
Exercise 1 Advanced SDPs

Matrices and vectors: All these are very important facts that we will use repeatedly, and
should be internalized.

• Inner product and outer products. Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors in
Rn. Then uT v = 〈u, v〉 =

∑n
i=1 uivi is the inner product of u and v.

The outer product uvT is an n × n rank 1 matrix B with entries Bij = uivj . The
matrix B is a very useful operator. Suppose v is a unit vector. Then, B sends v to u
i.e. Bv = uvT v = u, but Bw = 0 for all w ∈ v⊥.

• Matrix Product. For any two matrices A ∈ Rm×n and B ∈ Rn×p, the standard matrix
product C = AB is the m × p matrix with entries cij =

∑n
k=1 aikbkj . Here are two very

useful ways to view this.

Inner products: Let ri be the i-th row of A, or equivalently the i-th column of AT , the
transpose of A. Let bj denote the j-th column of B. Then cij = rTi cj is the dot product
of i-column of AT and j-th column of B.

Sums of outer products: C can also be expressed as outer products of columns of A and
rows of B.

Exercise: Show that C =
∑n

k=1 akb
T
k where ak is the k-th column of A and bk is the k-th

row of B (or equivalently the k-column of BT ).

• Trace inner product of matrices. For any n× n matrix A, the trace is defined as the sum
of diagonal entries, Tr(A) =

∑
i aii. For any two m× n matrices A and B one can define

the Frobenius or Trace inner product 〈A,B〉 =
∑

ij aijbij . This is also denoted as A •B.

Exercise: Show that 〈A,B〉 = Tr(ATB) = Tr(BAT ).

• Bilinear forms. For any m × n matrix A and vectors u ∈ Rm, v ∈ Rn, the product
uTAv = 〈u,Av〉 =

∑n
i=1

∑n
j=1 aijuivj .

Exercise: Show that uTAv = 〈uvT , A〉. This relates bilinear product to matrix inner
product.

• PSD matrices. Let A be a symmetric n×n matrix with entries aij . Recall that we defined
A to be PSD if there exist vectors vi for i = 1, . . . , n (in some arbitrary dimensional space)
such that aij = vi · vj for each 1 ≤ i, j ≤ n.

The following properties are all equivalent ways to characterizing PSD matrices:

1. aij = vi · vj for each 1 ≤ i, j ≤ n. A is called the Gram matrix of vectors vi. So if V
is the matrix obtained by stacking these vectors with i-th column vi, then A = V TV .

2. A is symmetric and xTAx ≥ 0 for all x ∈ Rn.

3. A is symmetric and has all eigenvalues non-negative.

4. A =
∑n

i=1 λiuiu
T
i for λi ≥ 0 and ui are an orthonormal set of vectors. The λi are

the eigenvalues of A and ui are the corresponding eigenvectors.

Exercise: Show that (1)→ (2) and (2)→ (3).

Solution:



(1) → (2): Note that (1) implies that A = V TV , where V = (v1, . . . , vn). Then for any
x ∈ Rn, we have that

xTAx = xTV TV x = ‖V x‖2 ≥ 0,

where ‖V x‖2 is the squared Euclidean norm.

(2) → (3): Since A is symmetric, A is diagonizable and only real eigen values. Now
assume that A has a negative eigen value λ < 0 with corresponding eigen vector v 6= 0
such that Av = λv. But then, vTAv = λ‖v‖2 < 0, contradicting (2).

(3)→ (4) follows from the well-known spectral theorem (that we do not prove here) that
any symmetric matrix B has real eigenvalues and its eigenvectors are orthogonal. That
is, B =

∑
i βiuiu

T
i where βi ∈ R and ui is an orthonormal set of vectors.

Exercise: Show that (4) → (1) using the two views of matrix products discussed above.
Solution: Let U = (

√
λ1u1, . . . ,

√
λnun) (i.e. with the indicated columns). Then

A =

n∑
i=1

λiuiu
T
i =

n∑
i=1

(
√
λiui)(

√
λiui)

T = UUT .

Now letting (v1, . . . , vn)T = U denote the columns of U , we directly get that Aij =
(UUT )ij = vi · vj.
Exercise: If A and B are n × n PSD matrics. Show that A + B is also PSD. Solution:
Note that xTAx ≥ 0 and xTBx ≥ 0, ∀x ∈ Rn, clearly implies that xT (A + B)x =
xTAx+ xTBx ≥ 0 ∀x ∈ Rn. Thus, by (2) A+B is also PSD.

Hint: It is easiest to use definition (2) of PSD above.

