Exercise 1

Matrices and vectors: All these are very important facts that we will use repeatedly, and should be internalized.

• Inner product and outer products. Let $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ be vectors in \mathbb{R}^n . Then $u^T v = \langle u, v \rangle = \sum_{i=1}^n u_i v_i$ is the inner product of u and v.

The outer product uv^T is an $n \times n$ rank 1 matrix B with entries $B_{ij} = u_i v_j$. The matrix B is a very useful operator. Suppose v is a unit vector. Then, B sends v to u i.e. $Bv = uv^Tv = u$, but $Bw = \mathbf{0}$ for all $w \in v^{\perp}$.

• Matrix Product. For any two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, the standard matrix product C = AB is the $m \times p$ matrix with entries $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. Here are two very useful ways to view this.

Inner products: Let r_i be the *i*-th row of A, or equivalently the *i*-th column of A^T , the transpose of A. Let b_j denote the *j*-th column of B. Then $c_{ij} = r_i^T c_j$ is the dot product of *i*-column of A^T and *j*-th column of B.

Sums of outer products: C can also be expressed as outer products of columns of A and rows of B.

Exercise: Show that $C = \sum_{k=1}^{n} a_k b_k^T$ where a_k is the k-th column of A and b_k is the k-th row of B (or equivalently the k-column of B^T).

- Trace inner product of matrices. For any $n \times n$ matrix A, the trace is defined as the sum of diagonal entries, $Tr(A) = \sum_{i} a_{ii}$. For any two $m \times n$ matrices A and B one can define the Frobenius or Trace inner product $\langle A, B \rangle = \sum_{ij} a_{ij} b_{ij}$. This is also denoted as $A \bullet B$. *Exercise:* Show that $\langle A, B \rangle = Tr(A^T B) = Tr(BA^T)$.
- Bilinear forms. For any $m \times n$ matrix A and vectors $u \in \mathbb{R}^m, v \in \mathbb{R}^n$, the product $u^T A v = \langle u, A v \rangle = \sum_{i=1}^n \sum_{j=1}^n a_{ij} u_i v_j$.

Exercise: Show that $u^T A v = \langle u v^T, A \rangle$. This relates bilinear product to matrix inner product.

• *PSD matrices.* Let A be a symmetric $n \times n$ matrix with entries a_{ij} . Recall that we defined A to be PSD if there exist vectors v_i for i = 1, ..., n (in some arbitrary dimensional space) such that $a_{ij} = v_i \cdot v_j$ for each $1 \le i, j \le n$.

The following properties are all equivalent ways to characterizing PSD matrices:

- 1. $a_{ij} = v_i \cdot v_j$ for each $1 \le i, j \le n$. A is called the Gram matrix of vectors v_i . So if V is the matrix obtained by stacking these vectors with *i*-th column v_i , then $A = V^T V$.
- 2. A is symmetric and $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$.
- 3. A is symmetric and has all eigenvalues non-negative.
- 4. $A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$ for $\lambda_i \ge 0$ and u_i are an orthonormal set of vectors. The λ_i are the eigenvalues of A and u_i are the corresponding eigenvectors.

Exercise: Show that $(1) \rightarrow (2)$ and $(2) \rightarrow (3)$.

Solution:

(1) \rightarrow (2): Note that (1) implies that $A = V^T V$, where $V = (v_1, \ldots, v_n)$. Then for any $x \in \mathbb{R}^n$, we have that

$$x^{T}Ax = x^{T}V^{T}Vx = ||Vx||^{2} \ge 0,$$

where $||Vx||^2$ is the squared Euclidean norm.

(2) \rightarrow (3): Since A is symmetric, A is diagonizable and only real eigen values. Now assume that A has a negative eigen value $\lambda < 0$ with corresponding eigen vector $v \neq 0$ such that $Av = \lambda v$. But then, $v^T A v = \lambda ||v||^2 < 0$, contradicting (2).

 $(3) \to (4)$ follows from the well-known spectral theorem (that we do not prove here) that any symmetric matrix *B* has real eigenvalues and its eigenvectors are orthogonal. That is, $B = \sum_i \beta_i u_i u_i^T$ where $\beta_i \in \mathbb{R}$ and u_i is an orthonormal set of vectors.

