
Mix’n’Match: Exchangeable Modules of Hypermedia
Style

Lloyd Rutledge, Lynda Hardman, Jacco van Ossenbruggen and Dick C.A. Bulterman
CWI (Centrum voor Wiskunde en Informatica)

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Tel: +31 20 592 4127

E-mail: {Lloyd.Rutledge, Lynda.Hardman, Jacco.van.Ossenbruggen, Dick.Bulterman}@cwi.nl

ABSTRACT
Making hypermedia adaptable for multiple forms of presen-
tation involves enabling multiple distinct specifications for
how a given collection of hypermedia can have its presenta-
tion generated. The Standard Reference Model for Intelligent
Multimedia Presentation Systems describes how the genera-
tion of hypermedia presentation can be divided into distinct
but cooperating layers. Earlier work has described how spec-
ifications for generating presentations can be divided into
distinct modules of code corresponding to these layers. This
paper explores how the modules for each layer of a presenta-
tion specification can be exchanged for another module
encoded for that layer and result in the whole specification
remaining well functioning. This capability would facilitate
specifying presentation generation by allowing for the use of
pre-programmed modules, enabling the author to focus on
particular aspects of the presentation generation process. An
example implementation of these concepts that uses current
and developing Web standards is presented to illustrate how
wide-spread modularized presentation generation might be
realized in the near future.

KEYWORDS: Adaptable hypermedia, presentation specifica-
tion, IMMPSs

INTRODUCTION
Enabling stored hypermedia to be adapted to a wide variety
of presentation circumstances enhances its reusability and
reduces its need for future editing. Presentation circum-
stances that necessitate adaptation include user preferences
and abilities, system resources and constraints, and what the
presentation is intended to convey to the user. This paper
uses a distinction between adaptive and adaptable hyperme-
dia that is described in earlier work [5]. Here, adaptive

hypermedia accounts for all anticipated variations and
directly encodes the response to all possibilities, making it
directly presentable but complicating its adaptation to
unforeseen presentation circumstances. Adaptable hyperme-
dia, on the other hand, does not specify any presentation but
instead encodes the information needed to generate appropri-
ate presentations from it. Adaptable hypermedia is more
readily transformed to a wider variety of presentations than
adaptive hypermedia, but requires separate specifications for
how a presentation is to be generated from it. This paper
focuses on adaptable hypermedia and the specifications it
requires for generating presentations.

This paper refers to the specification of presentation genera-
tion as style. Here, style refers to more than details of the
visual appearance of the final presentation. It refers to all the
choices that are made in determining how a collection of
hypermedia is to be presented. That which style determines
includes visual appearance, screen layout, media selection,
timeline and navigational interface.

Multiple styles can be written for a single collection of
hypermedia, each resulting in a different presentation of the
same material. The user can choose the most favorable style
for application to the hypermedia to be presented. Each style
can be tailored to the needs and preferences of the user or to
the characteristics of the current presentation environment,
or both. Styles can be written that take into account presenta-
tion circumstances that the original hypermedia author could
not have anticipated.

Rather than treating a style as an atomic unit, this paper
explores the division of styles into exchangeable modules.
This gives the user more flexibility in determining a style
with which to be presented a hypermedia document. Rather
than selecting one entirely prefabricated style, the user gen-
erates his or her own presentation with this paper’s
Mix’n’Match scheme. With this scheme, the user can select
an appropriate substyle module for each layer and then stack
these selections to create a new style better suited for his or
her needs. Thus, the number of different presentation specifi-
cations a user can apply to a document is not limited to the
number of styles but to the number of different combinations
of style modules that can applied to that document. Further-

more, as standards and products for presentation generation
evolve and develop, an understanding of how to modularize
their functions will help in determining how best to define
them.

