
Exercise 2 Advanced SDPs

1. Let X1, . . . , Xn be some random variables on the same probability space. Consider the
n×n covariance matrix A with entries aij = E[(Xi−E[Xi])(Xj −E[Xj ])]. Show that any
covariance matrix is PSD.

Solution: Let us define Yi = Xi−E[Xi], so that Yi has mean 0. Then aij = E[YiYj ]. For
any w ∈ Rn we have

wTAw =
∑
ij

wiE[YiYj ]wj = E[
∑
ij

wiYiwjYj ] = E[(
∑
i

wiYi)
2] ≥ 0

and hence A is PSD.

2. Show that given any PSD matrix A, one can construct random variables X1, . . . , Xn (in
fact jointly Gaussian random variables) with covariance matrix A.

[Hint: Do Cholesky decomposition of A and set Xi = 〈g, ui〉.]
Solution: Setting Xi = 〈g, ui〉, we have

E[XiXj ] = E[〈g, ui〉〈g, uj〉] = E[
∑
k

g(k)ui(k)
∑
k′

g(k′)uj(k
′)] =

∑
k

ui(k)uj(k) = ui · uj

where the second last step follows as E[g(k)2] = 1 and E[g(k)g(k′)] = 0 for k 6= k′, as the
entries of g are iid N(0, 1).

3. Given any graph G = (V,E), construct an explicit solution for the max-cut SDP such
that the objective is at least |E|/2.

Solution: Consider the all-orthogonal solution where vector i is assigned the vector
vi = ei, i.e. unit vector in the i-th direction. Then for any two vertices i and j, we have
(1/4)‖vi − vj‖2 = 1/2, and thus the maxcut SDP objective is |E|/2.

4. Here we will show an improved bound of 2/π for the maximizing the quadratic form xTAy
where A is a PSD matrix. Note that this is a generalization of the max-cut problem, where
A corresponds to the Laplacian of G.

We do this in the following steps

• First, show using Cauchy-Schwarz that for any PSD matrix A one has

xTAy ≤ (xTAx)1/2(yTAy)1/2

and hence one can assume in the optimum solution that x = y.

Solution: As A is PSD, A = V TV for some matrix V . So, xTAy = xTV TV y =
(V x)T (V y). By Cauchy Schwarz (i.e. aT b ≤ ‖a‖2‖b‖2 for any two vectors a and b) it
follows that

(V x)T (V y) ≤ ‖V x‖2‖V y‖2 = (xTV TV x)1/2(yTV TV y)1/2 = (xTAx)1/2(yTAy)1/2.

• Second, show the following identity. If b and c are two unit vectors, and g is a random
gaussian then

π

2
E[sign(g · b) · sign(g · c)] = b · c+ E

(
[b · g −

√
π

2
sign(b · g)][c · g −

√
π

2
sign(c · g)]

)



Hint: To compute E[(b · G) · sign(c · G)], by rotation invariance assume that b =
(b1, b2, 0, . . . , 0) and c = (1, 0, ...., 0). This is E[(b1g1+b2g2)(sign(g1))] = E[b1g1sign(g1)].
Show that this integral is (

√
2/π)b1.

Solution: Let us expand

E
(

[b · g −
√
π

2
sign(b · g)][c · g −

√
π

2
sign(c · g)]

)
as

E[(b ·g)(c ·g)]−E[(b ·g)

√
π

2
sign(c ·g)]−E[(c ·g)

√
π

2
sign(b ·g)]+E[

π

2
sign(b ·g)sign(c ·g)]

As we have seen before, the first term is simply b · c. Moreover the last term is
identical to the lhs of the identity we wish to show. So, it suffices to show that
second term E[(b · g)

√
π
2 sign(c · g)] is b · c (similarly for the third term by symmetry).

By the hint above, this is the same as
√

π
2E[b1g1sign(g1)] which we need to show is

b1 (which is b · c). Now,

E[b1g1sign(g1)] =

∫ ∞
−∞

b1|x|
1√
2π
e−x

2/2dx

= 2b1
1√
2π

∫ ∞
0

xe−x
2/2dx

= 2b1
1√
2π

∫ ∞
0

e−ydy ( setting y = x2/2)

= (
2

π
)1/2b1

• Finally, use these two facts (and that A is PSD) to show that the random hyperplane
rounding gives at least a 2/π approximation.

Solution: By part 1, we can consider maximizing xTAx and consider the vector
relaxation

∑
ij uiaijuj . Let B denote the optimum value of this SDP and let ui

denote some optimum solution.

Applying the hyperplane rounding gives an expected solution value of
∑

ij aijsign(〈ui, g〉)·
sign(〈ui, g〉). Call this value A.

Now by the identity in the second part (applying it to each pair ui, uj , multiplying
it by aij and combining), we have

π

2
A = B + E

∑
ij

aij [ui · g −
√
π

2
sign(ui · g)][uj · g −

√
π

2
sign(uj · g)]

 .

Now the key point is that for any value of g, the big term on the rhs is non-negative.
This follows as A is PSD, and hence wTAw ≥ 0 for any fixed vector w. For any fixed
g, consider the vector w with entry wi = ui · g −

√
π
2 sign(ui · g).

Thus π
2A ≥ B and we are done.


