Exercise 2 Advanced SDPs

1. Let X1,..., X, be some random variables on the same probability space. Consider the
n X n covariance matrix A with entries a;; = E[(X; — E[X;])(X; — E[X/])]. Show that any
covariance matrix is PSD.

Solution: Let us define ¥; = X; — E[X;], so that Y; has mean 0. Then a;; = E[Y;Y]]. For
any w € R™ we have
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and hence A is PSD.
2. Show that given any PSD matrix A, one can construct random variables X7i,..., X, (in
fact jointly Gaussian random variables) with covariance matrix A.
[Hint: Do Cholesky decomposition of A and set X; = (g, u;).]
Solution: Setting X; = (g, u;), we have

E[X:X;] = E[(g,wi){g, u;)] Zg wi(k) Y gk Yui (k)] = wi(kyu;(k) = u; -
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where the second last step follows as E[g(k)?] = 1 and E[g(k)g(k’)] = 0 for k # k', as the
entries of g are iid N(0, 1).

3. Given any graph G = (V, E), construct an explicit solution for the max-cut SDP such
that the objective is at least |E|/2.

Solution: Consider the all-orthogonal solution where vector i is assigned the vector
v; = €;, i.e. unit vector in the i-th direction. Then for any two vertices ¢ and j, we have
(1/4)||lvi — v;]|*> = 1/2, and thus the maxcut SDP objective is |E|/2.

4. Here we will show an improved bound of 2/7 for the maximizing the quadratic form 27 Ay
where A is a PSD matrix. Note that this is a generalization of the max-cut problem, where
A corresponds to the Laplacian of G.

We do this in the following steps
e First, show using Cauchy-Schwarz that for any PSD matrix A one has
.TTAy < (:UTAx)l/Q(yTAy)l/Q

and hence one can assume in the optimum solution that x = y.

Solution: As A is PSD, A = VTV for some matrix V. So, 2T Ay = zTVIVy =
(V)T (Vy). By Cauchy Schwarz (i.e. al'b < ||a||2||b]|2 for any two vectors a and b) it
follows that

(V)T (Vy) < [Va|2||[Vylz = @TVIV) 2T VIVY)2 = (a7 Az) 2 (y" Ay)Y/2.

e Second, show the following identity. If b and ¢ are two unit vectors, and g is a random
gaussian then
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Hint: To compute E[(b - G) - sign(c - G)], by rotation invariance assume that b =
(b1,02,0,...,0) and ¢ = (1,0, ....,0). This is E[(b1g1+b292)(sign(g1))] = E[b1g1sign(g1)]-
Show that this integral is (1/2/m)b;.

Solution: Let us expand

E ([b g— \/zsign(b glle-g— \/gsign(c : g)])

Bl(b-)-9) ~El(6-9), 3 signe:0)]~Elle ) 5 sgn(6-9)] -+ B sign(o-g)sign(e-)]

as

As we have seen before, the first term is simply b - ¢. Moreover the last term is
identical to the lhs of the identity we wish to show. So, it suffices to show that
second term E[(b- g)/Fsign(c- g)] is b- ¢ (similarly for the third term by symmetry).

By the hint above, this is the same as /ZE[b1gisign(g1)] which we need to show is
by (which is b- ¢). Now,
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Finally, use these two facts (and that A is PSD) to show that the random hyperplane
rounding gives at least a 2/7 approximation.

Solution: By part 1, we can consider maximizing 7 Az and consider the vector
relaxation Zij u;ai;ju;. Let B denote the optimum value of this SDP and let u;
denote some optimum solution.

Applying the hyperplane rounding gives an expected solution value of ) _, ; a;jsign((uq, g))-
sign((u;, gy). Call this value A.

Now by the identity in the second part (applying it to each pair u;, u;, multiplying

it by a;; and combining), we have
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Now the key point is that for any value of g, the big term on the rhs is non-negative.
This follows as A is PSD, and hence w” Aw > 0 for any fixed vector w. For any fixed
g, consider the vector w with entry w; = u; - g — \/gsign(ui - g).
Thus gA > B and we are done.