The Fiets hypermedia application is used in this paper to
illustrate the issues described. Fiets (the Dutch word for
“bicycle”, pronounced feets) is an hypermedia tour through
the architecture and history of the buildings in Amsterdam,
The Netherlands [21]. The Berlage environment design is
used to demonstrate how the layering of exchangeable style
modules can be implemented using existing and developing
Web standards and publicly available tools [23]. The Fiets
application is implemented in the Berlage environment.

This paper uses the Standard Reference Model for Intelligent
Multimedia Presentation Systems (SRM-IMMPSs) [2] as the
basis for dividing hypermedia style into layers. The SRM-
IMMPSs defines layers of the generation of multimedia pre-
sentations. It describes what each layer does and how the
layers cooperate with each other to dynamically generate a
presentation tailored for the current user and environment.
The application of the SRM-IMMPSs to the Berlage envi-
ronment is described in earlier work [22].

This paper extends earlier work on Fiets, Berlage and the
SRM-IMMPSs by describing how the Mix’n’Match scheme
described herein can be applied to them. The goal of this
application is to introduce the exchangeability of style mod-
ules to Berlage as a vehicle for exploring the exchangeability
of style modules for hypermedia in general. Fiets is used
here as an illustrative example. It has been modified for this
paper to demonstrate the Mix’n’Match’s use of distinct mod-
ules of style code and the effect of exchanging. This paper
also describes the changes made to the Berlage environment
to provide this exchangeability. The layering and compo-
nents of the SRM-IMMPSs is the basis for the modulariza-
tion presented in this paper. This paper describes how the use
of the SRM-IMMPSs applies to the implementation of
Mix’n’Match. It also describes what the effect of this imple-
mentation of exchangeability was on the application of the
SRM-IMMPSs to Berlage. First some background material
is provided, giving a broad overview of the SRM-IMMPSs
and the Berlage environment. Then the implementation of
Mix’n’Match into each component of the Berlage environ-
ment is described.

BACKGROUND

Standard Reference Model for Intelligent Multimedia Pre-
sentation Systems (SRM-IMMPSs)
In broad terms, a hypermedia presentation should define
what is presented to the user (the content), where it is pre-
sented (the spatial layout) and when it is presented (temporal
layout). Given a collection of user goals and availability of
resources these three aspects leave open an wide variety of
possible presentations. An Intelligent Multimedia Presenta-
tion System (IMMPS) is a reasoning system aimed at select-
ing the optimal one. The SRM-IMMPSs is a software

architecture designed to be used as the basis for discussing
and comparing different systems that adapt to the user. It can
also be used in guiding the development of such systems.

The SRM-IMMPSs considers the decomposition of the
dynamic creation of multimedia presentations into well
defined components. These components are illustrated in
Figure 1. The SRM-IMMPSs divides dynamic presentation
generation into two areas: generation process and knowledge
server. The generation process performs the run-time genera-
tion of the presentation based on the user’s interaction and
information provided by the knowledge server. The knowl-
edge server stores and provides long-term instructions and
information that apply to multiple presentations at any point
in their run. It also keeps track of the history of the presenta-
tion. With this division of function, the generation process is
the active component of the SRM-IMMPSs, and the knowl-
edge server is the stable component. The generation process
is divided into layers, each of which controls one aspect of
dynamically generating the presentation. The knowledge
server is divided into experts, each of which stores informa-
tion about one aspect of what the generation needs to take
into account.

The division into layers and experts that the SRM-IMMPSs
provides serves as the basis for this paper’s division of
hypermedia style into modules. In the following subsections
the components of the SRM-IMMPSs are discussed one at a
time, as is the impact of each component on the modulariza-
tion of style. Typically, each component of the SRM-
IMMPSs corresponds to a distinct type of style module. This
paper refers to the primary introductory publication of the
SRM-IMMPSs for readers who want more detailed informa-
tion on it [2].

The Berlage Environment
The Berlage environment architecture was designed to dem-
onstrate the implementability of adaptable hypermedia with
existing standards and tools [23]. Its design was extended to
match that of the SRM-IMMPSs [22]. The current design of
the Berlage architecture is illustrated in Figure 2. Its compo-
nents are each briefly described below. Earlier work
describes its components in more detail [23][22].

