζ (t)
)

dt (4)

Like many other optimization problems, online dynamic optimization
problems can be constructed artificially. Since the problem is then fully known,
there is in design no difference with the offline case. The difference only resides
in the fact that the problem is treated as being online. Online optimization
problems are however typically real–world problems in which the problem–
specific parameters actually change over time in an unknown fashion.

3 Solving online dynamic optimization problems

First we identify two important and commonly distinguished sources of
problem–difficulty in dynamic optimization problems in Section 3.1. In Sec-
tion 3.2 we then discuss solving online dynamic optimization problems by
only taking into account the current situation. Finally, in Section 3.3 we de-
scribe the advantages of solving online dynamic optimization problems by also
taking into account future implications of decisions.

3.1 System influence and control influence

We distinguish between two types of influence that cause the dynamic opti-
mization problem to change with time: system influence and control influence.

Definition 7 (System influence). System influence is the type of influence

that the problem solver has no control over. It is the part of the dynamic system

that changes over time, regardless of choices made for the problem variables.

It is the inherent reason why the optimization problem is dynamic and hence

why the optimization function parameters γdyn (t) are a function of time.

Definition 8 (Control influence). Control influence is the response of the

dynamic system at time tnow to the choices for the problem variables made in

the past by the problem solver, i.e. the trajectory ζdyn

ζ (t) with t ∈ [0, tnow).



6 Peter A.N. Bosman

Most EAs designed for dynamic optimization problems and studied in the
literature are specifically designed to cope with system influence. Without
taking into account the (possible) presence of control influence however, the
online dynamic optimizer risks falling victim to time–deception.

3.2 Optimizing the present: falling victim to time–deception

The approach

An often–used approach to solving online dynamic optimization problems is
to optimize Hdyn(tnow, ζ) continuously or whenever an event resulting from
system influence takes place. Since we cannot change the past, we can only
vary the settings of the variables at tnow. Hence, the optimization problem to
solve at time tnow using this approach is actually the optimization of the value
of the dynamic optimization function at time tnow. To cope with a variety
of system influences when using EAs, diversity preserving mechanisms are
often used to prevent convergence as are other techniques such as detecting
(major) changes in the landscape to trigger a restart or forking off multiple
sub–populations from a general optimizer to search various parts of the search
space more closely as they become more interesting over time.

How bad can it be?

Unfortunately, the answer is arbitrarily bad. The most important reason for
this is the presence of control influence. Of course system influence could
make the problem change in a random way, clearly already making the prob-
lem arbitrarily difficult. However, even if system influence is smooth and the
landscape is not complex, optimizing only the current situation can lead to
arbitrarily bad results due to the presence of time–linkage.

Definition 9 (Time–linkage). A dynamic optimization problem is said to

contain time–linkage if and only if there exists at least one time 0 ≤ t ≤ tend

for which the dynamic optimization value at time t is dependent on at least

one earlier solution ζdyn

ζ (t′), 0 ≤ t′ < t.

As an example, consider the following unconstrained l–dimensional dy-
namic optimization problem; a simple adaptation of the sphere problem that
shifts with time:

max
ζ
dyn

ζ
(t)











tend
∫

0

ϕ
(

ζdyn

ζ (t), t
)

dt











(5)

where
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ϕ
(

ζdyn

ζ (t), t
)

=















−
∑l−1
i=0

(

ζdyn

ζ (t)i − t
)2

if 0 ≤ t < 1

−
∑l−1
i=0

(

(

ζdyn

ζ (t)i − t
)2

+ ψ
(∣

∣

∣
ζdyn

ζ (t− 1)i

∣

∣

∣

)

)

otherwise

Now, when optimizing only the present in an online setting, a value for
ζdyn

ζ (tnow) is chosen by maximizing ϕ(ζdyn

ζ , tnow). For any t, ϕ(ζdyn

ζ , t) is

just a hyperparabola with a unique maximum for ζdyn

ζ (t)i = t. For 0 ≤
t < 1 the associated optimization value is 0 and for t ≥ 1 this value is

