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In this lecture, we will try to understand the power of the Lasserre relaxation more
deeply. In particular, we will prove a basic inequality for pseudo-expectation opera-
tors, i.e. Hölder’s inequality, we will show that Lasserre solutions for unconstrained
univariate systems essentially always correspond to measures, we will go through the
basics of conditioning Lasserre solutions, and use it to prove convergence of Lasserre
on the hypercube.

7.1 Hölder’s Inequality

We now state one of the most powerful and basic inequalities for pseudo-expectation
operators.

Lemma 1 (Hölder’s Inequality). Let L ∈ Lasd(F, ∅) where F = {f1, . . . , fk} ⊂ R[x].
Then for f ∈ F ∪ {1} and p, q ∈ R[x] such that deg(f) + 2 max {deg(p), deg(q)} ≤ d,
we have that

|L[f(x)p(x)q(x)]| ≤ L[f(x)p(x)2]1/2L[f(x)q(x)2]1/2 . (7.1)

Proof. Note that by the degree restrictions of p, q and since L ∈ Lasd(F, ∅),
all the above expressions of L are well-defined. In particular, both
L[f(x)p(x)2], L[f(x)q(x)2] ≥ 0, so their square roots are well-defined. By possibly
replacing p by −p, we may without loss of generality assume that |L[f(x)p(x)q(x)]| =
L[f(x)p(x)q(x)] ≥ 0.

Since L ∈ Lasd(F, ∅), for any c > 0, we have that

0 ≤ L[f(x)(cp(x)− q(x)/c)2] = c2L[f(x)p(x)2]− 2L[f(x)p(x)q(x)] + L[f(x)q(x)2]/c2 ⇔

L[f(x)p(x)q(x)] ≤ 1

2

(
c2L[f(x)p(x)2] + L[f(x)q(x)2]/c2

)
.

If L[f(x)p(x)2] = 0, by letting c → ∞, the right hand side tends to 0, and hence
L[f(x)p(x)q(x)] = 0. Similarly, if L[f(x)q(x)2] = 0, we get the same conclusion
letting c→ 0+. Hence, inequality (7.1) holds in both these cases.

From here, we may assume that both L[f(x)p(x)2], L[f(x)q(x)2] > 0. The desired

inequality now follows by setting c = (L[f(x)q(x)2]/L[f(x)p(x)2])
1
4 > 0.
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7.2 The Hamburger Moment Problem

In this section, we show that in the unconstrained univariate case, Lasserre solutions
generally correspond to the expectation operator of a distribution supported on the
real line. This is known as the truncated Hamburger moment problem. Namely, given
a list of moments m1,m2, . . . ,m2d, we wish to know when is there a distribution µ
supported on R such that Eµ[xi] = mi, ∀i ∈ [2d].

From last class, we already know that the associated pseudo expectation operator
L : R[x]2d → R given by L[p(x)] = p0 +

∑2d
i=1 pimi should satisfy L[q(x)2] ≥ 0 for all

q ∈ R[x]d. What is perhaps surprising is that is essentially also sufficient:

Theorem 1. Let L ∈ Las1,2d be an unconstrained pseudo-expectation operator on the
real line of degree 2d. Then there exists a distribution µ over R such that Eµ[p(x)] =
L[p(x)], ∀p ∈ R[x]2d iff for all q ∈ R[x]d−1, L[q(x)2] = 0 implies that L[xd+1q(x)] = 0.

To prove this theorem, we will to make use of the following version of the spectral
theorem that decomposes linear operators that are symmetric with respect to a gen-
eral (possibly degenerate) inner product over a finite dimensional real vector space.
Recall that over a real vector space V , an inner product 〈·, ·〉 : V × V → R is a
symmetric bilinear form satisfying 〈y, y〉 ≥ 0 for all y ∈ V . The inner product is
non-degenerate if 〈y, y〉 ≥ 0 iff y = 0, however we will not require this. We de-
note the null space of the inner product by N〈·,·〉 = {y ∈ V : 〈y, y〉 = 0}. Using the
Cauchy-Schwarz inequality, i.e. |〈v, w〉| ≤ 〈v, v〉1/2〈w,w〉1/2, it is not hard to check
that N is in fact a linear subspace. We denote the range of the inner product by
R〈·,·〉 =

{
w ∈ V : 〈w, y〉 = 0∀y ∈ N〈·,·〉

}
, i.e. the orthogonal complement of the null

space. It is easy to see that the range always admits an orthogonal normal basis
b1, . . . , bk ∈ R〈·,·〉 (i.e. apply Gram schmidt orthogonalization to any basis of the
range, and note that you’ll never find length 0 vectors there), and that for any y ∈ V ,
〈y, y〉 =

∑k
i=1〈bi, y〉2 (the part of y in the null space doesn’t contribute any length).

