
Advanced SDPs Lecture 8: March 30, 2017

Lecturers: Nikhil Bansal and Daniel Dadush Scribe: Daniel Dadush

In this lecture, we will do an in depth study of conditioning Lasserre on the hypercube.
We will then examine a nice application of Lasserre for the Knapsack problem. The
main tool we will use for this purpose is the decomposition property, which will help
us derive strong integrality information for Lasserre solutions. The material for this
lecture is mostly derived from the sources [Rot13, KMN11].

8.1 Notation

For a natural number d ∈ N, we will use the notation bdc2 := 2bd/2c to denote the
largest even integer less than or equal to d. Precisely, bdc2 = d if d is even and
bdc2 = d− 1 if d is odd.

Definition 1 (Dual Vector Space). For a real vector space V , we denote the dual
vector space V ∗ = {h : V → R : h linear } to be the set of linear functions from V to
R. In particular, a Lasserre operator L ∈ Lasd(F,G), is an element of R[x]∗d, i.e. the
linear functionals from degree d polynomials to the reals.

8.2 Partial Conditioning

In this section, we will specialize our study of conditioning to the hypercube and
understand what can achieve by conditioning a Lasserre solution on a subset of vari-
ables.

A useful object when reasoning about partial conditioning, will be a slight extension
of the hypercube Lasserre relaxation where we only bound the degree outside a subset
of variables. For a subset R ⊆ [n], we use the notation R = [n] \ R to denote the
complement of R in [n]. For p ∈ R[x]H , define the R degree of p to be degR(p) =
max {|α ∩R| : α ⊆ [n], pα 6= 0} (again, we consider the coefficients of the multilinear
representative of p). Similarly, define the out of R degree of p (which will be the
somewhat more convenient concept in this lecture), or R degree, to be degR(p) =
max {|α \R| : α ⊆ [n], pα 6= 0}. From here, we define R[x]H,R,d to be all polynomials
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in R[x]H whose out of R degree is at most d. Note that for S ⊆ R, we have that
degR(p) ≤ degS(p). Furthermore, note that deg(p) = deg∅(p) and deg[n](p) = 0 if
p 6= 0 and −∞ if p = 0.

Definition 2 (Degree out of R Lasserre). Given a polynomial system F,G ⊆ R[x]H ,
R ⊆ [n] and d ≥ 1, define the Lasserre relaxation of out of R degree d to be

LasH
R,d

(F,G) = {L ∈ R[x]∗
H,R,d

:

L[fq2] ≥ 0,∀f ∈ F ∪ {1} , q ∈ R[x]H , deg(f) + 2degR(q) ≤ d,
L[gq] ≥ 0,∀g ∈ G, q ∈ R[x]H , deg(g) + degR(q) ≤ d} .

(8.1)

In an analoguous manner we define the truncated out of R degree d sum of squares
cone Σ2

H,R,d
= cone(q2 : q ∈ R[x]H , 2degR(q) ≤ d), quadratic module QR,d(F ) =

cone(fq2 : f ∈ F, q ∈ R[x]H , deg(f) + 2degR(q) ≤ d), ideal IR,d(G) = span(gq : g ∈
G, q ∈ R[x]H , deg(g) + degR(q) ≤ d).

Notice that we use the actual degrees for the polynomials in F,G when computing
degree bounds instead of their out of R degree. As we will see later, this will make
these relaxations more amenable to conditioning.

Definition 3 (Operator Restriction). For L ∈ R[x]∗
H,R,d

, S ⊆ R and k ≤ d, define

L↓S,k to be the restriction of L to R[x]H,S,k, the polynomials of out of S degree at
most k. We shall also write L↓k to denote the restriction to R[x]H,k, the polynomials
of degree at most k. For an operator L ∈ (R[x]H,R,d)

∗, for notational convenience

we shall write L ∈ LasH
S,k

(F,G) to mean that L↓S,k ∈ LasH
S,k

(F,G), i.e. that the
appropriate restriction is a Lasserre operator.

The following lemma gives a basic inequality on how much bigger the out of R-degree
can be from the out of R ∪ S-degree.

Lemma 1. Take R, S ⊆ [n]. Then for p ∈ R[x]H , then

degR(p) ≤ degR∪S(p) + |S \R| .

