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Embedded Video in Hypermedia Documents:
Supporting Integration and Adaptive Control

DICK C.A. BULTERMAN
CWI: Centrum voor Wiskunde en Informatica

As the availability of digital video becomes commonplace, a shift in application focus will occur from
merely accessing video as an independent data stream to embedding video with other multimedia data
types into coordinated hypermedia presentations. The migration to embedded video will present new
demands on applications and support environments: processing of any one piece of video data will
depend on how that data relates to other data streams active within the same presentation. This article
describes presentation, synchronization and interaction control issues for manipulating embedded
video. First, we describe the requirements for embedded video, contrasted against other forms of video
use. Next we consider mechanisms for describing and implementing the behavior of embedded video
segments relative to other data items in a document; these relationships form the basis of implementing
cooperative control among the events in a presentation. Finally, we consider extending the possibilities
for tailoring embedded video to the characteristics of the local runtime environment; this forms the
basis for adaptive, application-level quality of service control of a presentation. In all cases, we
describe a mechanism to externalize the behavior of hypermedia presentations containing resource
intensive data requirements so that effective control can be implemented by low-level system facilities
based on application-specific requirements. We present our results in terms of the CMIFed authoring/
presentation system.

Categories and Subject Descriptors: I.7.2. Multi/Mixed Media, H.5.1. Video Processing

General Terms: Multimedia, Hypermedia Documents, Media Synchronization, Video Presentation

Additional Key Words and Phrases: Adaptive Control

1. INTRODUCTION

During the past decade, the presentation of video data on desktop computers has
grown from a curiosity to a common facility. Most current workstations can provide
at least rudimentary video display support (with one even supplying a camera as a
part of its standard configuration) and many PC third-party vendors offer interfaces
that allow even low-end systems to display continuous video from analog inputs.
While these developments may not be technologically startling—after all, a typical
computer is a television set that has had its tuner and antenna replaced by a compu-
ter’s I/O bus—they do provide perhaps the most dramatic example of the shift to
new data types that has occurred under the name of multimedia computing.

In the current generation of video presentation systems, video is either processed
as a stand-alone data type or it is processed as an independent stream that is attached
to other related media streams in a multimedia document [12], [13]. Processing for
stand-alone video is illustrated in Fig. 1(a): a special-purpose video player takes
self-contained video data from a local disk, a CD-ROM, a network connection, etc.,
and displays it via a video device controller subsystem. The device controller may
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simply map bits onto a display, or it may be a complex processor that allows video
decompression and image transformations. In both cases, the functions/freedom
provided by the device will determine the type of control—such as start/stop and
sometimes pause/rewind/fast-forward—that the user can exert over the presentation
through the video player. Fig. 1(b) illustrates the approach most commonly used for
attached video [25]: the activation of the video is initiated by a document player
(which also directly or indirectly controls other data streams) but the actual video
control remains with an external video player. This approach has the advantage of
localizing data-dependent control in the video player and overall presentation con-
trol in the document player; given the lack of standardization of video presentation
hardware, this pragmatic approach makes video presentation possible if an appro-
priate video player exists on a presentation platform.

In both stand-alone and attached video processing, the emphasis of current-gener-
ation systems has been on simply accessing video data. The scarcity of existing
video material and the relatively low delivery speed of networked video has limited
the potential for more active video processing. This will change as processor speed
and I/O and network bandwidth increase, and as storage devices provide higher den-
sity—all allowing a new generation of browsers and editors to make video data
more readily available. As video becomes commonplace, one can expect a shift
toward integrating video fragments with other information streams into hypermedia
documents, with the coordinated presentation of each stream depending on content-
based associations among the streams. We call this type of use embedded video.

The coincident use of embedded video with other data items will require signifi-
cant document-specific control over activation and inter-stream data synchroniza-
tion. This poses a fundamental control problem in current approaches to supporting
video data: at present, any two streams can be started at document-defined relative

Figure 1: Generic multimedia document processing architecture.
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times, but other control events cannot be fed back to the document player because
processing in individual subsystems have no relationship to each other. As a conse-
quence, new control models are required that allow the coordinated presentation of
embedded data.

This article describes the approach used in the CWI CMIFed presentation environ-
ment for supporting embedded video in networked hypermedia documents. Our
emphasis is not on “how do you get video to work” but rather: “what do you do with
video once it does work.” Our approach is to externalize the document-dependent
interactions among media streams. That is, we allow the author to specify how com-
ponents interact explicitly at the document level, rather than using implicit interac-
tions defined in internal data definitions. In this way, light-weight, media-specific
control components can be defined that coordinate the interaction among various
media streams. Rather than migrating the data and format control for video (and
other speciality data types) backward into the document player, we allow the imple-
mentation of inter-stream control decisions to be migrated forward to the media
players. We are able to do this because our document structure makes presentation,
synchronization and interaction information explicitly available for use by down-
stream processing components. In this way, each media player can coordinate its
activities with other streams while retaining the localization of device dependencies
within relatively small and isolated components of the presentation architecture.
The structure of our approach is illustrated in Fig. 2.

Our discussion is structured as follows. Section 2 reviews background informa-
tion on the characteristics and implications of using embedded video in hypermedia
documents. Section 3 describes how we currently externalize the traditionally inter-
nalized aspects of a document’s data interactions to isolate low-level control of
video flow while retaining integration with other data streams in the document. Sec-
tion 4 discusses extended approaches to providing adaptive support for embedded
video for increased presentation and interaction control in heterogeneous environ-
ments. Sections 3 and 4 include examples from the CMIFed player; the CMIF docu-
ment format is reviewed briefly in the Appendix.
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Figure 2: A cooperative-control approach to supportive embedded video.
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2. EMBEDDED VIDEO: CHARACTERISTICS AND IMPLICATIONS

In order to introduce the problems of supporting embedded video, this section
reviews general network-based video processing and then contrasts the characteris-
tics of embedded video with those of other video applications. We begin with a set
of examples of embedded video use in hypermedia documents.

2.1 Examples of Embedded Video Use

Embedded video distinguishes itself from stand-alone or attached video in the fol-
lowing ways: (1) the presentation of video data will not be the central purpose of the
application or document using embedded video; (2) the presentation scope of an
embedded video fragment may vary, depending on the runtime behavior of other
streams in the presentation; (3) the video that is shown will be of short duration (on
the order of seconds); and (4) the content-based integration of embedded video with
other data streams will required significant document-specific influence over proc-
ess scheduling and resource allocation.