HyTime is used to encode the presentation-independent
hypermedia semantics of the stored documents [17][10].
HyTime is a syntactic subset of SGML [19][11], extending
the semantics SGML encodes into hypermedia. HyTime syn-
tax is defined as an SGML architecture with a meta-DTD
[17]. The semantics encoded by HyTime constructs in a doc-
ument can be queried for using the property sets defined in
the HyTime standard. HyTime was used in Fiets to represent
such relatively common hypermedia semantics as a year in
history.

An SGML architecture defines a broad set of SGML and
HyTime documents that share semantics within a particular
conceptual domain. Its syntax is defined with a meta-DTD.
Access to the semantics represented by its syntax is defined

with property sets. SGML architectures can inherit from one
or more other architectures, and inherit their property sets.
An SGML architecture called Berlage is defined for the Ber-
lage environment [24]. It includes such common hypermedia
semantics as dimensions in time or pixels of a media object.

A DTD more narrowly defines the syntax of a document set.
Property sets can be defined for DTDs as with architectures.
This syntax of the Fiets document collection about Amster-
dam is defined as a DTD. An individual document can be
validated in terms of all levels of syntax described above
with the tool SP [7].

DSSSL is a lisp dialect encoding the transformation of
SGML and HyTime documents into other SGML documents
that are typically directly processed for presentation [18].
DSSSL programs are called style sheets, providing the basis
for the term “style” as used in this paper. DSSSL provides
inclusion mechanisms that enable the division of DSSSL
code into libraries shown in Figure 2. DSSSL can query
against HyTime-defined properties. Some of the DSSSL
libraries in Fiets define the functions that process these prop-
erties, a technique which is described in the initial work on
the Berlage environment [23]. Jade is a publicly available
DSSSL engine [6].

SMIL is an XML-compliant, HTML-like W3C recommenda-
tion for hypermedia on the Web [16]. SMIL is easily pro-
cessed as output by DSSSL because it is encoded as XML,
which is a subset of SGML. XP is an XML parser which is

used here to validate SMIL code [8]. Berlage provides
DSSSL functions to facilitate the generation of SMIL output.
GRiNS is a publicly available player for SMIL presentations
[4][9].

Part of the incorporation of the SRM-IMMPSs into Berlage
involved introducing dynamics [22]. This is done with an
http server that outputs DSSSL encoding the user interaction
history of the presentation. This DSSSL code representing
the presentation status is then incorporated into the style
sheet for processing the next step of the presentation.

The style modules from the Mix’n’Match scheme would be
represented in the Berlage environment as separate files
included by reference in the main Fiets DSSSL style sheet.
These DSSSL style module files can be stored locally or
accessed from anywhere on the Web with URLs and Jade’s
processing of them. This enables the distribution of style as
well as content.

GOAL FORMULATION
The collection of goals of an SRM-IMMPSs-modeled pre-
sentation it what determines when a presentation to the user
is complete. Each presentation for a user has a purpose, a
body of information that is to be conveyed to the user so that
the user understands it. The processing these goals is the
most important part of how the SRM-IMMPSs works for this
processing is the basis of how the presentation of the docu-
ment progresses to its completion. The goal formulation
component of the SRM-IMMPSs handles the initial interac-

 Figure 1: The SRM-IMMPSs [2] and its Use in Mix’n’Match

Goal
Formulation Application

Control

User

User

Content

Design

Realization

Presentation

Application

Context

Design

Layer

Layer

Layer

Layer

Display Layer

Expert

Expert

Expert

Expert

G
en

eratio
n

 P
ro

cess

K
n

o
w

led
g

e S
erver

<smil><body> <seq>
 <img src="1map.gif"
 dur="3s"/>
 <img src="1h168.gif"
 dur="3s"/>
 <img src="1h218.gif"
 dur="3s"/>
</seq></body></smil>

tion with the user that starts the presentation and establishes
its goals. These goals are broken up into subgoals which are
then passed one at a time to the control layer, which makes
sure that each is met.