Theorem 2 (Spectral Theorem). Let V be a d dimensional real vector space and let
〈·, ·〉 be an inner product over V with l-dimensional range R ⊆ V . Let T : V → V be a
linear map that is symmetric with respect to the inner product, i.e. 〈Tv, w〉 = 〈v, Tw〉
for all v, w ∈ V . Then there exists real numbers λ1, . . . , λk and an orthonormal basis
z1, . . . , zl of R, such that for all v, w ∈ V and k ≥ 0:

〈v, T kw〉 =
l∑

i=1

λki 〈v, zi〉〈w, zi〉 .
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Proof of Theorem 1. We first prove necessity. Assume that L is consistent with the
expectation operator of a probability measure µ supported on R. Then, if Eµ[p(x)2] =
0 for p ∈ R[x]d−1, by Hölder’s inequality we know that

Eµ[p(x)xd+1] ≤ Eµ[p(x)2]1/2Eµ[x2d+2]
1
2 = 0 .

Thus, by consistency, L[p(x)xd+1] = Eµ[p(x)xd+1] = 0.

Now assume that the above condition holds, we will show that L is indeed consistent
with a probability measure µ. Let V = R[x]d be our real vector space and define the
inner product 〈p, q〉 = L[pq] for p, q ∈ R[x]d. Note that this is clearly bilinear and
symmetric and that 〈p, p〉 = L[p2] ≥ 0 for all p ∈ R[x]d since L ∈ Las1,2d.

We would now like to define a symmetric linear operator T : R[x]d → R[x]d given by
relation T (p) = xp. Unfortunately, T is not defined on xd since xd+1 does not exist in
R[x]d. To define Txd we will use the conditions imposed by forcing T to be symmetric.
In particular, 〈Txd, xi〉 = 〈xd, Txi〉 = 〈xd, xi+1〉 = L[xd+1+i] for all i ∈ {0, . . . , d− 1}.
Note that these conditions form a system of linear equations, i.e. we wish to solve for
p ∈ R[x]d such that

L[pxi] = L[xd+1+i] ∀i ∈ {0, . . . , d− 1} .

We claim that this system has a solution. Assume not, then by Farkas lemma there
exists a combination c0, . . . , cd−1 ∈ R of the rows such that

L[(
d−1∑
i=0

cix
i)p] = 0 ∀p ∈ R[x]d,

and

L[(
d−1∑
i=0

cix
i)xd+1] = 1 .

Letting q =
∑d−1

i=0 cix
i ∈ R[x]d−1, note that the first condition implies that L[q2] = 0

but L[qxd+1] 6= 0, a contradiction to our initial assumption on L.

Thus, we now formally define T by its action on the basis 1, . . . , xd, where Txi =
xi+1 for i ∈ {0, . . . , d− 1}, and Txd equals the solution p to the above system of
equations. Note that for i, j ∈ {0, . . . , d− 1}, 〈Txi, xj〉 = 〈xi, Txj〉 = L[xi+j+1], for
i ∈ {0, . . . , d− 1}, 〈Txd, xi〉 = 〈p, xi〉 = 〈xd, xi+1〉 = 〈xd, Txi〉 by our choice of p.
Lastly 〈Txd, xd〉 = 〈xd, Txd〉 by symmetry of the inner product. Since it suffices to
check symmetry with respect to a basis, we see that T is indeed symmetric with
respect to our chosen inner product.
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Note that by symmetry, for any k ≤ 2d, we have that

〈1, T k1〉 = 〈T dk/2e1, T bk/2c1〉 = 〈xdk/2e, xbk/2c〉 = L[xk] ,

since dk/2e ≤ d. Next, by the spectral theorem

L[xk] = 〈1, T k1〉 =
l∑

i=1

λki 〈zi, 1〉2 ,

where z1, . . . , zl ∈ R[x]d form an orthonormal basis of the range of 〈·, ·〉 and
λ1, . . . , λl ∈ R.