Proof.

degR(p) = max {|α \R| : α ⊆ [n], pα 6= 0}
≤ max {|α \ (R ∪ S)|+ |S \R| : α ⊆ [n], pα 6= 0} = degR∪S(p) + |S \R| .
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Definition 4 (Partial Evaluation Operator on Hypercube). Given disjoint subsets
I, J ⊆ [n], define the partial evaluation operator PI,J : R[x]H → R[x]H which replaces
xi by 1 for i ∈ I and xj by 0 for j ∈ J . More precisely, for a polynomial p ∈ R[x]H ,
we have

PI,J(p) =
∑

α⊆[n]\(I∪J)

xα(
∑
H⊆I

pα∪H) .

For notational convenience, we will often write q ◦PI,J := PI,J(q), since this captures
the fact that we are partially evaluating the polynomials with respect to the variables
in the I∪J . Note that as an operator on R[x], PI,J clearly sends the vanishing ideal of
the hypercube I(x2

i −xi : i ∈ [n]) to itself, and hence it is a well-defined linear operator
on R[x]H . Lastly, clearly PI,J(PI,J(p)) = PI,J(p), i.e. it is a projection operator, and
PI,J(pq) = PI,J(p)PI,J(q), i.e. it is a ring homomorphism from R[x]H to itself.

The following technical lemma shows that reweighting by the subset indicator xI(1−
x)J has the properties one would expect.

Lemma 2. Let L ∈ LasH
R,d

(F,G). Let I, J ⊆ [n] be disjoint, S = I ∪ J and k :=

|S \R| ≤ d/2. Then the following holds:

1. degR(pxI(1− x)J) ≤ degR∪S(p) + k, ∀p ∈ R[x]H .

2. L[pxI(1− x)J ] = L[(p ◦ PI,J)xI(1− x)J ], ∀p ∈ R[x]H,R∪S,d−k.

3. If L[xI(1− x)J ] = 0 then L[pxI(1− x)J ] = 0, ∀p ∈ R[x]H,R∪S,bdc2−k.

Proof. We prove 1. For p ∈ R[x]H , we have that

degR(pxI(1− x)J) ≤ degR∪S(pxI(1− x)J) + |S \R| ( by Lemma 1 )

≤ degR∪S(xI(1− x)J) + degR∪S(p) + |S \R| ( subadditivity of degR∪S )

≤ 0 + degR∪S(p) + k = degR∪S(p) + k ,

(8.2)

as needed.

Note that if degR∪S(p) ≤ d−k, the above gives degR(pxI(1−x)J) ≤ degR∪S(p)+k ≤ d,
and hence the expressions in parts 2 and 3 are well-defined.

We prove 2. By linearity, we need only prove this for monomials, so assume that p =
xK , where degR∪S(xK) = |K\(R∪S)| ≤ d−k. We must show that L[xKxI(1−x)J ] = 0
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if K ∩ J 6= ∅ and that L[xKxI(1 − x)J ] = L[xK\IxI(1 − x)J ] otherwise. Firstly, if
j ∈ K ∩ J , then

L[xKxI(1− x)J ] = L[xK\{j}xI(1− x)J\{j}xj(1− xj)]
= L[xK\{j}xI(1− x)J\{j}(xj − x2

j)]

= L[0] = 0
(
x2
j ≡ xj on hypercube

)
.

Now assume that K ∩ J = ∅, then

L[xKxI(1− x)J ] = L[xK\I(xI∩K)2xI\K(1− x)J ]

= L[xK\IxI∩KxI\K(1− x)J ]
(
x2
i ≡ xi on hypercube

)
= L[xK\IxI(1− x)J ] ,

as needed.

We prove 3. As before, it suffices to show it when p is a monomial. Assume that
p = xK , K ⊆ [n], such that degR∪S(xK) = |K \ (R ∪ S)| ≤ bdc2 − k. By part 2, we
know that L[xKxI(1−x)J ] = L[PI,J(xK)xI(1−x)J ]. Since PI,J(xK) = 0 if K ∩J 6= ∅
and PI,J(xK) = xK\I otherwise, we may assume that K is disjoint from S = I ∪ J .

Under this assumption, degR∪S(xK) = |K \ (R∪S)| = |K \R| = degR(xK). Further-
more, degR(xI(1 − x)J) = |S \ R|. Restating our assumptions, we have K ∩ S = ∅,
|S \ R| = k ≤ d/2 and |K \ R| + |S \ R| ≤ (bdc2 − k) + k = bdc2. Thus, we can
pick M ⊆ K \ R which balances the degrees, that is where |(S ∪M) \ R| ≤ d/2 and
|K \ (R ∪M)| ≤ d/2 (note that we crucially use that bdc2 is even). From here, we
may apply Cauchy-Schwarz twice as follows:

|L[xI(1− x)JxK ]| = |L[(xI(1− x)JxM)xK\M ]|
≤ L[(xI(1− x)JxM)2]1/2L[(xK\M)2]1/2 ( Cauchy-Schwarz )

= L[xI(1− x)JxM ]1/2L[xK\M ]1/2
(
xi ≡ x2

i on hypercube
)

≤ L[(xI(1− x)J)2]1/4L[(xM)2]1/4L[xK\M ]1/2 ( Cauchy-Schwarz )

= L[xI(1− x)J)]1/4L[xM ]1/4L[xK\M ]1/2
(
xi ≡ x2

i on hypercube
)

= 0
(

by assumption that L[xI(1− x)J ] = 0
)

.