The goal formulation activity in the Berlage architecture is
the establishment for a given presentation of the main style
sheet to use for it, with the inclusions for each style module
and the required DSSSL libraries. Goal formulation activity
would also include loading the style sheet for processing by
Jade for the first step in the presentation.

CONTROL LAYER
The control layer activity in the Berlage architecture consists
of determining what subgoals to meet next through Jade’s
processing of the style sheet during subsequent steps, as
delimited by user interaction, of the presentation. This
behavior is encoded in the Fiets style sheet, as shown in Fig-
ure 2, though its inclusion of the exchangeable style mod-
ules. The Fiets style sheet also contains DSSSL code that
applies to any instance of each exchangeable module
included with it for processing. The Fiets style sheet works

for documents of a specific topic domain: the architectural
history of Amsterdam.

All the DSSSL-encoded modules used with the example
described in this paper work specifically for this Fiets style
sheet and have not been made not apply to other topic
domains. It is up to future research to explore how broad the
topic domain can be that a primary style sheet and the mod-
ules included with it will work appropriately for.

CONTENT LAYER
In a paper-based society, a person reads a document to
understand a particular body of knowledge. He or she can
expect to be able to communicate about this topic with other
people who have read the same paper document. The same
common understanding should be expected for two people
who have been presented the same hypermedia document, no
matter how much the document may have been adapted dif-
ferently for each user The content layer processes the set of
goals that must be met in order for a particular understanding
to have been communicated by the presentation.

 Figure 2: Berlage Environment Architecture [23][22] and its Use for Mix’n’Match

HyTime
Meta-DTD

Berlage
HyTime
DSSSL
Library

GRiNS
Player

Text
Editor

(Fiets)

Fiets

Jade SMIL
Document

(Fiets)Berlage
Arch.

SP

SGML Errors

DSSSL

DSSSL
LibraryDSSSL

Library

(Fiets)Berlage
DocumentDTDMeta-DTD SP -A

HyTime Errors

XP
SMIL
DTD

Berlage Errors

Berlage
SMIL

DSSSL
Library

SMIL Errors

Errors

Present’n
Status

http
Server

Application Expert
Application Expert

Presentation
Display

Layer

Context Expert

Provides Semantic
Query Interface to

Application Realization Layer

Content
Layer

DSSSL
Inclusion

Design
Layer

DSSSL
Inclusion

Control Layer

Content Layer Design Layer

DSSSL
Style
Sheet

A DSSSL-encoded content layer module could exist on the
Web and act as what most people would perceive as the
“document”. Including this module in a style sheet is what
determines the information conveyed by the presentation.
The information itself is stored as SGML and HyTime code,
but may not necessarily coincide with the user’s perception
of the “document” because this store of information may be
immense, with only a small portion of it selected by style
sheet processing for presentation to the user as the “docu-
ment” he or she requested.

Figure 3 shows a display from the Fiets “panorama” style
presentation, in which multiple building images are dis-
played at once, distributed across the screen. The content
layer module for this presentation is the “by address” mod-
ule. The “by address” content layer module states that the
presentation’s overall goal is to view all of the houses along
the Herengracht in a manner that conveys how these houses
change as one proceeds south along the canal. A separate “by
year” content layer module may generate a presentation con-
veying a sense of how the appearance of these houses tends
to vary depending on when they were first built rather than
where on the canal they are located. These two types of pre-
sentation are described further in the initial work on Fiets
[21]. The key difference between these presentations is that
each presents the same content in different orders. Determin-
ing presentation order is one of the key tasks of the content
layer, and thus of a style module that corresponds with it.