Let µ denote the probability measure with takes value λi w.p. 〈zi, 1〉2, for all i ∈
[l]. We note that µ is indeed a probability measure since 〈zi, 1〉2 ≥ 0, i ∈ [l], and∑l

i=1〈zi, 1〉2 = 〈1, 1〉 = L[1] = 1. Given the above expression, we now clearly have
that

L[xk] = Eµ[xk],

for all k ∈ [2d], and hence L is consistent with the expectation operator of µ as
needed.

7.3 Conditioning Lasserre Solutions

In the previous section, we saw an algebraic method for converting a one dimensional
Lasserre solution into a probability measure. In the next sections, we will explore a
different strategy for (generally approximately) recovering an underlying distribution
via conditioning.

From the perspective of optimization, one of our fundamental goals will be to recover
nearly optimal solutions from the Lasserre relaxation, i.e. we would like ways to
“round” Lasserre solutions. As noted in the previous lecture, even if the Lasserre
solution corresponds to the moments of a true distribution over optimal solutions,
recovering a true optimal solution can still be challenging because the moments only
contain “averaged” information about the solutions. The problem here is in fact
completely analoguous to that of recovering an explicit description of the underlying
distribution as described in the previous section.

Conditioning will give us a general technique for “pushing” the purported underlying
distribution towards being supported on a single solution, after which recovering it
becomes easy (or at least easier).
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Let µ be a distribution supported on a set K. Assume we would like to condition
µ on an event E. The main question is how does the expectation operator of the
measure µ conditioned on E change compared to µ? This can be stated very easily in
terms of the indicator function 1E : K → {0, 1} of E, where 1E(x) = 1 if x ∈ E ∩K
and 0 otherwise. Precisely, given any function f : K → R we have that

Eµ[f(x)|E] =

∫
K∩E f(x)dµ(x)∫
K∩E 1dµ(x)

=

∫
K
f(x)1E(x)dµ(x)∫
K

1E(x)dµ(x)
=

Eµ[f(x)1E(x)]

Eµ[1E(x)]
. (7.2)

In particular, the conditioned expectation operator can be written as a simple function
of the original expectation operator. To make sense of this in the context of pseudo-
expectation operators, we need only restrict our attention to indicator functions 1E
that can be expressed as low degree polynomials over the feasible region.

Such examples come easily in the context of the hypercube {0, 1}n. For example, the
indicator the event E = {x ∈ {0, 1}n : x1 = 1, x2 = 0} can be written as x1(1 − x2),
a degree 2 polynomial. Note that it is crucial that we restrict to the domain of the
indicator to points in the hypercube, since evaluating this function at say the point
(1, 2, 0, . . . , 0) yields the value 1(1 − 2) = −1, which is non-sensical for an indicator
function.

Thus, if we have a pseudo-expectation operator L on a system (F,G) and we have an
event we wish to condition on whose indicator function is a low degree polynomial h,
we may hope to define the operator L conditioned on h by the analoguous formula
to (7.2), namely

L[ph]/L[h] for all p ∈ R[x]

where the expression is defined. Note that nothing stops us from defining the con-
ditional operator with respect to a polynomial h that does not correspond to an
indicator. Namely, h need not be a {0, 1} over the feasible region. In this more
general case, which will indeed be useful later in the course, it is more appropriate
to think of h as a reweighting of the operator. Regardless, we must still understand
when such a reweighting makes sense. In general, when reweighting a measure we
should insure that the reweighting function is non-negative over the feasible region.
Crucially, such a reweighting insures that the expectation with respect to any non-
negative function over the feasible region remains non-negative. In the context of
Lasserre, we will want the reweighted pseudo-expectation to preserve nonnegative
expectations with respect to the “obviously” nonnegative polynomials, up to a small
drop in degree. As is shown in the next lemma, a very simple case where such non-
negativity is preserved is when the reweighting polynomial h is a sum of squares. We
note that indicator functions over the feasible region are trivially squares (though not
necessarily low degree), since the square of a zero one function is the function itself.
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Lemma 2 (Reweighted Pseudo-Expectation). Let L ∈ Lasd(F,G) for F =
{f1, . . . , fk}, G = {g1, . . . , gl} ⊂ R[x]. Take h ∈ Σ2

d1
, d1 ≤ d, such that L[h] > 0.