Note that the rebalancing step insures that we only apply Cauchy-Schwarz when both
terms in the product have out of R degree at most d/2.

In the next lemma, we give the properties of conditioning with respect to subset of
variables. Most importantly, this enforces integrality on the given subset.
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Lemma 3 (Subset Conditioning). Let L ∈ LasH
R,d

(F,G). For disjoint I, J ⊆ [n],

S := I ∪ J , |S \R| = k, k ≤ d/2, then the linear operator

L[p|I, J ] =

{
L[p;xI(1− x)J ] : L[xI(1− x)J ] > 0

0 : o/w
, ∀p ∈ R[x]H,R∪S,d−k .

is well-defined. If L[xI(1− x)J ] > 0, the following holds:

1. Partial Evaluation on Conditioned Coordinates:
L[p|I, J ] = L[p ◦ PI,J |I, J ], ∀p ∈ R[x]H,R∪S,d−k.
In particular L[xi|I, J ] = 1, ∀i ∈ I, and L[xj|I, J ] = 0, ∀j ∈ J .

2. Monotonicity:
Assume that L[xI2(1 − x)J2 ] = 0, where S2 = I2 ∪ J2 ⊆ [n], I2, J2 disjoint,
|S2 \R| ≤ d/2. Then L[xI2(1− x)J2|I, J ] = 0.

3. Lower order Lasserre operator:
L[·|I, J ] ∈ LasH

R∪S,d−2k
(F,G).

Proof. To begin, we first show that L[·|I, J ] is well-defined for p ∈ R[x]H,R∪S,d−k. By

Lemma 3 part 1, degR(pxI(1 − x)J) ≤ degR∪S(p) + k ≤ d, and hence pxI(1 − x)J

is defined for L. Thus L[p|I, J ] = L[pxI(1 − x)J ]/L[xI(1 − x)J ] is well-defined when
L[xI(1 − x)J ] > 0. When L[xI(1 − x)J ] = 0, then L[p|I, J ] = 0 and hence is also
well-defined.

Now assume that L[xI(1− x)J ] > 0. We prove part 1. Take p ∈ R[x]H,R∪S,d−k. Then
by Lemma 3 part 2,

L[p|I, J ] =
L[pxI(1− x)J ]

L[xI(1− x)J ]
=
L[(p ◦ PI,J)xI(1− x)J ]

L[xI(1− x)J ]
= L[p ◦ PI,J |I, J ] .

For the in particular, it follows since xi ◦ PI,J = 1, for i ∈ I, and xj ◦ PI,J = 0, for
j ∈ J , and L[1|I, J ] = L[xI(1− x)J ]/L[xI(1− x)J ] = 1.

We prove part 2. First, note that

degR∪S2
(xI(1− x)J) ≤ |S \R| ≤ bdc2 ≤ bdc2 − |S2| ,

where the last inequality follows since |S2| ≤ bdc2. Therefore, by Lemma 3 part 3,
L[xI2(1− x)J2xI(1− x)J ] = 0⇒ L[xI2(1− x)J2|I, J ] = 0, as needed.
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We prove part 3. That is, we will show that L[·|I, J ] ∈ LasH
R∪S,d−2k

(F,G). Take

f ∈ F ∪{1} and q ∈ R[x]H such that deg(f) + 2degR∪S(q) ≤ d− 2k. From here, by 3
part 1, note that

deg(f) + 2(degR(qxI(1− x)J)) ≤ deg(f) + 2(degR∪S(q) + k) ≤ d .

Thus, since L ∈ LasH
R,d

(F,G), we have that

L[fq2|I, J ] =
L[fq2xI(1− x)J ]

L[xI(1− x)J ]
=
L[f(qxI(1− x)J)2]

L[xI(1− x)J ]

(
x2
i ≡ xi on hypercube

)
≥ 0 ,

as needed. Take g ∈ G and q ∈ R[x]H such that deg(g)+degR∪S(q) ≤ d−2k. Then, as
above, we have that deg(g)+degR(qxI(1−x)J) ≤ deg(g)+degR∪S(q)+k ≤ d−k ≤ d.
Thus, since L ∈ LasH

R,d
(F,G), we have that

L[gq|I, J ] =
L[g(qxI(1− x)J)]

L[xI(1− x)J ]
= 0 ,

as needed.