In order to make our presentation in this paper clear, we define three examples
that illustrate the use of embedded video in hypermedia documents. We return to
these examples throughout the paper. The examples are:

• electronic encyclopedia: in a section describing bird life in the city, a series of
videos are shown of birds in different places, with the duration of any one frag-
ment dependent on the length of audio and text data that provide the basic
descriptions of our feathered friends; this use of video supports and amplifies
other information in the section rather than providing self-contained presenta-
tions

• personal communication: in the body of an electronic mail message, a frag-
ment of embedded video is presented with an accompanying but independent
audio block if the user selects the pair by following a hyperlink from the body
of the text; this use of embedded video depends on the behavior of the user
when the message is read as well as the length of the audio fragment

• multimedia cookbook: as part of a recipe for a hot-curry-and-chocolate cheese-
cake, a short video and (independent) captions text describing the batter prepa-
ration technique and required consistency is placed between a text block
containing ingredients and a still image, showing the results; here the video is
the main information carrier of information.

In each example, the current approach of relying only on low-level, application-
independent management of video data is insufficient to meet the needs of embed-
ded video presentations.

2.2 Delivering and Controlling Networked Video

In conventional processing of video data, a video transaction is initiated between a
server and a client. Once the transaction starts, synchronization and resource control
is usually implemented by low-level client and server services without intervention
of application-level code [8], [19]. System resources are reserved in advance and
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low-level components within the operating systems of each host control the transfer
of data to ensure correct presentation synchronization [32]. A problem arises when
demand for resources exceeds resource availability. Consider the situation in Fig. 3.
If more clients wanted to access server y than it could handle, or if the network were
being saturated by competing requests for other video and non-video services, the
environment might not be able to provide correctly synchronized video data. A
common solution to this problem is the definition of an admission control protocol
for network and server resources [10], [34], [35]. Admission control protocols are
typically biased toward existing clients in the network. If a new client requests serv-
ice, it is only honored if sufficient resources are available; if not, the new request is
either (temporarily) denied or a negotiation process is initiated that results in a new
request for less-intensive use of resources. (That is, a lower frame rate could be
requested, yielding lower quality video.)

In the case of embedded video, the resource control problem is more complex
because of the application-dependent nature of video use. Table 1 summarizes five
properties that have an influence on resource control relative to embedded video and
three traditional video-based applications: video-on-demand [19], [22], video multi-
casting [20], and video-based CSCW [11], [31]. We discuss each property briefly in
the following paragraphs.

Role of video in the document. The role of embedded video is highly document
dependent. In our encyclopedia example, video plays a supporting role in that a
document author may define it to be optional. In the personal communication
example, the video presentation is conditional: it is used only if the user selects it by
following a hyperlink in the document. In the cookbook example, the video plays a
more critical role. Rather than highlighting or supplementing other data, the video is
used as the central information carrier.

This application dependency is typically not present in other uses of video. In
video-on-demand and multicast video, the video component is central—without it,

Figure 3: Networked embedded video.
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the application cannot function. In CSCW applications, video is important but not
central—video is often a common backdrop against which other types of informa-
tion (such as pictures or shared whiteboards) are presented, some of which may play
a more important role in the exchange of information than the video [11].

Structure of the video transaction. In a document using multiple embedded video
sequences, each segment will be a pre-defined object fetched from a single source
and presented at a single destination. Since all of the segments will not, in the
general case, come from the same server, aggregate behavior will approximate a
multiple source and single destination structure.

Video-on-demand is typically single source to single destination (although some
reuse of coincident requests may be possible [7]), video multicasts are typically sin-
gle source to multiple destinations (with selection occurring at the receiver), while
CSCW applications are by definition multiple sources to multiple destinations.
Video-on-demand data is nearly always pre-defined; video multicasts may be either
pre-defined or ‘live’; while video CSCW applications will contain a mix, but the
video component will nearly always be live.

Transaction duration. The length of each video segment will be determined by
the document. In general, the incidental nature of embedded video sequences
suggests that each fragment will be relatively short. (This maximizes reusability,
decreases transfer overhead and minimizes production costs.) In our experience, the
typical segment length is measured in seconds.

For video-on-demand, a single transaction will match the effective length of the
video item being accessed; for feature-length films, this will be on the order of
hours, although it can also be shorter in data/news browsing applications [19], [22].
Video multicasts may vary, but their length will typically also be on the order of
(large fractions of) hours. CSCW video transmissions may also vary in length, but
will typically be measured in blocks of minutes.

Transaction initiation. Each embedded fragment transaction is initiated by the

embedded
video

video on
demand

video
multicast

video-based
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Table 1: Characteristics of important applications using video data
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destination, although the actual transfer may be denied if the infrastructure cannot
fetch the data “on time,” depending on the nature of the data’s use in the
presentation. The scheduling of the transaction may depend on other data streams
active in the presentation.

Video-on-demand, by definition, is scheduled at the request of the user, although
the actual transaction will start only when resources are made available across the
infrastructure. In video multicasting, the start of the transaction is governed by the
source of the multicast—the nature of this class is such that events are usually pre-
scheduled based on an external time reference. For CSCW, the physical presence of
each participant during the session implies the need for external scheduling.

Interaction requirements. Interaction with embedded video takes two forms:
interaction within the video segment and interaction with the portion of the
document that includes the segment. In the first case, hypertext-like structures such
as links and anchors [12] must be integrated within the video and means must be
found to activating these during playback [18], [33]. The second case involves
defining the behavior of the video stream in relation to the behavior of the streams
within which it is embedded. For example, if a video is shown together with a text
fragment containing the source or destination of a hyperlink, the effect of following
the link will have ramifications for the video sequence as well. (We return to these
topics in section 3.)

Video-on-demand and video multiplexing require only limited interaction sup-
port, typically at the level of VCR-like controls [7]. Non-sequential access (such as
hyperlinks within the video source) is typically unsupported. In CSCW applications,
interaction will dominate, although the types of interactions resemble the social
conventions of conversation rather than having each user selectively navigate
through (video) data sets simultaneously.

2.3 Implications of Embedded Video Use.

The video-rate resource needs of embedded video, coupled with its variable impor-
tance, short duration, and multi-source nature presents the support environment at
both the source and destination of a video transaction with a series of constraints
that are impossible to manage outside the context of the document using the embed-
ded data. The economy of scale and long-term connection characteristics of conven-
tional video processing all but disappear for embedded video use.

While the resources required for delivery of an individual fragment of embedded
video resemble a short-term video-on-demand session, the increased interaction
needs of embedded video and the need to coordinate delivery with other (independ-
ent) data streams will make actual resource reservation difficult throughout the
delivery pipeline. Consider the situation in Fig. 1 where workstation a is receiving
video and text data from servers x and z, respectively, and workstation c is receiving
video and audio data from servers y and z. In the case of workstation a, where text is
being combined with video, exact synchronization of the data streams may not be
required; for a given piece of text, the video data may even be optional—if the
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video cannot be delivered within document-specified constraints, it can be skipped
without loss of overall document content. In contrast, if workstation c requires lip-
synchronous data presentation, the needs will be more critical. In both cases, the
manner is which the embedded video is used rather than the nature of (embedded)
video itself will determine the desired system behavior.