Exercise: Show that $(4) \to (1)$ using the two views of matrix products discussed above. **Solution:** Let $U = (\sqrt{\lambda_1}u_1, \dots, \sqrt{\lambda_n}u_n)$ (i.e. with the indicated columns). Then

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^T = \sum_{i=1}^{n} (\sqrt{\lambda_i} u_i) (\sqrt{\lambda_i} u_i)^T = U U^T$$

Now letting $(v_1, \ldots, v_n)^T = U$ denote the columns of U, we directly get that $A_{ij} = (UU^T)_{ij} = v_i \cdot v_j$.

Exercise: If A and B are $n \times n$ PSD matrics. Show that A + B is also PSD. Solution: Note that $x^T A x \ge 0$ and $x^T B x \ge 0$, $\forall x \in \mathbb{R}^n$, clearly implies that $x^T (A + B) x = x^T A x + x^T B x \ge 0 \ \forall x \in \mathbb{R}^n$. Thus, by (2) A + B is also PSD.

Hint: It is easiest to use definition (2) of PSD above.

Exercise: Show the above using (1) instead of (2). In particular if $a_{ij} = v_i \cdot v_j$ and $b_{ij} = w_i \cdot w_j$ can you construct vectors y_i using these v_i and w_i such that $a_{ij} + b_{ij} = y_i \cdot y_j$? **Solution:** Define z_1, \ldots, z_n by the relation $z_i^T = (v_i^T, w_i^T)$ for $i \in [n]$. Then clearly $\langle z_i, z_j \rangle = \langle v_i, v_j \rangle + \langle w_i, w_j \rangle = a_{ij} + b_{ij}$.

• Tensors. Let $v \in \mathbb{R}^n$. We define the two-fold tensor $v^{\otimes 2}$ as the $n \times n$ matrix with (i, j)-th entry $v_i \cdot v_j$. This is same as vv^T , but it is useful to view $v^{\otimes 2}$ as an n^2 dimensional vector. Similarly, if $v \in \mathbb{R}^n$ and $w \in \mathbb{R}^m$, $v \otimes w = vw^T$ is viewed as an nm dimensional vector.

Exercise: Show that if $v, w \in \mathbb{R}^n$ and $x, y \in \mathbb{R}^m$, then $\langle v \otimes x, w \otimes y \rangle = \langle v, w \rangle \langle x, y \rangle$. One can remember this rule as, the dot product of tensors is the product of their vector dot products. Solution:

$$\begin{aligned} \langle v \otimes x, w \otimes y \rangle &= \sum_{i \in [n], j \in [m]} (v \otimes x)_{ij} (w \otimes y)_{ij} = \sum_{i \in [n], j \in [m]} v_i x_j w_i y_j \\ &= (\sum_{i \in [n]} v_i w_i) (\sum_{j \in [m]} x_j y_j) = \langle v, w \rangle \langle x, y \rangle \ . \end{aligned}$$

Similarly, one can generalize this to higher order tensors. For now we just discuss the k-fold tensor of a vector by itself. If $v \in \mathbb{R}^n \ v^{\otimes k}$ is the n^k dimensional vector with the (i_1, \ldots, i_k) entry equal to the product $v_{i_1}v_{i_2}\cdots v_{i_k}$.

Exercise: Show (by just expanding things out) that if $v, w \in \mathbb{R}^n$ then $v^{\otimes k}, w^{\otimes k} = (\langle v, w \rangle)^k$.

Solution:

$$\langle v^{\otimes k}, w^{\otimes k} \rangle = \sum_{i_1, \dots, i_k \in [n]} v_{i_1 i_2 \dots i_k}^{\otimes k} w_{i_1 i_2 \dots i_k}^{\otimes k} = \sum_{i_1, \dots, i_k \in [n]} (v_{i_1} \cdots v_{i_k}) (w_{i_1} \cdots w_{i_k})$$
$$= \sum_{i_1, \dots, i_k \in [n]} (v_{i_1} w_{i_1}) \cdots (v_{i_k} w_{i_k}) = (\sum_{i_1 \in [n]} v_{i_1} w_{i_1}) \cdots (\sum_{i_k \in [n]} v_{i_k} w_{i_k}) = \langle v, w \rangle^k ,$$

as needed.