Notice that in the above proof, we crucially used that the way we measure degree
of the defining constraints F,G doesn’t change as we move from LasH

R,d
(F,G) to

LasH
R∪S,d−2k

(F,G). Also, even though L[·|I, J ] is a well-defined linear operator on

R[x]R∪S,d−k, we only get that L[·|I, J ] ∈ LasH
R∪S,d−2k

(F,G), i.e. as a Lasserre operator
it loses k extra degrees. This is because of the non-negativity constraints on F , since
we need the “extra” k-degrees to express xI(1−x)J as a square (note that the equality
constraints induced by G in fact do hold at degree d− k).

The following lemma shows that at a loss of degree, we can express an operator on
lower degree polynomials as a convex combination of operators than are integral on
a chosen subset.

Lemma 4 (Partial Conditioning). L ∈ LasH
R,d

(F,G) for R ⊆ [n]. Then for S ⊆ R,

|S \R| = k ≤ d/2, the following holds:

1. (L[xI(1− x)S\I ] : I ⊆ S) is a convex combination.

2. ∀p ∈ R[x]H satisfying degR∪S(p) ≤ bdc2 − k, we have that

L[p] =
∑
I⊆S

L[xI(1− x)S\I ]L[p|I, S \ I] .
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Proof. We prove 1. Since degR(xI(1− x)S\I) = |S \ R| ≤ d/2 and L ∈ LasR,d(F,G),
we have that

L[xI(1− x)S\I ] = L[(xI(1− x)S\I)2] ≥ 0 .

Second, by inclusion-exclusion, 1 =
∑

I⊆S x
I(1− x)S\I , and hence

1 = L[1] = L[
∑
I⊆S

xI(1− x)S\I ] =
∑
I⊆S

L[xI(1− x)S\I ] .

Thus the vector (L[xI(1− x)S\I ] : I ⊆ S) is a convex combination as required.

We prove 2. Take p ∈ R[x]H satisfying degR∪S(p) ≤ bdc2 − k. By Lemma 3 part 1,
we have that

degR(pxI(1− x)J) ≤ degR∪S(p) + k ≤ bdc2 ≤ d ,

and hence pxI(1 − x)J is defined for L. Since 1 =
∑

I⊆S x
I(1 − x)S\I , we thus have

that

L[p] = L[
∑
I⊆S

xI(1− x)S\Ip] =
∑
I⊆S

L[xI(1− x)S\Ip] .

By Lemma 3, since degR∪S(p) ≤ bdc2 − k, then L[xI(1 − x)S\I ] = 0 ⇒ L[xI(1 −
x)S\Ip] = 0. Thus,

L[p] =
∑
I⊆S

L[xI(1− x)S\Ip] =
∑
I⊆S

L[xI(1−x)S\I ]>0

L[xI(1− x)S\Ip]

=
∑
I⊆S

L[xI(1−x)S\I ]>0

L[xI(1− x)S\I ]L[p|I, J ] =
∑
I⊆S

L[xI(1− x)S\I ]L[p|I, J ] ,

as needed.

In the following lemma shows that if a Lasserre solution is partially integral, then
in any evaluation we can replace the corresponding variables by their integer values.
Furthermore, the Lasserre operator can be lifted to an operator on a larger set of
polynomials at essentially no loss in degree (i.e. we only lose degree if d is odd).

Lemma 5. Let L ∈ LasH
R,d

(F,G) for d ≥ 2, I = {i ∈ [n] : L[xi] = 1}, J =

{i ∈ [n] : L[xi] = 0} and S = I ∪ J . Define H ∈ R[x]∗
H,R∪S,bdc2

by H[p] = L[p ◦ PI,J ].

Then the following holds:

1. H↓R,bdc2 = L↓R,bdc2.
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2. H ∈ LasH
R∪S,bdc2(F,G).

Proof. To begin, we first prove that H is well-defined. Note that for any p ∈
R[x]H,R∪S,bdc2 , the polynomial p◦PI,J only contains monomials with support in [n]\S.
Given this, we have that

degR(p ◦ PI,J) = degR∪S(p ◦ PI,J) ≤ degR∪S(p) ≤ bdc2 ,

and hence H[p] = L[p ◦ PI,J ] is well-defined, as needed.