Then the reweighted pseudo-expectation operator L[· ;h] : R[x]d−d1 → R, defined by

L[p ;h] =
L[ph]

L[h]
∀p ∈ R[x]d−d1

satisfies L[· ;h] ∈ Lasd−d1(F,G).

In the above lemma, we use the notation L[p ;h] instead of L[p|h], since we will
sometimes reweight with respect to h’s that are not indicator funtions.

Proof of Lemma 2. Firstly, note that L[p ;h] is well defined for p ∈ Rd−d1 [x] since
deg(ph) ≤ d and L[h] > 0. Furthemore, clearly L[1 ;h] = L[h]/L[h] = 1.

Next, for any g ∈ G, q ∈ R[x], deg(g) + deg(q) ≤ d− d1, we see that

L[gq ;h] =
L[gqh]

L[h]
= 0,

since deg(g) + deg(qh) ≤ deg(g) + deg(q) + deg(h) ≤ d. Lastly, for f ∈ F ∪ {1},
q ∈ R[x], deg(f) + 2deg(q) ≤ d− d1, we have that

L[fq2 ;h] =
L[fq2h]

L[h]
≥ 0,

since deg(f) + deg(q2h) ≤ deg(f) + 2deg(q) + deg(h) ≤ d and since q2h ∈ Σ2.

Thus, L[· ;h] ∈ Lasd−d1(F,G).

We remark that one can also build a theory of conditioning which allows one to
condition on more general functions than simply sums of squares. In particular, one
may wish to condition on functions in the truncated quadratic module Qd1(F ∪{1}).
This is indeed possible, however in this case, to recover an analoguous statement
to the lemma above, one must enforce that a Lasserre pseudo-expectation operator
sends polynomials corresponding to products of the polynomials in F to non-negative
numbers. While such a theory seems quite clean (though some additional layers of
notation are needed), it has as of yet been poorly explored, and so we will not dwell on
it during the rest of the course. The reader is however encouraged to find applications
of this type of conditioning, as such results would be quite interesting.
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Definition 1 (Restriction of Pseudo-expectation Operator). As we lose degrees af-
ter conditioning, it will often be useful to restrict a pseudo-expectation operator
L : R[x]d → R to its evaluation on lower degree polynomials.

For this purpose, we shall use the notation L↓d1 to denote the restriction of L to
polynomials of degree at most d1 ≤ d.

7.4 Lasserre on the Hypercube

In this section, we will specialize the Lasserre relaxation a bit more in the context of
the hypercube. In particular, we will factor in the effect of the so-called “vanishing
ideal” of the hypercube, i.e. the ideal of polynomials which evaluate to 0 on the
hypercube, more directly into the relaxation.

Let H = {x2i − xi : i ∈ [n]} denote the defining polynomials for the hypercube. Define
R[x]H = R[x]/I(H), i.e. the ring of polynomials quotiented by the ideal generated by
H. Note that the main effect of H to allow us to replace any x2i term by an xi term.
Any polynomial p ∈ R[x] thus becomes equivalent under I(H) to a polynomial where
every monomial xα has α ∈ {0, 1}n. Precisely,∑

α∈Nn

pαx
β ≡

∑
α∈{0,1}n

(
∑
β∈Nn

pα+β)xα (mod I(H)) .

The polynomials on the right hand side are known as multilinear polynomials. Thus,
every polynomial on the hypercube is equivalent under I(H) to a multilinear one.
Since multilinear monomials have only {0, 1} degrees, one can associate each such
monomial with a subset α ⊆ [n]. Slightly abusing notation, for α ⊆ [n], we will write
xα :=

∏
i∈α xi. We note that throughout these notes and the course, when working

over the hypercube, we shall often be implicitly be identifying a polynomial with its
equivalence class in R[x]H . We will endeavor to make this explicit whenever it can
lead to confusion.

In the above paragraph, we saw how every polynomial over the hypercube is equiv-
alent to a multilinear one. In fact, more generally, every real value function on the
hypercube is uniquely expressible as a multilinear polynomial. This is proven in the
following lemma:

Lemma 3. The set of monomial (xα : α ⊆ [n]) form a basis of the set of functions
from {0, 1}n to R.



