1. Let G be a non-empty n vertex graph where vertex $i \in[n]$ has degree $d_{i} \geq 1$ (no isolated vertices). Define the normalized Laplacian of G by the quadratic form

$$
x^{T} \mathcal{L}_{G} x=\sum_{(i, j) \in E}\left(\frac{x_{i}}{\sqrt{d_{i}}}-\frac{x_{j}}{\sqrt{d_{j}}}\right)^{2}
$$

(a) Show that the largest eigenvalue λ_{n} of \mathcal{L}_{G} can be expressed as

$$
\lambda_{n}=\max _{\|x\|=1} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i=1}^{n} d_{i} x_{i}^{2}}
$$

(b) Prove that $\lambda_{n} \leq 2$.
(c) Show that $\lambda_{n}=2$ if and only if G is bipartite.
2. Let $T \in \mathbb{R}^{n \times m}$. Assume that we can write $T=A B$, where A has rows of ℓ_{2} norm at most R and B has columns of ℓ_{2} norm at most R. Prove that T can be expressed as

$$
T=\sum_{i=1}^{n m} \alpha_{i} x_{i} y_{i}^{T}
$$

where $x_{i} \in\{-1,1\}^{n}, y_{i} \in\{-1,1\}^{m}, \alpha_{i} \geq 0, i \in[n m]$, such that

$$
\sum_{i=1}^{k} \alpha_{i} \leq K_{G} R^{2}
$$

where K_{G} is Grothendieck's constant.
3. Show that any ℓ_{2}^{2} metric in d dimensions can contain at most 2^{d} distinct points.
[Hint: First try to show this for $d=2$. In general, for a point p, consider the cone C_{p} containing the other points and p as the origin.]
4. Let $G=(V, E)$ and $H=(W, F)$ be graphs. Then $G \times H$ is the graph with vertex set $V \times W$ and edge set $((v 1, w),(v 2, w))$ where $\left(v_{1}, v_{2}\right) \in E$ and $((v, w 1),(v, w 2))$ where $(w 1, w 2) \in F$.

If $\lambda_{1}, \ldots, \lambda_{n}$ and μ_{1}, \ldots, μ_{m} be the eigenvalues of the Laplacians of G and H with eigenvectors x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} respectively. Then, show that for each $1 \leq i \leq n$ and $1 \leq j \leq m, G \times H$ has an eigenvector z of eigenvalue $\lambda_{i}+\lambda_{j}$ such that

$$
z(v, w)=x_{i}(v) y_{j}(v)
$$

5. What is the spectrum of the Laplacian of the graph on two vertices consisting of a single edge. Use the above exercise to determine the spectrum of the d-dimensional hypercube. Show that the normalized Laplacian has $\lambda_{2}=2 / d$.
