Exercise 1 Advanced SDPs

Matrices and vectors: All these are very important facts that we will use repeatedly, and
should be internalized.

e Inner product and outer products. Let u = (u1,...,u,) and v = (vy,...,v,) be vectors in
R™. Then ulv = (u,v) = 31" | w;v; is the inner product of u and v.

The outer product uv” is an n x n rank 1 matrix B with entries B;; = wujvj. The

matrix B is a very useful operator. Suppose v is a unit vector. Then, B sends v to u
i.e. Bv = uvTv =u, but Bw = 0 for all w € vt.

e Matrix Product. For any two matrices A € R™*™ and B € R"*P, the standard matrix
product C' = AB is the m x p matrix with entries ¢;; = ZZ:1 a;ibr;. Here are two very
useful ways to view this.

Inner products: Let r; be the i-th row of A, or equivalently the i-th column of AT, the
transpose of A. Let b; denote the j-th column of B. Then ¢;; = rich is the dot product
of i-column of A7 and j-th column of B.

Sums of outer products: C can also be expressed as outer products of columns of A and
rows of B.

Ezercise: Show that C' =3, akbg where ay, is the k-th column of A and by is the k-th
row of B (or equivalently the k-column of BT).

e Trace inner product of matrices. For any n X n matrix A, the trace is defined as the sum
of diagonal entries, Tr(A) = Y, a;;. For any two m x n matrices A and B one can define
the Frobenius or Trace inner product (A, B) = 3. a;;b;j. This is also denoted as A e B.

Ezercise: Show that (A, B) = Tr(ATB) = Tr(BAT).

e Bilinear forms. For any m x m matrix A and vectors v € R™, v € R", the product
ul Av = (u, Av) = S0, D j—1 QijUiv;.
Exercise: Show that u” Av = (uv”, A). This relates bilinear product to matrix inner

product.

e PSD matrices. Let A be a symmetric n x n matrix with entries a;;. Recall that we defined
A to be PSD if there exist vectors v; for i = 1,...,n (in some arbitrary dimensional space)
such that a;; = v; - vj for each 1 <4, j < n.

The following properties are all equivalent ways to characterizing PSD matrices:

1. ajj = v; -vj for each 1 <4,5 < n. Ais called the Gram matrix of vectors v;. So if V'
is the matrix obtained by stacking these vectors with i-th column v;, then A = VIV,

2. A is symmetric and 27 Az > 0 for all z € R™.
3. A is symmetric and has all eigenvalues non-negative.

4. A= Z?zl )\ZuzulT for A\; > 0 and wu; are an orthonormal set of vectors. The \; are
the eigenvalues of A and w; are the corresponding eigenvectors.

Ezxercise: Show that (1) — (2) and (2) — (3).

Solution:



(1) = (2):  Note that (1) implies that A = VIV, where V = (v1,...,v,). Then for any
x € R™, we have that
2T Az = 2TVIVe = |Vz|* >0,

where ||Vz||? is the squared Euclidean norm.

(2) — (3): Since A is symmetric, A is diagonizable and only real eigen values. Now
assume that A has a negative eigen value X < 0 with corresponding eigen vector v # 0
such that Av = M. But then, vT Av = \|v||? <0, contradicting (2).

(3) — (4) follows from the well-known spectral theorem (that we do not prove here) that
any symmetric matrix B has real eigenvalues and its eigenvectors are orthogonal. That
is, B=)_, Bzuzu;f where 3; € R and wu; is an orthonormal set of vectors.

FEzercise: Show that (4) — (1) using the two views of matrix products discussed above.
Solution: Let U = (vV/Mu1,. ..,V Apuy) (i.e. with the indicated columns). Then

n

A= i)\luzuzT = Z(\/)\»Zul)(\/)\»@ul)T = UUT .
=1

=1

Now letting (vi,...,v,)T = U denote the columns of U, we directly get that Ay =

(UUT);j = v; - vj.