3. DEFINING AND IMPLEMENTING EMBEDDED VIDEO BEHAVIOR

In this section, we describe how the scheduling and synchronization of video and
other multimedia events can be coordinated by using structural and logical relation-
ships among the data items that are saved with a document’s description. We begin
by describing the architecture of the CMIFed playback environment, developed at
CWI as part of our research effort in authoring and document presentation support
environments [30]. We then describe how we encode and partition individual data
items and conclude with a description of how we control data object interactions.
Several examples will be given in terms of the CMIFed authoring and playback envi-
ronment; a summary of the CMIF document structure is given in the Appendix.

3.1 The CMIFed Document Presentation Architecture

Designing and defining hypermedia documents is a non-trivial task. Data items
must be created or located in external databases and ‘pleasing’ presentations need to
be defined that run on heterogeneous presentation platforms at various times of the
day, under changing network loads. Of all of the tasks associated with building
hypermedia documents, the most time consuming is the creation of the data items
and the definition of the basic document structure. One of our primary goals has
been to ease the long-term authoring burden by allowing documents to be defined as
abstract document specifications in a relatively portable format. In this way, a single
document specification can be authored once, and then transformed to meet the
needs of the users and the constraints of the presentation environment at runtime.

In defining an architecture to support documents in a heterogeneous environment,
we retain structure information in the document and used it to guide presentation
playback. We externalize document behavior so that it can be used to influence net-
work-wide presentation scheduling and resource control while still coupling the
various media streams to allow presentation synchronization. This is in contrast to
the approach used in HTML-formatted documents [15], where media types like
audio and video (where supported) are processed as separate entities that cannot be
synchronized with other events active at the same time.

Fig. 4 illustrates the general runtime architecture of the CMIFed environment. The
CMIFed authoring system produces a CMIF hypermedia document. The document is
a data structure that is interpreted by the CMIFed player. The player consists of four
major components: the interpreter control program, the scheduler, the link proces-
sor and a set of channel threads. (The notion of a ‘channel’ is discussed shortly.)
The interpreter, scheduler and link processor are Python [29] programs, while the
media threads are machine-dependent routines written in Python or C.
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The player was designed to translate a system-independent description into an
executable version of the document. The document itself is not a script, but a data
structure that describes the components and interactions of an application. During
execution, the interpreter dispatches portions of the document to the scheduler,
under control of the user and under influence of the link processor. (The link proces-
sor implements the hypermedia control based on the Amsterdam Hypermedia
Model (AHM) [14].) The scheduler resolves synchronization constraints, brings
media items from the data depository to the various media threads, pre-fetching
information and caching results, as appropriate to the document’s content. The
organization of the data depository and the activities of the scheduler are discussed
in more detail below.

The document defines a time and resource description of the presentation and it
contains directives that externalize the structure of the application. Externalizing
application structure not only enables the possibility of improved document sched-
uling, it also facilitates the development of reusable applications. Authoring com-
plex presentations, just as writing complex computer programs, is a task that should
be designed to be portable—even across presentation platform facilities. This
requires the inclusion of sufficient information to reproduce the presentation on dif-
ferent environments and the encoding of this representation in a platform-independ-
ent form.

The CMIF document—and the CMIFed player—use our own private document
format. While formats such as MHEG [17],[21] or HyTime [16],[23] have been
designed that address some portability issues, we explicitly chose not to use these
for two reasons: first, the core of our project pre-dates any available versions of
these formats, and second, our intention is not to produce distributable documents,
but rather to study authoring and presentation support that could be integrated into

Figure 4: The CMIFed player architecture.

CMIF

Document

user interaction

Presentation

Devices

Document

system dependent

system independent

access
control

data depository

channel threads

audio

video

graphics

text

AHM
Link

Processor

Interpreter

player

Channel
Scheduler



10 • Embedded Video

ACM Transactions on Information Systems

future systems and future standards. In this last sense, it is useful to maintain a pri-
vate document format, although our authoring interface is more general than our
system alone [3]. We are currently integrating support for other formats in related
work [6].

3.2 Describing data fragments

Intuitively, each embedded video fragment is an atomic unit that is fetched by the
application as a single entity and then integrated with other data streams to form a
composite presentation. We call such a fragment a data block.1 Each data block may
have a simplex or complex internal structure (that is, it may consist of only one data
type or some combination of types “glued together” and accessed as a unit). Exam-
ples of video fragments are: the cookbook, encyclopedia and personal communica-
tion videos described in section 2; a news item (with or without soundtrack) from a
video broadcast; or a few seconds of video material contained in personal or public
archives. The unifying characteristic of all these segments is their potential for reuse
in a wide variety of applications.

In terms of the player, we are not particularly interested how data are internally
organized; we assume low-level activation routines will be available to (quickly)
access and deliver data. What we are concerned with is de-coupling data from any
application dependencies. For instance, in our cookbook example, the fact that the
video of the cheesecake batter is a required part of a presentation cannot be encoded
as part of the data or the database, since the sequence may be reused in many differ-
ent applications where it may or may not be optional. It may also be used several
times in the same application, each time with a different purpose and presentation
priority.

In order to promote reusability, we keep the external properties of each data frag-
ment separately from the data. These properties include information on the resource
requirements, data format and semantic content of the embedded data. This allows
searching for and analysis of video segments to occur without first having to access
the data sets. Our partitioning of attributes is given in Fig. 5: the data block, the data
block descriptor, and the event descriptor [4]. In the example, a 15.3 second video
fragment of a hot-curry-and-chocolate cheesecake mixture is stored as an MPEG-1
data block. The data block descriptor contains resource requirements and a contents
field, which is used by our authoring system to select this particular block. (It may
also be useful in defining dynamic hyperlinks within the presentation.) The use of
one instance of a particular block within a hypermedia document is described by the
event descriptor—in this case, indicating that only a portion of the complete data
block will be used in the presentation (the part active from ta to tb), that the presen-
tation should be synchronized with other events and that the presentation of the
video is a non-optional part of the document’s presentation.

In the example, we see a single encoding of the data item. A more general
approach is to control access to an adaptive information object (AIO), which can

1. Do not confuse this high-level data abstraction with low-level structures such as disk blocks.
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select a representation based on the runtime resources available. We return to this
organization in section 4.

