Notation: Let $\mathbb{R}[\mathbf{x}]_{H, d}=\mathbb{R}[\mathbf{x}] / I\left(x_{i}^{2}-x_{i}: i \in[n]\right)$, i.e. the multilinear polynomials endowed with multiplication rule $p q=\sum_{\alpha, \beta \subseteq[n]} p_{\alpha} q_{\beta} x^{\alpha \cup \beta}$. For $p \in \mathbb{R}_{H}[\mathbf{x}]_{d}$ let $\operatorname{deg}(p)$ denote the degree of its unique multilinear representative, i.e. $\operatorname{deg}\left(\sum_{\alpha \subseteq[n]} p_{\alpha} x^{\alpha}\right)=\max \left\{|\alpha|: \alpha \subseteq[n], p_{\alpha} \neq 0\right\}$, and let $\mathbb{R}[\mathbf{x}]_{H, d}$ denote the polynomials in this ring of degree at most d.

Exercises:

1. MAXCUT:
(a) Show that the MAXCUT SDP over an n-vertex graph $G=([n], E)$ can be expressed as

$$
\begin{array}{ll}
\max & \operatorname{trace}\left(L_{G} X\right) \\
& X_{i i}=1 \quad \forall i \in[n] \tag{1}\\
& X \succeq 0
\end{array}
$$

where $L_{G}=\sum_{\{i, j\} \in E}\left(e_{i}-e_{j}\right)^{\top}\left(e_{i}-e_{j}\right)$ is the Laplacian of G.
Let $C=\left\{x_{1}^{2}-1, \ldots, x_{n}^{2}-1\right\} \subset \mathbb{R}[\mathbf{x}]_{2}$ and $m_{G}(x)=\sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2} \in \mathbb{R}[\mathbf{x}]_{2}$ denote the MAXCUT polynomial. Show that the above program is equivalent to

$$
\max \left\{L\left[m_{G}(x)\right]: L \in \operatorname{Las}_{2}(\emptyset, C)\right\}
$$

i.e. construct an explicit mapping between solutions.
(b) Using the above formulation for the MAXCUT SDP show that the dual SDP is

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} \lambda_{i} \tag{2}\\
& L_{G} \preceq \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
\end{array}
$$

where $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the diagonal matrix with λ on the diagonal.
Next, show that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a solution to the dual SDP if and only if show that

$$
m_{G}(x)=\sum_{i=1}^{n} \lambda_{i}-v(x)+w(x),
$$

where $v \in \Sigma_{n, 2}^{2}$ and $w \in I_{2}(C)$. Conclude the equivalence of the dual program with the degree 2 sum of squares relaxation for MAXCUT.

(Hint: What does the feasibility of λ imply about the polynomial $\sum_{i=1}^{n} \lambda_{i} x_{i}^{2}-$ $\sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2}$?)

2. Stieltjes moment problem: Let $L \in \operatorname{Las}_{2 d}(\{x\}, \emptyset)$ be a pseudo-expectation operator on univariate polynomials of degree at most $2 d$. Assume that $L\left[p(x)^{2}\right]>0$ for all $p \in \mathbb{R}[x]_{d}$, $p \neq 0$. Show that there exists a discrete measure μ supported on exactly d points on the non-negative axis such that $\mathbb{E}_{\mu}[q(x)]=L[q(x)]$ for all $q \in \mathbb{R}[x]_{2 d}$.
(Hint: use the proof for the Hamburger moment problem. What does the extra condition $L\left[x q(x)^{2}\right] \geq 0, \forall q \in \mathbb{R}_{d}[x]$, buy you?)
3. Inclusion-Exclusion: Prove the formal identity

$$
1=\sum_{I \subseteq[n]} x^{I}\left(1_{n}-x\right)^{[n] \backslash I}
$$

by expanding out the sum and showing that the coefficients on all the non-trivial monomials cancel.
4. Degree cancelation: Find an explicit polynomial $p \in \mathbb{R}[\mathbf{x}]_{H}$, where $\operatorname{deg}(p)=n$ but $\operatorname{deg}\left(p^{2}\right)=0$.
(Hint: what are the possible "square roots" of the constant 1 function?)
5. Partial Integrality of Lasserre on the Hypercube: Define

$$
\begin{array}{ll}
\operatorname{Las}_{2 d}^{H}=\{L: & L: \mathbb{R}[\mathbf{x}]_{H, 2 d} \rightarrow \text { linear } \\
& \left.L\left[q^{2}(x)\right] \geq 0, \quad \forall q \in \mathbb{R}[\mathbf{x}]_{H, d}\right\} \tag{3}
\end{array}
$$

Let $L \in \operatorname{Las}_{2 d}^{H}$ and let $I_{L}=\left\{i \in[n]: L\left[x_{i}\right] \in\{0,1\}\right\}, R_{L}=[n] \backslash I_{L}$ and $P_{L}:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{n}$ satisfy

$$
P_{L}(x)_{i}= \begin{cases}L\left[x_{i}\right] & : i \in I_{L} \\ x_{i} & : \mathrm{o} / \mathrm{w}\end{cases}
$$

(a) For any $p \in \mathbb{R}[x]_{H}$ show that

$$
p \circ P_{L}(x)=\sum_{\alpha \subseteq[n]} p_{\alpha} L[x]^{\alpha \cap I_{L}} x^{\alpha \backslash I_{L}} \in \mathbb{R}\left[x_{i}: i \in R_{L}\right]_{H}
$$

i.e. the partial evaluation of p with respect to the integral components of the vector $L[x]=\left(L\left[x_{1}\right], \ldots, L\left[x_{n}\right]\right)$.
(b) Show that for $p \in \mathbb{R}[x]_{H, 2 d}$ that

$$
L[p(x)]=L\left[p \circ P_{L}(x)\right]
$$

(Hint: Show that for any monomial x^{α}, where $i \in I_{L} \cap \alpha$, that $L\left[x^{\alpha}\right]=L\left[x_{i}\right] L\left[x^{\alpha \backslash\{i\}}\right]$, and continue by induction.)
(c) For $p \in \mathbb{R}[\mathbf{x}]_{H}$ define $\operatorname{deg}_{R_{L}}(p)=\max \left\{\left|R_{L} \cap \alpha\right|: \alpha \subseteq[n], p_{\alpha} \neq 0\right\}$ and $\mathbb{R}[\mathbf{x}]_{H, 2 d, R_{L}}=$ $\left\{p \in \mathbb{R}[\mathbf{x}]_{H}: \operatorname{deg}_{R_{L}}(p) \leq 2 d\right\}$. Define $\hat{L}: \mathbb{R}[\mathbf{x}]_{H, 2 d, R_{L}} \rightarrow \mathbb{R}$ by the relation

$$
\hat{L}[p(x)]=L\left[p \circ P_{L}(x)\right]
$$

Show that

$$
\hat{L}\left[q^{2}(x)\right] \geq 0 \quad \forall q \in \mathbb{R}[\mathbf{x}]_{H, 2 d, R_{L}}
$$

(Hint: Show that $q^{2} \circ P_{L}=\left(q \circ P_{L}\right)^{2}$. What is the degree of $q \circ P_{L}$?)

