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ABSTRACT
Satisfiability in propositional logic is well researched and
many approaches to checking and solving exist. In infinite-
valued or fuzzy logics, however, there have only recently
been attempts at developing methods for solving satisfiabil-
ity. In this paper, we propose new benchmark problems and
analyse the function landscape of different problem classes,
focussing our analysis on plateaus. Based on this study,
we develop Mixing CMA-ES (M-CMA-ES), an extension to
CMA-ES that is well suited to solving problems with many
large plateaus. We empirically show the relation between
certain function landscape properties and M-CMA-ES per-
formance.

Categories and Subject Descriptions
G.1 [Numerical Analysis]: Optimization

General Terms
Algorithms, Performance
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1. INTRODUCTION
A logical formula, or a set of formulas, is said to be satis-

fiable if there exists a truth assignment to its variables that
makes every formula true. Satisfiability checking is veri-
fying whether such an assignment exists, and satisfiability
solving means finding such an assignment. This problem is
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known as SAT in propositional logic and is of interest to
researchers from various domains, as many problems can be
reformulated as a SAT problem and subsequently solved by
a state-of-the-art SAT solver.

In fuzzy logics – logics with an infinite number of truth
degrees – the same principle of satisfiability exists (SAT∞).
Like its classical counterpart, it is useful for solving a variety
of problems. Indeed, many fuzzy reasoning tasks can be re-
duced to SAT∞, including reasoning about vague concepts
in the context of the semantic web [11], fuzzy spatial rea-
soning [9] and fuzzy answer set programming [7], which in
itself is an important framework for non-monotonic reason-
ing over continuous domains (see e.g. [8, 13]). Importantly,
the transition into fuzzy logics makes SAT∞ a problem on a
continuous domain, instead of a discrete (boolean) domain.

Solving satisfiability in fuzzy logics has however received
much less attention than its counterpart in classical logics.
In [4], Hähnle proposes a mixed integer programming (MIP)
approach for  Lukasiewicz logic, which unfortunately suffers
from scalability issues that are inherent to MIP. Schock-
aert et al. also propose a solver for SAT∞ in  Lukasiewicz
logic [10], which reduces the infinite-valued logic to a finite-
valued one and then applies a constraint satisfaction solver
to check satisfiability. This approach suffers from an ex-
ponential complexity in the granularity of the truth values
in a problem. Recently, we proposed a new solver [2] that
models satisfiability as an optimization problem over a con-
tinuous domain and has the advantage of being independent
of the underlying logic and its operators, as well as not suf-
fering from the complexity issues associated with analytical
solvers, as our results showed. The disadvantage of this ap-
proach is that it cannot be a complete solver, i.e. deciding
both SAT∞ and UNSAT∞, unless the optimization algo-
rithm is proven to converge to the global optimum. The
currently best performing optimization algorithm on these
problems is the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), which is considered state-of-the-art in
black-box optimization on a continuous domain.

In this paper, we define an objective function for SAT∞
and intuitively show that optimizing this function equals
solving SAT∞. We incrementally describe the generation of
a set of challenging benchmark problems representing differ-
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ent problem classes from different logics and motivate our
choices. Using landscape analysis, we identify certain prop-
erties from these problem classes and use this knowledge to
propose an extension to CMA-ES, aimed to improve its per-
formance. In Sections 2 and 3, we introduce Fuzzy Logics
and CMA-ES respectively. Subsequently, in Section 4, we
introduce the first problem classes and perform a landscape
analysis. In Section 5, we propose an extension to CMA-ES
and evaluate it on the benchmark problems, and in Section
6, we introduce two new problem classes and perform the
same analysis.

2. FUZZY LOGIC AND SAT∞
In fuzzy logics [5], truth is expressed as a real number

taken from the unit interval [0, 1]. Essentially, there are an
infinite number of truth degrees possible. A formula in fuzzy
logics is built from a set of variables V, constants taken from
[0, 1] and n-ary connectives for n ∈ N. An interpretation is
a mapping I : V → [0, 1] that maps every variable to a
truth degree. We can extend this fuzzy interpretation I to
formulas as follows:

• For each constant c in [0, 1], [c]I = c.

• For each variable v in V, [v]I = I(v).