3.3 Embedding events within a presentation

The CMIF document defines a collection of events that (conditionally) make up a
presentation, as well as three types of constraints across those events. Presentation
constraints define the placement of events on the output media, synchronization
constraints “guarantee” that placement will occur at the desired time, and interac-
tion constraints determine the collection of events that actually get presented.

Presentation constraints. The playback environment must present data at a
location and a size defined by the author, under control of the user. Consider the
multi-lingual electronic encyclopedia fragment shown in Fig. 6. Here we see a
presentation that consists of two streams of headline text (of which only one is
visible), a video stream, two formatted text streams containing captions (one in
Dutch, one in English), a block of formatted text in English, three audio output

event

data block

data block

application
independent

application
dependent

scope: use from ta to tb

data item:

Figure 5: A {data block | data block descriptor | event descriptor} hierarchy.
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streams (two with spoken text to match the captions and one sound-effects track),
plus a general control interface. Each of the data streams has its own presentation
requirements that depend on the characteristics of the data encoding and the
semantics of the message. The presentation requirements for this document include
the placement of information (involving the allocation of screen space and audio
channels) and the relative ordering of information. In case of conflicts, decisions on
screen resource use must be made by the presentation system. For example, if both
headline streams are allocated the same space on the screen, then only one stream is
visible; the stream is selected by system default or by explicit user action.
Alternatively, the two formatted text streams containing English and Dutch captions
could be defined so that both can be displayed together, meaning that the
presentation system would need to determine exact runtime placement to avoid text
overlap. (These options are specified by the author and implemented by the player.)
Note that if the captions have a content-based relationship to the video and/or audio
streams, the relative presentation time of each stream also becomes important.

In the CMIF environment, one class of presentation constraints is defined in the
event descriptor (as illustrated in Fig. 5) and a second class is defined via an
abstract media channel (or simply a channel). As we will see, the presentation con-
straints in the channel are used as a global mechanism for grouping attributes of
several events that share similar properties, where the event presentation constraints
can be used to over-ride those defined for the channel.

While the channel is typically of one media type, there may be several channels
per media type in the document. The mapping of channels to physical system
resources is done at runtime by channel threads optimized for use on a local system.
Fig. 7 shows a channel partitioning of the illustration in Fig. 6. Ten channels are
used to encode the logical portions of the document. Each channel definition con-

Figure 7: The use of channels in Fig. 6.
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tains information on the location, sizing and priority of all of the events on that
channel. During presentation, the scheduler uses channel information to determine
how channel-related events are to be processed. The user is also able to exhibit runt-
ime control over scheduling by explicitly activating/deactivating particular chan-
nels.

Processing for video channels is similar to that of other media types, except that
special-purpose facilities are provided to manage network delay and local buffering
of data. We discuss these activities in section 3.4.

Synchronization constraints. The temporal aspects of a document’s presentation
are expressed in terms of synchronization constraints. We can identify two very
general types of synchronization: low-level intra-stream and high-level inter-stream
synchronization. Intra-stream synchronization concerns the control of delay and
jitter of the data transfer between the data server and the presentation client; for our
purposes, we consider this a solved problem. Inter-stream synchronization is more
difficult, since it involves semantic dependencies as well as encoding-based timing
concerns. (Inter-stream synchronization is often called orchestration [24]; we avoid
this terms because it implies a particular layered implementation technique rather
than the definition of specification-level constraints.)

Perhaps the best-known video related synchronization constraint is ‘lip synchro-
nization.’ Here, a piece of video is accompanied by a separate audio track, where
both data items must be presented so that sound utterances are presented at more or
less the same time as the corresponding video frame. While the development of
algorithms to support lip-synchronous presentation under varying presentation cir-
cumstances remains an active research topic, we feel that is of only limited impor-
tance in presenting embedded video data: the video sequences are often not long
enough to justify extensive processing to support utterance matches. Instead, if lip-
synchronous (or other isochronous) presentation is important, a complex object will
probably be defined that resolves the problem at the source.

A more useful class of synchronization constraints is the specification of interac-
tions among a group of objects that can be conditionally presented together. In
Fig. 6, we saw a continuous text block on the value of birds that was presented
together with the various bird video sequences. It is useful to define two types of
synchronization constraints for this type of presentation: encoding-relative and con-
tent-relative. Encoding relative synchronization allows two or more events to be
scheduled relative to the activation of the encoding of a control event; this usually
takes one of the following forms: start together, end together, offset starts, etc. Con-
tent-based synchronization allows events to be scheduled relative the sematics of
the information contained inside the data associated with an event; for example, a
particular portion of a text sequence can be set to be displayed when a particular
portion of a video sequence is reached.

If a document is defined to run locally, most of the synchronization constraints
can be analyzed before the presentation begins [1], [8], [19]. If, on the other hand, a
networked presentation environment is used, the specification and analysis of the
timing dependencies becomes more difficult—especially if runtime variations in the
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availability of resources are considered. In hypermedia documents, one can ques-
tion the value of extensive pre-scheduling of synchronization points, since it is
never certain when—if ever—particular portions of a document will be reached.

Interaction constraints. If documents containing embedded video data are
activated in ‘VCR’ mode, the required user interaction facilities are relatively trivial
to support. In this mode, fast-forward/rewind/slow-motion/pause functions can be
implemented by increasing/decreasing the rate of a ‘document clock’ or searching
the encoding for key frames. Once a hyper-information structure is imposed on the
documents, however, interaction control becomes significantly more complex.

Having video be the target of a link is relatively straight-forward. Having video
contain the sources of links is more of a challenge, since link anchors need to be
associated with each video frame. Each frame will ultimately need to be tagged with
a collection of link anchors and the playback environment will need to resolve user
interaction (typically a mouse click) to a particular anchor; while automated tech-
niques are under study to assist in this task [5], it remains a difficult implementation
problem in part because of practical limits (size, copyright) on producing multiple
versions of video source data.

In the standard case of following a link, the control focus of a document can shift
to a new document portion much in the same way that a subroutine is used in a
sequential programming language. In our personal communications example in sec-
tion 1, a user can follow a link to an embedded video fragment, display it, and then
presumably return to the point at which the link was taken. A more challenging case
is to define the behavior of a collection of media objects when a link activates one or
more target objects: should the source objects be frozen, should they continue or
should they be terminated. In the AHM, we define this behavior in terms of a link’s
context. When link context is defined, the semantic structure of the document
becomes richer. A detailed discussion of link context is beyond the scope of this
paper; interested readers are invited to consult [14].