We now prove part 1. As usual, by linearity it suffices to show L[p] = H[p] when
p is a monomial. Let p = xK , where |K \ R| ≤ bdc2. Note that xK ◦ PI,J = 0 if
K ∩ J 6= ∅ and xK ◦PI,J = xK\I otherwise. To get the desired equality, we must thus
show L[xK ] = 0 if K ∩ J 6= ∅ and L[xK ] = L[xK\I ] otherwise.

Assume first that ∃j ∈ K ∩ J . Since L[xj] = 0, degR(xj) ≤ 1 ≤ d/2, and
degR[xK\{j}] + degR[xj] = degR[xK ] ≤ bdc2, by Lemma 3 we have that L[xK ] = 0 as
needed.

Now assume that K∩J = ∅. We prove that L[xK ] = L[xK\I ] by induction on |I ∩K|.
The base case |I ∩K| = 0 trivially holds, so assume that |I ∩K| ≥ 1. Pick i ∈ I ∩K.
We will show that L[xK ] = L[xK\{i}] ⇔ L[xK\{i}(1 − xi)] = 0. Since L[1 − xi] = 0,
degR(1−xi) ≤ 1 ≤ d/2 and degR(xK\{i})+degR(xi) = degR(xK) ≤ bdc2, by Lemma 3
we have that L[xK ] = L[xK\{i}]. Applying the induction hypothesis on xK\i, noting
that |(K \{i})∩ I| = |K ∩ I|−1, we get that L[xK ] = L[xK\{i}] = L[xK\I ], as needed.

We now prove part 2. Take f ∈ F ∪ {1} and q ∈ R[x]H such that deg(f) +
2degR∪S(q) ≤ bdc2. We must show that H[fq2] ≥ 0. As shown in the beginning
of the Lemma, degR(q ◦PI,J) ≤ degR∪S(q) and hence deg(f) + 2degR(q ◦PI,J) ≤ bdc2.
Since

PI,J(fq2) = PI,J(f)PI,J(q)2 = PI,J(fPI,J(q)2),

by part 1 we have that

H[fq2] := L[PI,J(fq2)] = L[PI,J(fPI,J(q)2)] = L[fPI,J(q)2] ≥ 0,

where the last equality and inequality hold since deg(f) + 2degR(q ◦PI,J) ≤ bdc2 ≤ d.

Now take g ∈ F and q ∈ R[x]H such that deg(g) + 2degR∪S(q) ≤ bdc2. As above,
note that deg(g) + 2degR(q ◦ PI,J) ≤ bdc2, and hence

H[gq] := L[PI,J(gq)] = L[PI,J(gPI,J(q))] = L[gPI,J(q)] = 0 ,

where the last two equalities follow since deg(g) + 2degR(q ◦ PI,J) ≤ bdc2 ≤ d.
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8.3 The Decomposition Property

Definition 5 (Low Degree Projection). For S ⊆ [n], k ≤ n, define the projection
πS,k : R[x]H → R[x]H,S,k by πS,k(p) =

∑
α⊆[n],|α∩S|≤k pαx

α. In words, πS,k projects out
all monomials of S-degree greater than k. Similarly, πS,k projects out all monomials
of out of S-degree greater than k.

The following lemma tells gives a sufficient condition for being able to lift a Lasserre
solution to a high degree solution on a subset of variables, and at small cost loss of
degree on the remaining variables.

Lemma 6 (Flat Extension of Hypercube Lasserre). Let L ∈ LasH
R,d

(F,G). For S ⊆
[n] and k, 1 ≤ k ≤ d/2, define the linear operator H ∈ R[x]∗

H,R∪S,d−k by H[p] :=

L[πS,k(p)]. Then the following holds:

1. If ∀I ⊆ [n], |I ∩ S| ≥ k + 1, |I \ R| ≤ d, we have L[xI ] = 0, then H ∈
LasH

R∪S,d−2k
(F,G).

2. If k + 1 ≤ d/2 and ∀I ⊆ S, |I| = k + 1, we have L[xI ] = 0, then H ∈
LasH

R∪S,bdc2−2k
(F,G).

Furthermore, in both cases, for all p ∈ R[x]H satisfying degR(p) ≤ d and degR∪S(p) ≤
bdc2 − k, we have that

L[p] =
∑

I⊆S,|I|≤k

H[xI(1− x)S\I ]H[p|I, S \ I] ,

where H[p|I, S\I] ∈ LasH
R∪S,bdc2−2k

(F,G), for any I ⊆ S such that H[xI(1−x)S\I ] > 0.

