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ABSTRACT

Estimation-of-Distribution Algorithms (EDAs) build and use
probabilistic models during optimization in order to auto-
matically discover and use an optimization problems’ struc-
ture. This is especially useful for black-box optimization
where no assumptions are made on the problem being solved,
which is characteristic of many cases in solving complex real-
world problems. In this paper we consider multi-objective
optimization problems with real-valued variables. Although
the vast majority of advances in EDA literature concern
single-objective optimization, advances have also been made
in multi-objective optimization. In this paper we bring to-
gether two recent advances, namely incremental Gaussian
model building to reduce the required population size and
a mixture-based multi-objective framework that has specific
methods to better facilitate model-building techniques that
span multiple generations. Significantly faster convergence
to the optimal Pareto front is achieved on 6 out of 7 ar-
tificial benchmark problems from literature. Although re-
sults on two of these problems show that building models
with higher-order interactions between variables is required,
these problems are still artificial. We therefore also consider
a more realistic optimization problem in image processing,
namely deformable image registration. For this problem too,
our results show the need for processing interactions between
problem variables, stressing the importance of studying the
use of such models. Furthermore, the number of problem
variables in the deformable image registration problem can
be very large. The building of models with higher-order in-
teractions, especially mixture-based models, then requires
very large population sizes. The use of incremental model
building is therefore of high importance. This claim is sup-
ported by our results that show a huge reduction in the
number of required evaluations on this problem.
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1. INTRODUCTION
Many optimization problems in practice are actually multi-

objective optimization (MO) problems [6]. In such problems
more than one objective functions must be optimized simul-
taneously without an expression of weights or other means of
scalarizing these objectives. A typical example is the design
of a product where one objective is the quality of the design
and another objective is the associated cost. Minimizing the
cost will in general lead to products of inferior quality, while
maximizing the quality will give rise to an increasing cost.
As a consequence, there are many optimal solutions to a MO
problem, all of which represent a trade-off between the two
objectives. The notion of searching a search space through
maintaining a set of solutions is a key characteristic of evo-
lutionary algorithms (EAs). EAs are commonly accepted to
be well-suited for solving MO problems [6]. Because a set
of solutions is used, EAs can spread their search bias along
the Pareto front and thereby prevent many re-computations
that are involved if a single point on the Pareto front is
repeatedly targeted using a single-solution based approach.

The efficiency of variation operators when used in a multi-
objective EA (MOEA) can often be improved by employing
restricted mating such that solutions that are closer to each
other in objective space have a higher probability of be-
ing combined. In EDAs a natural way to achieve this is
by building mixture distributions that spread the mixture
components throughout objective space [4, 8, 11]. Such an
approach allows EDAs to spread the search intensity along
the Pareto front, allowing more focused exploitation of prob-
lem structure in different regions of the objective space.
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Recently, a specific way of building and using mixture
models in EDAs was introduced that can be used to extend
single-objective EDAs to MO [4]. Particular to this work is
that it explicitly allows mixture components to overlap in
the objective space in order to cover the entire Pareto front
and prevent convergence of mixture components to singu-
lar points on the front. Furthermore, the progression of
mixture components in objective space is explicitly tracked
so as to increase the efficiency of adaptive distribution en-
hancement techniques that span over multiple generations
such as adaptive variance scaling techniques [4] to prevent
premature convergence. The downside to this approach to
using mixture distributions is that for a mixture distribu-
tion with k mixture components, a population size is re-
quired that is O(k) times larger. Especially when building
higher-order probabilistic models, as is common in EDA lit-
erature, the required population size tends to be quite large.
The additional requirement imposed by the aforementioned
approach to using mixture distributions for MO then can
become problematic. However, some studies have shown
that probabilistic models can be learned effectively in EDAs
over multiple generations [3, 9]. This can greatly reduce
the required population size. Such an approach therefore is
a good candidate to reduce the number of required evalua-
tions in mixture-based EDAs for MO. Moreover, the recent
work on tracking mixture components across generations fits
perfectly with the idea of building models incrementally over
multiple generations. Therefore, in this paper we combine
incremental model building with this approach, and experi-
mentally validate the performance resulting from the reduc-
tion in required population size. Specifically, we consider the
use of a recent Gaussian EDA named AMaLGaM [3] and its
incremental model-building counterpart, iAMaLGaM.