7-8 Lecture 7: March 23, 2017

Proof. We first show any function f : {0, 1}n → R can be expressed as a multilinear
polynomial. We claim that it suffices to show that for any y ∈ {0, 1}n, the indicator
function Iy : {0, 1}n → {0, 1}, where Iy(x) = 1 if x = y and 0 otherwise, that Iy is
a multilinear polynomial. This follows since f =

∑
y∈{0,1}n f(y)Iy, i.e. f is a linear

combination of indicator functions. To show that Iy is a multilinear polynomial, note
that for x ∈ {0, 1}n

Iy(x) =
∏
i:yi=1

xi ·
∏
i:yi=0

(1− xi) ,

which is clearly multilinear in x.

To show that (xα : α ⊆ [n]) form a basis of the set of real valued functions on the
hypercube, we need to show that they are linearly independent as functions over
the hypercube. Since they span this set of functions and because there are 2n such
monomials, this follows from the fact that the set of real valued functions on the
hypercube is 2n dimensional.

The above justifies that when thinking about functions on the hypercube, we might as
well work with multilinear polynomials. However, it is important to treat these poly-
nomials as elements of R[x]H , since this encodes the rule by which we should multiply
such polynomials. In particular, given p, q ∈ R[x]H , with multilinear representatives∑

α⊆[n] pαx
α and

∑
β⊆[n] qβx

β respectively, then the multilinear representative of their
product is

pq ≡
∑

α,β⊆[n]

pαqβx
α∪β (mod I(H)) .

Notice that we use xα∪β instead of xα+β to model the effect of modding out by I(H).

We now come to the standard notion of degree for polynomials in R[x]H , which will
be crucial for our specialization of Lasserre.

Definition 2 (Degree over the Hypercube). For p ∈ R[x]H , we define the
degree of p to be the degree of its multilinear representation. That is, if p
is equivalent to

∑
α⊆[n] pαx

α under I(H), we define the degree deg(p) of p as

max {|α| : α ⊆ [n], pα 6= 0}. Here, it is easy to check that the multilinear represen-
tative of p is in fact the representative of minimum degree as a polynomial in R[x].
For d ∈ {0, . . . , n}, we define R[x]H,d to be the polynomials in R[x]H of degree at most
d.

Note that unlike in the ring R[x], degree in R[x]H is not additive. In particular,
every polynomial in R[x]H has degree at most n, and hence multiplying two degree n
polynomials yields a polynomial of degree at most n instead of exactly 2n. Degree
however remains subadditive, namely deg(pq) ≤ deg(p) + deg(q) for p, q ∈ R[x]H .
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We now come to the definition of Lasserre over the hypercube.

Definition 3 (Hypercube Lasserre). For a polynomial system F = {f1, . . . , fk} , G =
{g1, . . . , gl} ⊆ R[x]H and d ≥ 0, we define the degree d Lasserre relaxation over the
hypercube as

LasHd (F,G) =
{
L : L : R[x]H,d → R linear ,

L[1] = 1,
L[fq2] ≥ 0, ∀f ∈ F ∪ {1} , q ∈ R[x]H , deg(f) + 2deg(q) ≤ d,
L[gq] = 0, ∀g ∈ G, q ∈ R[x]H , deg(g) + deg(q) ≤ d

}
.

(7.3)
Since L is linear and the polynomials of degree d in R[x]H are spanned by the mono-
mials {xα : α ⊆ [n], |α| ≤ d}, to define L we need only keep track of the moments
L[xα] with respect to these monomials. Thus, L can be associated with a vector of
dimension

∑d
i=0

(
n
i

)
= nO(d).

We now specialize the notion of degree bounded sums of squares, quadratic module
and ideal to polynomial systems in R[x]H . For d ∈ {0, . . . , n}, we define the degree d
sum of squares polynomials by

Σ2
H,d = cone(q2 : q ∈ R[x]H , 2deg(q) ≤ d) .

For F = {f1, . . . , fk} ⊆ R[x]H , the define the degree d quadratic module

Qd(F ) = cone(fq2 : q ∈ R[x]H , f ∈ F, deg(f) + 2deg(q) ≤ d) .

For G = {g1, . . . , gl} ⊆ R[x]H , we define the degree d ideal

Id(G) = span(gq : g ∈ G, q ∈ R[x]H , deg(g) + deg(q) ≤ d) .

