Notation: $\mathbb{R}_{d}[\mathbf{x}]$ corresponds to all polynomials in n variables of degree at most d. We denote the set of SOS polynomials of degree at most d by $\Sigma_{n, d}^{2}=\left\{\sum_{i=1}^{k} q_{i}^{2}: q_{i} \in \mathbb{R}[\mathbf{x}], \operatorname{deg}\left(q_{i}\right) \leq d / 2\right\}$, which we also denote Σ_{d}^{2} when the context is clear. The notation $p \succeq_{\Sigma_{d}^{2}} q$ is equivalent to $p-q \in \Sigma_{d}^{2}$.

Exercises:

1. Let $p(x)=\sum_{|\alpha|,|\beta| \leq d} M_{\alpha, \beta} x^{\alpha+\beta}$ for $M \succeq 0$. Show that $p=0$ iff $\operatorname{trace}(M)=0$ (Hint: Use the Cholesky decomposition of M to help point out a non-zero term in p).
2. (Composition rules) Take $p_{1}, p_{2}, q_{1}, q_{2} \in \mathbb{R}[\mathbf{x}]_{d}$. Assume that $p_{1}^{2} \succeq_{\Sigma_{2 d}^{2}} q_{1}^{2}$ and $p_{2}^{2} \succeq_{\Sigma_{2 d}^{2}} q_{2}^{2}$. Show that then $p_{1}^{2} p_{2}^{2} \succeq_{\Sigma_{4 d}^{2}} q_{1}^{2} q_{2}^{2}$.
3. (a) (Motzkin Polynomial) Show that $p(x, y)=x^{4} y^{2}+y^{4} x^{2}+1-3 x^{2} y^{2}$ is non-negative over $\mathbb{R}[x, y]$ (Hint: use the AM-GM inequality). Prove that p is NOT a sum of squares (Hint: Assume that $p(x, y)=\sum_{i=1}^{k} q_{i}(x, y)^{2}$. Prove that none of the q_{i} 's can have monomials of the form x^{i} or $y^{i}, i \in \mathbb{N}$. Conclude that the coefficient of $x^{2} y^{2}$ of the purposed decomposition cannot be -3 .)
(b) Let $L: \mathbb{R}[x]_{4} \rightarrow \mathbb{R}$ such that $L[1]=1, L[x]=1, L\left[x^{2}\right]=1, L\left[x^{3}\right]=1, L\left[x^{4}\right]=2$. Show that L is a valid pseudo-expectation operator over \mathbb{R}, but that L does not coincide with the moments of any distribution over \mathbb{R}.
4. (a) Let $p \in \mathbb{R}[x]$ be a non-negative polynomial over \mathbb{R}. Show that p is a sum of squares (Hint: factor p over the complex numbers and combine terms appropriately).
(b) Show that p above is a sum of exactly two squares. (Hint: use the identity $\left(a^{2}+\right.$ $\left.\left.b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b c)^{2}\right)$.
5. Let $p \in \mathbb{R}[x]$ be a convex univariate polynomial over $\mathbb{R}, \operatorname{deg}(p) \leq d$, and let $L: \mathbb{R}[x]_{d} \rightarrow \mathbb{R}$ be a pseudo-expectation operator.
(a) Show that for any $t \in \mathbb{R}, p(x)-p(t)-p^{\prime}(t)(x-t) \in \Sigma_{d}^{2}$ (Hint: use the previous exercise and convexity of p).
(b) (Jensen's inequality) Use the above to show that $L[p(x)] \geq p(L[x])$. Conclude that $L\left[x^{2 p}\right] \geq L[x]^{2 p}$ for $p \leq d / 2$.
(c) Show that the above extends to showing $L[p(q(x))] \geq p(L[q(x)])$ as long as $L[p(q(x))]$ is defined for L.