3.4 Embedded Video Scheduling and Control

Once a document is activated, the presentation, synchronization and interaction
constraints must be met in terms of the dynamics of a particular runtime environ-
ment. The advantage of separating event and data block descriptors from the data
blocks is that individual events can be pre-fetched based on a forward-interrogation
of document components. This can help balance resource use or it can serve to
implement synchronization relationships among data items. (Note that the utility of
pre-fetching events will depend on the degree of hyper-navigation performed by the
user: a data block may be pre-fetched by the runtime environment, only to be dis-
carded because the user follows a link.) A second advantage of externalizing data
block properties is that the authoring system can use them to perform static docu-
ment layout and event scheduling operations.

The following sections describe how the CMIFed system shown in Fig. 4 and dis-
cussed in the Appendix, supports embedded video.
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Document activation. When a CMIF document is started, a scan is made over (a
portion of) the specification and an internal event map is created that contains a
partial ordering of document events. The CMIF document consists of a tree-
structured document that contains parallel and sequential structure elements and
event descriptors, as well as channel maps and interaction control structures. The
document also contains structure elements used to constrain scheduling and
resource use.1 Fig. 8 shows a simple document fragment that we will use to explain
how we schedule embedded data.

The scheduler looks at a sub-tree structure and issues activation requests to each
channel thread required within that fragment. For the fragment in Fig. 8, the sched-
uler would look at the local root and then construct a partial ordering of those data
nodes that were ‘immediately visible.’ The immediately visible nodes in the figure
are the children labelled d, c, and a of the parallel node at left, containing a video
sequence, headline text and formatted text block—all of which are presented
together—and the video block labelled b at the right of the tree, which is presented
after the parallel node has finished. The scheduler also sees a sequential node at the
scheduling boundary (represented by the dotted line), but it does not allocate any
resources or initiate any scheduling activity for the nodes inside this boundary. (The
nodes inside the boundary are a conditional group that only get activated as the
result of specific user control actions, or they when they are a target of an external
link. For scheduling purposes, it is only important to note that they do not get sched-
uled until they are explicitly activated.)

The scheduler next determines which channels are associated with each of the
nodes d, c, a and b. For simplicity, assume all of the video data in the example is
presented by the same channel thread: this means that all of the segments are pre-
sented in the same region on the screen and are of the same size. The scheduler

1. These elements, called choice nodes, also have a role in determining link behavior and general
navigation control [14]. We discuss only those aspects relevant to scheduling.

Figure 8: Document scheduling/activation.
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would arm each of the channels to prepare them to transfer data and, once armed,
would signal each channel thread to start actual data transfer. (Note that if there
were synchronization constraints across a set of channels, these could influence the
exact start time of each data node.) Once transfer had started, the scheduler would
see if there were subsequent events scheduled for active channels; if so, these are
pre-armed so that they are ready for activation. The behavior of a channel associ-
ated with arming and pre-arming is channel dependent; we discuss video channel
processing in the following section.

After all of the active events in a document fragment have completed, the sched-
uler activates the next set of events. If a control action changes the current focus of
the document to another portion, then the scheduler restarts its scheduling activity.
The scheduler can also control the document clock in response to user interaction
(fast-forward/slow-motion), with each active channel thread implementing media-
specific changes.

Video channel support. The video channel performs three functions. First, it
implements data access and local device control. Second, it implements (pre)arming
of events. Third, it changes data rates in response to dynamic system behavior.

Accessing data and interfacing to local devices is done through the facilities of
the local operating system and the data server. In most cases, the video data will be
stored in the system’s file system, although it could also be accessed through a data-
base server. Video data can also be scaled or transformed by the channel thread.

Video pre-arming activity depends on the location of the data and access statistics
maintained by the video channel. For local data, the file holding the video is
accessed and a fixed number of frames are read into an internal buffer; this assumes
that local activity is well understood. For networked data, the file is opened and one
or more frames are fetched, based on statistics gathered for earlier accesses to that
particular server. (If there were no previous accesses, a single frame is obtained.)

During video transfer, the number of frames received are compared with the
number of frames expected based on the document clock (set by the scheduler) and
the actual time of the system clock. The fetch rate of the video data can be increased
or reduced depending on the constraints of the document.

Document interaction. Standard VCR interaction is handled by the scheduler and
the media channels as described above. When a link is followed, the scheduler and
the AHM link processor determine the behavior of the active nodes at the link’s
source (these can be paused, replaced or can continue) and then transfer or co-
schedule control at/to the target of the link. (In terms of Fig. 8, the area within the
dotted link might be activated.) The target can be either a single data event or a
group of events, usually contained within a scheduling boundary. Once the link is
activated, the scheduler continues normal processing.

At present, CMIFed supports linking to video sequences that are contained in a
document sub-tree, or from parallel nodes that include video data but where the link
source is in a static data type.
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3.5 Implementation Concerns

The scheduling of a document remains a complex activity, especially if system
dynamics are considered in making scheduling decisions. The primary advantage of
the channel approach to scheduling is that it can be used to tailor documents for par-
ticular execution environments, with intelligent processing contained inside each
channel thread. Since multiple type of threads can exist for each media type (each
with different processing approaches—and processing overhead), the author and the
user can flexibly define dynamic system behavior.

We have found the development of runtime solutions to document scheduling
both rewarding and frustrating. It is nearly impossible to adequately pre-compute
event schedules for use in network environments (where server and operating sys-
tem resource allocation is difficult to influence) and even the ‘simple’ case of local
execution from local data sources includes an unpredictability resulting from the
use of hypermedia control. Instead, a series of heuristic scheduling algorithms
seems to provide the best short-term solution to implementing control across chan-
nels.

In implementing control communication between the various media channels, it
is also clear that local processing of all presentation, synchronization and interac-
tion constraints should not be left solely to the most local level. As a result, an inter-
mediate processing layer (the global manager) is used to coordinate messages
among the various media players. The global manager is separated from the channel
scheduler and the link processor to enhance portability; processing of control
requests nearly always involves some form of machine dependencies, which can be
isolated to the global manager. The various local managers translate global (often
time-based) interaction points to values appropriate for various media formats and
further isolate channel control from the functions of media access libraries. This sit-
uation is sketched in Fig. 9. The global manager can be thought of as common con-
straint implementation code, where a video player could be instructed to perform a
low-level action at a certain time. When this time occurs, the local manager can sig-
nal the global manager for further instruction. (Each local manager can implement a
suite of control algorithms, with a document author determining what kind of recov-
ery action he would like the local manager to take.) While the overhead in sending
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Figure 9: Partitioning of channel control management.



18 • Embedded Video

ACM Transactions on Information Systems

control messages is too high to guarantee very regular, highly detailed synchroniza-
tion, it does provide enough flexibility to implement coarser check-point synchroni-
zation, such as making sure that an audio and embedded video segment remains
synchronized at 10% sampling intervals.