In addition to experimentally validating the merits of EDAs
on well-understood and well-known artificial benchmark
problems, it is important to also consider non-artificial bench-
mark problems. Besides obtaining realistic insights about
the potential real-world performance of EDAs, it is impor-
tant to validate issues such as whether key research efforts in
EDA literature, such as the building of probabilistic models
that cover interactions between problem variables, is really
needed and leads to better performance in practice as well.
In addition to well-known artificial benchmark problems, in
this paper we therefore also consider a non-artificial prob-
lem, namely deformable image registration.

The remainder of this paper is organized as follows. In
Section 2 we provide an overview of the most important con-
cepts and definitions in multi-objective optimization. Then,
in Section 3 we outline the single-objective AMaLGaM and
the multi-objective mixture-based EDA framework. In Sec-
tion 4 we discuss the iAMaLGaM approach to incremental
Gaussian model building and its use in the multi-objective
mixture-based EDA framework. We perform an experimen-
tal analysis on 7 well-known benchmark problems from the
literature and a deformable image registration problem in
Section 5 and draw our final conclusions in Section 6.

2. MULTI-OBJECTIVE OPTIMIZATION
We assume to have m objective functions fi(x), i ∈ {0, 1,

. . . , m − 1} and, without loss of generality, we assume that
the goal is to minimize all objectives.

A solution x0 is said to (Pareto) dominate a solution x1

(denoted x0 ≻ x1) if and only if fi(x
0) ≤ fi(x

1) holds

for all i ∈ {0, 1, . . . , m − 1} and fi(x
0) < fi(x

1) holds for
at least one i ∈ {0, 1, . . . , m − 1}. A Pareto set of size
n then is a set of solutions xj , j ∈ {0, 1, . . . , n − 1} for
which no solution dominates any other solution, i.e. there
are no j, k ∈ {0, 1, . . . , n − 1} such that xj ≻ xk holds. A
Pareto front corresponding to a Pareto set is the set of all m-
dimensional objective function values corresponding to the
solutions, i.e. the set of all f (xj), j ∈ {0, 1, . . . , n− 1}.

A solution x0 is said to be Pareto optimal if and only if
there is no other x1 such that x1 ≻ x0 holds. Further, the
optimal Pareto set is the set of all Pareto-optimal solutions
and the optimal Pareto front is the Pareto front that cor-
responds to the optimal Pareto set. We denote the optimal
Pareto set by PS and the optimal Pareto front by PF .

3. GENERATIONAL MODEL-BUILDING
In this section we briefly describe the single-objective EDA

that we consider as well as the extension thereof to MO via
a specific use of mixture distributions.

3.1 AMaLGaM
The Adapted Maximum-Likelihood Gaussian Model

(AMaLGaM) is a Gaussian EDA that estimates a Gaus-
sian distribution from the selected solutions with maximum
likelihood (ML) and subsequently adaptively changes this
estimate on the basis of observations regarding improve-
ments that were found after sampling the Gaussian. For
details about these adaptive techniques, we refer the inter-
ested reader to the literature [3]. Here we only point out that
the main parameters to be estimated in a Gaussian EDA are
the mean vector µ and the covariance matrix Σ, or, if the
distribution is factorized so that the variables are all con-
sidered to be independent, the variance vector. Moreover,
ML parameter estimates for the Gaussian distribution are
well-known. Let S denote a vector of data. A ML estima-
tion for parameters of the Gaussian probability distribution
is obtained from S if µ and Σ are estimated by the sample
average and sample covariance matrix respectively [1]:

µ̂ =
1

|S |

|S |−1
X

j=0

(Sj), Σ̂ =
1

|S |

|S |−1
X

j=0

((Sj)− µ̂)((Sj)− µ̂)T .

Although the variance is adaptively scaled up in AMaL-
GaM to prevent premature convergence, the use of ML es-
timates aligns the principle axis of variance with the den-
sity contours of the search space because of selection. It
is however in the perpendicular direction that the most im-
provement can be obtained in the local fitness landscape. To
overcome this misalignment problem, the Anticipated Mean
Shift is used in AMaLGaM [3]. The AMS is computed as
the difference between the means of subsequent generations,
i.e. µ̂Shift(t) = µ̂(t) − µ̂(t − 1). A part of the newly sam-
pled solutions is then moved in the direction of the AMS:
x← x + 2µ̂Shift(t).