−
∑l−1
i=0 ψ

(∣

∣

∣
ζdyn

ζ (t− 1)i

∣

∣

∣

)

. It is this construction that deceives an approach

in which only the present is optimized because then the actual value of func-
tion ψ(·) is not taken into account although it may decrease at an arbitrary
rate, depending on its form. However, if the simple choice of ζdyn

ζ (t)i = 0 is
always made, then, assuming that ψ(0) = 0, the optimization value that is

reached is l
∫ tend

0
−t2dt = − l

3 (tend)
3
, regardless of function ψ(·).

Now if for instance ψ(x) = x2, the result is better if only the present
is optimized than if just ζdyn

ζ (t)i = 0 is chosen. Although a better result

can still be obtained because ζdyn

ζ (t)i = 0 is not the optimal solution, the
penalty of disregarding time–linkage is only small. But if ψ(·) is a higher–
order increasing function, such as ψ(x) = ex−1, a (much) worse optimization
value will be obtained and the price to pay for not taking into account time–
linkage is (much) higher. A graphical illustration of the difference in obtained
optimization values for the case of l = 1 is given in Figure 1.

Since in the online case the behavior of the optimization function in the
future is not known, optimizing only the present can thus significantly reduce
overall solution quality. Hence, optimizing only the present is not a good ap-
proach unless the problem provably does not contain time–linkage. Otherwise,
the problem is time–deceptive for this approach to solving online dynamic op-
timization problems.

Definition 10 (Time–deception). A dynamic optimization problem is said

to be time–deceptive for an optimizer if the problem contains time–linkage and

the optimizer has no means to efficiently take this time–linkage into account

during optimization and therefore cannot find the optimal solution trajectory.

3.3 Optimizing the present and the future: learning to avoid
time–deception

The approach

The approach of optimizing only the present is deceived over time because
the true problem definition (i.e. Equation 2) is not used. Future changes that
occur as a result of decisions made earlier are neglected. To remedy this,
optimization over future choices is required. In the online case however, an
evaluable future is absent. Hence, the only option is to predict the future.
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Fig. 1. Illustration of the optimization values obtained for different variable trajec-
tories and different forms of ψ(·) in the case of l = 1 and tend = 5. ψ(x) = ∗ is any
function such that ψ(0) = 0.

The better the prediction, the closer the algorithm can get to optimality. The
available information to base the prediction upon besides problem–specific
information is information that was collected in the past.

The optimization problem to be solved using this approach at time tnow is
based on an approximation of the value of the dynamic optimization function
over a future time span of length tplen:

max
ζ
dyn

ζ
(t)











min{tnow+tplen,tend}
∫

tnow

F̂dyn

α

(

t, ζdyn

ζ (t)
)

dt











(6)

s.t. ∀t∈ [tnow,min {tnow+tplen, tend}] : Ĉdyn

α

(

t, ζdyn

ζ (t)
)

= feasible

where






F̂dyn

α

(

tnow, ζdyn

ζ (tnow)
)

= F
dyn

γdyn(tnow,Z(tnow,ζ))

(

ζdyn

ζ (tnow)
)

Ĉdyn

α

(

tnow, ζdyn

ζ (tnow)
)

= C
dyn

γdyn(tnow,Z(tnow,ζ))

(

ζdyn

ζ (tnow)
)

Prediction in the complete BBO case

The complete BBO (Black–Box Optimization) case is the most general case.
No prior knowledge is assumed on the problem to be solved other than the
number of variables and their types. Additional knowledge can only be gained
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by evaluating solutions. Since nothing is known about the optimization func-
tion, only a very general form of induction can be performed to predict future
function values.