• Each n-ary connective f is interpreted by a function
f : [0, 1]n → [0, 1]. Furthermore we define

[f(α1, . . . , αn)]I = f([α1]I , . . . , [αn]I)

for formulas αi with 1 ≤ i ≤ n.

The connectives in fuzzy logics typically correspond to
connectives from classical logic, such as conjunction, dis-
junction, implication and negation, which are interpreted
respectively by a t-norm, a t-conorm, an implicator and a
negator. A triangular norm or t-norm T is an increasing,
associative and commutative [0, 1]2 → [0, 1] mapping that
satisfies the boundary condition T(1, x) = x for all x in [0, 1].
Similarly, a triangular conorm or t-conorm S is an increas-
ing, associative and commutative [0, 1]2 → [0, 1] mapping
that satisfies the boundary condition S(0, x) = x. An im-
plicator I is a [0, 1]2 → [0, 1] mapping that is decreasing
in its first argument, increasing in its second argument and
that satisfies the properties I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0. A negator N is a decreasing [0, 1] → [0, 1]
mapping that satisfies N(0) = 1 and N(1) = 0.

As an example of a particularly popular fuzzy logic, in
 Lukasiewicz logic, negation ¬, conjunction ⊗, disjunction ⊕
and implication → are interpreted as follows:

• [¬α]I = 1− [α]I

• [α⊗ β]I = max([α]I + [β]I − 1, 0)

• [α⊕ β]I = min(1, [α]I + [β]I)

• [α→ β]I = min(1− [α]I + [β]I , 1)

for formulas α and β.
An interpretation I is said to be a model of a set of for-

mulas Θ iff ∀α ∈ Θ : l ≤ [α]I ≤ u, given lower and upper
bounds l and u for that formula (usually u is 1, and in clas-
sical logic even both l and u are 1). An example of a formula
with three variables v1, v2, and v3 in  Lukasiewicz logic, with
bounds is:
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As an example of a particularly popular fuzzy logic, in
Łukasiewicz logic, negation ¬, conjunction ⌦, disjunction �
and implication ! are interpreted as follows:

• [¬↵]I = 1 � [↵]I
• [↵⌦ �]I = max([↵]I + [�]I � 1, 0)
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An interpretation I is said to be a model of a set of formulas

⇥ iff 8↵ 2 ⇥ : l  [↵]I  u, given lower and upper bounds
l and u for that formula (usually u is 1, and in classical logic
even both l and u are 1). An example of a formula with three
variables v1, v2, and v3 in Łukasiewicz logic, with bounds is:

0.5  ¬(v1 ⌦ v2 ⌦ ¬v3)  1 (1)

One can easily verify that I1 with I1(v1) = 0, I1(v2) = 0
and I1(v3) = 1 is a model of this formula as [¬(v1 ⌦ v2 ⌦
¬v3)]I1

= 1. Similarly, I2 with I2(v1) = 0.6, I2(v2) = 0.7
and I2(v3) = 0.2 is a model too because [¬(v1 ⌦ v2 ⌦
¬v3)]I2

= 0.9. Even though the formula is not perfectly
satisfied under interpretation I2, the degree of satisfaction
is still high enough to meet the lower bound l = 0.5. The
existence of the models I1 and I2 show that formula (1) is
satisfiable. Solving SAT1 amounts to finding a model for the
set of formulas given, or deciding that there is no interpretation
that satisfies all formulas and that the set is UNSAT1.

A. SAT1 as an Optimization Problem

As we propose an optimization approach to solving satisfia-
bility in fuzzy logics, we need to reformulate SAT1 instances
as optimization problems, i.e. defining a function over the
solution space such that optimizing this function corresponds
to solving the SAT1 instance. A SAT1 problem consists of
a set ⇥ of formulas ↵i, each of which must be satisfied to a
certain degree, as defined by an upper and lower bound per
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Fig. 1. fI(↵i) for a formula ↵i with lower bound l, upper bound u and
degree of satisfaction [↵i]I .

formula. Given these n formulas ↵i, bounds (ui, li), and an
interpretation I, we define the objective function f as follows:

f(I) =

Pn
i=1 fI(↵i, li, ui)

n
(2)

and,

fI(↵i, li, ui) =

8
><
>:

