Matrices and vectors: All these are very important facts that we will use repeatedly, and should be internalized.

- Inner product and outer products. Let $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ be vectors in \mathbb{R}^{n}. Then $u^{T} v=\langle u, v\rangle=\sum_{i=1}^{n} u_{i} v_{i}$ is the inner product of u and v.
The outer product $u v^{T}$ is an $n \times n$ rank 1 matrix B with entries $B_{i j}=u_{i} v_{j}$. The matrix B is a very useful operator. Suppose v is a unit vector. Then, B sends v to u i.e. $B v=u v^{T} v=u$, but $B w=\mathbf{0}$ for all $w \in v^{\perp}$.
- Matrix Product. For any two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, the standard matrix product $C=A B$ is the $m \times p$ matrix with entries $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. Here are two very useful ways to view this.
Inner products: Let r_{i} be the i-th row of A, or equivalently the i-th column of A^{T}, the transpose of A. Let b_{j} denote the j-th column of B. Then $c_{i j}=r_{i}^{T} c_{j}$ is the dot product of i-column of A^{T} and j-th column of B.
Sums of outer products: C can also be expressed as outer products of columns of A and rows of B.
Exercise: Show that $C=\sum_{k=1}^{n} a_{k} b_{k}^{T}$ where a_{k} is the k-th column of A and b_{k} is the k-th row of B (or equivalently the k-column of B^{T}).
- Trace inner product of matrices. For any $n \times n$ matrix A, the trace is defined as the sum of diagonal entries, $\operatorname{Tr}(A)=\sum_{i} a_{i i}$. For any two $m \times n$ matrices A and B one can define the Frobenius or Trace inner product $\langle A, B\rangle=\sum_{i j} a_{i j} b_{i j}$. This is also denoted as $A \bullet B$.
Exercise: Show that $\langle A, B\rangle=\operatorname{Tr}\left(A^{T} B\right)=\operatorname{Tr}\left(B A^{T}\right)$.
- Bilinear forms. For any $m \times n$ matrix A and vectors $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$, the product $u^{T} A v=\langle u, A v\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} u_{i} v_{j}$.
Exercise: Show that $u^{T} A v=\left\langle u v^{T}, A\right\rangle$. This relates bilinear product to matrix inner product.
- PSD matrices. Let A be a symmetric $n \times n$ matrix with entries $a_{i j}$. Recall that we defined A to be PSD if there exist vectors v_{i} for $i=1, \ldots, n$ (in some arbitrary dimensional space) such that $a_{i j}=v_{i} \cdot v_{j}$ for each $1 \leq i, j \leq n$.

The following properties are all equivalent ways to characterizing PSD matrices:

1. $a_{i j}=v_{i} \cdot v_{j}$ for each $1 \leq i, j \leq n$. A is called the Gram matrix of vectors v_{i}. So if V is the matrix obtained by stacking these vectors with i-th column v_{i}, then $A=V^{T} V$.
2. A is symmetric and $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{n}$.
3. A is symmetric and has all eigenvalues non-negative.
4. $A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}$ for $\lambda_{i} \geq 0$ and u_{i} are an orthonormal set of vectors. The λ_{i} are the eigenvalues of A and u_{i} are the corresponding eigenvectors.

Exercise: Show that $(1) \rightarrow(2)$ and $(2) \rightarrow(3)$.

Solution:

(1) \rightarrow (2): Note that (1) implies that $A=V^{T} V$, where $V=\left(v_{1}, \ldots, v_{n}\right)$. Then for any $x \in \mathbb{R}^{n}$, we have that

$$
x^{T} A x=x^{T} V^{T} V x=\|V x\|^{2} \geq 0,
$$

where $\|V x\|^{2}$ is the squared Euclidean norm.
$(2) \rightarrow(3)$: Since A is symmetric, A is diagonizable and only real eigen values. Now assume that A has a negative eigen value $\lambda<0$ with corresponding eigen vector $v \neq 0$ such that $A v=\lambda v$. But then, $v^{T} A v=\lambda\|v\|^{2}<0$, contradicting (2).
$(3) \rightarrow(4)$ follows from the well-known spectral theorem (that we do not prove here) that any symmetric matrix B has real eigenvalues and its eigenvectors are orthogonal. That is, $B=\sum_{i} \beta_{i} u_{i} u_{i}^{T}$ where $\beta_{i} \in \mathbb{R}$ and u_{i} is an orthonormal set of vectors.
Exercise: Show that (4) \rightarrow (1) using the two views of matrix products discussed above.
Solution: Let $U=\left(\sqrt{\lambda_{1}} u_{1}, \ldots, \sqrt{\lambda_{n}} u_{n}\right)$ (i.e. with the indicated columns). Then