We assume that the number of variables and their semantics do not change.
To predict the (expected) value of the dynamic optimization function, an ap-
proximation based on previously evaluated solutions can be used. Computing
this approximation is a (statistical) learning problem. The available data in
the learning problem is:

ndata−1
⋃

i=0

{(

(

ti, ζdyn

ζ (ti), Z(ti, ζ)
)

,yi
)}

(7)

where on the input–side of the pattern we have the time ti, 0 < ti ≤ tnow, the
value of the variables ζdyn

ζ (ti) at time ti and the history of the variable–value–

trajectory Z(ti, ζ) up to time ti and on the output–side of the pattern we
have the value of the dynamic optimization function yi for solution ζdyn,i at
time ti. Note that the use of an EA can greatly add to the availability of data
and can hence increase the accuracy of the predictions because a (diverse)
population is used. Each population member can serve as a pattern. Note
that the integration of the history of the solution–trajectory into the data set
is essential for the processing of time–linkage.

The goal of learning is to estimate the value of the dynamic optimization
function for future times (assuming that the constraint function does not need
to be estimated) by minimizing the generalization error over the time span
that contains the data to learn from. In the single–objective case the learning
problem can be formalized as follows:

min
α∈A







tmax
∫

tmin

(

F
dyn

γdyn(t,Z(t,ζ))

(

ζdyn

ζ (t)
)

− F̂dyn

α

(

ζdyn

ζ (t)
)

)2

dt







(8)

where
{

tmin = mini∈{0,1,...,ntrain−1}{t
i}

tmax = maxi∈{0,1,...,ntrain−1}{t
i}

and α ∈ A are the parameters of the function class from which to choose the
approximated optimization function.

Prediction in the partial BBO case

In the presence of problem–specific information, the learning task may be less
involved which may improve the reliability of the predictions. A typical case
is when the function can be evaluated for any 0 ≤ t < tend, as long as the
required parameters are set. Then, if we are able to predict the values for the
parameters accurately, we automatically get an accurate function evaluation.
The less parameters to be estimated, the better the hope is of obtaining good
approximations.
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Prediction length, prediction base and history length

In addition to the choice of approximation class and learning mechanism, there
are two key issues of importance in using predictions in dynamic optimization:

1. How far into the future should predictions be made?
(we call this prediction length, denoted tplen)

2. From how far into the past should information be used to base
the prediction upon?
This question is actually twofold:
a) How far into the past should ti go in Equation 7?

(we call this prediction base, denoted tpbase)
b) For each pattern, how far into the past, starting from the

time of that pattern, should we take into account the history
of the variable trajectory?
(we call this history length, denoted thlen)

A proper choice for the prediction length and the history length depends
on the time–linkage time span, i.e. how far into the future do current choices
have a significant influence? Certainly this is also the minimal choice for the
prediction base. However, larger values for prediction length, prediction base
and history length may be required to look beyond the linkage and observe
the general dynamics of the optimization problem.

Another issue that influences the proper choice for the prediction length is
the reliability of predictions. As predictions are made further into the future,
they are bound to become less reliable, giving a trade–off between the required
prediction length as a result of time–linkage and the feasible prediction length
as a result of reliability issues.

How good can it be?

Fortunately, the answer is arbitrarily good. However, although it is intuitively
clear that the optimum is attainable, this does require perfect predictions.
Then, the problem can be solved to optimality by optimizing at any time the
integral over the predictions with tplen = tend − tnow.

The strength of the optimization method (with respect to the problem at
hand) is still a key component to success. However, the success of the approach
now also heavily depends on the strength of the prediction method. Bad pre-
dictions may even lead to worse results than are obtained by optimizing only
the present. Hence, careful design and performance assessment of methods
that predict the future are certainly called for. In the following section we
present a general framework for solving dynamic optimization problems by
incorporating learning techniques as described above.
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4 An algorithmic framework

4.1 Components

Solver

The solver, denoted S, is an optimization algorithm, possibly equipped with
tools to allow for adaptability as time goes by. The function to be optimized
is provided by the function component.

