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6.1 Notation

Let N = {0, 1, . . . } denote the set of non-negative integers. For α ∈ Nn, define the
monomial xα =

∏n
i=1 x

αi
i . For a polynomial p ∈ R[x1, . . . , xn] with real coefficients on

n variables – which we abbreviate by R[x] – we express it as

p =
∑
α∈Nn

pαx
α.

We define the support of p by supp(p) = {α : α ∈ Nn, pα 6= 0}. For α ∈ Nn, define
|α| =

∑n
i=1 αi. We define the degree of p by max {|α| : α ∈ supp(p)}.

Define Nn
d = {α ∈ Nn : |α| ≤ d} and Tnd = {xα : α ∈ Nn

d}, the set of monomials of
degree at most d, and R[x]d to be all polynomials of degree at most d. More generally,
for any S ⊆ Nn, define TnS = {xα : α ∈ S}, the monomials indexed by S, and RS[x] ={∑

α∈S cαx
α : c ∈ RS

}
, all polynomials with support in S.

Given any probability distribution µ over Rn and p ∈ Rn[x], we write Ex∼µ[p(x)] to
denote the expected value of p under µ. We will often abbreviate this Eµ[p(x)] when
the context is clear.

For any set S ⊆ V , where V is a real vector space, we define the linear span of V as

span(V ) =
{∑k

i=1 civi : k ∈ N, ci ∈ R, vi ∈ V, i ∈ [k]
}

, and the cone generated by V

as cone(V ) =
{∑k

i=1 λivi : k ∈ N, λi ≥ 0, vi ∈ V, i ∈ [k]
}

.

6.2 The Lasserre Relaxation

Imagine we wish to solve the following general polynomial optimization problem

sup p(x)
subject to fi(x) ≥ 0,∀i ∈ [k]

gi(x) = 0,∀i ∈ [l]
(6.1)
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where f1, . . . , fk, g1, . . . , gl ∈ R[x]. While this may seem a daunting task, using the
existential theory of the reals, it is indeed possible to solve this type of problem in
time exponential in the number of variables (see for example [Ren92]).

In this course however, we will be interested in tractable approximations for such prob-
lems. For this purpose, Lasserre and Parillo have developed a hierarchy of tractable
semidefinite relaxations to polynomial optimization problems which are parameter-
ized by degree. These relaxations give a powerful automated way to reason about
polynomial optimization problems, and in interesting cases (which will see throughout
the course) they will allow us to develop good approximation algorithms.

During the course, we will mostly be concerned with polynomial optimization prob-
lems where the feasible region will either be the hypercube (with possibly additional
constraints) or the hypersphere. As the general theory behind the Lasserre [Las01]
& Parrilo [Par03] relaxations is both illuminating and helpful, we will explain the re-
laxations in their full generality first and only later specialize them to the hypercube
and sphere.

To begin let F = {f1, . . . , fk} and G = {g1, . . . , gl} and let

KF,G = {x ∈ Rn : f(x) ≥ 0, f ∈ F, g(x) = 0, ∀g ∈ G} , (6.2)

denote the semi-algebraic set corresponding to the feasible region. Note that the most
important set in combinatorial optimization, the hypercube {0, 1}n is an algebraic
variety, i.e. the zero set of a system of polynomials. In particular

{0, 1}n =
{
x ∈ Rn : x2i − xi = 0,∀i ∈ [n]

}
.

Furthermore, the sphere Sn−1 = {x ∈ Rn :
∑n

i=1 x
2
i − 1 = 0} is also clearly an alge-

braic variety.

To understand how to relax Problem (6.1), we start with the first simple observation

sup {p(x) : x ∈ KF,G} = sup {Eµ[p(x)] : µ probability distribution supported on KF,G} ,

namely, the value of the program stays the same when we optimize over probability
distributions over our feasible region (since we can always consider distributions sup-
ported on a single point of our set). Note that any optimizing distribution must be
supported only optimal solutions for the objective p(x).

At this point, one should immediately wonder how we can even hope to specify such
distributions, which certainly seems like a hopeless task in general. To make this
perspective useful, we will perform the first “lossy” transformation of the problem.
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Instead of trying to directly completely specify distributions, we will only try to keep
track of their “aggregate statistics”, namely, their moments. More precisely, we
will only allow ourselves to inspect a distribution µ via measurements of the form
Eµ[q(x)], for a limited set of polynomials q.