Ezxercise: If A and B are n x n PSD matrics. Show that A + B is also PSD. Solution:
Note that 27 Az > 0 and 2" Bx > 0, Vo € R", clearly implies that 7 (A + B)x =
2T Az 4+ 2T Bz > 0 Vo € R™. Thus, by (2) A+ B is also PSD.

Hint: It is easiest to use definition (2) of PSD above.

Exercise: Show the above using (1) instead of (2). In particular if a;; = v; - v; and
bi;j = w;-w; can you construct vectors y; using these v; and w; such that a;; +b;; = ;- y;7
Solution:  Define 21,...,2, by the relation 2l = (vl ,w]) for i € [n]. Then clearly
<Zi> Zj> = <’U7la Uj) + <wiij> = aij + bl]

Tensors. Let v € R™. We define the two-fold tensor v®2 as the n x n matrix with (4, j)-th

entry v; -vj. This is same as vul', but it is useful to view v®2 as an n? dimensional vector.
Similarly, if v € R” and w € R™, v @ w = vw” is viewed as an nm dimensional vector.

FEzercise: Show that if v,w € R™ and z,y € R™, then (v ® z,w ® y) = (v, w)(z,y). One
can remember this rule as, the dot product of tensors is the product of their vector dot
products. Solution:

enway) = Y (We)wey);= Y.  vzwy;

i€[n],j€[m] i€[n],j€[m]
= (Z vw; )( Z zjy;) = (v, w)(z,y) .
i€[n) j€lm]

Similarly, one can generalize this to higher order tensors. For now we just discuss the
k-fold tensor of a vector by itself. If v € R™ v®* is the n* dimensional vector with the
(i1,...,1x) entry equal to the product v, vs, - - - v, .

Erercise: Show (by just expanding things out) that if v,w € R™ then v®*, w®* = ((v,w))*.



Solution:

k k k k
<’U® ’w® > = Z v%lQlkw%’ngk = Z (,Uil T Uik)(wil e wlk)
i1,0.,1% €[N 1,005 €[N
= Z (viywiy ) -+ (vikwik) = ( Z v wiy) e ( Z Uikwik) = <U7w>k ’
1,00k €[N i1€[n] ir€n]
as needed.

Ezercise: Let p(xz) a univariate polynomial with non-negative coefficients. Let A be a
n x n PSD matrix with entries a;;, and let p(A) denote the matrix which has its (4, j)-

entry p(a;;). Show that p(A) is also PSD.

Hint: Use that a;; = (v, v;) for each ¢,j, and construct suitable vectors v} and v; such
that p(a;;) = v; - vj. Use the property (v®k 1wk = ((v,w))* of dot products tensors
stated above.

Solution:  Since A is PSD we can write A;; = (v;,vj) for vectors vi,...,v,. Let
p(z) = co+ 1z + - - -+ cpx®, where ¢, cq,. .., cp > 0. Now define the vectors z1, ...,z by

zi = (v/co, \/c1i, \/5212@2, el \/@v;g)k)
fori € [n]. Then by the previous exercises, we see that

(21, 2) = co + c1{vi, v;) + ca(v?, v?2> 4 ck<v?k, v?k>
= co + c1(v;, v5) + CQ('Ui,Uj)Q + -+ e (v, Uj)k

2 k
= Cp + C1a45 + C2a5; + -+ CpQy; = p(aij) -

If the Goemans Williamson SDP relaxation for maxcut on a graph G has value (1 — ¢€)|E)|
where |E| is the number of edges in G, show that the hyperplane rounding algorithm
achieves a value of (1 — O(y/e€))|E|.

Solution: Let vy,...,v, € R", ||v;]| = 1 denote the optimal solution to the SDP for G.
Recall that the SDP value is

3 %(1 — (vi,v;)) := SDP,
(1,j)EE
and that the value achieved by Goemans Williamson rounding is
Z Oi;/m
(i,j)€E
where cos(6;5) = (v, v;) for all (i,5) € E.
By assumption, we know that the MAXCUT of the graph has size at least (1—¢€)|E| edges,
and hence the value of the value of SDP is at least (1 — €)|E| as well.