Predictor

The predictor, denoted P , is a learning algorithm that approximates either
the optimization function directly or several of its parameters. The data set
from which to estimate a function is provided by the database component.
When called upon, the predictor returns either the predicted function value
directly or predicted values for parameters.

Function

The function, denoted F , is the optimization function to be maximized by the
solver. If the future is not to be taken into account, this function is just the
dynamic optimization function. Otherwise, the dynamic optimization func-
tion is used to compute the optimization value that pertains to the current
time and the predictor is used to predict future optimization values. The tra-
jectory of the variables in the predicted future is to be set by the solver. To
specify this trajectory a dynamic variable function is needed that can supply
a solution for each possible time between tnow and min{tnow + tplen, tend}. It
is computationally convenient to divide the trajectory–future interval as well
as the trajectory–history interval into non–zero sub–intervals of length tpint

and thint respectively. The optimization value then is a discrete approxima-
tion of the integral over the future interval where future predictions are in
addition to other data based on a discretized past trajectory. If the dynamic
optimization function is not stochastic, a list of solutions can be used such
that there is one solution for each sub–interval. If the dynamic optimization
function is stochastic however, a predefined future list of actions may not be
optimal. The reason for this is that different actions may be optimal in dif-
ferent situations. Because the future is stochastic, the actual future situation
is unknown. Hence, a responsive strategy is then required instead to be able
to obtain optimality. The solution to optimize by the solver then is thus not
a list of assignments to the problem variables, but a strategy in the form of
a function of time that returns a solution conditioned on the actual future
situation. Note that the list of assignments in the non–stochastic case is a
specific form of the strategy.
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Database

The database, denoted D, is a collection of patterns upon which the predictor
bases its predictions. Patterns are added either by the function component (i.e.
in the complete BBO case whenever a new solution is evaluated) or by the
system whenever an event occurs that is related to the parameters of interest
(i.e. in the partial BBO case). All patterns are time–stamped. The database
only contains patterns with a time stamp t such that tnow − tpbase ≤ t ≤ tnow.

Timer

The timer, denoted T , can provide the current time tnow.

4.2 Dividing resources

Clearly, optimization becomes more involved if we also want to take into
account predictions of the future. Not only does the number of variables to
optimize over increase (at least if we regard the complete BBO case), but also
additional computation time is required for learning to make predictions.

It is important to note that there is a trade-off between how much time
should be spent on running the solver and how much time should be spent on
running the predictor. We propose to implement the solver and the predictor
components as threads. This allows both for a scheme in which the solu-
tion component and the predictor component run simultaneously as well as a
scheme where the predictor and solver are run sequentially by synchronization
using signals. An example of the second scheme is given by the scenario in
which the solver sends a signal when a certain number of generations have
passed and then awaits completion of the learning task before continuing.

4.3 Definition

To complete the framework, we provide an algorithmic description of how the
components are used together to solve online dynamic optimization problems.
First, the trajectory is made empty and all the components are initialized.
Then, the solver and the predictor are started and the actual optimization
begins. Although the solver may store a solution into the trajectory at any
time (e.g. at the end of each generation for an EA), we want to ensure that
at least a few solutions are stored in the trajectory. To this end, the solver is
requested for a solution at regular intervals of length tsint. These requests are
issued until tend is reached. Then, the solver and the predictor are halted and
the resulting trajectory is returned. Pseudo–code for the framework is given
in Figure 2.

