
Exercise 7 Advanced SDPs

Notation: Given a [0, 1] polytope P = {x ∈ [0, 1]n : Ax ≤ b, Cx = d}, A ∈ Rk×n, C ∈ Rl×n,
for notational convenience we shall define

LasHd (P ) := LasHd ({bi − ai · x : ∀i ∈ [k]} , {dj − cj · x,∀j ∈ [l]}) .

Exercises:

1. {0, 1} vs {−1, 1}Hypercube: Depending on the problem it is sometimes more convenient
to work on the {−1, 1} hypercube instead of the {0, 1} hypercube. Here you will explore
the basic properties of the {−1, 1} hypercube, and show that translating problems between
the {0, 1} and {−1, 1} hypercube can be done completely automatically. Here, we will
make crucial use of the invertible linear map φ : {−1, 1}n → {0, 1}n defined by φ(x)i =
(xi + 1)/2, i ∈ [n].

Recall that the defining equalities for the {−1, 1} hypercube are C =
{
x2i − 1 : i ∈ [n]

}
,

i.e. x2i is equivalent to 1, and for the {0, 1} hypercube they are H =
{
x2i − xi : i ∈ [n]

}
.

Correspondingly, we define R[x]C = R[x]/I(C), and R[x]C,d to be the polynomials in this
set having degree at most d (with respect to the multilinear representation).

(a) Show that every polynomial p ∈ R[x] is equivalent to a multilinear polynomial mod-
ulo I(C), i.e. every element of R[x]C can be uniquely associated with a multilinear
polynomial. Given two mutlinear polynomials p, q, give an explicit formula for the
multilinear representative of pq modulo I(C) (multiplication rule). (Hint: set union
gets transformed to what on {−1, 1} hypercube?)

(b) Show that p ∈ I(H) if and only if p(x) = 0 ∀x ∈ {0, 1}n. (Hint: what does the
multilinear representation of p look like?). Use the map φ to deduce the same for C,
namely that p ∈ I(C) iff p(x) = 0 ∀x ∈ {−1, 1}n. Finally, conclude that the map
τ : R[x]H → R[x]C defined by τ(p) = p ◦ φ is an isomorphism between the quotient
rings which preserves degree, i.e. deg(τ(p)) = deg(p).

(c) For F0, G0 ⊆ R[x]C define

LasCd (F0, G0) = {L : L : R[x]C,d → R linear,

L[1] = 1,

L[fq2] ≥ 0, ∀f ∈ F0 ∪ {1} ,deg(f) + 2 deg(q) ≤ d,
L[gq] = 0, ∀g ∈ G0, deg(g) + deg(q) ≤ d} .

Using the above definition, show for that for p, F,G ⊆ R[x]H the problems

max
{
L[p] : L ∈ LasHd (F,G)

}
and

max
{
L[τ(p)] : L ∈ LasCd (τ(F ), τ(G))

}
are equivalent, where τ is defined as above. More precisely, given L ∈ LasHd (F,G)
show that L′ : R[x]H,d → R defined by L′[q] = L[τ−1(q)] := L[q ◦ φ−1] satisfies
L′ ∈ LasCd (τ(F ), τ(G)) and that L′[τ(p)] = L[p].



(d) MAXCUT: Let G be a graph on n vertices. Take L ∈ LasH2 := LasH2 (∅, ∅). Show
that the matrix Xij = L[(2xi − 1)(2xj − 1)] is a feasible solution to the MAXCUT
SDP and that

tr(XLG)/4 = L[
∑
{i,j}∈E

(xi − xj)2] ,

where LG is the Laplacian of G.

2. Improved Decomposition Property for Stable Set: For a graph G on n vertices,
define the stable set polytope as stabG = {x ∈ [0, 1]n : xi + xj ≤ 1, ∀ {i, j} ∈ E(G)}.
Let α(G) denote the maximum size of a stable set in G. Show that any L ∈ LasH2d(stabG),
d ≥ α(G) + 1, is integral, i.e. that there exists a distribution over independent sets of
G that is consistent with L. (Hint: what happens after you condition on α(G) variables
being set to 1? Note that the degree is one lower than what you need for the generic
decomposition property.)

3. Scheduling: Assume we have 2 machines on which we want to schedule n jobs, where
each job takes exactly one unit of processing time to complete on either machine (the
machines are identical). The main constraint is that the jobs have precedence constraints,
i.e. certain jobs must be finished before others can start. We can represent this by a
partial order ≺, where we say i ≺ j, if job i must terminate before job j can start (thus if
i starts at time period 1, job j can only start during time period 2). Our main goal is to
minimize the time T it takes to finish all jobs. We may phrase the problem as to whether
all jobs can be scheduled within T time periods using the following time indexed integer
program:

∑T
t=1 xjt = 1 ∀j ∈ [n] (must schedule each job)∑n
j=1 xjt ≤ 2 ∀t ∈ [T ] (at most 2 jobs per time period)

xit′ ≤ 1− xjt ∀i ≺ j, t′ ≥ t (must schedule i before j)
xjt ∈ {0, 1} ∀j ∈ [n], t ∈ [T ]

(1)

Our goal will be to analyze the basic properties of Lasserre on this problem. That is, we
will analyze LasHd (P ), where P corresponds to linear programming relaxation of (1).

(a) Take L ∈ Las3(P ). For each job j ∈ [n], let Cj = max {t ∈ [T ] : L[xjt] > 0} denote
the fractional completion time of job j. Show that if i ≺ j, then Ci + 1 ≤ Cj . (Hint:
condition on xi,Ci)

(b) Show that the inequalities

t∑
k=1

xik ≥
t+1∑
k=1

xjk, ∀i ≺ j, t ∈ [T − 1] . (2)

are at least as strong as the inequalities xit′ ≤ 1−xjt for i ≺ j, t′ ≥ t. I.e. show that
the old inequalities can be obtained from the strengthened ones via linear implications
(here you are allowed to use that 0 ≤ xjt ≤ 1 ∀j, t and

∑T
t=1 xjt = 1 ∀j).

(c) Take L ∈ Las6(P ). Show that L satisfies (2), i.e. show that

t∑
k=1

L[xik] ≥
t+1∑
k=1

L[xjk], ∀i ≺ j, t ∈ [T − 1] .

(Hint: use the improved decomposition property on the subset of variables {xlt : l ∈ {i, j} , t ∈ [T ]}.)