3.2 MAMaLGaM-X
A specific extension of single-objective EDAs to MO on

the basis of mixture distributions was recently studied and
applied to AMaLGaM, resulting in the Multi-objective
AMaLGaM-miXture (MAMaLGaM-X) [4]. Using a clus-
tering technique, the selected solutions are clustered into
k overlapping clusters of identical size. Specifically, for an
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overall population size n and selection size τn where τ ∈
[ 1
n
; 1], each cluster will have (2τn)/k solutions. Subsequently,

distribution estimation and sampling proceeds as normally
done in the EDA, but independently per cluster.

The problem with solutions aligning with contours of the
fitness landscape also exists in MO [4]. For this reason,
techniques such as AMS are important in MO as well. How-
ever, to ensure that AMS works well, there needs to be a
meaningful progression in the Gaussian distribution in sub-
sequent generations. In the mixture distribution this means
that individual clusters need to be associated with each
other in a sensible manner across subsequent generations.
This is however not automatically the case by clustering the
selected solutions anew in each generation. Therefore, in
MAMaLGaM-X an explicit cluster registration step is per-
formed that computes the overall most likely association be-
tween clusters of subsequent generations by minimizing the
sum of all distances between associated clusters [4].

An elitist archive is maintained, storing all currently non-
dominated solutions. Because the objectives are real-valued,
there are typically infinitely many non-dominated solutions
possible. To prevent the archive from growing to an ex-
treme size, the objective space is discretized into hypercubes
by discretizing each objective separately. Only one solution
per hypercube is allowed in the archive. Newly generated
solutions are compared to the solutions in the archive. If
a new solution is dominated by any archive solution, it is
not entered. If a new solution is not dominated, it is added
to the archive if the hypercube that it resides in does not
already contain a solution or if it dominates that particu-
lar solution. When a new solution is entered, all archive
solutions that are dominated by it, are removed.

3.3 MAMaLGaM-X+

An extension of MAMaLGaM-X called MAMaLGaM-X+

was shown to exhibit the most robust performance on a set
of well-known benchmark problems. The difference between
MAMaLGaM-X+ and MAMaLGaM-X is that m additional
clusters are maintained, one for each objective. Selection in
these clusters is done completely independently on the basis
of each respective individual objective, thereby specifically
targeting convergence at the extreme regions of the Pareto
front. Solutions from these specific clusters are furthermore
also integrated into the selection procedure on the basis of
which the k clusters are computed for the mixture distribu-
tion in MAMaLGaM-X. For details, see [4].

4. INCREMENTAL MODEL-BUILDING
Estimating the probability distribution in AMaLGaM and

in MAMaLGaM-X is done anew from scratch each genera-
tion. However, subsequent generations have much in com-
mon, which allows the required population size to be reduced
using incremental learning, i.e. combining the probability
distribution that is estimated from the selected solutions in
this generation with the distribution that was used in the
previous generation. A specific approach to doing this is
provided in the incremental AMaLGaM (iAMaLGaM).

4.1 iAMaLGaM
In iAMaLGaM a memory-decay approach is taken for the

covariance matrix and the AMS. The equations for incre-
mentally estimating the covariance matrix and the AMS in
generation t are:

Σ̂(t) = (1−ηΣ)Σ̂(t−1)+

ηΣ 1
|S |

P|S |−1
i=0 (S i−µ̂(t)) (S i−µ̂(t))T

µ̂Shift(t) = (1−ηShift)µ̂Shift(t−1)+

ηShift (µ̂(t)−µ̂(t−1)) .

Values for the learning-rate parameters ηΣ and ηShift were
determined empirically [3].

4.2 iMAMaLGaM-X(+)

We combine the use of incremental model learning with
the specific mixture-based EDA extension as outlined above.
This means that for every cluster, including the ones in
which selection is done separately on the basis of individual
objectives (e.g. as in MAMaLGaM-X+), we have a separate
incremental Gaussian model that is updated using the in-
cremental updates provided above. The explicit cluster reg-
istration in MAMaLGaM-X was shown to work well in com-
bination with the AMS technique. It is therefore expected
that the so-established relation between clusters in subse-
quent generations is sufficiently meaningful for incremental
model building to work as well. We will identify the result-
ing multi-objective EDAs as incremental MAMaLGaM-X
(iMAMaLGaM-X) and incremental MAMaLGaM-X+

(iMAMaLGaM-X+).