1 if li  [↵i]I  ui
[↵i]I

li
if [↵i]I < li

1�[↵i]I
1�ui

if [↵i]I > ui

(3)

with [↵i]I representing the degree of satisfaction of formula
↵i under interpretation I. Each fI is a trapezoid function, with
a plateau of value 1 when formula ↵i’s degree of satisfaction
lies between the given bounds, and a slope leading to the
plateau when the satisfaction lies outside these bounds, as
visualised in Figure 1. This formulation is similar to that typ-
ically used for SAT in propositional logic, where the number
of satisfied clauses is divided by the number of clauses. The
difference here is that in case of non-satisfaction, we do not
always return 0 as in SAT, but we give gradient information
that can point an optimization algorithm to satisfying config-
urations.

The objective function is formulated such that the global
maxima will always have a function value 1 if the SAT1
instance is satisfiable. In that case, every global maximum
corresponds to a model of the problem. Given an algorithm
of which we can prove convergence to the global maximum
on this function, we have a complete SAT1 solver. As we
can not provide such an algorithm, we are left with an
incomplete solver, being able to solve SAT1 sometimes, but
never concluding UNSAT1.

III. ALGORITHMS

In this section, we discuss three optimization algorithms
that we evaluate and compare on a set of benchmark problems
further on in this paper.

A. Hillclimber

The first algorithm we consider is a simple hillclimber.
Such local search algorithms often perform very well given
their simplicity. The most basic version iteratively updates
a candidate solution by evaluating all possible neighbouring
solutions, given a neighbourhood function, and picks the most
improving one. This method is called steepest ascent (or
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Fig. 1. fI(↵i) for a formula ↵i with lower bound l, upper bound u and
degree of satisfaction [↵i]I .

formula. Given these n formulas ↵i, bounds (ui, li), and an
interpretation I, we define the objective function f as follows:

f(I) =

Pn
i=1 fI(↵i, li, ui)

n
(2)

and,

fI(↵i, li, ui) =

8
><
>:

1 if li  [↵i]I  ui
[↵i]I

li
if [↵i]I < li

1�[↵i]I
1�ui

if [↵i]I > ui

(3)

with [↵i]I representing the degree of satisfaction of formula
↵i under interpretation I. Each fI is a trapezoid function, with
a plateau of value 1 when formula ↵i’s degree of satisfaction
lies between the given bounds, and a slope leading to the
plateau when the satisfaction lies outside these bounds, as
visualised in Figure 1. This formulation is similar to that typ-
ically used for SAT in propositional logic, where the number
of satisfied clauses is divided by the number of clauses. The
difference here is that in case of non-satisfaction, we do not
always return 0 as in SAT, but we give gradient information
that can point an optimization algorithm to satisfying config-
urations.

The objective function is formulated such that the global
maxima will always have a function value 1 if the SAT1
instance is satisfiable. In that case, every global maximum
corresponds to a model of the problem. Given an algorithm
of which we can prove convergence to the global maximum
on this function, we have a complete SAT1 solver. As we
can not provide such an algorithm, we are left with an
incomplete solver, being able to solve SAT1 sometimes, but
never concluding UNSAT1.

III. ALGORITHMS

In this section, we discuss three optimization algorithms
that we evaluate and compare on a set of benchmark problems
further on in this paper.

A. Hillclimber

The first algorithm we consider is a simple hillclimber.
Such local search algorithms often perform very well given
their simplicity. The most basic version iteratively updates
a candidate solution by evaluating all possible neighbouring
solutions, given a neighbourhood function, and picks the most
improving one. This method is called steepest ascent (or

Figure 1: fI(αi) for a formula αi with lower bound
li, upper bound ui and degree of satisfaction [αi]I.

0.5 ≤ ¬(v1 ⊗ v2 ⊗ ¬v3) ≤ 1 (1)

One can easily verify that I1 with I1(v1) = 0, I1(v2) = 0
and I1(v3) = 1 is a model of this formula as [¬(v1 ⊗ v2 ⊗
¬v3)]I1 = 1. Similarly, I2 with I2(v1) = 0.6, I2(v2) =
0.7 and I2(v3) = 0.2 is a model too because [¬(v1 ⊗ v2 ⊗
¬v3)]I2 = 0.9. Even though the formula is not perfectly
satisfied under interpretation I2, the degree of satisfaction
is still high enough to meet the lower bound l = 0.5. The
existence of the models I1 and I2 show that formula (1)
is satisfiable. Solving SAT∞ amounts to finding a model
for the set of formulas given, or deciding that there is no
interpretation that satisfies all formulas and that the set is
UNSAT∞.