Exercise: Let p(x) a univariate polynomial with non-negative coefficients. Let A be a $n \times n$ PSD matrix with entries a_{ij} , and let p(A) denote the matrix which has its (i, j)-entry $p(a_{ij})$. Show that p(A) is also PSD.

Hint: Use that $a_{ij} = \langle v_i, v_j \rangle$ for each i, j, and construct suitable vectors v'_i and v'_j such that $p(a_{ij}) = v'_i \cdot v'_j$. Use the property $\langle v^{\otimes k}, w^{\otimes k} \rangle = (\langle v, w \rangle)^k$ of dot products tensors stated above.

Solution: Since A is PSD we can write $A_{ij} = \langle v_i, v_j \rangle$ for vectors v_1, \ldots, v_n . Let $p(x) = c_0 + c_1 x + \cdots + c_k x^k$, where $c_0, c_1, \ldots, c_k \ge 0$. Now define the vectors z_1, \ldots, z_n by

$$z_i = (\sqrt{c_0}, \sqrt{c_1}v_i, \sqrt{c_2}v_i^{\otimes 2}, \dots, \sqrt{c_k}v_i^{\otimes k})$$

for $i \in [n]$. Then by the previous exercises, we see that

$$\langle z_i, z_j \rangle = c_0 + c_1 \langle v_i, v_j \rangle + c_2 \langle v_i^{\otimes 2}, v_j^{\otimes 2} \rangle + \dots + c_k \langle v_i^{\otimes k}, v_j^{\otimes k} \rangle$$

= $c_0 + c_1 \langle v_i, v_j \rangle + c_2 \langle v_i, v_j \rangle^2 + \dots + c_k \langle v_i, v_j \rangle^k$
= $c_0 + c_1 a_{ij} + c_2 a_{ij}^2 + \dots + c_k a_{ij}^k = p(a_{ij}) .$

• If the Goemans Williamson SDP relaxation for maxcut on a graph G has value $(1 - \epsilon)|E|$ where |E| is the number of edges in G, show that the hyperplane rounding algorithm achieves a value of $(1 - O(\sqrt{\epsilon}))|E|$.

Solution: Let $v_1, \ldots, v_n \in \mathbb{R}^n$, $||v_i|| = 1$ denote the optimal solution to the SDP for G. Recall that the SDP value is

$$\sum_{(i,j)\in E} \frac{1}{2} (1 - \langle v_i, v_j \rangle) := \text{SDP},$$

and that the value achieved by Goemans Williamson rounding is

$$\sum_{(i,j)\in E}\theta_{ij}/\pi$$

where $\cos(\theta_{ij}) = \langle v_i, v_j \rangle$ for all $(i, j) \in E$.

By assumption, we know that the MAXCUT of the graph has size at least $(1-\epsilon)|E|$ edges, and hence the value of the value of SDP is at least $(1-\epsilon)|E|$ as well.

To begin the analysis, we will first remove all the edges for which the angles are less than $\pi/2$, and show that the value of the remaining edges is still at least $1 - 2\epsilon$ (this will allow us to apply a useful concavity argument). Namely, let $E' = \{(i, j) \in E : \langle v_i, v_j \rangle \leq 0\}$, and let $\alpha = |E'|/|E|$. We first show that $\alpha \geq 1 - 2\epsilon$. To see this, note that

$$(1-\epsilon)|E| \le \sum_{(i,j)\in E\setminus E'} \frac{1}{2} (1-\langle v_i, v_j \rangle) + \sum_{(i,j)\in E'} \frac{1}{2} (1-\langle v_i, v_j \rangle) \\\le (|E|-|E'|)/2 + |E'| = (1-\alpha)|E|/2 + \alpha|E| ,$$

where the lower bound $\alpha \geq 1 - 2\epsilon$ now follows by rearranging.