5. EXPERIMENTS
In this section we present our experimental analysis of

iMAMaLGaM-X and iMAMaLGaM-X+. First, we describe
the optimization problems that we consider, both the com-
mon benchmark problems and the deformable image regis-
tration problem. Next, we describe how we evaluate perfor-
mance and then we present our results.

5.1 Common Benchmark Problems
The definitions of the problems in our multi-objective op-

timization problem test suite are presented in Table 1.
We used the well-known problems1 ECi, i ∈ {1, 2, 3, 4, 6}.

The initialization ranges (IRs) of the ECi problems are also
hard constraints. The reason for this is that otherwise some
objectives can not always be evaluated. Such rigid con-
straints can be hard for a numerical optimizer. EC1 and
EC2 are continuous and do not have any local fronts. EC1

has a convex Pareto front whereas EC2 has a concave Pareto
front. These problems differ from the GM problems in that
the objectives are not similarly defined and not similarly
scaled. EC3 is similar to EC1 but has a discontinuous Pareto
front. EC4 has many locally optimal Pareto fronts. Finally,
the Pareto front of EC6 is non-uniformly distributed. For
more details about these functions, see [12].

Two additional problems come from more recent literature
on real-valued MO optimization [5] and are labeled BDi,
i ∈ {1, 2}. Both problems make use of Rosenbrock’s func-
tion. Premature convergence on this function is likely with-
out proper induction of the structure of the search space.
Function BD2 is harder than BD1 in that the objective func-
tions overlap in all variables instead of only in x0. Further,
the IR of x0 in function BD1 is also a constraint. Finally, we

1These problems are also known as ZDTi.
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have scaled the objectives of BD2 to ensure that the opti-
mum of all problems is in approximately the same range. By
doing so, using the same value-to-reach for the DPF →S indi-
cator (which is explained in the next Section) on all problems
corresponds to a similar front quality on all problems.

NameObjectives IR

EC1

f0 = x0, f1 = γ
“

1−
p

f0/γ
”

γ = 1 + 9
“

Pl−1
i=1 xi/(l − 1)

”

[0; 1]30

(l = 30)

EC2

f0 = x0, f1 = γ
`

1− (f0/γ)2
´

γ = 1 + 9
“

Pl−1
i=1 xi/(l − 1)

”

[0; 1]30

(l = 30)

EC3

f0 = x0, f1 = γ
“

1−
p

f0/γ − (f0/γ)sin(10πf0)
”

γ = 1 + 9
“

Pl−1
i=1 xi/(l − 1)

”

[0; 1]30

(l = 30)

EC4

f0 = x0, f1 = γ
“

1−
p

f0/γ
”

γ = 1 + 10(l − 1) +
Pl−1

i=1

`

x2
i − 10cos(4πxi)

´

[−1; 1]×
[−5; 5]9

(l = 10)

EC6

f0 = 1− e−4x0sin6(6πx0), f1 = γ
`

1− (f0/γ)2
´

γ = 1 + 9
“

Pl−1
i=1 xi/(l − 1)

”0.25

[0; 1]10

(l = 10)

BD1

f0 = x0, f1 = 1− x0 + γ

γ =
Pl−2

i=1

`

100(xi+1 − x2
i )

2 + (1− xi)
2)

´

[0; 1]×
[−5.12; 5.12]9

(l = 10)

BDs

2

f0 = 1
l

Pl−1
i=0 x2

i

f1 = 1
l−1

Pl−2
i=0

`

100(xi+1 − x2
i )

2 + (1− xi)
2)

´

[−5.12; 5.12]10

(l = 10)

Table 1: The MO problem test suite.

It is important to note that for the ECi problems and
for x0 in function BD1, this IR is a constraint. If these
variables move outside of their IR, some objective values
can become non-existent. It is therefore important to keep
these variables within their IRs. However, a simple repair
mechanism that changes a variable to its boundary value
if it has exceeded this boundary value gives artifacts. If
for instance the search on problem EC6 probes a solution
that has a negative value for each of the variables xi with
i ≥ 1, then the repair mechanism sets all these variables to 0.
The solution that results after boundary repair lies on the
Pareto front. To avoid artifacts resulting from boundary-
repair methods, the sampling procedure in all MOEDAs is
constructed such that solutions that are out of bounds are
rejected.