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}=\sum_{i=1}^{n}\left(\sqrt{\lambda_{i}} u_{i}\right)\left(\sqrt{\lambda_{i}} u_{i}\right)^{T}=U U^{T} .
$$

Now letting $\left(v_{1}, \ldots, v_{n}\right)^{T}=U$ denote the columns of U, we directly get that $A_{i j}=$ $\left(U U^{T}\right)_{i j}=v_{i} \cdot v_{j}$.
Exercise: If A and B are $n \times n$ PSD matrics. Show that $A+B$ is also PSD. Solution: Note that $x^{T} A x \geq 0$ and $x^{T} B x \geq 0, \forall x \in \mathbb{R}^{n}$, clearly implies that $x^{T}(A+B) x=$ $x^{T} A x+x^{T} B x \geq 0 \forall x \in \mathbb{R}^{n}$. Thus, by (2) $A+B$ is also PSD.
Hint: It is easiest to use definition (2) of PSD above.
Exercise: Show the above using (1) instead of (2). In particular if $a_{i j}=v_{i} \cdot v_{j}$ and $b_{i j}=w_{i} \cdot w_{j}$ can you construct vectors y_{i} using these v_{i} and w_{i} such that $a_{i j}+b_{i j}=y_{i} \cdot y_{j}$?
Solution: Define z_{1}, \ldots, z_{n} by the relation $z_{i}^{T}=\left(v_{i}^{T}, w_{i}^{T}\right)$ for $i \in[n]$. Then clearly $\left\langle z_{i}, z_{j}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle+\left\langle w_{i}, w_{j}\right\rangle=a_{i j}+b_{i j}$.

- Tensors. Let $v \in R^{n}$. We define the two-fold tensor $v^{\otimes 2}$ as the $n \times n$ matrix with (i, j)-th entry $v_{i} \cdot v_{j}$. This is same as $v v^{T}$, but it is useful to view $v^{\otimes 2}$ as an n^{2} dimensional vector. Similarly, if $v \in R^{n}$ and $w \in R^{m}, v \otimes w=v w^{T}$ is viewed as an $n m$ dimensional vector.
Exercise: Show that if $v, w \in R^{n}$ and $x, y \in R^{m}$, then $\langle v \otimes x, w \otimes y\rangle=\langle v, w\rangle\langle x, y\rangle$. One can remember this rule as, the dot product of tensors is the product of their vector dot products. Solution:

$$
\begin{aligned}
\langle v \otimes x, w \otimes y\rangle & =\sum_{i \in[n], j \in[m]}(v \otimes x)_{i j}(w \otimes y)_{i j}=\sum_{i \in[n], j \in[m]} v_{i} x_{j} w_{i} y_{j} \\
& =\left(\sum_{i \in[n]} v_{i} w_{i}\right)\left(\sum_{j \in[m]} x_{j} y_{j}\right)=\langle v, w\rangle\langle x, y\rangle .
\end{aligned}
$$

Similarly, one can generalize this to higher order tensors. For now we just discuss the k-fold tensor of a vector by itself. If $v \in R^{n} v^{\otimes k}$ is the n^{k} dimensional vector with the $\left(i_{1}, \ldots, i_{k}\right)$ entry equal to the product $v_{i_{1}} v_{i_{2}} \cdots v_{i_{k}}$.
Exercise: Show (by just expanding things out) that if $v, w \in \mathbb{R}^{n}$ then $v^{\otimes k}, w^{\otimes k}=(\langle v, w\rangle)^{k}$.

Solution:

$$
\begin{aligned}
\left\langle v^{\otimes k}, w^{\otimes k}\right\rangle & =\sum_{i_{1}, \ldots, i_{k} \in[n]} v_{i_{1} i_{2} \ldots i_{k}}^{\otimes k} w_{i_{1} i_{2} \ldots i_{k}}^{\otimes k}=\sum_{i_{1}, \ldots, i_{k} \in[n]}\left(v_{i_{1}} \cdots v_{i_{k}}\right)\left(w_{i_{1}} \cdots w_{i_{k}}\right) \\
& =\sum_{i_{1}, \ldots, i_{k} \in[n]}\left(v_{i_{1}} w_{i_{1}}\right) \cdots\left(v_{i_{k}} w_{i_{k}}\right)=\left(\sum_{i_{1} \in[n]} v_{i_{1}} w_{i_{1}}\right) \cdots\left(\sum_{i_{k} \in[n]} v_{i_{k}} w_{i_{k}}\right)=\langle v, w\rangle^{k}
\end{aligned}
$$