6.2.1 Pseudo Expectation Operators

One highly successful approach here has been to restrict attention to only low degree
moments of µ. That is, we will only try keep track of Eµ[p(x)] for all p ∈ R[x]d. Note
that by linearity of expectation

Eµ[p(x)] =
∑
|α|≤d

pαEµ[xα] ,

thus to be able to evaluate any degree d polynomial, we need only keep track of the
moments Eµ[xα] for |α| ≤ d. In particular, since there are at most

(
n+d
d

)
= nO(d)

monomials of degree at most d on n variables, for fixed degree d, the amount of space
we need to store this information is polynomial in n.

Clearly, for this to make sense with respect to our problem 6.1, we will need that the
degree d of the polynomials we consider to be at least as large as maximum degree of
the polynomials p, f1, . . . , fk, g1, . . . , gl defining the semi-algebraic optimization prob-
lem.

Now let L : R[x]d → R be a linear map that sends polynomials of degree d to real
numbers. Note that the expectation operator q(x) → Eµ[q(x)] is such a linear map.
The main idea for relaxing (6.1) will be to try and maximize L(p(x)) subject to L
“looking like” the expectation operator of a real distribution over KF,G. We shall
formally define below what we mean by an operator L “looking like” an expectation
operator, where we shall dub these objects “pseudo-expectation” operators. We are
now lead to the following fundamental question:

Question 1. Given a linear map L : R[x]d → R, can one find a distribution µ
supported on KF,G such that L[p(x)] = Eµ[p(x)], ∀p ∈ R[x]d?

This question is an example of a moment problem and is unfortunately extremely
difficult to resolve in general (i.e. at least NP-Hard). We note that even in the case
that KF,G = R the real line and degree d polynomials, the answer (as we will see), is
quite non-trivial.
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While we cannot hope to certify that L as above is consistent with the expectation
operator of a true distribution over KF,G, we can go along way towards verifying that
L satisfies many of the properties of such an operator.

Somewhat surprisingly, one of the most powerful tests for distinguishing a real ex-
pectation operator from a “fake one” is derived from the most basic inequality on
real numbers, namely, for any real number a we have that a2 ≥ 0. Applying this to
expectation operators and polynomials, for any probability measure µ and any poly-
nomial p ∈ R[x], we have that Eµ[p(x)2] ≥ 0. Thus, for an operator L : R[x]d → R to
be consistent with probability measure, we must have that L[p(x)2] ≥ 0 whenever L
is defined on p(x)2, namely when deg(p) ≤ d/2.

Since we interested in achievable moments of distributions supported on KF,G, we
should also impose the “obvious” inequalities implied by our polynomial system. We
thus finally arrive at what is known as the Lasserre relaxation of KF,G:

Definition 1 (Level d Lasserre relaxation). For F = {f1, . . . , fl} , G = {g1, . . . , gk} ⊆
R[x], yielding the system

KF,G = {x ∈ Rn : fi(x) ≥ 0,∀i ∈ [l], gj(x) = 0,∀j ∈ [k]}

we define the degree d ∈ N Lasserre relaxation over (F,G) by

Lasd(F,G) =
{
L : R[x]d → R linear :

L[1] = 1,

L[q(x)2] ≥ 0 ∀q ∈ R[x]d/2,

L[f(x)q(x)2] ≥ 0 ∀q ∈ R[x](d−deg(f))/2, f ∈ F,
L[g(x)q(x)] = 0 ∀q ∈ R[x]d−deg(g), g ∈ G

}
.

(6.3)

A solution L ∈ Lasd(F,G) is called a degree d pseudo-expectation operator over the
system (F,G) (we shall omit the reference to (F,G) when the context is clear).

For the optimization problem sup {p(x) : x ∈ KF,G}, the corresponding degree d
Lasserre relaxation is

sup {L[p(x)] : L ∈ Lasd(F,G)} . (6.4)

All the above desired inequalities for L in the system (6.3) are basic inequalities that
clearly hold for the expectation operator of any true distribution over KF,G. We
note that in the relaxation, we restrict the degree of the q “test polynomials” to
guarantee that the resulting check can be evaluated by L. That is, we can only test
the inequality L[fi(x)q2(x)] ≥ 0 if deg(fiq

2) ≤ d, and similarly L[gj(x)q(x)] = 0 if
deg(gjq) ≤ d, since otherwise the expressions are not defined for L.
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We remark that we not yet in fact completely exhausted the list of “obvious” in-
equalities for KF,G. In particular, for any subset I ⊆ [l], it should also hold that
L[
∏

i∈I fi(x)q(x)2] ≥ 0, namely we can include inequalities depending on products of
the non-negativity constraints. However, it turns out that for most “well-conditioned”
systems such products are unnecessary (which will hold for the hypercube and sphere),
if we are willing to let the degree d tend to infinity (as we will see in the next sub-
section), and hence we will focus on the “simple” Lasserre relaxation.