5.2 Deformable Image Registration
Medical imaging is of great value in healthcare. There

are a variety of imaging modalities available nowadays (e.g.
CT, MRI, PET, etc.), all with different purposes and char-
acteristics. When multiple images are available, either ac-
quired with different imaging techniques or using the same
technique but acquired at different points in time, for ex-
ample for follow-up purposes, important information about
the state of a patient lies in comparing and relating these
images to one another in order to obtain a more complete
picture or see how things changed over time.

The general idea of image registration is to find a transfor-
mation that transforms a source image to a target image. By
means of rigid registration, only rigid transformations such
as rotations and translations are considered. However, for
medical applications, deformable image registration is of far
greater value. This is because in many cases the anatomy
that is imaged has changed for various reasons, including
changes as a result of treatment, disease progression or sim-
ply a difference in patient orientation during image aqui-

sition, resulting in anatomical changes due to different ef-
fects of gravity. Although deformable image registration is
of great value, it is also generally a hard problem.

For the task of deformable image registration two issues
are of prime interest: 1) intensity similarity, i.e. the degree of
similarity between intensity patterns in the target image and
the transformed source image, and 2) transformation effort,
i.e. the amount of energy required to accomplish the trans-
formation. Even within specific real-world problems such
as this, competent BBO optimizers such as (most) EDAs
can play an important role. Not only is the problem multi-
objective, which already makes a set-based approach such as
EDAs of interest, also there are many different ways possible
to compute similarities and there are many transformation
models possible. For more advanced transformation models,
as typically required for deformable image registration, opti-
mization already becomes harder to do problem-specifically,
but moreover, it is undesirable to have to laboriously de-
sign specific optimization algorithms for each different com-
bination of transformation model and similarity model. It
is however not the main purpose of this paper to provide
a rigorous study into different models for image registra-
tion. Therefore, in the following we provide rudimentary,
but computationally useful models.

5.2.1 Representation

The transformation model, i.e. the representation of pos-
sible transformations, is a square grid of size ng × ng. The
grid overlays the source image in a regular manner, meaning
that it corresponds to a subdivision of the source image into
(ng − 1)(ng − 1) equally-sized axes-parallel rectangles (see
Figure 1). The actual transformation then is given by the as-
sociation of coordinates with each point in the grid. A means
of interpolation is required to extend the so-established cor-
respondence between grids to create the transformed source
image. We use bi-linear interpolation in each rectangle.

5.2.2 Similarity measure

We model similarity in intensity with a measure (to be
maximized) that is commonly adopted in registration liter-
ature, namely normalized mutual information:

(H(T [s]) + H(t))

H(T [s], t)
− 1,

where H(T [s]), H(t) and H(T [s], t) denote the entropy of the
probability distribution of the grey values in the transformed
source image, the entropy of the probability distribution of
the grey values in the target image and the entropy of the
joint probability distribution of the grey values (i.e. for the
registered pairs of pixels) in the transformed source image
and the target image, respectively [10]. Because we will
consider minimization of all objectives, we will consequently
minimize the negative normalized mutual information.

5.2.3 Deformation energy

To associate physical characteristics with transformations,
Hooke’s law is used [2]. Because we are interested in non-
rigid transformations, transformations such as rotations and
translations of the entire grid should not correspond to an
increase in energy. The required energy is therefore com-
puted on the basis of changes in the lengths of edges in the
grid. To ensure that the physical changes we are interested
in, i.e. non-rigid deformations of subrectangles, are always
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Figure 1: Left: grid of points used as a basis for the
transformation model. Right: grid of points with all
connections taken into account in the calculation of
the required energy to accomplish a transformation.

associated with an increase in required energy, we also in-
clude the diagonal edges in each subrectangle (see Figure 1).
Now, if we denote the grid coordinates in the source and tar-

get images by vectors v
before
i , vafter

i , i ∈ {0, 1, . . . , n2
g − 1}

and the set of considered edges by E, we can define the total
energy Utotal-deform to be minimized as follows:

Utotal-deform =
X

(i,j)∈E

Udeform (i, j)

where

Udeform (i, j) =

1

2
lij

“

‖ v
before
i − v

before
j ‖ − ‖ v

after
i − v

after
j ‖

”2

where lij is an elasticity constant associated with the tissue
that edge (i, j) crosses.