4. ADAPTIVE PROCESSING OF EMBEDDED VIDEO

The work described in the previous section gives an overview of how we handle
embedded video in a relatively conventional environment. CMIFed has focused on
having an author specify desired behavior, having the user indicate actual behavior
and having the local environment implement the presentation and synchronization
requirements. The extensions to CMIFed described in this section take a more adap-
tive approach to resolving runtime conflicts by have multiple projections of embed-
ded data available and then selecting one of these dynamically, based on the state of
the system (including the local and remote hosts, and the network infrastructure)
when an object is accessed.

While some degree of adaptability has been studied for applications such as plan-
based document synthesis [9] and automated generation of documents/interfaces
[27], [28], our approach differs because we do not assume that there is a single ‘cor-
rect’ view of the information being presented. We also do not try to optimize con-
tent to realize a particular task (from an knowledge-based perspective). Instead, we
are interested in managing the complexity of general-purpose presentations when a
series of alternative representations exist that can reduce the systems impact of
fetching, transferring and presenting information. The burden for specifying alter-
natives remains with the document author; the enhanced system simply tries to find
the best fit that it can based on the state information it has available at runtime.

4.1 Defining and Managing Alternative Representations of Embedded Video

In Fig. 5, we presented an event -> data block descriptor -> data block hierarchy.
The utility of this approach is that it provides the authoring system and the runtime
environment with an explicit mechanism for making static and dynamic decisions
on the use and constraints of particular events. The same mechanism, coupled with
extensions to the CMIF channel model, provides the basis for adaptive system
behavior support.

We illustrate our approach with the following non-video example. Consider the
two event descriptors that point to a common data block descriptor, which points to
a text-based data block containing our cheesecake recipe (Fig. 10(a)). Event
descriptor a uses the HQ_NL audio channel and defines a processing filter (called
text2dutch) to make a projection of the text block onto spoken Dutch output, while
event b uses the LQ_MC audio channel and defines a filter to map the text to a Morse
code output string. In the channel architecture that is supported by CMIFed, the user
can make an explicit selection of either channel (or both) at runtime. The choice is
made based on user preference.

An alternative to user preference is system preference, as illustrated in Fig. 10(b).
Suppose, for example, that only a single channel was defined that could produce
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either high- or low-quality audio output. Rather than having the user explicitly
select which of the available encodings he wanted, the runtime system could select
an encoding on the audio channel based on the classification of the available hard-
ware. Given an office workstation, for example, the highest quality encoding would
always be used. (In this case, the Dutch output.) If the same application was
accessed from an airborne laptop using a low-bandwidth connection, the low-qual-
ity channel would be used, yielding a Morse code presentation. The user would not
have to explicitly participate in the runtime selection process: instead, the environ-
ment could be configured for any user limitations or preferences, and the decision
could be made dynamically by the presentation system.

Although video is not a data type that lends itself to dynamic projections from a
single data block at runtime, several possibilities exist for pre-creating the alterna-
tive projections illustrated by Fig. 11 . For example, special-purpose processors
could create a set of reduced-size encodings (using MPEG1-4, JPEG, etc.) of the
original video sequence. Another option is to define projections that use other media
such as text, audio or still images, each of which can be generated from the scripts
and (extensive) production notes that are required for the creation of even relatively
simple videos. Given the availability of these projections, the runtime environment
can choose among the reduced-size encodings or the text, audio and video projec-
tions based on the available resources, the priority of each encoding type and the

Figure 10: Multiple event projections of a single data block.
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characteristics of the target workstation much in the same way that multiple projec-
tions could be generated from a single encoding of text.

4.2 Adaptive Information Object Model

One of the principal control operations in extended environment is a freedom to
select individual data representations of an adaptive information object (AIO
[2],[4]) at runtime. Our abstraction for the AIO shown in Fig. 12.

In this illustration, three alternative representations of a video clip are shown: the
video clip itself (R0), an audio description with a set of still images (R1) or a text
block with captioned stills (R2). Selection of a particular data set is supported
through a set of control interfaces. These interfaces include:

• representation control: The choice of a particular AIO data projection is gov-
erned by the constraints of the application and the nature of the environment. In
general, support is provided for heterogeneous target environments or environ-
ments supporting a range of data quality (for example, high-resolution images
or stereo sound for high-end workstations; low-resolution images or text substi-
tutions and low-quality audio for the low end. The goal is to provide a natural
way for supporting heterogeneity within the environment without overloading
the application author or user.

• resource control: while many of the basic operations of the AIO relate to one-
time selection of a representation for a particular instance of the object, it may
be necessary to control the delivery of data because of limitations of the envi-
ronment. These limitations may occur at the server or they may come from the
target host. They may also come from other AIOs (on other source hosts) who
are not able to meet their data requirements or from global resource limits.

• synchronization control: the timely delivery of data, either by a single object or
by several objects working in concert, is of fundamental importance to the oper-
ation of multimedia computing. The synchronization control interface provides
a general mechanism for inter- or intra-stream synchronization. The AIO may
also initiate control communication with other components via this interface.

As shown in the figure, a particular AIO may be complex, having many represen-
tations available, or it may be a simple server that knows how to present controlled
delivery of a single data type. Each AIO may be a separate entity or it may be man-

Figure 12: An Example Adaptive Information Object.
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aged via an object server. The overall role of the AIO is to manage the implementa-
tion of constraints on the presentation of data.

The AIO model is more than a simple extension of the local manager illustrated in
Fig. 9. Where the local manager processed data based on activity on the local pres-
entation system, the AIO involves client-server negotiation to determine a desired
representation under given resource and synchronization constraints. Our future
plans include integrating local and remote operating system support into the con-
straint resolution process, but no specific low-level constraint management algo-
rithms have been developed to date.

4.3 User-Level Quality-of-Information Support

In order to normalize the processing of AIO control interfaces, a constraint interface
is being developed to implement a user-level quality of service specification. In
order to distinguish this from the low-level quality-of-service (QoS) parameters that
have been the topic of extensive study, we term these higher level concerns quality
of information (QoI) constraints. The intention of the QoI control is to provide the
author/reader and the runtime environment a selection mechanisms for AIO access.
These constraints fall into two broad categories: static QoI constraints, whose
impact on a particular projection selection is known when the document is defined,
and dynamic QoI constraints, whose impact on projection selection is not known
until the document is accessed. (Fig. 13.)