With the processing of Fiets by the Berlage architecture,
content layer style modules “by address” and “by year” are
files of DSSSL code that are included in the main DSSSL
style sheet used for starting and running a presentation. The
initial work on the Berlage environment architecture presents
sample DSSSL code that determines the order in which Fiets

objects are presented [23]. This code queries the HyTime-
defined structure that defines the street addresses of selected
buildings to generate a list of these buildings in order of their
street address. Thus, this code defines the primary processing
of the “by address” module. The data structure that results
from this processing is what is passed to the design layer for
further processing.

Figure 4 shows the DSSSL code from a Fiets content layer
style module which generates “by address” presentations.
This code simply assigns values to some constants used in
other modules that determine the “by address” sorting of
document information in the presentation generated for the
user. This code states that the Fiets-define property to sort on
is “street-nbr”. It also states that the HyTime FCS (Finite
Coordinate Space) construct from which to get this sort
information is the one defining the “STREETFCS” axis
along which buildings are positioned. In the “by year” con-
tent layer style module, the DSSSL code assigns these same
variables to “year” and “YEARFCS”.

The Amsterdam Hypermedia Model (AHM) [14], which
extends the Dexter Hypertext Model [13] into hypermedia,
has been applied to the SRM-IMMPSs [15]. This work
describes what components of the AHM describe the activi-
ties of the components of the SRM-IMMPSs. AHM and
Dexter are shown here to contribute to the SRM-IMMPSs by
providing a more detailed model for hypertext and hyperme-
dia documents. AHM and Dexter also provide constructs for
guiding how components of the documents they model are to
be presented to the user. These AHM and Dexter concepts
can be applied to the creation of style modules. They apply
content layer by defining attributes for media objects that
represent their semantic content [15]. These attributes are
then used as the basis for selecting the content that is appro-
priate for the presentation.

DESIGN LAYER
The design layer of the SRM-IMMPSs determines what
means the final presentation uses to meet the goals estab-
lished in the content layer. This layer makes decisions on the
“look and feel” of the presentation, including what media
objects should be selected and how they should be presented.
The design layer also determines the spatial-temporal and
navigational layout of the final presentation.

The Fiets application is used in earlier work to illustrate how
there may be many different means to convey the same
aspects of a stored hypermedia document [21]. The different
style combinations of storage and presentation structure that
result in Fiets are shown in Figure 5. Each of the nine presen-
tation styles that result are described in this earlier work.

 Figure 3: A Fiets “Panorama” Style Presentation [21]
Figure 4: Example of Fiets “by address” Content Layer

Style Module DSSSL Code

(define ContentSortProp street-nbr)
(define ContentFCS "STREETFCS")

Then, these presentations were generated by nine different
style specifications. This paper’s Mix’n’Match scheme intro-
duces the ability to have three modules on each of two layers
to be combined for these nine resulting styles. As more mod-
ules on these layers are considered, and as multiple modules
on the other SRM-IMMPSs components are considered as
well, the number of different potential applications grows
rapidly with the introduction of new module instances.

The address information for each building stored in the Fiets
document enables presentations that convey how the build-
ings on the Herengracht change as their addresses change.
Figure 3 shows one means of conveying this, using the spa-
tial layout of the presentation screen. Fiets demonstrates how
the timeline or navigational interface of the final presentation
could also be used to convey this same concept [21].

Processing in the design layer determines whether the “by
address” concept described in the content layer module is to
be conveyed using the presentation’s layout, timeline or nav-
igational interface. The encoding of each of these three
means is made in a separate module that fits in the design
layer. The “using layout” design layer module generates the
presentation shown in Figure 3. If the “using timeline”
design layer module is used instead, each building is shown

on a full window one at a time for several seconds, in order
of street address. Alternatively, if the “by year” design layer
module is used with the “using timeline” design layer mod-
ule, the buildings are shown one at a time in the order of the
year in which they were built.

Also decided at the design layer is the use of text labels and
the background imagery. These decisions are encoded in
design layer modules. One design layer module may specify
a 3x4 display of thumbnails with black-and-white canal
building images taken from old sketches, as shown in Figure
3. A different design layer module may specify a 2x3 thumb-
nail layout with no background imagery.