5.2.4 Optimization

In theory, the goal now becomes to find the transforma-
tion that corresponds to minimal energy while obtaining per-
fect similarity between the images, i.e. a constrained single-
objective optimization problem. However, in practice, due
to issues such as noise in image acquisition, inaccuracy in
the determination of the parameters of the physical model
(i.e. segmentation and values for material properties) and
the inability to mathematically compactly represent all pos-
sible transformations, a transformation that results in per-
fect similarity may not exist. Moreover, transformations
that result in a larger similarity are not necessarily prefer-
able. Therefore, the underlying problem in practice is ac-
tually multi-objective, i.e. find transformations that on the
one hand maximize the similarity between source and tar-
get image (objective 1) and on the other hand minimize the
amount of required energy (objective 2). In addition to these
objectives, constraints are required that are well-known to
be important in deformable image registration such as pro-
hibiting transformations that fold the grid. We incorporated
these constraints into the multi-objective optimization ap-
proach using constraint domination by means of which a so-
lution is always preferred in selection if it doesn’t violate any
constraints [7]. Finally, we used a single problem instance in

Figure 2: Left: axial slice of a CT scan. Right top:
segmented left breast (source image). Right bottom:
artificially deformed left breast (target image).

terms of pairs of images to perform deformable image regis-
tration on with ng = 5, giving a 50-dimensional real-valued
constrained multi-objective optimization problem. The pair
of images to be registered is shown in Figure 2. Both images
have a dimensionality of 125× 125 pixels.

5.3 Measuring performance
We consider the Pareto set that can be computed from

the elitist archive combined with the population upon ter-
mination to be the outcome of running an EDA and refer
to it as an approximation set, denoted S. To measure per-
formance the DPF →S performance indicator is computed.
This performance indicator computes the average distance
over all points in the optimal Pareto front PF to the nearest
point in S:

DPF →S(S) =
1

|PF |

X

f1∈PF

min
f0∈S

{d(f 0, f 1)}

where f is a point in objective space and d(·, ·) computes
Euclidean distance. A smaller DPF →S value is preferable
and a value of 0 is obtained if and only if the approximation
set and the optimal Pareto front are identical. This indi-
cator is useful for evaluating performance if the optimum
is known because it describes how well the optimal Pareto
front is covered and thereby represents an intuitive trade-off
between the diversity of S and its proximity (i.e. closeness to
the optimal Pareto front). Even if all points in S are on the
optimal Pareto front the indicator is not minimized unless
the solutions in the approximation set are spread out per-
fectly. Because the optimal Pareto front may be continuous,
there are infinitely many solutions possible on the optimal
Pareto front. Therefore, we computed 5000 uniformly sam-
pled solutions along the optimal Pareto front to use as a
discretized version of PF for a high-quality approximation.

For the problems in our test-suite, given the ranges of
the objectives for the optimal Pareto front configurations, a
value of 0.01 for the DPF →S indicator corresponds to fronts
that are quite close to the optimal Pareto front. Fronts that
have a DPF →S value of 0.01 can be seen in Figure 3.

5.4 Results
MAMaLGaM-X, MAMaLGaM-X+, iMAMaLGaM-X and

iMAMaLGaM-X+ were run using an unfactorized Gaussian,
i.e. with a full covariance matrix, and a univariately factor-
ized Gaussian, i.e. with all variables modeled as indepen-
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dent. All presented results are averaged over 10 independent
runs. The subpopulation or cluster sizes were set according
to guidelines from recent literature on SO [3]:

• Full covariance matrix
generational: nsub = 17 + 3l1.5

incremental: nsub = 10l0.5

• Univariate factorization
generational: nsub = 10l0.5

incremental: nsub = 4l0.5

The overall population size is 1
2
k times the cluster size.

Furthermore, we used k = 20 clusters as this number was
previously found to provide excellent results [4]. The dis-
cretization of the objectives into hypercubes for the elitist
archive is set to 10−2.