as needed.
Exercise: Let $p(x)$ a univariate polynomial with non-negative coefficients. Let A be a $n \times n$ PSD matrix with entries $a_{i j}$, and let $p(A)$ denote the matrix which has its (i, j) entry $p\left(a_{i j}\right)$. Show that $p(A)$ is also PSD.
Hint: Use that $a_{i j}=\left\langle v_{i}, v_{j}\right\rangle$ for each i, j, and construct suitable vectors v_{i}^{\prime} and v_{j}^{\prime} such that $p\left(a_{i j}\right)=v_{i}^{\prime} \cdot v_{j}^{\prime}$. Use the property $\left\langle v^{\otimes k}, w^{\otimes k}\right\rangle=(\langle v, w\rangle)^{k}$ of dot products tensors stated above.
Solution: Since A is PSD we can write $A_{i j}=\left\langle v_{i}, v_{j}\right\rangle$ for vectors v_{1}, \ldots, v_{n}. Let $p(x)=c_{0}+c_{1} x+\cdots+c_{k} x^{k}$, where $c_{0}, c_{1}, \ldots, c_{k} \geq 0$. Now define the vectors z_{1}, \ldots, z_{n} by

$$
z_{i}=\left(\sqrt{c_{0}}, \sqrt{c_{1}} v_{i}, \sqrt{c_{2}} v_{i}^{\otimes 2}, \ldots, \sqrt{c_{k}} v_{i}^{\otimes k}\right)
$$

for $i \in[n]$. Then by the previous exercises, we see that

$$
\begin{aligned}
\left\langle z_{i}, z_{j}\right\rangle & =c_{0}+c_{1}\left\langle v_{i}, v_{j}\right\rangle+c_{2}\left\langle v_{i}^{\otimes 2}, v_{j}^{\otimes 2}\right\rangle+\cdots+c_{k}\left\langle v_{i}^{\otimes k}, v_{j}^{\otimes k}\right\rangle \\
& =c_{0}+c_{1}\left\langle v_{i}, v_{j}\right\rangle+c_{2}\left\langle v_{i}, v_{j}\right\rangle^{2}+\cdots+c_{k}\left\langle v_{i}, v_{j}\right\rangle^{k} \\
& =c_{0}+c_{1} a_{i j}+c_{2} a_{i j}^{2}+\cdots c_{k} a_{i j}^{k}=p\left(a_{i j}\right)
\end{aligned}
$$

- If the Goemans Williamson SDP relaxation for maxcut on a graph G has value $(1-\epsilon)|E|$ where $|E|$ is the number of edges in G, show that the hyperplane rounding algorithm achieves a value of $(1-O(\sqrt{\epsilon}))|E|$.
Solution: Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n},\left\|v_{i}\right\|=1$ denote the optimal solution to the SDP for G. Recall that the SDP value is

$$
\sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right):=\mathrm{SDP}
$$

and that the value achieved by Goemans Williamson rounding is

$$
\sum_{(i, j) \in E} \theta_{i j} / \pi
$$

where $\cos \left(\theta_{i j}\right)=\left\langle v_{i}, v_{j}\right\rangle$ for all $(i, j) \in E$.
By assumption, we know that the MAXCUT of the graph has size at least $(1-\epsilon)|E|$ edges, and hence the value of the value of $S D P$ is at least $(1-\epsilon)|E|$ as well.
To begin the analysis, we will first remove all the edges for which the angles are less than $\pi / 2$, and show that the value of the remaining edges is still at least $1-2 \epsilon$ (this will allow us to apply a useful concavity argument). Namely, let $E^{\prime}=\left\{(i, j) \in E:\left\langle v_{i}, v_{j}\right\rangle \leq 0\right\}$, and let $\alpha=\left|E^{\prime}\right| /|E|$. We first show that $\alpha \geq 1-2 \epsilon$. To see this, note that

$$
\begin{aligned}
(1-\epsilon)|E| & \leq \sum_{(i, j) \in E \backslash E^{\prime}} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right)+\sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \\
& \leq\left(|E|-\left|E^{\prime}\right|\right) / 2+\left|E^{\prime}\right|=(1-\alpha)|E| / 2+\alpha|E|
\end{aligned}
$$

where the lower bound $\alpha \geq 1-2 \epsilon$ now follows by rearranging.
Using the above, we can lower bound the value of the $S D P$ restricted to the edges of E^{\prime} as follows,

$$
\sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \geq(1-\epsilon)|E|-\sum_{(i, j) \in E \backslash E^{\prime}} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \geq(1-\epsilon)|E|-\frac{1}{2}\left(|E|-\left|E^{\prime}\right|\right) \geq(1-2 \epsilon)|E|
$$