As before, we let Σ2
H , Q(F ), I(G) denote the same objects without degree constraints.

We now rephrase the degree d Lasserre relaxation for (F,G) over the hypercube:

L : R[x]H,d → R linear ,
L[1] = 1,
L[v] ≥ 0, ∀v ∈ Qd(F ∪ {1})
L[w] = 0, ∀w ∈ Id(G) .

(7.4)

Some quick comments are in order with these definitions, which may not be im-
mediately clear. Firstly, note that the notion of degree within the definitions of
Σ2
H,d, Qd(F ), Id(G) are pessimistic, i.e. we ask for the sum of degrees to be small in-

stead of the degree itself. The reason for this is that degree cancellation over R[x]H
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is very difficult to predict. For example, a low degree polynomial may in fact be the
square of a very high degree polynomial, which is not easy to verify. For a simple
example, note that while the polynomial x1 is a square since x1 ≡ x21, it is a degree 2
square and NOT a degree 1 square. Similarly, 1 − x1 ≡ (1 − x1)2 is also a degree 2
square but NOT degree 1.

Another important fact, is that while over Rn not every non-negative polynomial is
a sum of squares, over the hypercube, every non-negative function is in fact a degree
2n sum of squares.

Lemma 4. Let f : {0, 1}n → R+. Then there exists p ∈ Σ2
H,2n such that p agrees

with f on {0, 1}n.

Proof. Firstly, note that since f is non-negative, the pointwise square root
√
f of f is

well-defined. By lemma 3, there exists a multilinear polynomial q which agrees with√
f on {0, 1}n.

Since q has degree at most n, we have that q2 ∈ Σ2
H,2n. Since by construction q2

agrees with f on {0, 1}n, the statement is proven.

To conclude, we state the pseudo-expectation reweighting lemma for the hypercube.
Its proof is identical to that of Lemma 2, so we leave it to the reader.

Lemma 5 (Hypercube Reweighting Lemma). Let L ∈ LasHd (F,G) for F =
{f1, . . . , fk}, G = {g1, . . . , gl} ⊂ R[x]H . Take h ∈ Σ2

H,d1
, d1 ≤ d, such that L[h] > 0.

Then the reweighted pseudo-expectation operator L[· ;h] : R[x]H,d−d1 → R, defined by

L[p ;h] =
L[ph]

L[h]
∀p ∈ R[x]H,d−d1

satisfies L[· ;h] ∈ Lasd−d1(F,G).

In particular, for h = xI(1n − x)J , the indicator of the event

{x ∈ {0, 1}n : xi = 1,∀i ∈ I, xj = 0,∀j ∈ J} ,

if L[h] > 0, then L[· ;h] ∈ Lasd−d1(F,G) where 2|I ∪ J | = d1.

As in the previous section, for a pseudo-expectation operator L : R[x]H,d → R, we
define L↓d1 to be its restriction to the polynomials R[x]H,d1 of degree at most d1 ≤ d.
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7.5 Convergence of Lasserre on the Hypercube

In this section, we prove for any polynomial system (F,G) over the hypercube we get
convergence for O(n) levels of Lasserre. That is, pseudo-expectation operators of this
level are consistent with a true distribution over feasible hypercube points.

For notational convenience, we will associate points in the hypercube with subsets of
[n]. That is, for S ⊆ [n], we will use the notation 1S ∈ {0, 1}n, where (1S)i = 1 if
i ∈ S and 0 otherwise.

The main theorem is stated below.

Theorem 3. Let F = {f1, . . . , fl}, G = {g1, . . . , gk} ⊆ R[x]H . Then for d ≥
max {2n+ deg(f)}, f ∈ F ∪ {1}, for any L ∈ LasHd (F,G) there exists a probabil-
ity distribution µ supported on

{x ∈ {0, 1}n : f(x) ≥ 0,∀f ∈ F, g(x) = 0, ∀g ∈ G}

such that

L[p(x)] = Eµ[p(x)] ∀p ∈ R[x]H .

To prove the theorem we will need the following key lemma. It essentially states that
conditioning a pseudo-expectation operator with respect to the indicator function of
a point on the hypercube, corresponds to evaluating at that point.

Lemma 6. For L ∈ LasHn := LasHn (∅, ∅), p ∈ R[x], and S ⊆ [n], we have that

L[p(x)xS(1n − x)[n]\S] = p(1S)L[xS(1n − x)[n]\S] .