Proof. To begin, we first show that H is well-defined on R[x]R∪S,d−k. More generally,
we show that for any p ∈ R[x]H

degR(πS,k(p)) ≤ degR∪S(p) + k (8.3)

As usual, it suffices to show this for monomials. Let p = xI for some I ⊆ [n]. First,
since πS,k(x

I) = 0 if |I ∩ S| ≥ k + 1, we may assume that |I ∩ S| ≤ k and hence that
πS,k(x

I) = xI . From here, note that

degR(xI) = |I \R| ≤ |I \ (R ∪ S)|+ |S ∩ I| ≤ degR∪S(xI) + k ,
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as needed. From here, for any p ∈ R[x]R∪S,d−2k, by (8.3), we have that degR(πS,k(p)) ≤
d− k + k = d, and hence is defined for L, and hence H is defined for p.

We now prove 1. Firstly, note that for p ∈ R[x]H,R,d we clearly have that H[p] =
L[πS,k(p)] = L[p], since by assumption, L sends every monomial of S-degree greater
than k and out of R degree at most d to 0. Now take f ∈ F ∪ {1} and q ∈ R[x]H
such that deg(f) + 2degR∪S(q) ≤ d− 2k. We must show that H[fq2] ≥ 0.

Now by (8.3), we see that

deg(f) + 2degR(πS,k(q)) ≤ deg(f) + 2(degR∪S(q) + k) ≤ d ,

and hence since L ∈ LasH
R,d

(F,G), we have that

L[fπS,k(q)
2] ≥ 0 .

From here, the desired inequality follows by noting that

H[fq2] = H[f(πS,k(q))
2] = L[f(πS,k(q))

2] ≥ 0 .

We now check the equality constraints. Take g ∈ G and q ∈ R[x]H such that
deg(g) + degR∪S(q) ≤ d − 2k. Similarly to the previous case, we have that
deg(g) + degR(πS,k(q)) ≤ deg(g) + degR∪S(q) + k ≤ d− k ≤ d and hence

L[gπS,k(q)] = 0 .

The desired equality follows by noting that

H[gq] = H[gπS,k(q)] = L[gπS,k(q)] = 0 ,

as needed.

We now prove 2. To begin, we show that L[xJ ] = 0 for all J ⊆ [n], |J ∩ S| ≥ k + 1,
|J \R| ≤ bdc2. Since we can write J = I ∪ (J \ I) such that I ⊆ S, |I| = k+ 1 ≤ d/2
and |J | ≤ bdc2, by Lemma 3 we have that L[xJ ] = 0 as needed. We now conclude the
proof of part 2 by applying part 1 to the operator L↓R,bdc2 , noting that the desired
conditions hold for the restricted operator.

We now prove the furthermore. Note that for p ∈ R[x]H satisfying degR(p) ≤ d
and degR∪S(p) ≤ bdc2 − k, we have that both L and H are defined for p and hence
L[p] = H[p]. From here, applying Lemma 4 part 2 to H and subset S (noting that
in this circumstance S has effective degree 0 with respect to H) we get that

L[p] = H[p] =
∑
I⊆S

H[xI(1− x)S\I ]H[p|I, S \ I]

=
∑

I⊆S,|I|≤k

H[xI(1− x)S\I ]H[p|I, S \ I] ,
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where the last equality follows since H[xI(1 − x)S\I ] = 0 by construction ∀I ⊆ S
such that |I| > k.The fact that H[·|I, S \ I] ∈ LasH

R∪S,bdc2−2k
(F,G), when I ⊆ S and

L[xI(1− x)S\I ] > 0, follows directly from Lemma 3 part 3 applied to the operator H
and the subsets I and S \ I. This concludes the proof.

Most combinatorial problems can be expressed as optimization over integer points
satisfying linear constraints. We shall therefore use slightly more compact notation
to describe Lasserre over the hypercube with additional linear constraints.

Definition 6 (Lasserre on a Polytope). For a polytope P =
{x ∈ Rn : Ax ≤ b, Cx = d}, A ∈ Rk×n, C ∈ Rl×n, R ⊆ [n], d ∈ N, define
LasHR̄,d(P ) := LasHR̄,d({bi − ai · x : i ∈ [k]} , {dj − cj · x : j ∈ [l]}). We similarly define
Lasd(P ), for general degree d Lasserre (not necessarily on the hypercube).

