Exercise 5

1. Let G be a non-empty n vertex graph where vertex $i \in [n]$ has degree $d_i \ge 1$ (no isolated vertices). Define the normalized Laplacian of G by the quadratic form

$$x^T \mathcal{L}_G x = \sum_{(i,j)\in E} \left(\frac{x_i}{\sqrt{d_i}} - \frac{x_j}{\sqrt{d_j}}\right)^2 .$$

(a) Show that the largest eigenvalue λ_n of \mathcal{L}_G can be expressed as

$$\lambda_n = \max_{\|x\|=1} \frac{\sum_{(i,j)\in E} (x_i - x_j)^2}{\sum_{i=1}^n d_i x_i^2}$$

- (b) Prove that $\lambda_n \leq 2$.
- (c) Show that $\lambda_n = 2$ if and only if G is bipartite.
- 2. Let $T \in \mathbb{R}^{n \times m}$. Assume that we can write T = AB, where A has rows of ℓ_2 norm at most R and B has columns of ℓ_2 norm at most R. Prove that T can be expressed as

$$T = \sum_{i=1}^{nm} \alpha_i x_i y_i^T,$$

where $x_i \in \{-1, 1\}^n$, $y_i \in \{-1, 1\}^m$, $\alpha_i \ge 0$, $i \in [nm]$, such that

$$\sum_{i=1}^k \alpha_i \le K_G R^2$$

where K_G is Grothendieck's constant.

3. Show that any ℓ_2^2 metric in d dimensions can contain at most 2^d distinct points.

[Hint: First try to show this for d = 2. In general, for a point p, consider the cone C_p containing the other points and p as the origin.]

4. Let G = (V, E) and H = (W, F) be graphs. Then $G \times H$ is the graph with vertex set $V \times W$ and edge set ((v1, w), (v2, w)) where $(v_1, v_2) \in E$ and ((v, w1), (v, w2)) where $(w1, w2) \in F$.

If $\lambda_1, \ldots, \lambda_n$ and μ_1, \ldots, μ_m be the eigenvalues of the Laplacians of G and H with eigenvectors x_1, \ldots, x_n and y_1, \ldots, y_m respectively. Then, show that for each $1 \leq i \leq n$ and $1 \leq j \leq m, G \times H$ has an eigenvector z of eigenvalue $\lambda_i + \lambda_j$ such that

$$z(v,w) = x_i(v)y_j(v)$$

5. What is the spectrum of the Laplacian of the graph on two vertices consisting of a single edge. Use the above exercise to determine the spectrum of the *d*-dimensional hypercube. Show that the normalized Laplacian has $\lambda_2 = 2/d$.

Advanced SDPs