Exercise 3

Advanced SDPs

1. (Variational Characterization of Eigenvalues) Let M be a symmetric real matrix with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$. Then

$$\lambda_{1} = \min_{x \in \mathbb{R}^{n} - \{\mathbf{0}\}} \frac{x^{T} M x}{x^{T} x}$$
$$\lambda_{k} = \max_{S: dim(S) = n - k + 1} \min_{x \in S - \{\mathbf{0}\}} \frac{x^{T} M x}{x^{T} x}$$
$$\lambda_{k} = \min_{S: dim(S) = k} \max_{x \in S - \{\mathbf{0}\}} \frac{x^{T} M x}{x^{T} x}$$

Hint: Use the spectral decomposition for symmetric matrices that $M = \sum_{i} \lambda_{i} u_{i} u_{i}^{T}$ where λ_{i} are real, and u_{i} are orthonormal.

- 2. Let G be a d-regular graph and $L_G = I A/d$ be the normalized Laplacian of G, Let $\lambda_1 \leq \ldots \leq \lambda_n$ denote the eigenvalues of L_G . Then show that
 - (a) $\lambda_1 = 0$ and $\lambda_n \leq 2$. The all 1 vector is an eigenvector for λ_1 .
 - (b) For any integer k, $\lambda_k = 0$ iff G has at least k components.
 - (c) $\lambda_n = 2$ iff G has a component that is bipartite.
- 3. If X_1, \ldots, X_n are random variables taking values in [0, 1]. Let $\mu_i = \mathbb{E}[X_i]$ and let $\mu = (\sum_i \mu_i)/n$. Then show that at least $\mu/2$ fraction of the random variables have mean at least $\mu/2$.
- 4. If d and d' are two ℓ_1 metrics on a point set X. Then d + d' is also an ℓ_1 metric.
- 5. We will show that any ℓ_2 metric can be embedded isometrically into ℓ_1 . In particular one can map any point $v \in \mathbb{R}^d$ to some $\pi(v)$ so that $||v w||_2 = |\pi(v), \pi(w)|_1$ for every pair of points v, w. Consider the random Gaussian projection $v \to \langle g, v \rangle$ and show why this gives the desired map.

Hint: Think of one coordinate for each Gaussian. Also, setting u = v - w, it suffices to relate $||u||_2$ and $E_g[|\langle u, g \rangle|]$.

6. Consider the 4 points a = (1, 1, 0, 0), b = (0, 1, 1, 0), c = (0, 0, 1, 1) and d = (1, 0, 0, 1) in the ℓ_1 metric. So, d(a, c) = d(b, d) = 2 and all other distances are 1. Show that they cannot be embedded isometrically into ℓ_2 .