Proof. Since p ≡
∑

α⊆[n] pαx
α, by linearity of L it suffices to prove that above state-

ment when p = xI for some I ⊆ [n]. Note that xI(1S) = 1 if I ⊆ S and 0 otherwise.

Assume that I ⊆ S. Then clearly

xIxS(1n − x)[n]\S ≡ (
∏
i∈I∩S

x2i )x
S\I(1n − x)[n]\S

≡ xS(1n − x)[n]\S (mod I(H)) ,
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and hence
L[xIxS(1n − x)[n]\S] = 1 · L[xS(1n − x)[n]\S] .

as needed. Now assume that I \ S 6= ∅. Pick j ∈ I \ S. Then

xIxS(1n − x)[n]\S ≡ xI\{j}xS(1n − x)[n]\S∪{j}xj(1− xj)
≡ xI\{j}xS(1n − x)[n]\S∪{j}(x2j − xj) ≡ 0 (mod I(H)) ,

and hence
L[xIxS(1n − x)[n]\S] = 0 · L[xS(1n − x)[n]\S] = 0 ,

as needed. Note that we used the condition that L ∈ LasHn simply to make sure that
L is defined on all polynomials in R[x]H .

Proof of Theorem 3. Take L ∈ LasHd (F,G). We now define the probability measure
µ on {0, 1}n to take on value 1S ⊆ [n] with probability L[xS(1n − x)[n]\S].

We first show that µ is well-defined, i.e. that is indeed a probability measure of {0, 1}n.
For this purpose, we will use the formal identity

1 =
∑
S⊆[n]

xS(1n − x)[n]\S . (7.5)

To see this, note that as functions on the hypercube, both the left and right hand
side are equal to the constant function 1. Since both the left and right side are
multilinear polynomials and are equal as functions on the hypercube, by Lemma 3
their coefficients must also be equal. From this, we get that∑

S⊆[n]

L[xS(1n − x)[n]\S] = L[1] = 1 .

It now remains to show that the purported probabilities are non-negative. Since
d ≥ 2n, for any S ⊆ [n], we have that

L[xS(1n − x)[n]\S] = L[(xS(1n − x)[n]\S)2] ≥ 0 ,

where the first equality holds since x2i ≡ xi (mod I(H)) and (1 − xi)
2 ≡ 1 − xi

(mod I(H)). Thus, µ is probability distribution as claimed.

Next, we show that L is consistent with the expectation operator of µ. Take p ∈
R[x]H . Then by identity (7.5) and Lemma 6 (note that L ∈ LasHn since d ≥ n), we
have that

L[p(x)] =
∑
S⊆[n]

L[xS(1n − x)[n]\Sp(x)] =
∑
S⊆[n]

p(1S)L[xS(1n − x)[n]\S] = Eµ[p(x)] ,
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where the last equality is by construction of µ.

To conclude, we check that µ is supported only on the hypercube points that are
feasible for the system (F,G). Namely, for any S ⊆ [n] for which L[xS(1n−x)[n]\S] > 0,
we have that f(1S) ≥ 0, ∀f ∈ F , and that g(1S) = 0, ∀g ∈ G.

Since d ≥ n, by Lemma 6, we have that

L[f(x)xS(1n − x)[n]\S] = f(1S)L[xS(1n − x)[n]\S], ∀f ∈ F,
L[g(x)xS(1n − x)[n]\S] = g(1S)L[xS(1n − x)[n]\S], ∀g ∈ G .

(7.6)

Restricting our attention to f ∈ F , note that since deg(f) + 2n ≤ d, we have that

L[f(x)xS(1n − x)[n]\S] = L[f(x)(xS(1n − x)[n]\S)2] ≥ 0 . (7.7)

Combining (7.6), (7.7), we see that L[xS(1n − s)[n]\S] > 0 ⇒ f(1S) ≥ 0,∀f ∈ F as
needed. Next for g ∈ G, since deg(g) + n ≤ 2n ≤ d, we have that

L[g(x)xS(1n − x)[n]\S] = 0 . (7.8)

Combining (7.6), (7.8), we see that L[xS(1n − s)[n]\S] > 0⇒ g(1S) = 0,∀g ∈ G. The
theorem now follows.