An issue we have not yet discussed, is that even if we are given an optimal L∗ maximiz-
ing L[p(x)] in the program (6.4), and we are furthermore guaranteed that L∗ coincides
with the moments of a true distribution, it can still be difficult to recover an actual op-
timal (or even near optimal) solution. If the distribution underlying L∗ was supported
on just a single point, then rounding would be easy, namely x∗ = (L∗[x1], . . . , L

∗[xn])
would be an optimal solution. However, in general the underlying distribution can
be a mixture over many optimal solutions, which can easily foil this strategy. As a
simple example, an optimal distribution with respect to maximizing x2 over the inter-
val [−1, 1] is to take µ uniform {−1, 1}, but this satisfies Eµ[x] = 0, and hence naive
“expectation” rounding doesn’t work. Recovering good solutions from the Lasserre
relaxation, i.e. Lasserre rounding strategies, will be a major theme of the rest of the
course.

6.2.2 The Sum of Squares Dual

In this section, we will relate the Lasserre relaxation to fundamental objects in real
algebraic geometry as well as conic optimization. Once the basic definitions have
been established, we will show how to write the sums of squares dual for the Lasserre
relaxation and give a simple example on the hypercube.

We start with important cones and ideals that will give us a new language with
respect to which we can express the Lasserre relaxation.

Definition 2 (Sum of Squares Cone). Define Σ2
n,d = cone(q2 : q ∈ R[x], deg(q) ≤ d/2)

and Σ2
n := Σ2

n,∞, to be the cone of polynomials on n variables of degree at most d and
unbounded degree respectively which are sums of squares. We will often write Σ2

d and
Σ2 when the context is clear.

Definition 3 (Quadratic Module). For a polynomial system F = {f1, . . . , fk} ∈ R[x],
define the quadratic module of F by Q(F ) = cone(fq2 : f ∈ F, q ∈ R[x]) and the degree
d (truncated) quadratic module Qd(F ) = cone(fq2 : f ∈ F, deg(fq2) ≤ d). Note that
with this notation Q(1) = Σ2

n and Qd(1) = Σ2
n,d.
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Definition 4 (Ideal). For a polynomial system G = {g1, . . . , gl} ⊆ R[x], we define
the ideal generated by G by I(G) = span(gq : ∀g ∈ G, q ∈ R[x]), and the degree d
(truncated) ideal Id(G) = span(gq : ∀g ∈ G, q ∈ R[x], deg(gq) ≤ d). Note that Id(G)
is a linear subspace of R[x]d.

From here, it is now direct to see that degree d Lasserre relaxation of
sup {p(x) : x ∈ KF,G} can be restated as

supL[p(x)]
subject to L[1] = 1

L[v(x)] ≥ 0 ∀ v ∈ Qd(F ∪ {1})
L[w(x)] = 0 ∀ w ∈ Id(G)
L : R[x]d → R linear .

(6.5)

Compared to (6.3), the main difference is that in the above we explicitly add all non-
negative combinations of the L[fi(x)q(x)2] ≥ 0 type constraints as well as arbitrary
combinations of the L[gj(x)q(x)] = 0 constraints, however both formulations are
clearly equivalent.

A principle strength of convex programming is that one can use convexity to get both
upper and lower bounds on the value of an optimization problem. Thus, one may ask
how do we derive good upper bounds on the value of the Lasserre relaxation (6.5).

As one might expect with duality, the answer is to combine the information we get
from the constraints of the program. In the case of Lasserre relaxations, the dual
corresponds to finding “good” sums of squares decompositions of p:

inf λ
subject to p = λ− v + w

λ ∈ R
w ∈ Qd(F ∪ {1})
v ∈ Id(G) ,

(6.6)

We call the above program the degree d sums of squares relaxation for the optimization
problem sup {p(x) : x ∈ KF,G}.