Let use now examine the average angle $\bar{\theta}=\sum_{(i, j) \in E^{\prime}} \theta_{i j} /\left|E^{\prime}\right|$, noting that the value of the Goemans Williamsom algorithm is at least $\bar{\theta}\left|E^{\prime}\right| / \pi$. Since the function $\frac{1}{2}(1-\cos (x))$ is concave on the interval $[\pi / 2, \pi]$ (note the derivative $\sin (x) / 2$ is decreasing on this interval) and the angles from vectors connected by edges in E^{\prime} are in this range, by Jensen's inequality we have that

$$
\begin{equation*}
(1-2 \epsilon) \leq(1-2 \epsilon) \frac{|E|}{\left|E^{\prime}\right|} \leq \frac{1}{\left|E^{\prime}\right|} \sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(1-\cos \left(\theta_{i j}\right)\right) \leq \frac{1}{2}(1-\cos (\bar{\theta})) \tag{1}
\end{equation*}
$$

To prove the desired bound on the Geomans Williamson algorithm, we will show that $\bar{\theta} \geq \pi-4 \sqrt{\epsilon}$. Note that the total value obtained by the rounding algorithm would then be at least

$$
\bar{\theta}\left|E^{\prime}\right| / \pi \geq(1-(4 / \pi) \sqrt{\epsilon})(1-2 \epsilon)|E|=(1-O(\sqrt{\epsilon}))|E|
$$

as needed.
By the Taylor expansion, for $x \in[2 \pi / 3, \pi]$ we have that $\frac{1}{2}(1-\cos x) \leq 1-(x-\pi)^{2} / 8$. Therefore, for ϵ small enough, combining with (1), we have that

$$
(1-2 \epsilon) \leq 1-(\bar{\theta}-\pi)^{2} / 8 \Leftrightarrow \bar{\theta} \in[\pi-4 \sqrt{\epsilon}, \pi]
$$

as needed.

- (Relating probability and geometry) Let $g=\left(g_{1}, \ldots, g_{n}\right)$ be the standard gaussian in \mathbb{R}^{n}, where each g_{i} is an iid $N(0,1)$ random variable.
Exercise: For any vector $v=\left(v_{1}, \ldots, v_{n}\right)$, show that the random variable $\langle g, v\rangle$ has the distribution $N\left(0,\|v\|^{2}\right)$, i.e., it is gaussian with mean 0 and variance the ℓ_{2}-squared length of v.
Solution: Note that $\langle g, v\rangle=\sum_{i=1}^{n} g_{i} v_{i}$. Since g_{1}, \ldots, g_{n} are iid $N(0,1)$, we know that $\sum_{i=1}^{n} g_{i} v_{i}$ is $N\left(0, \sum_{i=1}^{v} i\right)=N\left(0,\|v\|^{2}\right)$.
For any $v, w \in R^{n}$, let $X=\langle g, v\rangle$ and $Y=\langle g, w\rangle$ be two random variables. Note that X and Y are correlated via the same random gaussian g.
The covariance of two random variables is defined as $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]$.
Exercise: Show that for X and Y as defined above, $\operatorname{cov}(X, Y)=\langle v, w\rangle$. In particular, if v and w are orthogonal vectors, and X and Y are independently distributed gaussians.

Solution:

$$
\begin{aligned}
E[X Y]-E[X] E[Y] & =E[\langle g, v\rangle\langle g, w\rangle]-E[\langle g, v\rangle] E[\langle g, w\rangle]=E[\langle g, v\rangle\langle g, w\rangle] \\
& =E\left[\sum_{i, j \in[n]} v_{i} w_{j} g_{i} g_{j}\right]=\sum_{i, j \in[n]} v_{i} w_{j} E\left[g_{i} g_{j}\right]=\sum_{i \in[n]} v_{i} w_{j}=\langle v, w\rangle .
\end{aligned}
$$

If v, w are orthogonal vectors, there exists an orthogonal matrix U such that $U v=\|v\| e_{1}$ and $U w=\|w\| e_{2}$. Since the distribution of g is rotation invariant, we have that $U^{T} g$
is identically distributed to g. In particular, the joint distribution of $(\langle g, v\rangle,\langle g, w\rangle)$ is identical to

$$
\left(\left\langle U^{T} g, v\right\rangle,\left\langle U^{T} g, w\right\rangle\right)=(\langle g, U v\rangle,\langle g, U w\rangle)=\left(\left\langle g,\|v\| e_{1}\right\rangle,\left\langle g,\|w\| e_{2}\right\rangle\right)=\left(\|v\| g_{1},\|w\| g_{2}\right)
$$

The result now follows from the assumptions that g_{1}, g_{2} are independent Gaussian.