2.1 SAT∞ as an optimization problem
As we will investigate an optimization approach to solving

satisfiability in fuzzy logics, we need to reformulate SAT∞
instances as optimization problems, i.e. defining a func-
tion over the solution space such that optimizing this func-
tion corresponds to solving the SAT∞ instance. A SAT∞
problem consists of a set Θ of formulas αi, each of which
must be satisfied to a certain degree, as defined by an up-
per and lower bound per formula. Given these m formulas
αi, bounds (li, ui), and an interpretation I, we define the
objective function f as follows:

f(I) =

∑m
i=1 fI(αi, li, ui)

m
(2)

and,

fI(αi, li, ui) =


1 if li ≤ [αi]I ≤ ui
[αi]I
li

if [αi]I < li
1−[αi]I
1−ui

if [αi]I > ui

(3)

with [αi]I representing the degree of satisfaction of for-
mula αi under interpretation I. Each fI is a trapezoid func-
tion, with a plateau of value 1 when formula αi’s degree of
satisfaction lies between the given bounds, and a slope lead-
ing to the plateau when the satisfaction lies outside these
bounds, as visualised in Figure 1.

This function is formulated such that the global maxima
will always have a function value 1 if the SAT∞ instance is
satisfiable. In that case, every global maximum corresponds
to a model of the problem.
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3. CMA-ES
The Covariance Matrix Adaptation-Evolution Strategy

(CMA-ES)[6] is an algorithm belonging to the class of Evo-
lution Strategies, and is considered to be state-of-the-art in
black-box optimization on a continuous domain. CMA-ES
is a (µ/µ, λ)-ES with the addition of de-randomized adap-
tation of the multivariate distribution that generates candi-
date solutions. This additional mechanism allows CMA-ES
to efficiently explore promising search directions by adapt-
ing the distribution to the local shape of the search space.
For a full description of this algorithm, we refer the reader
to [6].

In [3], we determined that the restart strategy proposed
by Auger and Hansen [1] does not perform well on the prob-
lems considered in this paper. Therefore, we use the simple
restart strategy that was found to increase performance, i.e.
restart after i×λ function evaluations without improvement.
It was previously found that i = 1000 gives good results.

Furthermore, since we are dealing with box-constraints
([0, 1]n), we need to handle constraint violations. We use
a penalty function when the constraint is violated. The
penalty is dependent on the distance between the candidate
solution and the box. The new objective function is:

f(I) =


−∑m

i=1 fI(αi,li,ui)

m
, if I(V) ∈ [0, 1]n

104∑m
i=1 θ(|(I(vi)− 0.5)| − 0.5)(I(vi)− 0.5)2,

if I(V) 6∈ [0, 1]n

(4)
with θ the heaviside function (0 for negative input, otherwise
1) and n the number of variables.

We make the new function conditional instead of adding
the penalty to the objective function as is commonly done,
because numbers beyond [0,1] have no meaning in fuzzy log-
ics and prevent the formulas from being evaluated. Since
CMA-ES is a minimization technique, we negate the objec-
tive function.

4. PROBLEM CLASSES AND LANDSCAPE
ANALYSIS

To evaluate the performance of the proposed algorithms
for solving SAT∞, we need a set of challenging problem in-
stances. In this section we first describe how we built a set
of benchmark problems and then perform landscape analysis
to identify properties that may give insights into algorithm
performance.

4.1 Problem instances
Schockaert et al. [10] propose a procedure to generate sat-

isfiability problems in  Lukasiewicz logic; a somewhat differ-
ent process than what is usual in classical SAT. This is due
to the fact that not all formulas in  Lukasiewicz logic can
be converted to conjunctive-normal form, and that, when
restricted to formulas in conjunctive-normal form (in the
sense that only lower bounds are used, formulas are com-
posed of conjunctions and negations, and all negations occur
immediately in front of atoms), the satisfiability problem in
 Lukasiewicz logic can be reduced to linear programming, and
can thus be decided in polynomial time. Hence, to generate
interesting test problems, it is crucial to consider formulas
which are not in conjunctive-normal form.