To begin the analysis, we will first remove all the edges for which the angles are less than
/2, and show that the value of the remaining edges is still at least 1 — 2¢ (this will allow
us to apply a useful concavity argument). Namely, let E' = {(i,7) € E : (vi,v;) <0}, and
let « = |E'|/|E|. We first show that o > 1 — 2e. To see this, note that

1 1
A-9lBl< Y SO-(wu)+ D S0 ()
(4,7)EE\E’ (3,5)€E’
< (B[ -|E)/2+|E'| = (1 - a)|E|/2+ B,



where the lower bound o > 1 — 2e now follows by rearranging.

Using the above, we can lower bound the value of the SDP restricted to the edges of E' as
follows,

S S0l > 0-alBl- Y L) = (-e)|Bl-5(EI-|E]) > (1-20|B]
(i.j)€E (i.))EB\E'
Let use now examine the average angle 0 = > ij)eE 0;;/|E’|, noting that the value of the
Goemans Williamsom algorithm is at least 0|E'|/m. Since the function (1 — cos(z)) is
concave on the interval [1/2, ] (note the derivative sin(x)/2 is decreasing on this inter-
val) and the angles from vectors connected by edges in E' are in this range, by Jensen’s
inequality we have that

(1 —2¢) < (1—2e¢) f/” < |E1,’ Z %(1 — cos(0;5)) < %(1 —cos(f)) . (1)
(3,5)€E’

To prove the desired bound on the Geomans Williamson algorithm, we will show that
0 > 7 — 4./e. Note that the total value obtained by the rounding algorithm would then be
at least

OIE'|/m = (1 - (4/m)Ve)(1 - 2¢)|E| = (1 - O(Ve))|E|
as needed.
By the Taylor expansion, for x € [2m/3,n] we have that 3(1 — cosz) < 1 — (z — m)%/8.
Therefore, for € small enough, combining with (1), we have that
(1-26)<1—(0—-7)?/80¢c[r—4/eT],

as needed.

(Relating probability and geometry) Let g = (g1, ..., gn) be the standard gaussian in R",
where each g; is an iid N(0,1) random variable.

Ezercise: For any vector v = (v1,...,v,), show that the random variable (g, v) has the
distribution N (0, ||v[|?), i.e., it is gaussian with mean 0 and variance the £3-squared length
of v.

Solution: Note that (g,v) = Y i~ givi. Since gu,...,gn are iid N(0,1), we know that
>oimy givi s N(0, 3571 3) = N0, [[v]]?).

For any v,w € R", let X = (g,v) and Y = (g, w) be two random variables. Note that X
and Y are correlated via the same random gaussian g.

The covariance of two random variables is defined as cov(X,Y) = E[XY] — E[X]|E[Y].

Ezercise: Show that for X and Y as defined above, cov(X,Y) = (v, w). In particular, if
v and w are orthogonal vectors, and X and Y are independently distributed gaussians.
Solution:

E[XY] - E[X]|E[Y] = E[(g,v)(g9,w)] — E[{g,v)| E[(g,w)] = E[{g,v)(g,w)]
=F] Z ViW;gig;) = Z viw;Elgig;] = Z viw; = (v, w) .

1,J€[n] 1,J€[n] i€[n]

If v,w are orthogonal vectors, there exists an orthogonal matrixz U such that Uv = ||v]|ey
and Uw = ||w|lez. Since the distribution of g is rotation invariant, we have that U'g



is identically distributed to g. In particular, the joint distribution of ({g,v),{(g,w)) is
identical to

(UTg,v), (UTg,w)) = ({g,Uv), (g, Uw)) = ({g; [v]lex), (g, [lw]le2)) = ([v]lg1, [wllg2) -

The result now follows from the assumptions that g1, ge are independent Gaussian.