An important part of the framework that is of a specific form is the way in
which a solution in the form of a future trajectory is evaluated. It is here that
the prediction component can influence the way in which the solver searches
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Framework(S, P, F,D, T, tend, tpbase, tplen, tsint, tpint)

1 Z ← ()
2 S.Initialize(S, P, F, . . . , tpint)
3 P.Initialize(S, P, F, . . . , tpint)
4 F.Initialize(S, P, F, . . . , tpint)
5 D.Initialize(S, P, F, . . . , tpint)
6 T.Initialize(S, P, F, . . . , tpint)
7 S.Start()
8 P.Start()
9 do

9.1 tnow ← T.GetTime()
9.2 ζ ← S.RequestSolution()
9.3 Z ← Z t ((ζ, tnow))
9.4 tnext ← min{tnext + tsint, tend}
9.5 AwaitTime(tnext)
while tnow ≤ tend

10 S.Stop()
11 P.Stop()
12 return(Z)

Fig. 2. Pseudo–code for the algorithmic framework.

for a solution at time tnow because the predictor is used to evaluate all parts
of the trajectory that pertain to future times. Pseudo–code for this specific
part of the framework is given in Figure 3.

F.Evaluate(ζdyn

ζ )

1 tnow ← T.GetTime()
2 y ← tpintF

dyn

γdyn(tnow,Z(tnow,ζ))
(ζdyn

ζ (tnow))

3 if CompleteBBOCase() then
3.1 D.AddPattern(((ζdyn

ζ (tnow), tnow),y))

3.2 for i← 1 to dtplen/tpinte − 1 do
3.2.1 y ← y + tpintP.Predict(ζdyn

ζ , tnow + i·tpint)

4 else
4.1 for i← 1 to dtplen/tpinte − 1 do

4.1.1 γpredicted ← P.Predict(ζdyn

ζ , tnow + i·tpint)

4.1.2 y ← y + tpintF
dyn

γpredicted(ζdyn

ζ (tnow + i·tpint))

5 return(y)

Fig. 3. Pseudo–code for the evaluation of future trajectories.
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5 Experiments

5.1 EA

The optimization problems that we perform experiments with are real–valued,
but at any point in time not very daunting because the most important thing
we focus on in this chapter is time–linkage. Therefore, we opt for a simple and
fast real–valued EA. We use an EDA (Estimation–of–Distribution Algorithm)
for real–valued optimization [5, 18] without learning dependencies between
problem variables. The main difference with traditional EAs is that in EDAs
a probabilistic model is learned using the selected solutions. The probabilistic
model can capture various properties of the optimization problem. By drawing
new solutions from the probabilistic model these properties can be exploited
to obtain more efficient optimization.

In this chapter we performed experiments with a real–valued EDA based
on the normal distribution in which each variable is taken to be independent
of all the other variables. Such an EDA is also known as the naive IDEA (It-
erated Density–Estimation Evolutionary Algorithm) [6]. In the naive variant
the mean and standard deviation of a one–dimensional normal distribution
are estimated from the selected solutions for each variable separately. A new
solution is constructed by sampling one value per variable from the associ-
ated one–dimensional normal distribution. Since the optimization problem is
dynamic, we prevented total premature convergence by bounding the esti-
mated variance for each variable to a minimum of 0.1. Finally, all results were
averaged over 100 independent runs.

5.2 BBO: Time–linkage numerical problem

The problem

We first investigate the real–valued time–linkage problem introduced in Sec-
tion 3.2, Equation 5. We regard two variants by setting ψ(x) = x2 and
ψ(x) = ex − 1. Moreover, we have used a dimensionality of l = 1.

Instantiating the framework

In this problem the goal of the predictor is to predict the value of the optimiza-
tion function directly. For clarity we point out that the predicted functions
are estimated from a set of patterns with timestamps at most tpbase time ago.
The patterns in the data set contain the actually chosen trajectory in the past
up to time ti − thlen in steps of thint, i.e. if thlen = thint = 1, a pattern is given
by ((ti, ζdyn

ζ (ti), ζdyn

ζ (ti − 1)),yi). We used three different predictor instances.

1. Optimal
Returns the true value of the dynamic optimization function.
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2. Linear estimator
Returns the value of a linear function that was estimated using the least–
squares technique.