Static constraints on the selection of a projection are those that are defined when
the document or information object is authored/created. While the resolution of
these constraints occurs at runtime (that is, a particular projection can be selected
based on the alternatives provided with the document), the alternatives usually can
be analyzed before presentation begins. Examples are:

• information encodings: information can be mapped to one of several projec-
tions, each of which may use one or more types of presentation media. While
selecting among projections is a runtime task, the range of projections available
are assumed to be know statically—even though the information itself may be
synthesized at the time it is referenced. The projections may be kept together in
an information object database, they may be stored separately in media-related
databases or they may be stored as files in a file system. Access/charging con-
straints may also exist.

Figure 13: Coarse projection-constraint classifications.
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• author preferences: while defining a presentation, the author can specify the
representation(s) that best project the information under a variety of circum-
stances. These circumstances will have both syntactic and semantic compo-
nents, such as “end together” or “place object A to the left of B because the
content of B is identified as being to the right of A.” They can be conditional:

if audio is active and if video is active
then delay until end of longest sequence
else delay n-units of time;

or they can involve user interaction. Author preferences are static because they
are defined before a particular presentation takes place; the selection of an alter-
native depend on the combination of user preferences and system states.

Dynamic projection constraints are those that depend on the combination of a par-
ticular user of a document and a particular presentation environment. Here, support
is provided for heterogeneous presentation systems and heterogeneous users. In
addition, we also include constraints based on the runtime state of the interconnec-
tion environment. Dynamic factors include:

• reader preferences/abilities: for a given presentation, the needs of readers in
consuming the information will depend on a variety of factors, including gen-
eral user preferences and basic user ability limitations. Style preferences may
dictate that a user would rather receive text-based projections of information
than audio-based projections, while functional preferences may dictate that,
because a user is blind, audio data is required in place of text;

• system preferences/abilities: for a given presentation, a homogeneous presenta-
tion platform cannot be assumed. Some presentation platforms will support a
wide range of input and output devices, but others will contain only a subset of
those potentially available. As with readers, constraints on the presentation
environment are analogous to style-based or ability-based, where style con-
straints are local preferences, while ability constraints would be based on the
presence/absence of a particular type of input/output functionality;

• environment preferences/abilities: for a given presentation, the basic ability of
the support environment to provide information to the user will be constrained
by resource availability across the environment. While, for example, a particu-
lar user may prefer to see a sequence of video images instead of a block of text,
the underlying environment—including information servers, transport net-
works, intermediate buffering hosts, local operating systems, etc.—may not be
able to provide this service (even if the local presentation environment can).

The nature of constraints is not yet well understood, and the list above is not com-
plete. What is clear, however, is that some mechanism is required to specify system
behavior in a more direct way than is currently available. The approach of having an
author specify a set of interpretation constraints allows for a degree of extra infor-
mation on intent and content evaluation that can be important in making resource
allocation decisions across the network. Similarly, having execution environments
specify the limits on their resource availability should allow allocation decisions to
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be made at a lower level than is currently available. This philosophy is more impor-
tant than any single set of constraint characterizations.

5. CLOSING COMMENTS

There are a wide range of problems that need to be addressed before video data can
be stored and accessed with the same flexibility as text, or even with the limited
flexibility currently available for pictures and audio data. Obviously, video data will
need to be created and edited, and it will need to be stored and made available to
applications on demand. In this process, the artistic and design considerations in
producing effective video sequences may prove to be the dominant challenge; given
adequate bandwidth and affordable video decompression hardware, the actual deliv-
ery of video data should not present a significant future problem.

If there is a technology-related challenge to video processing, it will be in
describing and implementing the synchronization and coordination of embedded
video data into the broader context of a document. Where traditional video support
has focused on the application-independent transfer of bytes from a server to a cli-
ent in a time-constrained manner, the use of embedded video implies a shift to
processing the video data in the context of the application. As such, low-level serv-
ices will need to be able to receive information on that context at the time the
request for a video transaction is initiated. The short duration of each fragment
means that the overhead required to support conventional, connection-based trans-
fers may not be justified for embedded video: a long video setup time during which
transfer resources are allocated and admission control is provided may be incompat-
ible with the needs of presenting 15 seconds of video data. In addition, the combina-
tion of embedded video with other data types makes synchronization within the
presentation multi-dimensional: along with intra-stream synchronization, the con-
tents of each stream must also be synchronized with the presentation’s other events.
While this is not a new problem, the need to synchronize collections of short-dura-
tion, time-sensitive data elements can present a significant drain on system
resources.

When coordination and synchronization is required, the quality needs of the
application will probably dictate how video data will be encoded. If, for example,
true frame-by-frame synchronization of audio and video is required, we expect that
this will be done near the encoding of the data (much in the same way that it is done
in ‘real’ video and film productions). These tracks may be produced separately, but
they will be merged prior rather than during document processing. Where synchro-
nization requirements are less exacting (such as defining background sounds, multi-
lingual audio/text captions or events that require point rather than continuous syn-
chronization), the presentation environment will have a much greater role to play.

At present, the CMIFed environment allows a set of models to be used to external-
ize the behavior of applications using embedded video, audio, image and text data.
In highlighting the problems and issues involved in the presentation of embedded
video, we were struck by the fact that our environment provides relatively few fea-
tures that were specifically video related. Rather than this being a deficiency, it is a
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reflection of our view that ‘video is no big deal.’ In nearly all areas of hypermedia
data processing, video does not require new conceptual models—the size and
encoding restrictions of video may make implementation tedious, but the tech-
niques for handling and synchronizing video are similar to those required for other
presentation-sensitive data. We are convinced that the focus needs to shift to high
level integration of data, where some sort of semantic coupling is required of (possi-
bly read-only) data encodings and some form of higher-level interaction descrip-
tions.

The work described in this paper presents an approach embedding video by bal-
ancing the needs for quasi-real-time presentation of data with the demand for high
level control by the document player to implement the desires of the document
author. We feel that the CMIFed environment provides a good framework for
addressing these problems, although it is clear that much more needs to be done to
seamlessly integrate various independent data streams (including but not limited to
video) into a single document. Perhaps the most pressing need is to understand the
role that adaptive presentations can play in defining truly portable documents.
Given the broad diversity in user needs and presentation environments—a diversity
that will increase rather than decrease in the future—we feel that tools and tech-
niques are required to support document adaptability from initial authoring through
final presentation. This remains the focus of our group’s efforts.
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APPENDIX:  GENERATING EVENT RELATIONSHIPS FROM STRUCTURE

In order to illustrate our approach to externalizing the behavior of an application
document, we describe how the CMIFed authoring environment generates and
implements event relationships using information about the application’s structure.
The motivation of the CMIF project at CWI was the development of a document
model and manipulation environment that allows the adaptive presentation of
hypermedia documents in networked, heterogeneous environments. While a critical
component of this work is a timeline-like description of the low-level interactions
among data blocks, our timeline is generated automatically from a higher level
description of how components within the document interact. The higher level
description (which we call the hierarchy view) allows a document to be described
and manipulated at a structural level rather than as a collection of independent
media events. This structure is then mapped onto a channel architecture, where each
channel describes a grouping of data items that can be manipulated by the user or
presentation environment in a common manner. In the following subsections we
describe the basic nature of our document model and then discuss how media events
are structured and mapped to a presentation timeline.