Exercise: Show the above using (1) instead of (2). In particular if aij = vi · vj and
bij = wi ·wj can you construct vectors yi using these vi and wi such that aij +bij = yi ·yj?
Solution: Define z1, . . . , zn by the relation zTi = (vTi , w

T
i ) for i ∈ [n]. Then clearly

〈zi, zj〉 = 〈vi, vj〉+ 〈wi, wj〉 = aij + bij.

• Tensors. Let v ∈ Rn. We define the two-fold tensor v⊗2 as the n×n matrix with (i, j)-th
entry vi · vj . This is same as vvT , but it is useful to view v⊗2 as an n2 dimensional vector.
Similarly, if v ∈ Rn and w ∈ Rm, v ⊗ w = vwT is viewed as an nm dimensional vector.

Exercise: Show that if v, w ∈ Rn and x, y ∈ Rm, then 〈v ⊗ x,w ⊗ y〉 = 〈v, w〉〈x, y〉. One
can remember this rule as, the dot product of tensors is the product of their vector dot
products. Solution:

〈v ⊗ x,w ⊗ y〉 =
∑

i∈[n],j∈[m]

(v ⊗ x)ij(w ⊗ y)ij =
∑

i∈[n],j∈[m]

vixjwiyj

= (
∑
i∈[n]

viwi)(
∑
j∈[m]

xjyj) = 〈v, w〉〈x, y〉 .

Similarly, one can generalize this to higher order tensors. For now we just discuss the
k-fold tensor of a vector by itself. If v ∈ Rn v⊗k is the nk dimensional vector with the
(i1, . . . , ik) entry equal to the product vi1vi2 · · · vik .

Exercise: Show (by just expanding things out) that if v, w ∈ Rn then v⊗k, w⊗k = (〈v, w〉)k.



Solution:

〈v⊗k, w⊗k〉 =
∑

i1,...,ik∈[n]

v⊗ki1i2...ik
w⊗ki1i2...ik

=
∑

i1,...,ik∈[n]

(vi1 · · · vik)(wi1 · · ·wik)

=
∑

i1,...,ik∈[n]

(vi1wi1) · · · (vikwik) = (
∑
i1∈[n]

vi1wi1) · · · (
∑
ik∈[n]

vikwik) = 〈v, w〉k ,

as needed.

Exercise: Let p(x) a univariate polynomial with non-negative coefficients. Let A be a
n × n PSD matrix with entries aij , and let p(A) denote the matrix which has its (i, j)-
entry p(aij). Show that p(A) is also PSD.

Hint: Use that aij = 〈vi, vj〉 for each i, j, and construct suitable vectors v′i and v′j such

that p(aij) = v′i · v′j . Use the property 〈v⊗k, w⊗k〉 = (〈v, w〉)k of dot products tensors
stated above.

Solution: Since A is PSD we can write Aij = 〈vi, vj〉 for vectors v1, . . . , vn. Let
p(x) = c0 + c1x+ · · ·+ ckx

k, where c0, c1, . . . , ck ≥ 0. Now define the vectors z1, . . . , zn by

zi = (
√
c0,
√
c1vi,

√
c2v
⊗2
i , . . . ,

√
ckv
⊗k
i )

for i ∈ [n]. Then by the previous exercises, we see that

〈zi, zj〉 = c0 + c1〈vi, vj〉+ c2〈v⊗2i , v⊗2j 〉+ · · ·+ ck〈v⊗ki , v⊗kj 〉

= c0 + c1〈vi, vj〉+ c2〈vi, vj〉2 + · · ·+ ck〈vi, vj〉k

= c0 + c1aij + c2a
2
ij + · · · ckakij = p(aij) .

• If the Goemans Williamson SDP relaxation for maxcut on a graph G has value (1− ε)|E|
where |E| is the number of edges in G, show that the hyperplane rounding algorithm
achieves a value of (1−O(

√
ε))|E|.

Solution: Let v1, . . . , vn ∈ Rn, ‖vi‖ = 1 denote the optimal solution to the SDP for G.
Recall that the SDP value is ∑

(i,j)∈E

1

2
(1− 〈vi, vj〉) := SDP,

and that the value achieved by Goemans Williamson rounding is∑
(i,j)∈E

θij/π

where cos(θij) = 〈vi, vj〉 for all (i, j) ∈ E.

By assumption, we know that the MAXCUT of the graph has size at least (1− ε)|E| edges,
and hence the value of the value of SDP is at least (1− ε)|E| as well.