3. Quadratic estimator
Returns the value of a quadratic function that was estimated using the
least–squares technique.

For the case of ψ(x) = x2 only the function class used by the quadratic
estimator contains the target function. Hence, effective future predictions are
possible with proper estimations in this case, which should ensure the preven-
tion of time–deception. For the case of ψ(x) = ex−1, neither of the estimators
can represent the target function. However, the quadratic estimator should be
capable of far better approximations than the linear estimator.

Since we present a proof of principle, we do not investigate the selection of
tplen during optimization. Instead, we fix it to either 0, corresponding to the
traditional approach of not looking into the future, or to the optimal value of
1. Moreover, we set thlen = thint = tpbase = tpint = tplen.

Results

A population size of 25 was experimentally found to be adequate for solving
the optimization problem in each time step. We set tend = 10 and advanced
time by a time step of 0.001 every generation. Since the database contains
all patterns over a time span of length 1 and the time steps are of size 0.001,
the size of the database can become quite large. Although this allows for
a higher precision of estimations, it also results in large time requirements
for the learning task. Learning was performed after a predefined number of
generations. To investigate the impact on the overall quality of optimization,
we performed experiments with various values for the number of generations
between learning phases: 1, 10, 100 and 1000.

The average trajectories obtained for the quadratic and the exponential
time–linkage numerical problem are shown in Figures 4 and 5 respectively.
The overall results (i.e. the integral over t ∈ [0, 10]) are tabulated in Table 1.

Theoretically, under the assumption that the length of the time–linkage is
known, the optimal trajectory can be obtained if the target function is in the
function class used by the learner and the learner is competent in that it will
indeed find that target when learning. In the case of the quadratic time–linkage
numerical problem this is experimentally verified by the results. The use of the
quadratic estimator leads to results that are very close to optimality (i.e. when
the future is known). The discrepancy is explained by the startup time the
learner needs before being able to construct a model based upon previously
encountered data. Moreover, results improve if learning is performed more
frequently because the model is then constructed earlier.

In the case of the exponential time–linkage numerical problem, neither the
linear nor the quadratic estimator have a function class that contains the tar-
get exponential function. However, for the time–linkage in this problem that
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Fig. 4. Results averaged over 100 runs on the time–linkage numerical problem with
ψ(x) = x2.

depends only on a single point in the past over a distance of 1, a quadratic
function can quite closely approximate an exponential function. For this rea-
son the use of the quadratic estimator leads to good results here as well,
albeit not optimal. Small deviations from the optimal trajectory as a result
of a small learner error can indeed be seen in Figure 5. The linear estimator
is not capable of approximating a quadratic function well. For the exponen-
tial function, linear estimation is even worse. The use of the linear estimator
therefore leads to far worse results. An even more important point to note
is that the results using the linear estimator can be even worse than when
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prediction is not used because of the large errors in the predictions. Hence,
another important issue in using learning for online dynamic optimization is
the assessment of the reliability of predictions and the use of predictions only
if this reliability is large enough.
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Fig. 5. Results averaged over 100 runs on the time–linkage numerical problem with
ψ(x) = ex

− 1.

The results lead to the expected conclusion that competent learners are
called for and that reliability of predictions is a major issue. The competence
of the learner in the BBO case depends on general/overall competence which
is very hard to obtain. In the problem–specific case however, achieving learner
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ψ(x) = x2 ψ(x) = ex − 1

Future known −1.21846·102 −1.55430·102

Future ignored −2.42940·102 −8.08692·103

Learn every gen. −1.09434·103 −2.04922·1065

Learn every 10 gen. −1.18946·103 −7.93853·10172

Learn every 100 gen. −9.98665·102 −3.02553·1096

L
in

ea
r

Learn every 1000 gen. −1.38907·102 −1.22634·1086

Learn every gen. −1.22010·102
−1.55966·102

Learn every 10 gen. −1.22013·102 −1.55969·102

Learn every 100 gen. −1.22062·102 −1.56069·102

Q
u
ad

ra
ti
c

Learn every 1000 gen. −1.23178·102 −1.58092·102

Table 1. Overall results (i.e.
R tend

0
F

dyn

γdyn(t,Z(t,ζ))
(ζdyn

ζ (t))) on the time–linkage nu-

merical problem.

competence may be easier because the shape of the model to be learned (i.e.
parametric learning) is known from domain knowledge, ensuring that the tar-
get function is in the function class used by the learner.

