1. (Variational Characterization of Eigenvalues) Let M be a symmetric real matrix with eigenvaues $\lambda_{1} \leq \ldots \leq \lambda_{n}$. Then

$$
\begin{aligned}
\lambda_{1} & =\min _{x \in \mathbb{R}^{n}-\{0\}} \frac{x^{T} M x}{x^{T} x} \\
\lambda_{k} & =\max _{S: \operatorname{dim}(S)=n-k+1} \min _{x \in S-\{0\}} \frac{x^{T} M x}{x^{T} x} \\
\lambda_{k} & =\min _{S: \operatorname{dim}(S)=k} \max _{x \in S-\{\mathbf{0}\}} \frac{x^{T} M x}{x^{T} x}
\end{aligned}
$$

Hint: Use the spectral decomposition for symmetric matrices that $M=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}$ where λ_{i} are real, and u_{i} are orthonormal.
2. Let G be a d-regular graph and $L_{G}=I-A / d$ be the normalized Laplacian of G, Let $\lambda_{1} \leq \ldots \leq \lambda_{n}$ denote the eigenvalues of L_{G}. Then show that
(a) $\lambda_{1}=0$ and $\lambda_{n} \leq 2$. The all 1 vector is an eigenvector for λ_{1}.
(b) For any integer $k, \lambda_{k}=0$ iff G has at least k components.
(c) $\lambda_{n}=2$ iff G has a component that is bipartite.
3. If X_{1}, \ldots, X_{n} are random variables taking values in $[0,1]$. Let $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ and let $\mu=$ $\left(\sum_{i} \mu_{i}\right) / n$. Then show that at least $\mu / 2$ fraction of the random variables have mean at least $\mu / 2$.
4. If d and d^{\prime} are two ℓ_{1} metrics on a point set X. Then $d+d^{\prime}$ is also an ℓ_{1} metric.
5. We will show that any ℓ_{2} metric can be embedded isometrically into ℓ_{1}. In particular one can map any point $v \in R^{d}$ to some $\pi(v)$ so that $\|v-w\|_{2}=|\pi(v), \pi(w)|_{1}$ for every pair of points v, w. Consider the random Gaussian projection $v \rightarrow\langle g, v\rangle$ and show why this gives the desired map.

Hint: Think of one coordinate for each Gaussian. Also, setting $u=v-w$, it suffices to relate $\|u\|_{2}$ and $E_{g}[|\langle u, g\rangle|]$.
6. Consider the 4 points $a=(1,1,0,0), b=(0,1,1,0), c=(0,0,1,1)$ and $d=(1,0,0,1)$ in the ℓ_{1} metric. So, $d(a, c)=d(b, d)=2$ and all other distances are 1 . Show that they cannot be embedded isometrically into ℓ_{2}.