We observe the average convergence of the DPF →S metric
to study the impact of incremental model building in combi-
nation with estimating Gaussian distributions. The average
convergence results are shown in Figure 4. It is clear from
the results that overall, iMAMaLGaM-X+ performs the best
as it converges to the lowest DPF →S score on all problems
except EC4 and does so with the least number of function
evaluations, with the exception of problem BDs

2. Moreover,
the higher the dimensionality of the problem, the bigger the
difference. This is the clearest on the deformable registration
(DR) problem, which has the largest dimensionality of all
problems in our test suite, when the full covariance matrix
is used. The difference in required number of function eval-
uations before convergence is huge. In the case of a problem
like DR this is of prime importance because function evalua-
tions take much more time than is the case for the artificial
benchmark problems. Consequently, using MAMaLGaM-
X(+) on DR with the full covariance matrix takes hours to
run whereas with the incremental variants useful answers
are already found within 30 minutes.

The results also show that the use of incremental model
building narrows the gap between use of the full covariance
matrix and the univariate factorization in the mixture-based
MO setting. However, on problems where modelling depen-
dencies between problem variables is not required (i.e. on
EC1, EC2, EC3 and EC6, use of the univariately factorized
Gaussian distribution is still far more efficient. This indi-
cates that there is still a performance gain to be achieved
by online deciding whether to process dependencies.

Finally, the results show that modeling dependencies can
be of importance to reliably converge to the optimal Pareto
front. On both problem BD1 and BDs

2 the use of a uni-
variately factorized Gaussian distribution leads to conver-
gence to worse DPF →S values, although this convergence
does proceed much faster for incremental model building
on the BDs

2 problem. A similar observation can be made
for the DR problem. Although it is not easy to see in the
logarithmic convergence graphs in Figure 4, the univariate
models all converge to worse DPF →S values than do their
unfactorized counterparts. This can be better observed in
Figure 5 where the Pareto front is shown computed for each
algorithm over all runs. The difference between the unfac-
torized Gaussian models and the factorized Gaussian models
is clear as there is a part of the Pareto front, corresponding
to larger deformations of the grid and better similarity val-
ues, that cannot be reached (efficiently) by the univariate
models. This stresses the need for considering dependencies
also in real-world problems.

For completeness, in Figure 6 we show the transformation
that was found with the best similarity value. Given the
degrees of freedom in the transformation model, a perfect
match cannot be obtained, but the match is already close
enough to be of real-world clinical relevance. Considering
that a black-box approach to solving this problem was taken,
this further illustrates how EDAs can find high-quality so-
lutions and make a solid contribution to real-world problem
solving. Also, in image registration literature, a linear com-
bination is always made of the two objectives. Not only
is there no theoretical underpinning available for selecting
a weight for such as a linear combination, it is known from
multi-objective optimization theory that if part of the Pareto
front is concave, no solutions on this part of the Pareto front
can be found using a weighted linear combination [6], which
speaks in favor of using a multi-objective approach instead,
like the one studied in this paper.

6. CONCLUSIONS
In this paper, we have combined the use of Gaussian

mixture distributions in an EDA for multi-objective opti-
mization with an approach to incremental model building
spanning multiple generations. The use of mixture distri-
butions is very useful in multi-objective optimization as it
allows spreading the search bias of the optimization algo-
rithm across the Pareto front in a natural manner. We found
that using mixture-component registration that associates
the nearest mixture components in subsequent generations
with each other, incremental model-building techniques that
span multiple generations can successfully be applied. The
reduction in required population size is k-fold larger com-
pared to the single-objective case if k mixture components
are used. As a result, we observed a substantial reduction
in the required number of function evaluations on a set of
common multi-objective benchmark problems as well as on
a higher-dimensional multi-objective application problem:
deformable image registration. Taken over all results, the
multi-objective EDA that was introduced as iMAMaLGaM-
X+ (incremental Multi-objective AMaLGaM-miXture with
parallel single-objective optimization clusters) was found to
be the most promising variant to consider in future research.
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Figure 4: Average performance of various MOEDAs on all problems, estimating full covariance matrices in
each cluster. Horizontal axis: number of evaluations (both objectives per evaluation). Vertical axis: DPF →S .
For each algorithm averages are shown both for successful runs (bold) and unsuccessful runs, giving double
occurrences of lines if some runs were unsuccessful.
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