Design layer style module DSSSL code could exist on the
Web as one artist’s concept of how documents of a particular
document set should be presented. The data structure
returned by the content layer style module DSSSL code
described above is processed by the design layer. The design
layer style module encodes how the order represented in the
data structure is to be mapped to the final presentation,
whether it be to the spatial screen layout, the timeline, or a
list of ordered links. Code defining this processing is pro-
vided in the initial work on Berlage [23].

 Figure 5: Fiets Structural Transformation Combinations [21]

Presentation Structure (Design Layer Module)

Space Time Navigation

Panorama (see Figure 3) Stroll Street Ribbon

Timeline Time Travel Time Ribbon

Collage Guided Tour Labelled Buttons

S
to

ra
g

e
S

tr
u

ct
u

re
 (

C
o

n
te

n
t

L
ay

er
 M

o
d

u
le

)

S
p

ac
e

(“
by

 a
d

d
re

ss
”)

Herengracht 550Herengracht 350 Herengracht 550Herengracht 350

t

550350 750

T
im

e
(“

by
 y

ea
r”

)

1650 1850 1650 1850

t

16501450 1850

R
el

at
io

n

Gable Entrance

t

Gable Entrance GableFront Entrance

Figure 6 shows DSSSL code for generating a Fiets presenta-
tion that focuses on the use of timing. It defines “seq”
(sequence) as the primary SMIL construct to use for com-
posing the presentation components, causing them to be dis-
played in sequence. The “make-regions” function, called
from the control layer main Fiets DSSSL style sheet file,
establishes one screen area for a building image and another
for a descriptive caption. The “make-building-display” func-
tion calls functions defined in the SMIL application expert
DSSSL file for displaying for each building its image and its
descriptive caption in these regions. This function is also
called from the main style file to generate the display SMIL
elements for each building in a list of buildings, the order of
which is determined by processing the constants assigned in
the content layer module.

The DSSSL file for the design layer module that focuses on
the use of space defines “par” (parallel) as the main SMIL
composite, causes the buildings to be shown at the same
time. It defines the make-regions function as defining an
ordered table of image and caption regions.like that shown in
Figure 3. Its make-building-display function places each
building’s image and caption in the regions appropriate for
that buildings place in the ordered list determined by the
content layer module used. Which aspect of the presentation
structure is focused on is determined by which design layer
module is included with the main Fiets style sheet when it is
loaded into Jade for processing.

True exchangeability between the design and realization lay-
ers requires that the design layer output be appropriate for
translation to a variety of hypermedia presentation formats.
The existence of such a model is discussed in earlier work
[25][26]. This earlier work also discusses how existing stan-
dards and tools can be adapted to encode and process this
model.

The AHM provides a model for describing the basic spatio-
temporal and navigational layout in a manner that is inde-
pendent of the final output format [15]. This model could be
used as the basis for communication between the design and
realization layers. Other work provides a more detailed spa-
tial layout model and the means of generating it in context of
the SRM-IMMPSs [12]. This spatial layout model can also
be part of what is communicated between the design and
realization layers.

REALIZATION LAYER
The realization layer translates the desires expressed by the
design layer into a directly playable hypermedia format. This
layer determines exactly what spatial coordinates and what
timing can match the constraints given by the design layer. If
no such detailed specifications are possible, it then commu-
nicates with the design layer to determine an acceptable
alternative. Similar communication occurs when the initial
desires of the design layer cannot be expressed in the directly
playable hypermedia format. The two layers then decide
what acceptable alternative can be expressed in the output
format.

The realization layer outputs code in some hypermedia for-
mat. One realization layer module may generate the design
layer’s specifications as a SMIL presentation. A different
realization layer module may take the same specification and
generate a presentation in the hypermedia presentation for-
mat MHEG [20]. The Berlage component that best corre-
sponds with the realization layer is the generated SMIL code
itself. This acts as an embodiment of the presentation that
can be played on a number of platforms by a number of sys-
tems.