To show that formulation is meaningful we show the following simple duality relation
between the sums of squares and Lasserre relaxation:

Lemma 1 (Weak Duality). Let L ∈ Lasd(F,G) and p = λ−v+w, λ ∈ R, v ∈ Qd(F ),
w ∈ Id(G). Then L[p(x)] ≤ λ.
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Proof.

L[p(x)] = L[λ+ w − v] = L[λ] + L[w]− L[v]

= λ+ 0− L[v] ≤ λ ,

since L[1] = 1, L[w] = 0 ∀ w ∈ Id(G), L[v] ≥ 0 ∀ v ∈ Qd(F ∪ {1}).

6.2.3 Hypercube Example

We now illustrate the primal and dual viewpoints using a simple example on the
hypercube. Assume we wish to maximize

max
n∑
i=1

x2i , x ∈ {0, 1}
n .

Clearly, the optimal solution is x = 1n, the all ones vector, which has value n. Our
goal is to show that the degree 2 Lasserre relaxation indeed recovers this solution,
and that we can witness the optimality of this solutions using a degree 2 sums of
square certificate.

Firstly, note for the hypercube F = ∅ and that G = {x2i − xi : ∀i ∈ [n]}. Therefore

Q2(F ∪ {1}) = Σ2
n,2 =

{
k∑
j=1

(cj,0 +
n∑
i=1

cj,ixi)
2 : k ∈ N, c1, . . . , ck ∈ Rn+1

}
,

i.e. sums of squares of linear polynomials, and

I2(G) =

{
n∑
i=1

γi(x
2
i − xi) : γ ∈ Rn

}
.

Note that the polynomials in G already have degree 2, so to keep degree 2 in I2(G)
we can only take scalar combinations of them.
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Given the above, the level 2 Lasserre relaxation can be written as

maxL[
n∑
i=1

x2i ]

subject to L : R2[x]→ R linear

L[1] = 1

L[(a0 +
n∑
i=1

aixi)
2] ≥ 0 ∀a ∈ Rn+1

L[x2i − xi] = 0 ∀ i ∈ [n]

Given we know that the optimal solution is the all ones vector for the real program,
let us simply set L[q(x)] = q(1n), ∀q ∈ R2[x], i.e. the evaluation of q at the all ones
vector. Clearly L[

∑n
i=1 x

2
i ] = n as we would expect. Now the goal is to show that this

is indeed the optimal Lasserre solution. Thus we must show that the exists a degree
2 sums of squares relaxation solution with the same value.

In particular, we must show that we can express

n∑
i=1

x2i = n− v(x) + w(x)

where v ∈ Σ2
2 and w ∈ I2(G) as above. Note that it suffices to show that x2i =

1− vi(x) + wi(x), vi ∈ Σ2
2, wi ∈ I2(G), since we can then just add up these solutions

together. From here, we see that

x2i = 1− 1 + x2i = 1− (1− 2xi + x2i ) + 2(x2i − x2i )
= 1− (1− xi)2 + 2(x2i − xi) .

(6.7)

Since (1−xi)2 ∈ Σ2
2 and 2(x2i −xi) ∈ I2(G), this is the desired decomposition. Hence,

the optimal degree 2 Lasserre value is n is coincides with the value of the real program.

Building Dual Solutions Step by Step While the above proof of optimality is
simple, it is perhaps a bit difficult to come up with a the dual decomposition “all at
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once”. Let us know show that L[
∑n

i=1 xi] ≤ n in a more “step by step” manner:

L[
n∑
i=1

x2i ] =(L[1]=1) n− L[
n∑
i=1

1− x2i ]

=(xi=x2i )
n− L[

n∑
i=1

1− xi]

=(xi=x2i )
n− L[

n∑
i=1

(1− xi)2]

≤(1−xi)2≥0 n .

Here it is easy to check that one can derive the certificate of the form (6.7) by
“unfolding” the above proof. Regardless, it is in general easier to derive such proofs
in the above manner.

6.3 Convergence Results

Now that we have developed the basic language for both the Lasserre relaxation and
its sums of squares dual, we can now state a theorem of Lasserre, which is based
on the work of Putinar, which tells us that under quite general conditions one can
expect the value of these relaxations to converge to the true value of the optimization
problem.

The main thing we will require that implies convergence is the system (F,G) needs
to have a simple “algebraic proof of boundness”.

Definition 5. A polynomial system (F,G) is Archemedean if for some R > 0, the
polynomial R2 −

∑n
i=1 x

2
i ∈ Q(F ∪ {1}) + I(G).