Using the above, we can lower bound the value of the SDP restricted to the edges of E' as follows,

$$\sum_{(i,j)\in E'} \frac{1}{2} (1 - \langle v_i, v_j \rangle) \ge (1 - \epsilon) |E| - \sum_{(i,j)\in E\setminus E'} \frac{1}{2} (1 - \langle v_i, v_j \rangle) \ge (1 - \epsilon) |E| - \frac{1}{2} (|E| - |E'|) \ge (1 - 2\epsilon) |E|$$

Let use now examine the average angle $\bar{\theta} = \sum_{(i,j)\in E'} \theta_{ij}/|E'|$, noting that the value of the Goemans Williamsom algorithm is at least $\bar{\theta}|E'|/\pi$. Since the function $\frac{1}{2}(1 - \cos(x))$ is concave on the interval $[\pi/2, \pi]$ (note the derivative $\sin(x)/2$ is decreasing on this interval) and the angles from vectors connected by edges in E' are in this range, by Jensen's inequality we have that

$$(1 - 2\epsilon) \le (1 - 2\epsilon) \frac{|E|}{|E'|} \le \frac{1}{|E'|} \sum_{(i,j)\in E'} \frac{1}{2} (1 - \cos(\theta_{ij})) \le \frac{1}{2} (1 - \cos(\bar{\theta})) .$$
(1)

To prove the desired bound on the Geomans Williamson algorithm, we will show that $\bar{\theta} \geq \pi - 4\sqrt{\epsilon}$. Note that the total value obtained by the rounding algorithm would then be at least

$$\bar{\theta}|E'|/\pi \ge (1 - (4/\pi)\sqrt{\epsilon})(1 - 2\epsilon)|E| = (1 - O(\sqrt{\epsilon}))|E| ,$$

as needed.

By the Taylor expansion, for $x \in [2\pi/3, \pi]$ we have that $\frac{1}{2}(1 - \cos x) \leq 1 - (x - \pi)^2/8$. Therefore, for ϵ small enough, combining with (1), we have that

$$(1-2\epsilon) \le 1 - (\bar{\theta} - \pi)^2 / 8 \Leftrightarrow \bar{\theta} \in [\pi - 4\sqrt{\epsilon}, \pi] ,$$

as needed.

• (Relating probability and geometry) Let $g = (g_1, \ldots, g_n)$ be the standard gaussian in \mathbb{R}^n , where each g_i is an iid N(0, 1) random variable.

Exercise: For any vector $v = (v_1, \ldots, v_n)$, show that the random variable $\langle g, v \rangle$ has the distribution $N(0, ||v||^2)$, i.e., it is gaussian with mean 0 and variance the ℓ_2 -squared length of v.

Solution: Note that $\langle g, v \rangle = \sum_{i=1}^{n} g_i v_i$. Since g_1, \ldots, g_n are iid N(0, 1), we know that $\sum_{i=1}^{n} g_i v_i$ is $N(0, \sum_{i=1}^{v} i) = N(0, \|v\|^2)$.

For any $v, w \in \mathbb{R}^n$, let $X = \langle g, v \rangle$ and $Y = \langle g, w \rangle$ be two random variables. Note that X and Y are correlated via the same random gaussian g.

The covariance of two random variables is defined as cov(X, Y) = E[XY] - E[X]E[Y].

Exercise: Show that for X and Y as defined above, $cov(X, Y) = \langle v, w \rangle$. In particular, if v and w are orthogonal vectors, and X and Y are independently distributed gaussians. Solution:

$$\begin{split} E[XY] - E[X]E[Y] &= E[\langle g, v \rangle \langle g, w \rangle] - E[\langle g, v \rangle]E[\langle g, w \rangle] = E[\langle g, v \rangle \langle g, w \rangle] \\ &= E[\sum_{i,j \in [n]} v_i w_j g_i g_j] = \sum_{i,j \in [n]} v_i w_j E[g_i g_j] = \sum_{i \in [n]} v_i w_j = \langle v, w \rangle \ . \end{split}$$

If v, w are orthogonal vectors, there exists an orthogonal matrix U such that $Uv = ||v||e_1$ and $Uw = ||w||e_2$. Since the distribution of g is rotation invariant, we have that U^Tg is identically distributed to g. In particular, the joint distribution of $(\langle g, v \rangle, \langle g, w \rangle)$ is identical to

$$(\langle U^T g, v \rangle, \langle U^T g, w \rangle) = (\langle g, Uv \rangle, \langle g, Uw \rangle) = (\langle g, \|v\|e_1\rangle, \langle g, \|w\|e_2\rangle) = (\|v\|g_1, \|w\|g_2) .$$

The result now follows from the assumptions that g_1, g_2 are independent Gaussian.