Exercise 1. Show that given two equivalent representations of a polytope P =
{x ∈ Rn : A1x ≤ b1, C1x = d} = {x ∈ Rn : A2x ≤ b2, C2x = b2} that the correspond-
ing Lasserre relaxation is identical. Namely, for any d ≥ 1, show that

LasHR̄,d(
{
b1
i − a1

i · x : i ∈ [k1]
}
,
{
d1
j − c1

j · x : j ∈ [l1]
}

) =

LasHR̄,d(
{
b2
i − a2

i · x : i ∈ [k2]
}
,
{
d2
j − c2

j · x : j ∈ [l2]
}

) .

Hint: use Farkas lemma.

For many problems combinatorial problems, there are natural bounds on the support
of any solution, which hold even for the basis LP relaxations. We will use this these
properties for establishing conditions under which the flat extension lemma above can
be applied.

Definition 7 (Integral Ones Property). For a polytope P ⊆ Rn and subset S ⊆ [n],
define

onesP (S) = {max | {i ∈ S : xi = 1} | : x ∈ P, x ∈ [0, 1]n} .

We say that P satisfies the integral ones property on S, if every point x ∈ P ∩ [0, 1]n

satisfying | {i ∈ S : xi = 1} | = onesP (S) is integral on S, i.e. satisfies xi ∈ {0, 1} ∀i ∈
S.

A special property of Lasserre over an LP relaxation of a combinatorial problem, is
that the degree 1 moment vector

L[x] := (L[x1], . . . , L[x1]),

always yield a feasible solution to the LP relaxation.
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Lemma 7 (LP feasibility). Let P = {x ∈ Rn : Ax ≤ b, Cx = d} ⊆ Rn be a polytope
and let L ∈ Lasd(P ) (or LasHd (P )) for d ≥ 1. Then L[x] ∈ P .

Proof. Let fi(x) = bi − ai · x, i ∈ [k], and gj(x) = dj − cj · x, j ∈ [l]. Since f1, . . . , fk
and g1, . . . , gl are the defining inequalities and have degree ≤ 1, we have that

0 ≤ L[fi] = bi −
n∑
s=1

aisL[xs] = bi − ai · L[x] ∀i ∈ [k] .

0 = L[gj] = dj −
n∑
s=1

ajsL[xs] = dj − cj · L[x] ∀j ∈ [l] .

Thus L[x] ∈ P as needed.

We now use the integral ones property and the fact above to derive a very useful
partial integrality condition for Lasserre known as the decomposition property.

Theorem 1 (Decomposition Property). Let P ⊆ Rn be a polytope, R, S ⊆ [n],
k := onesP (S), d ≥ 1, L ∈ LasH

R,d
(P ) and let H ∈ R[x]∗

H,R∪S,d−k be defined by

H[p] = L[πS,k(p)]. If 2k + 3 ≤ d, or, 2k + 1 ≤ d and P satisfies the integral ones
property on S, the following holds:

1. L[xI ] = 0, ∀I ⊆ S, |I| = k + 1, L[xI ] = 0.

2. For p ∈ R[x]H , degR(p) ≤ d and degR∪S(p) ≤ bdc2 − k, we have that

L[p] =
∑

I⊆S,|I|≤k

H[xI(1− x)S\I ]H[p|I, S \ I]

where H[·|I, S\I] ∈ LasH
R∪S,d−2k

(P ), for all I ⊆ S satisfying H[xI(1−x)S\I ] > 0.

In particular, using at most O(|S|k) evaluations of H, one can compute I ⊆ S,
|I| ≤ k, such that L[p] ≤ H[p|I, S \ I].

Proof. We prove 1. For the sake of contradiction, let us assume that there exists
I ⊆ S, |I| = k + 1 such that L[xI ] > 0. Let us first assume that 2k + 3 ≤ d. Then
by Lemma 3, we have that L[·|I, ∅] ∈ LasHR∪I,d−2(k+1)(P ). Thus, since by assumption
d − 2(k + 1) ≥ 1, by Lemma 7 we have that L[x|I, ∅] ∈ P . However, L[xi|I, ∅] = 1
∀ i ∈ I ⊆ S, but this implies that onesP (S) ≥ |I| = k + 1, a clear contradiction.

