Exercise 6

Advanced SDPs

Notation: $\mathbb{R}_d[\mathbf{x}]$ corresponds to all polynomials in n variables of degree at most d. We denote the set of SOS polynomials of degree at most d by $\Sigma_{n,d}^2 = \left\{ \sum_{i=1}^k q_i^2 : q_i \in \mathbb{R}[\mathbf{x}], \deg(q_i) \leq d/2 \right\}$, which we also denote Σ_d^2 when the context is clear. The notation $p \succeq_{\Sigma_d^2} q$ is equivalent to $p - q \in \Sigma_d^2$.

Exercises:

- 1. Let $p(x) = \sum_{|\alpha|, |\beta| \le d} M_{\alpha, \beta} x^{\alpha+\beta}$ for $M \succeq 0$. Show that p = 0 iff trace(M) = 0 (Hint: Use the Cholesky decomposition of M to help point out a non-zero term in p).
- 2. (Composition rules) Take $p_1, p_2, q_1, q_2 \in \mathbb{R}[\mathbf{x}]_d$. Assume that $p_1^2 \succeq_{\Sigma_{2d}^2} q_1^2$ and $p_2^2 \succeq_{\Sigma_{2d}^2} q_2^2$. Show that then $p_1^2 p_2^2 \succeq_{\Sigma_{2d}^2} q_1^2 q_2^2$.
- 3. (a) (Motzkin Polynomial) Show that p(x, y) = x⁴y² + y⁴x² + 1 3x²y² is non-negative over ℝ[x, y] (Hint: use the AM-GM inequality). Prove that p is NOT a sum of squares (Hint: Assume that p(x, y) = ∑_{i=1}^k q_i(x, y)². Prove that none of the q_i's can have monomials of the form xⁱ or yⁱ, i ∈ N. Conclude that the coefficient of x²y² of the purposed decomposition cannot be -3.)
 - (b) Let $L : \mathbb{R}[x]_4 \to \mathbb{R}$ such that L[1] = 1, L[x] = 1, $L[x^2] = 1$, $L[x^3] = 1$, $L[x^4] = 2$. Show that L is a valid pseudo-expectation operator over \mathbb{R} , but that L does not coincide with the moments of any distribution over \mathbb{R} .
- 4. (a) Let $p \in \mathbb{R}[x]$ be a non-negative polynomial over \mathbb{R} . Show that p is a sum of squares (Hint: factor p over the complex numbers and combine terms appropriately).
 - (b) Show that p above is a sum of exactly two squares. (Hint: use the identity $(a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad bc)^2$).
- 5. Let $p \in \mathbb{R}[x]$ be a convex univariate polynomial over \mathbb{R} , $\deg(p) \leq d$, and let $L : \mathbb{R}[x]_d \to \mathbb{R}$ be a pseudo-expectation operator.
 - (a) Show that for any $t \in \mathbb{R}$, $p(x) p(t) p'(t)(x t) \in \Sigma_d^2$ (Hint: use the previous exercise and convexity of p).
 - (b) (Jensen's inequality) Use the above to show that $L[p(x)] \ge p(L[x])$. Conclude that $L[x^{2p}] \ge L[x]^{2p}$ for $p \le d/2$.
 - (c) Show that the above extends to showing $L[p(q(x))] \ge p(L[q(x)])$ as long as L[p(q(x))] is defined for L.