5.3 Partial BBO: dynamic pick–up problem

The problem

The second problem that we investigate is a discrete partial BBO problem.
Although it is based on a simple model, the time–linkage in the problem is
large: any decision made now influences the result of the dynamic optimization
function for all future time steps. The intuitive description is that at time step
t a truck is located at xtruck(t) and a package appears at location xpackage(t).
It must now be decided whether to send the truck to go and pick up the
package or to drive elsewhere. If the package is not picked up, it disappears.
Picking up the package pays a value of 1, but driving costs a value equal to
the Euclidean distance traveled. The number of packages is npackages = tend +1,
i.e. the time steps are of size 1. A solution at time t now is a tuple ζdyn

ζ (t) =
(b(t),xalternative(t)) where b ∈ {0, 1} indicates whether the package at time t
should be picked up (b(t) = 1) and xalternative(t) is the location to drive to if
the package is not to be picked up (b(t) = 0). Mathematically:

F
dyn

γdyn(t)

(

(

b(t),xalternative(t)
)

)

=

{

1−‖xpackage(t)− xtruck(t)‖ if b(t) = 1

0−‖xalternative(t)− xtruck(t)‖ otherwise
(9)

where

xtruck(t) =











∼
∏l−1
i=0N (0, 1) if t = 0

xpackage(t− 1) if t = 1 and b(t− 1) = 1

xalternative(t− 1) otherwise
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For simplicity, the model used to generate new package locations is a uni-
variately factorized normal distribution with zero mean and unit variance, i.e.
xpackage(t) ∼

∏l−1
i=0N (0, 1).

Instantiating the framework

A simple strategy is given by a hillclimber. The decision taken at each time
step is to move only to pick up a package and moreover only to do so if the
distance to the package is less than 1. In other words, a negative score is never
accepted.

We have compared the hillclimber with an EA instance of the general
framework. Since the optimization function is completely known with the ex-
ception of xpackage(t), the problem is only partially a BBO problem. Hence, we
can restrict the prediction task to predicting future values for xpackage(t). We
have performed experiments where we assumed the distribution of xpackage(t)
to be known and where we estimated this distribution from data, assuming
only that the data is indeed normally distributed.

In theory, the influence of any decision at time t influences the outcome
of the dynamic optimization function at any time t′ > t. However, the larger
t′ − t, the smaller the remaining impact on the situation at time t′. Although
in theory it would be optimal to set tplen to tend with tpint = 1, such a choice
gives rise to two practical problems. First, a large tplen gives extremely large
trajectories to optimize. This drastically increases the resources required by
the EA to solve the problem. Second, since the future is stochastic in this
problem, a proper estimation of the expected future profits requires averaging
evaluations over multiple calls. Moreover, the variability of these outcomes
increases as tplen increases because more uncertainty is introduced. Hence,
unless an infinite number of calls is used, a smaller value for ttplen is expected
to be optimal in practice.