The recursive procedure form(p) is defined to generate

logical formulas with a fixed number of variable occurrences.
The base case, i.e. one variable in a formula, is as follows:

form(1) =

{
vi probability 0.5

¬vi probability 0.5
(5)

where vi is a randomly chosen variable from a predefined
set of variables V = {v1, v2, ..., vm}.

The general case, for p > 1, is:

form(p) =

{
form(p1)⊗ form(p2) probability 0.5

¬(form(p1)⊗ form(p2)) probability 0.5

(6)
with p1 a random integer between 1 and p− 1, and p2 =

p− p1.
The creation of challenging problems depends very much

on the selection of bounds for formulas. Schockaert et al.
propose the following procedure to select bounds for formula
α:

• Let λ1 be the largest value from T4 =
{

0, 1
4
, 2
4
, 3
4
, 1
}

smaller than [α]I1 .

• Let λ2 be the smallest value from T4 larger than [α]I2 .

• With probability 0.5, add λ1 ≤ α ≤ 1 to the set of
formulas, otherwise add λ2 ≤ α ≤ 1.

The set of benchmark problems used in [10] was gener-
ated using this method, with the additional constraint that
any variable can occur at most once in every formula. Each
problem instance consists of 100 formulas (n = 100), with
five variable occurrences per formula (p = 5), so we can say
we are solving 5-SAT∞. 50 problem instances were gener-
ated with 40 variables each.

In [2], we generated an additional set of problem instances,
with problem bounds drawn from T100, i.e.

{
0, 1

100
, 2
100

, ..., 1
}

instead of T4
1. We distinguish between problems with for-

mula bounds drawn from T4 and T100, as we have shown
that this difference has a strong impact on the performance
of current analytical solvers, and might also influence our
optimization algorithms. That aside, the use of sets Tk is
purely artificial; in reality, formula bounds are problem de-
pendent and will usually not be directly derived from some
set Tk. Determining the smallest k such that Tk includes all
bounds in an instance may not be trivial and will typically
yield very large k, which is problematic for the analytical
solver from [10]. Still, we use these sets to analyse the im-
pact of granularity on algorithm performance, and because
there is no other method known to generate hard SAT∞
instances.

The two problem classes discussed will from now on be
refered to as  L4 and  L100 respectively.

4.2 Plateaus analysis
A plateau is a collection of points in the search space that

span an `-dimensional manifold, with the same fitness for
all points. Since most optimization algorithms, including
CMA-ES, use gradient information to optimize an objective
function, plateaus, which provide zero gradient information,

1These benchmark problems, others, and Java
code to interpret them can be downloaded here:
http://ai.vub.ac.be/members/tim-brys
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can hinder performance. We have seen that our objective
function is built to yield a plateau for each formula when
its degree of satisfaction lies between the bounds specified,
and furthermore, the conjunction operator in  Lukasiewicz
logic calculates the maximum of two values, which also re-
turns a plateau for a range of the input values. Therefore,
we can expect our objective function to contain plateaus.
We will analyse the two defined problem classes, looking for
plateaus.

This analysis is performed by generating random walks.
Specifically, for each of the 100 problem instances we have,
we perform 10 random walks of 106 steps. One step consist
of adding ±0.01 to a randomly picked variable. This value
is the smallest granularity in the problems.

Using these random walks, we estimate the size of plateaus
by counting the number of subsequent steps of the same fit-
ness. Figure 2(a) plots the relation between plateau size
and the number of times they were encountered, which is
an estimation of their overall frequency. Both  Lukasiewicz
problem classes have similar numbers of plateaus, which de-
crease with plateau size, i.e. there are many more small
plateaus than there are large ones.

The relation between plateau size and plateau fitness is
plotted in Figure 2(b). Interestingly, fitness increases much
with plateau size on  L4 problems, which means that in gen-
eral, the larger a plateau, the closer in function value it will
be to optimal solutions. We expect this property to ensure
that escaping large plateaus needs only be done a few times.
This trait is shared with regular SAT landscapes. On the
contrary, plateau fitness does not rise much with plateau
size on the  L100 problems, which means that escaping from
a plateau does not guarantee nearness to optimal solutions,
that large plateaus are more distributed with respect to op-
timal solutions. Note that the plots become more noisy for
large plateaus simply because fewer of such plateaus were
found.