AHM constructs that apply to realization layer processing
are channels. They define alternatives for presenting docu-
ment components that can be selected from. A realization
layer style module can encode the selection of one channel-
defined alternative in determining the final presentation
encoding.

PRESENTATION DISPLAY LAYER AND THE USER
The presentation display layer is embodied by the particular
player software that is called at presentation time to process
a segment of code generated by the realization layer for pre-
sentation to the user. It also handles the user’s interaction
with the generated presentation. Because the presentation is
fixed at this point, there are no style modules for this layer.

The GRiNS player in the Berlage environment corresponds
with the presentation display layer. Here, GRiNS plays the
SMIL code passed to it by the realization layer. It also pro-
cesses the user’s interaction with the SMIL presentations
shown, as described in earlier work on the introduction of
dynamics to Berlage [22]. In processing user interaction,
GRiNS acts as an http client, sending each user-activated
http request to the http server in the Berlage environment.
Each user interaction activates each step in the presentation
process. With each interaction, the style sheet, with the

Figure 6: Example of Fiets Design Layer Style Module
DSSSL Code for Time-based Presentation

(define DesComposite "seq")
(define (make-regions)
 (make sequence
 (make empty-element gi: "region"
 attributes: (list
 (list "id" "text-region")
 (list "height" "8%")
 (list "width" "50%")))
 (make empty-element gi: "region"
 attributes: (list
 (list "id" "image-region")
 (list "top" "8%")))))
(define (make-building-display)
 (make sequence
 (make-label "text-region"
 (string-append (get-axisname)
 (get-number) ".txt"))
 (make-img "image-region" "2.000s"
 (entity-system-id
 (attribute-string "entity")))))

newly updated presentation status DSSSL code it includes, is
processed to generated the next step of the presentation to
the user.

APPLICATION AND APPLICATION EXPERT
The application component provides access to the stored
hypermedia information that is presented to the user. This
includes the individual media objects presented, the meta-
data around these media objects and the general facts con-
cepts and get conveyed to the user. All of this data is stored
in a variety of formats, locations and systems

The application expert provides an interface for the various
systems and formats that are involved in generating the pre-
sentation. This includes the formats of both the media that is
feed into the generation process and the media that is gener-
ated as part of the generation process for inclusion in the
final presentation. A separate application expert module
could exist for the input and output of each format used in a
generated presentation. With this model, any number of
application expert modules could be used simultaneously for
the generation of a single presentation.

The application expert can also provide access to the format
in which archival hypermedia information representing more
general concepts and facts is stored. This represents the
knowledge of a particular semantic domain. The application
expert provides the generation process access to this infor-
mation and enables it to be transformed into presentation to
the user.

In Fiets, text content is often converted into image files that
display the text. This enables the constructs in SMIL 1.0 to
have the control desired for laying out this text with other
visual media. As described earlier, the content layer deter-
mines what characteristics, such as font size, the text should
have given the user’s characteristics, as encoded in the user
expert module, and perhaps information from other sources
as well. Once the content layer determines how this text
should look, it then passes these specifications to the applica-
tion expert to create the appropriate image file in a image
format such as JPEG.

The components of the Berlage environment architecture
that correspond to the application in the SRM-IMMPSs are
the SGML and HyTime encoded files. These include prima-
rily the document, which encodes the knowledge presented
and the metadata around the media objects used in the pre-
sentation. The application also includes the media objects
and the systems that store and provide access to them. These
media-specific aspects of the application are not represented
explicitly in the Berlage environment architecture. Their pro-
cessing is handled by GRiNS, which is the only Berlage
component that processes the media objects directly.

Some Berlage components that act as application expert
style module are the HyTime, Berlage architecture and docu-
ment set (Fiets) DSSSL libraries. Each of these is a module
providing access to semantics encoded in the context of a

particular document set. Each of these document sets corre-
sponds with a particular meta-DTD or DTD. Code in these
modules defines how the properties represented in the syntax
of these document sets can be queried against by the style
sheet. Earlier work on Berlage provides example code defin-
ing the access to HyTime properties used to represent the
street addresses of buildings [23].