Notice that for an Archemedian system, the feasible region

KF,G = {x ∈ Rn : fi(x) ≥ 0, gj(x) = 0,∀i ∈ [k], j ∈ [l]} ⊆ RBn2

is contained inside a Euclidean ball of radius R around the origin. However, there are
polynomial systems whose feasible region is indeed bounded, but where the system
itself is not Archemedian.

We now state Lasserre’s main convergence theorem[Las01]:
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Theorem 1. Assume that (F,G), F = {f1, . . . , fk} , G = {g1, . . . , gl} ⊂ R[x], is an
Archemedean system. Then

max {p(x) : x ∈ KF,G} = lim
d→∞

sup {L[p(x)] : L ∈ Lasd(F,G)}

= lim
d→∞

inf {λ : ∃v ∈ Qd(F ∪ {1}), w ∈ Id(G) s.t. p = λ− v + w} .

Furthermore, for all d large enough, the supremum and infimum values for the degree
d Lasserre and sum of squares relaxations are attained and are equal to each other.

6.4 A Semidefinite Programming Formulation

In this section, we show that both the degree d Lasserre and Sum of Squares relax-
ations for sup {p(x) : x ∈ KF,G}, where F = {f1, . . . , fk} , G = {g1, . . . , gl} ⊂ R[x],
are efficiently solvable. More precisely, we will show that they can be expressed as
semidefinite programs of size (k + l)nO(d).

6.4.1 The Lasserre Relaxation

The goal is to show that

maxL[p(x)]
subject to L[1] = 1,

L[f(x)q(x)2] ≥ 0 ∀q ∈ R[x](d−deg(f))/2, f ∈ F ∪ {1} ,
L[g(x)q(x)] = 0 ∀q ∈ R[x]d−deg(g), g ∈ G,
L : R[x]d → R linear .

is a semidefinite program of size (k + l)nO(d). Recall that to represent L it suffices to
know the evaluation of L on all monomials (L[xα])|α|≤d, which will correspond to the(
n+d
d

)
variables of the SDP representation. We will now go through the constraints

one by one and show how to express them as linear matrix inequalities. Clearly, the
constraint L[1] = 1 is a linear equation on L. For the constraints L[g(x)q(x)] = 0, for
g ∈ G, deg(gq) ≤ k, it clearly suffices to check that

L[g(x)xα] = 0 ∀|α| ≤ d− deg(g) .

Expanding out, we get the constraints

0 = L[g(x)xα] =
∑
β

gβL[xα+β], ∀|α| ≤ d− deg(g) ,
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which is simply a linear constraint in L. Thus, all the G constraints, can be expressed
using at most k

(
n+d
d

)
= knO(d) different homogeneous linear equations.

Next, for f ∈ F ∪ {1}, we need to check that

L[f(x)q(x)2] ≥ 0 ∀q ∈ R[x], deg(q) ≤ (d− deg(f))/2 .

Letting rf = b(d−deg(f))/2c, any such q can be written as q =
∑
|α|≤rf qαx

α. Again,
expanding out, we get that

L[f(x)q(x)2] =
∑

|α|,|β|≤rf

qαqβL[f(x)xα+β]

=
∑

|α|,|β|≤rf

qαqβ(
∑
γ

fγL[xα+β+γ]) .

Let M f
α,β =

∑
γ fγL[xα+β+γ], the above requirement for all q of degree at most rf is

equivalent to ∑
α,β

M f
α,βcαcβ ≥ 0, ∀c ∈ RNn

rf ⇔M f � 0 .

Since the entries of M f are linear functions of L, the above is a linear matrix inequal-
ity, and hence semidefinite representable. Thus, we can represent all the F ∪ {1}
constraints using at most l + 1 semidefinite constraints on matrices of size at most(
n+d
d

)
= nO(d) as needed.

6.4.2 The Sum of Squares Relaxation

The goal is to show that

minλ
subject to p = λ− v + w

λ ∈ R
v ∈ Qd(F ∪ {1})
w ∈ Id(G)

is a semidefinite program of size (k + l)nO(d).

The claim will follow directly from the following two lemmas.

Lemma 2. Let p ∈ R[x]d, f ∈ R[x], deg(f) = d− 2r. Then

p ∈ Qd(f)⇔

∃M � 0 such that pη =
∑

|α|,|β|≤r,|γ|≤d−2r
α+β+γ=η

fγMα,β, ∀|η| ≤ d .
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In particular, Qd(f) has a semidefinite representation using a PSD constraint of size(
n+r
r

)
and

(
n+d
d

)
linear equations.