Because the problem is stochastic, we require the solution in the solver
component to be a dynamic variable function. For the problem at hand this
means that we need to evolve a decision strategy for where to move the truck,
given a certain (predicted) situation. The strategy we choose here is a simple
one. For the current situation, a decision is directly subject to evolution. For
future, predicted, situations up to a time span of tplen, the hillclimber strategy
is used. Hence, the EA only provides a solution for the current time. Certainly,
better results may be obtained by allowing the EA to evolve a more elaborate
strategy. However, using the hillclimber already gives an impression of the
quality of a certain starting point. This information, albeit an approximation
of what can truly be achieved, can therefore still give additional insights into
the quality of a decision for the current situation, i.e. where to move the
truck to right now. Since the dynamic optimization function is stochastic,
we point out again that multiple calls are required to estimate the expected
future payoff even when using the hillclimber to evaluate the future. To reduce
the number of statistical errors, the best evolved decision is compared to
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the default choice of doing nothing, i.e. b(tnow) = 0 and xalternative(tnow) =
xtruck(tnow). Only if the mean fitness of the best evolved decision averaged
over 100 calls to the dynamic optimization function is statistically significantly
larger than the mean fitness of the default decision, the evolved decision is
used. The statistical hypothesis test used to this end is the Aspin–Welch–
Satterthwaite (AWS) T–tests at a significance level of α = 0.05. The AWS
T–test is a statistical hypothesis test for the equality of means in which the
equality of variances is not assumed [17].

Results

A population size of 100 was experimentally found to be adequate for solving
the optimization problem in each time step. We set tend = 100 and advanced
time by a time step of 1 every 50 generations. Since only one pattern was added
to the data set each time step, and only a normal distribution is estimated
from data, learning can be done very fast for this problem. Therefore learning
was performed whenever time was advanced. The final scores (i.e. the integral
of the dynamic optimization function over [0, 100]) are shown in Figure 6 as
a function of the prediction length tplen. Indeed as expected and motivated
earlier in the previous subsection, the best value for tplen is not the maximum
length of tend, but a smaller length, even if the model is fully known.
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(ζdyn

ζ (t))) averaged over 100 runs on the

dynamic pick–up problem as a function of the prediction length.

The trajectory of the cumulative fitness for the best value and maximum
value of tplen are shown in Figure 7. This figure also reveals why the use of
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information about the future leads to a better result in the end. All algorithms
other than the hillclimber are willing to accept negative scores in a single turn
if the prospect on future gains is larger. This happens if the truck moves more
towards the origin as the density of the normal distribution is the highest
there. The better strategy adopted by the system is thus to initially move
towards the region close to the origin and never move too far away from it,
even if doing so means making a profitable pick–up.

Finally, it is again interesting to note that postponing the use of learning
until a higher reliability is obtained leads to better results. This indicates
again the importance of reliable predictions in the proposed approach.
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6 Discussion and conclusions

In this chapter we have highlighted a specific source of difficulty in online
dynamic optimization problems. We have labeled the difficulty time–linkage.
In the worst case time–linkage can lead to time–deception. In that case any
optimization algorithm is mislead and finds suboptimal results unless future
implications of current decisions are taken into account. To tackle problems
exhibiting this type of problem difficulty, we have proposed a framework that
learns to predict the future and optimizes not only the current situation but
also future predicted situations. We have proposed and used two new bench-
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mark problems, but a larger suite of problems containing time–linkage is called
for and should become a standard in dynamic optimization research.

In our experiments, we have fixed the future prediction time span as well
as the history data time span. An interesting question is whether the time
spans required to prevent deception can be measured during optimization.
This calls for techniques for time–linkage identification in a similar sense as
gene–linkage identification techniques are required in standard GAs to prevent
deception as a result of dependencies between a problem’s variables [12, 24].

Another important and related issue is how quickly the reliability of pre-
diction degrades into the future. Even if we know how far into the future we
must predict, these predictions are hardly of any use if they are unreliable.
The prediction reliability is influenced mostly by the difficulty of the function
to predict (i.e. relatively steady or heavily fluctuating) and by the availability
of data.

Ultimately, the expansion of dynamic EAs to process time–linkage infor-
mation should be integrated with current state–of–the–art dynamic EAs that
are capable of tackling other important problem difficulties that arise in dy-
namic optimization such as the overtaking of the optima by other local optima
as time goes by. An EA that is capable of efficiently tackling both sources of
problem difficulty is likely to be robust and well–suited to be used in practice
and hence to be tested in real–world scenario’s. To that end however, a further
expansion that makes the approach well–suited for the multi–objective case
is also likely to be crucial.
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