To begin the analysis, we will first remove all the edges for which the angles are less than
π/2, and show that the value of the remaining edges is still at least 1− 2ε (this will allow
us to apply a useful concavity argument). Namely, let E′ = {(i, j) ∈ E : 〈vi, vj〉 ≤ 0}, and
let α = |E′|/|E|. We first show that α ≥ 1− 2ε. To see this, note that

(1− ε)|E| ≤
∑

(i,j)∈E\E′

1

2
(1− 〈vi, vj〉) +

∑
(i,j)∈E′

1

2
(1− 〈vi, vj〉)

≤ (|E| − |E′|)/2 + |E′| = (1− α)|E|/2 + α|E| ,



where the lower bound α ≥ 1− 2ε now follows by rearranging.

Using the above, we can lower bound the value of the SDP restricted to the edges of E′ as
follows,∑
(i,j)∈E′

1

2
(1−〈vi, vj〉) ≥ (1−ε)|E|−

∑
(i,j)∈E\E′

1

2
(1−〈vi, vj〉) ≥ (1−ε)|E|−1

2
(|E|−|E′|) ≥ (1−2ε)|E| .

Let use now examine the average angle θ̄ =
∑

(i,j)∈E′ θij/|E′|, noting that the value of the

Goemans Williamsom algorithm is at least θ̄|E′|/π. Since the function 1
2(1 − cos(x)) is

concave on the interval [π/2, π] (note the derivative sin(x)/2 is decreasing on this inter-
val) and the angles from vectors connected by edges in E′ are in this range, by Jensen’s
inequality we have that

(1− 2ε) ≤ (1− 2ε)
|E|
|E′|
≤ 1

|E′|
∑

(i,j)∈E′

1

2
(1− cos(θij)) ≤

1

2
(1− cos(θ̄)) . (1)

To prove the desired bound on the Geomans Williamson algorithm, we will show that
θ̄ ≥ π − 4

√
ε. Note that the total value obtained by the rounding algorithm would then be

at least
θ̄|E′|/π ≥ (1− (4/π)

√
ε)(1− 2ε)|E| = (1−O(

√
ε))|E| ,

as needed.

By the Taylor expansion, for x ∈ [2π/3, π] we have that 1
2(1 − cosx) ≤ 1 − (x − π)2/8.

Therefore, for ε small enough, combining with (1), we have that

(1− 2ε) ≤ 1− (θ̄ − π)2/8⇔ θ̄ ∈ [π − 4
√
ε, π] ,

as needed.

• (Relating probability and geometry) Let g = (g1, . . . , gn) be the standard gaussian in Rn,
where each gi is an iid N(0, 1) random variable.

Exercise: For any vector v = (v1, . . . , vn), show that the random variable 〈g, v〉 has the
distribution N(0, ‖v‖2), i.e., it is gaussian with mean 0 and variance the `2-squared length
of v.

Solution: Note that 〈g, v〉 =
∑n

i=1 givi. Since g1, . . . , gn are iid N(0, 1), we know that∑n
i=1 givi is N(0,

∑v
i=1 i) = N(0, ‖v‖2).

For any v, w ∈ Rn, let X = 〈g, v〉 and Y = 〈g, w〉 be two random variables. Note that X
and Y are correlated via the same random gaussian g.

The covariance of two random variables is defined as cov(X,Y ) = E[XY ]− E[X]E[Y ].

Exercise: Show that for X and Y as defined above, cov(X,Y ) = 〈v, w〉. In particular, if
v and w are orthogonal vectors, and X and Y are independently distributed gaussians.
Solution:

E[XY ]− E[X]E[Y ] = E[〈g, v〉〈g, w〉]− E[〈g, v〉]E[〈g, w〉] = E[〈g, v〉〈g, w〉]

= E[
∑

i,j∈[n]

viwjgigj ] =
∑

i,j∈[n]

viwjE[gigj ] =
∑
i∈[n]

viwj = 〈v, w〉 .

If v, w are orthogonal vectors, there exists an orthogonal matrix U such that Uv = ‖v‖e1
and Uw = ‖w‖e2. Since the distribution of g is rotation invariant, we have that UT g



is identically distributed to g. In particular, the joint distribution of (〈g, v〉, 〈g, w〉) is
identical to

(〈UT g, v〉, 〈UT g, w〉) = (〈g, Uv〉, 〈g, Uw〉) = (〈g, ‖v‖e1〉, 〈g, ‖w‖e2〉) = (‖v‖g1, ‖w‖g2) .

The result now follows from the assumptions that g1, g2 are independent Gaussian.