Given this analysis, we expect that CMA-ES’s perfor-
mance on these problem classes, and specifically on the  L100

problems, may be hindered by these plateaus. Therefore,
we propose an additional mechanism for CMA-ES that may
help it escape from plateaus.

5. MIXING CMA-ES
The idea we use in this paper for the plateau-escaping

mechanism is an application of optimal mixing evolution-
ary algorithms [12] on the multi-population level: we have
multiple CMA-ES populations running in parallel, and we
recombine their distributions if this leads to improvements.
We call this Mixing CMA-ES or M-CMA-ES. This recombi-
nation of distributions is executed by exchanging elements,
i.e. variable assignments, between the means of the two pop-
ulations. Pseudocode describing this mixing can be found
in Algorithms 1 and 2.

We start with multiple CMA-ES algorithms running in
parallel. When all populations have executed a regular CMA-
ES iteration, we pair each one with another and apply mix-
ing to the means of their distributions. The mean is used to
evaluate the population’s fitness during mixing, as it is the
best estimator for the optimum in the population. Mixing
goes as follows:

• For each pair of populations, the set of problem vari-
ables is randomly divided into s disjunct sets of vari-

Algorithm 1 Mixing CMA-ES

1: procedure M-CMA-ES
2: populations ← InitializeCMAESPopulations(n)
3: while !stopcriterion do
4: for i ∈ {0, 1, .., n} do
5: ExecuteCMAESIteration(populationi)
6: end for
7: for i, j ∈ {0, 1, .., n} do
8: Mixing(populationsi, populationsj)
9: end for

10: end while
11: end procedure

Algorithm 2 Mixing Two Populations

1: procedure Mixing(mean1, mean2)
2: variableSets ← DisjunctVariableSets(s)
3: fp1 ← fitness(mean1)
4: fp2 ← fitness(mean2)
5: child1 ← mean1

6: child2 ← mean2

7: for each set ∈ variableSets do
8: for each variable ∈ set do
9: child1[variable] ← mean2[variable]

10: child2[variable] ← mean1[variable]
11: end for
12: fc1 ← fitness(child1); fc2 ← fitness(child2)
13: if (fc1 < fp1 and fc1 < fp2) or

(fc2 < fp1 and fc2 < fp2) then
14: mean1 ← child1; mean2 ← child2

15: fp1 ← fc1; fp2 ← fc2
16: else
17: for each variable ∈ set do
18: child1[variable] ← mean1[variable]
19: child2[variable] ← mean2[variable]
20: end for
21: end if
22: end for
23: RecombineCovAndEvPaths(mean1, mean2)
24: end procedure

ables of roughly the same size (the number of variables
divided by s is not always a natural number).

• The variables of one of the sets are exchanged between
the two population means.

• If at least one of the two new means has greater fit-
ness than both parent means, the exchange is accepted.
This ensures global improvement through mixing, avoid-
ing local oscillations when optimized substructures go
back and forth between populations.

• This exchange is performed for each disjunct variable
set, each time continuing with the accepted means
from the previous step.

This is basically optimal mixing with the Marginal Prod-
uct structure [12], although without structure learning. This
is not feasible due to the small number of populations that
is practically possible.

Besides the mean of the distribution, CMA-ES also main-
tains a covariance matrix and evolution paths for the sam-
pling and updating of this distribution. In our mixing, we
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Figure 2: (a) The number of plateaus as a function of plateau size, as estimated by the number of random
steps at the same fitness value. (b) The fitness of plateaus as a function of plateau size.
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Figure 3: Success ratio achieved given a budget of 107 function evaluations as a function of the number of
marginal product sets used in mixing on the  Lukasiewicz problem classes.
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Figure 4: Run length distributions of CMA-ES, multiple CMA-ES and M-CMA-ES on the  Lukasiewicz
problem classes.
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recombine these as described below, under the assumption
that we should keep CMA-ES as intact as possible, since
these parameters are adapted to the variable values in the
mean that are exchanged. Still, we do not test whether this
assumption really holds and whether mixing these parame-
ters as well is necessary.