Now assume that 2k+1 ≤ d and that P satisfies the integral ones property on S. First
if k = 0, then L[x] ∈ P and hence by the integral ones property L[xi] = 0, ∀i ∈ S, as
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needed. Next if k ≥ 1, note that 2k + 1 ≤ d ⇒ k + 1 ≤ bdc2. Now pick i∗ ∈ I and
let I = I \ {i∗}. By Lemma 3 part 3, since |J | = k ≤ d/2 and |I| = k + 1 ≤ bdc2 and
L[xI ] > 0, we must also have L[xJ ] > 0. Thus by Lemma 3, L[·|J, ∅] ∈ LasHR∪J,d−2k(P ).
Since d − 2k ≥ 1, by Lemma 7 we that have L[x|J ] ∈ P . By integral ones property
on S ⊇ J , since L[xj|J ] = 1, ∀j ∈ J and |J | = k, we must have that L[xi|J ] = 0
for i ∈ S \ J (otherwise we would have too many ones). In particular, L[xi∗|J ] = 0,
a contradiction since L[xi∗|J ] := L[xJxi∗ ]/L[xJ ] = L[xI ]/L[xJ ] > 0 by our initial
assumption.

We now prove 2. The first part follows directly from Lemma 6 part 1 combined with
part 1 of the theorem. For the second part, it follows directly from the fact that
the vector (H[xI(1 − x)S\I ] : I ⊆ S, |I| ≤ k) corresponds to a convex combination.
Thus, we can find the desired conditioning subset I by trying all

∑k
i=0

(|S|
i

)
= O(|S|k)

possibilities.

8.3.1 Application to the Knapsack Problem

Given weights w1, . . . , wn ∈ [0, 1] and profits p1, . . . , pn ≥ 0 for n items, the knapsack
problem is to find a maximum profit subset of the items that fits with the knapsack,
namely

OPT := max

{
n∑
i=1

pixi : x ∈ {0, 1}n ,
n∑
i=1

wixi ≤ 1

}
.

Here the relevant polytope P = {x ∈ Rn :
∑n

i=1 wixi ≤ 1} is the knapsack capacity
constraint. We will now use the decomposition property to bound the integrality gap
of the Lasserre relaxation over the knapsack polytope.

Theorem 2. [KMN11] For d ≥ 2t+ 3,

(1− 1/t) max

{
L[

n∑
i=1

pixi] : L ∈ Lasd(P )

}
≤ OPT .

Proof. Let L ∈ Lasd(P ) denote an optimal Lasserre solution. Define S =
{i ∈ [n] : pi ≥ OPT/t} and let k = onesP (S). Clearly, k ≤ t, since otherwise by drop-
ping all the fractionally picked items from the solution in P∩[0, 1]n achieving the maxi-
mum number of ones in S we would get an integral solution of value greater than OPT.
Therefore by the decomposition property, there exists H ∈ Lasd−2k(P ), d − 2k ≥ 3,
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such that H[xi] ∈ {0, 1}, ∀i ∈ S, and for which L[
∑n

i=1 xipi] ≤ H[
∑n

i=1 xipi] and
H[x] ∈ P ∩ [0, 1]n. Let F = {i ∈ [n] : H[xi] ∈ (0, 1)} denote the set of items fraction-
ally picked by H, where we note that S ∩ F = ∅. Let yi = H[xi], for i ∈ S, and let
(yj : j ∈ F ) denote the greedy solution for the restricted knapsack on the fractional
items with capacity 1−

∑
i∈S yi. That is, letting π : [|F |]→ F denote the permutation

which orders the fractional items according to their bang per buck, namely such that
pπ[i]/wπ[i] ≥ pπ[i+1]/wπ[i+1], ∀i ∈ [|F | − 1], the solution y on F picks items integrally
in this order until just before the capacity of the knapsack is exceeded. At this point,
there is only enough space in the knapsack to pick the next item in this order frac-
tionally, which y does until the knapsack is completely filled. From here, it is easy to
check that y achieves greater profit that H, i.e.

∑n
i=1 piyi ≥ H[

∑n
i=1 pixi], since the

greedy yields the optimal LP solution for the knapsack restricted to F . In particular,
by construction, we also get that

∑n
i=1 piyi ≥

∑n
i=1 L[xi]pi ≥ OPT. Note that if y

is integral, we are done, since then also
∑n

i=1 piyi ≤ OPT. Otherwise, note that y
has exactly one fractional coordinate yi∗ , for i∗ ∈ F . Since i∗ /∈ S by construction,
note that pi∗ < OPT/t. In particular, we get that OPT has value at least that of the
integral solution obtained by dropping i∗ from y, and hence

OPT ≥
∑

i∈[n],i 6=i∗
piyi ≥

n∑
i=1

piyi − p∗i ≥
n∑
i=1

piyi −OPT/t

≥ (1− 1/t)
n∑
i=1

yipi ≥ (1− 1/t)
n∑
i=1

piL[xi] ,

as needed.
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