Proof. Since deg(f) = d − 2r, we see that Qd(f) = cone {fq2 : q ∈ R[x]r}. Now
assume that p ∈ cone(fq2 : q ∈ R[x]r). Then we can write

p =
k∑
i=1

fq2i ,

for k ∈ N, qi ∈ R[x]r, i ∈ [k]. Writing

qi =
∑
|α|≤r

ci,αx
α = cT

i (xα)|α|≤r ,

We can express

k∑
i=1

fq2i = f ·
k∑
i=1

(cT
i (xα)|α|≤r)

2

= f ·
k∑
i=1

(xα)T|α|≤rcic
T
i (xα)|α|≤r

= f · (xα)T|α|≤r

(
k∑
i=1

cic
T
i

)
(xα)|α|≤r

Defining M =
∑k

i=1 cic
T
i , we have that M � 0 and

f · (xα)T|α|≤rM(xα)|α|≤r = f ·
∑
|α|,|β|≤r

Mα,βx
α+β

=
∑

|α|,|β|≤r,|γ|≤d−2r

fγMα,βx
α+β+γ.

Putting everything together, we get the equality

p =
∑

|α|,|β|≤r,|γ|≤d−2r

fγMα,βx
α+β+γ .

Since the polynomials are equal, they must have the same coefficients, and hence

pη =
∑

|α|,|β|≤r,|γ|≤d−2r
α+β+γ=η

fγMα,β ∀|η| ≤ d ,
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where we note that the right hand side equal 0 for |η| > d since α + β + γ ≤ d.

For the converse, one may follow the above proof in reverse, using the fact that a
matrix M � 0 if and only if M =

∑k
i=1 cic

T
i for an appropriate set of vectors (i.e. it

admits a Cholesky factorization).

For the semidefinite representation, note that the description given in the statement
of the lemma is such a representation.

Lemma 3. Let p ∈ R[x]d, g ∈ R[x], deg(g) = d− r. Then

p ∈ Id(g)⇔ ∃c ∈ RNn
r such that pη =

∑
|α|≤r
α+γ=η

gγcα, ∀|η| ≤ d .

In particular, Id(g) has a linear representation of using
(
n+r
r

)
variables and

(
n+d
d

)
linear equations.

Proof. First, since deg(g) = d−r, we have that Id(g) = {gq : q ∈ R[x]r}. Now assume
that p = gq for q ∈ R[xr]. Since we can express p =

∑
|α|≤r cαx

α, expanding out, we
get that

p = gq = g ·
∑
|α|≤r

cαx
α =

∑
|α|≤r,|γ|≤d−r

gγcαx
α+γ .

Since the polynomial p equals the polynomial on the right, the coefficients must be
equal, and hence

pη =
∑
|α|≤r
α+γ=η

gγcα, ∀|η| ≤ d,

where we note the right hand side equals 0 for |η| > d since α + γ ≤ d.

For the linear representation, note that the expression for Id(g) in the theorem state-
ment is such a representation.

We now give the final SDP representation for the sums of squares relaxation. Firstly,
it is easy to check that

Qd(F ∪ {1}) = Σ2
d +

k∑
i=1

Qd(fi) and Id(G) =
l∑

j=1

Id(gj) .
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Given this, we can write the sum of squares relaxation as

minλ

subject to p = λ− (v0 +
∑k

i=1 vi) +
∑l

j=1wl
λ ∈ R
v0 ∈ Σ2

d

vi ∈ Qd(fi) ∀i ∈ [k]
wj ∈ Id(gj) ∀j ∈ [l] .

(6.8)

Given λ, v0, . . . , vl, w1, . . . , wk, checking

p = λ− (v0 +
k∑
i=1

vi) +
l∑

j=1

wl

corresponds to checking deg(p) ≤ d (generally assumed) and that the coefficients
match

p0 = λ− (v0,0 +
k∑
i=1

vi,0) +
l∑

j=1

wl,0 ,

pα = −(v0,α +
k∑
i=1

vi,α) +
l∑

j=1

wl,α ∀|α| ≤ d, α 6= 0 .

Since all the sets Σ2
d := Qd(1), Qd(f1), . . . , Qd(fl), Id(g1), . . . , Id(gl) have semidefinite

representations of size nO(d), the program (6.8) yields a semidefinite representation of
size (k + l)nO(d) for the sum of squares relaxation.
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