The recombination of the evolution paths is trivial, as
these are represented by vectors in which the corresponding
values can simply be exchanged. The recombination of the
covariance matrix is less simple, as it encodes information
between variables that may or may not be kept together
during recombination. The way the matrix crossover is im-
plemented is as follows: if variables vi and vj stay together,
the covariance information for element (i, j) comes from
the corresponding parent. If the variables come from dif-
ferent solutions, the average of the covariance information
from both solutions is calculated and stored. This covari-
ance matrix recombination can only take place after every
variable set is exchanged, since only then can we know of all
variables whether they stay together or not.

5.1 Empirical validation
Before we empirically evaluate and compare CMA-ES with

M-CMA-ES on the given problem classes, we optimize the
parameter governing the number of disjunct sets used for
mixing. We run two variants of M-CMA-ES , one with and
one without the restarting strategy described before. 50 runs
of maximum 107 evaluations are performed for each instance,
resulting in 5000 runs per parameter setting. 10 populations
are used, and each population has µ = 2 and λ = 20, as de-
termined to be near-optimal settings for a single population
on these problems [3]. Figure 3 shows the results of this
experiment. Note that setting the sets parameter to 1 re-
duces M-CMA-ES to 10 independent CMA-ES populations
(no extra evaluations are performed for mixing). Increasing
the number of sets means more evaluations spent on mixing
as compared to the standard sampling in CMA-ES, and also
finer granularity in the mixing. Either of these can have a
positive or negative impact on the performance, depending
on the problem. For example, granularity of the sets in mix-
ing should ideally be tuned to the linkage between variables
in the problem, if any. Too fine grained mixing may disrupt
optimized substructures, while too coarse grained mixing
may not achieve the optimal possible performance increase.

To our surprise, the non-restarting M-CMA-ES dominates
the restarting M-CMA-ES on the first problem class for all
parameter settings (the observed difference for 2 sets is not
significant). Note that for single CMA-ES and multiple in-
dependent CMA-ES (# sets = 1), the restarting does con-
tribute to achieve better performance, see [3] and Figure 3.
On the  L100 problems, restarting M-CMA-ES dominates the
non-restarting variant as expected – the observed differences
are only significant for 4 sets and more.

On both problem classes, the non-restarting variant re-
mains fairly consistent in performance across the range of
tested parameter settings, with only few statistically signif-
icant differences, while restarting makes the mixing more
sensitive to parameter settings.

From this experiment, we select the restarting M-CMA-
ES with 2 sets for  L4 problems (even though the difference
is statistically insignificant, the observed performance of the
restarting variant is highest). For the  L100 problems, we
select the restarting variant with 15 sets. Furthermore, we

Success Evaluations
 L4  L100  L4  L100

CMA-ES 94.24% 96.72% 297142 266974
10 CMA-ES 94.29% 97.44% 366655 178673
M-CMA-ES 95.06% 98.6% 478158 101670

Table 1: Success percentage after 107 evaluations,
and average number evaluations in successful runs.
All observed differences with the best are significant
(Wilcoxon signed-rank test, confidence 95%).

will also compare with independent parallel CMA-ES popu-
lations, to isolate the effect of having multiple populations,
and the effect of the mixing mechanism. We select the
restarting and non-restarting variants for the  L4 and  L100

problems respectively.
As we compare standard CMA-ES with multiple indepen-

dent CMA-ES and M-CMA-ES, we use the same population
sizes (µ = 2, λ = 20) in each, meaning that the latter two
algorithms effectively perform an order of magnitude more
evaluations each generation. There is no need to compare
these with the performance of CMA-ES with population size
times 10, since we previously showed that increasing popula-
tion size by this amount on these problems does not improve
performance, given a budget of 107 function evaluations [3].
Figure 4 shows the run-length distributions of these three
variants of CMA-ES, and Table 1 summarizes these results.

We observe that, in agreement with our hypothesis based
on the landscape analysis, using mixing when solving the
 L100 problems has more effect than on the  L4 problems. The
performance on the more granular problems increases both
in terms of probability of solving an instance, and average
number of evaluations required to solve an instance. On
the coarse-grained problems, there is an increase in success
probability, but at the cost of a much higher average number
of evaluations. Note that not only having multiple popula-
tions improves performance, but also the mixing mechanism
in itself. Furthermore, the single CMA-ES starts solving
instances almost an order of magnitude faster, simply be-
cause these easy problems do not require the extra popula-
tions, nor the mixing to be solved efficiently, and therefore
the algorithms that have these mechanisms spend too much
evaluations on redundant mechanisms.