A.1 Overview of the CMIF document model.

The data organization model used by CMIFed is based on a hierarchy of events.
Within this hierarchy, events can be defined to occur in parallel with or before/after
other events. When displayed, the presentation flows from the root of the hierarchy
through all of the nodes. Individual data blocks can be fetched by the player based
on the current location within the hierarchy—this gives the scheduler an ability to
plan ahead and allocate resources for groups of pending events. A hyperlink-based
navigation facility is also supported, allowing the user to jump from one point in the
presentation to another.

Our approach to data organization is presented in Fig. A.1, which illustrates a
document structure containing nine media events (leaf nodes A-I) of three data
types, ordered as a collection of parallel and sequential events. In this example, a
fragment of video data is presented in parallel with two sequential audio fragments

Figure A.1: An application specification as a hierarchy of media events.
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(nodes A, B and C). Next, an audio fragment is presented in parallel with a video
fragment (events D and E), followed by a block of text data (event F). Next, a video
fragment and a text fragment (events G and H) are presented, followed by a single
video fragment (I). A hyper-link has been inserted by the author between the video
fragment in event I and the composite events D and E (the behavior of this operation
is described in section 4).

As part of the definition of each event, the document’s author specifies a resource
management channel (or, more simply, a channel) that is used for presentation of
the document. The channel framework consists of an activation timeline that is gen-
erated automatically by the authoring system. Working at the channel level, a series
of fine-grained interactions can be specified between events using synchronization
arcs; these indicate (relative) presentation constraints of a particular object. The full
implications of this action will be considered in section 3.

A.2 The Hierarchy View for Structure Manipulation.

The hierarchy view shown in Fig. A.2(a) is the primary CMIFed authoring win-
dow, providing a means of displaying and manipulating the document describing a
multimedia presentation. The hierarchical structure is represented in the hierarchy
view as an embedded block structure; this embedded structure has proved to be
much more manageable that manipulating an actual tree, since it allows us to easily
hide the (possibly complex) structure under any one node. Individual media events
are placed as leaf nodes in the tree, represented as the lowest level of detail in the
hierarchy view. We assume that each media object is created using external editors
(available directly from within the authoring environment) or from an object store.1

As part of the definition of the hierarchy, each data event is assigned to a channel,
a logical output device which is mapped by the player at runtime to a physical out-
put device—i.e. an area on the screen or a loudspeaker. Rather than mapping all
events of a particular media type to a single media-based channel, we allow multi-
ple channels of the same type to be supported. Associated with each channel is a
resource management policy that can be used by the player to resolve conflicts that
arise in a networked, heterogeneous environment. (See section 3.)

The structured approach to authoring provides two primary advantages. First,
editing of a group of related events—at any point in the hierarchy—is a simple
operation. We need only select the common parallel or sequential node and change
its location using a single cut/paste operation pair. In so doing, we wind up reorder-
ing all events in a single operation—including the movement of hyper-links. (This
may seem like a simple and intuitive operation. To understand the impact of this
feature, readers are encouraged to go to their local computer store and try doing this
with any conventional editing system.)

1. Creating the data blocks is the most time consuming part of authoring—especially for video
data—but this process is becoming easier as data editing tools become more sophisticated. We
explicitly factor editing out of the authoring process to allow for non-embedded tools to be
used.
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The second advantage of our approach—especially for including embedded video
fragments—is the ability to delay timing considerations until relatively late in the
authoring process. By concentrating on higher-level constraints, such as parallel and
sequential placement, the details of exactly how individual events are related can be
saved until a fine tuning phase near the end of the production cycle. Note that the
definition of the data block can occur in parallel with the authoring process: stubs
for non-existent data fragments can be easily inserted in the document structure as
place-holders. Also, since timing information is generated based on the contents of
the actual data blocks (or the block descriptors), a change in the source data length
integrates seamlessly into new versions of the document.

A.3 The Channel View for logical resource allocation.

While the hierarchy view provides a means of organizing the structure of a pres-
entation, it provides only an indirect way of specifying logical resource use. To pro-
vide the author with an explicit time representation of the document and control of
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(a) The hierarchy view is an embedded representation of a document hierarchy, illustrating both
the data events and their structural relationship. The hierarchy from Fig. 1 is shown in a fully-
expanded view (that is, no information hiding is used, although this is possible).

(b) The channel view shows a mapping from document hierarchy to activation time; this mapping
is generated automatically. The event assigned to a channel is represented as a box beneath the
channel header diamond. The height of a box represents its duration. A fully-shaded box has its
duration explicitly defined, either through its data definition, an author-defined default
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from its parent in the presentation’s structure. (The use of two video channels is discussed in
the text.)
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the available resources, the channel view provides a view of the media objects
mapped onto a set of logical resources. By supplying an extra layer above the phys-
ical resources, the author is able to guide the presentation of a document in a sys-
tem-independent way.

The channel groups data events by their abstract properties; these can include:
• presentation properties (font use, video resolution or screen real-estate);
• semantic properties (languages used within a channel or data events of a partic-

ular content granularity); or
• scheduling properties (such as high priority, low priority, incidental data or

absolutely-necessary-must-be-shown-at-all-costs data).
It is up to the player software, optimized for a particular hardware configuration, to
interpret the logical channels and assign the media objects to the available physical
output devices.

The channel view shows the timing relations derived from the structure defined in
the hierarchy view. Since timing is derived, the author is not required to count
frames or be aware of the sample-rate/clock-frequency relationships on any one tar-
get system. The correspondence between the structure shown in the hierarchy view
and the data nodes in the channel view is shown in Fig. A.2(b). The channel view
provides an independence between logical resources required by a document and
physical resources available at the time the document is played.

Although most of the timing relationships between and among components can
be derived from structure, it is sometimes necessary to define more detailed timing
constraints between components. The synchronization arc (or sync arc) [2],[4] is
our mechanism for supporting this definition. Inter-channel sync arcs specify the
bounds on activation of two events; this includes relative starting times and syn-
chronization priority. Intra-channel sync arcs could be used for transition processing
(such as wipes, fades, etc.), although we are investigating a separate structure to
support these operations.
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