6. OTHER LOGICS
Since our objective function formulation is essentially in-

dependent of the underlying logic and its operators, we will
now briefly evaluate two new problem classes with a differ-
ent conjunction operator. Similar to how we generated the
 L4 and  L100 problems, we build two new problem classes, re-
placing the conjunction (⊗) from the  Lukasiewicz logic with
that from the Product logic2 ([α⊗ β]I = [α]I × [β]I), again
with bounds from T4 and T100. We refer to these problem
classes as P4 and P100. Since the Product logic conjunc-
tion is a smooth function, we can expect a decrease in the
number of plateaus as compared to the  Lk problems. This
is confirmed in Figure 5 (a). The Pk problems have orders

2The mixing of operators from different logics is justified
as the formulation of any problem as SAT∞ leaves open
the choice of operators; their choice depends on the desired
problem properties.
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Figure 5: (a) The number of plateaus as a function of plateau size, as estimated by the number of random
steps at the same fitness value. (b) The fitness of plateaus as a function of plateau size.
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Figure 6: Success ratio achieved given a budget of 107 function evaluations as a function of the number of
marginal product sets used in mixing on the Product problem classes.
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Success Evaluations
P4 P100 P4 P100

CMA-ES 100% 95.78% 26434 66056
10 CMA-ES 100% 97.78% 117490 186221
M-CMA-ES 100% 97.33% 149006 176690

Table 2: Success percentage after 107 evaluations,
and average number evaluations in successful runs.
All observed differences with the best are significant
(Wilcoxon signed-rank test, confidence 95%). Note
that in this case 100% means 45 instances solved,
since in both classes, only 45 out of 50 instances are
known to us to be satisfiable.

of magnitude less plateaus, and of much smaller size. Also,
the average fitness of plateaus rises greatly with plateau size
on both new classes (Figure 5 (b)). These two properties
combined lead us to the expectation that the mixing mech-
anism will provide little to no improvement over standard
CMA-ES.

As we will evaluate M-CMA-ES on these new problem
classes, we again first optimize the parameter controlling
the number of disjunct sets used in mixing. Figure 6 shows
the results of this optimization, performed with the same
experimental setup as in Section 5.1. Note that the relative
performance of the restarting and non-restarting variant is
very similar on these problem classes as on the first two
problem classes. The non-restarting variant again dominates
in performance on the first problem class, achieving much
better performance, suggesting that the restart-mechanism,
when combined with mixing, kicks in too soon and prevents
the mixing to achieve its full potential. When no restarts
are executed, mixing has the chance of trying many different
mixes, since for each mix, variables are randomly distributed
over the sets, and mixing partners are randomly selected.

We selected for both problem classes and both mixing and
independent CMA-ES the non-restarting variant, M-CMA-
ES with 2 and 4 sets on the two classes respectively. Figure
7 shows the run-length distributions of CMA-ES, multiple
CMA-ES and M-CMA-ES on the Pk problem classes, and
Table 2 summarises these results. It is clear that the mix-
ing only worsens performance by spending precious evalua-
tions on a mechanism that is not necessary. Having multiple
CMA-ES populations makes a difference on the P100 prob-
lems in terms of probability of solving an instance (on the P4

problems, success is already 100%), but the average number
of evaluations is on both problem classes much higher than
for a single CMA-ES population.

7. CONCLUSION
In this paper, we proposed an extension to CMA-ES,

called M-CMA-ES, based on the landscape analysis of satis-
fiability problems in the  Lukasiewicz fuzzy logic. M-CMA-
ES incorporates two types of mechanisms: the standard
CMA-ES model-based optimization at population level, and
the recombination optimization at the meta-population level.
The number of evaluations that go to either mechanism can
be controlled and needs to be balanced for optimal effect.
Product logic problems clearly benefit more from the stan-
dard CMA-ES optimization, and have no need for popu-
lation recombination.  Lukasiewicz problems on the other
hand have many plateaus and benefit much from spending

part of the evaluations on recombination. In future work, we
will consider other mixing operators besides simple variable
exchange, and will analyse their effect on inter-population
diversity, as well as how this affects performance.
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