The Berlage SMIL DSSSL library also acts as an application
expert module since it provides the system information it
needs about a particular format. What distinguishes this
application expert style module from the others is that it
enables the output of a format rather than its input. The
SMIL DSSSL library provides functions that can be called
by the design layer style module. These functions enable the
design layer style module to specify its output in terms of
more general hypermedia constructs instead of specific ele-
ment and attribute assignments. The SMIL DSSSL library
acting as the application expert style module turns these
functions calls into SMIL output.

USER EXPERT
The user expert provides information about the user that is
processed to adapt the presentation to the user’s characteris-
tics. These characteristics include abilities, preferences and
areas and levels of expertise. A style module for this layer
would encode this information about a user. One style of pre-
sentation can be tailored for different users by switching
only the user expert modules. One user could have such a
module that could be plugged into any presentation generat-
ing style.

In the Fiets example being discussed, the user expert module
would inform the system of the user’s level of visual acuity.
This information could then be used to, among other things,
determine what size font of text to use, such as with the text
shown in Figure 3. Design layer processing would communi-
cate with the user expert to output the text with the appropri-
ate font.

The user expert has the potential to effect more than design
layer processing. In the Fiets example, the realization layer
processes the layout requirements of text generated by the
content layer given the user’s requirements. If the space
required for this text is too large for the layout specifications
from the design layer, the realization layer may then commu-
nicate with the design layer instructing it to change the lay-
out. so that each screen is less crowded.

DESIGN EXPERT
The design expert communicates the constraints of the final
presentation environment. This includes primarily informa-
tion about the platform on which the presentation is ren-
dered, such as what media peripherals are available.

One commonly occurring platform constraint in generating
multimedia presentations is that most personal computers
can only play one sound file at a time. This type of informa-
tion is most appropriately encoded in the design expert mod-

ule. When the generation process knows from this module
that only one sound file can be played at a time in the final
presentation, the realization layer module can be encoded to
ensure that no two sound files are ever scheduled for simulta-
neous playback. Furthermore, the design layer module can
be encoded to combine multiple sound files into a single file
when simultaneous playing of them is desired on a restricted
system.

No particular component of Berlage as illustrated in Figure 2
can be singled as corresponding with the either the user
expert style module or the design expert style module. The
DSSSL code files that would be included by reference from
the main style sheet would define constants that describe the
abilities and preferences of the user and the facilities of the
presentation system.

CONTEXT EXPERT
The context expert keeps track of the activity that has
occurred during a given presentation. This information is
important to the content layer in determining whether goals
and subgoals have been met and in determining what future
actions are required to complete them. There is no pre-writ-
ten module required for this expert because the information
it provides is generated automatically during the presentation
itself. Also, the processing of this information is specified for
the most part by the content layer module.

The context expert is represented in Berlage by the presenta-
tion status DSSSL code. This code contains information
about what was presented to the user and how the user
reacted to it. It is a log file that is augmented with each trans-
mission of a SMIL file to GRiNS and each link activation by
the user. It is processed with the DSSSL code to generated
each step of the presentation.

CONCLUSION
This paper discusses how the generation of a hypermedia
presentation from stored media data can be encoded as a
style specification that is broken up in distinct modules. The
components of the SRM-IMMPSs are used as the basis for
defining the scopes of these modules. This gives the user
more control over the style of the final presentation of a doc-
ument because rather than selecting one complete style, the
user can plug in the most appropriate module for each aspect
of style.

The modular division this paper describes provides the basis
for defining style specification that can be interchanged
between different presentations. Aspects of style are isolated
that can be applied uniformly to the generation of multiple
presentations from multiple sources. This enables future con-
ventions and standards for style to be defined in terms of
these modules, which facilities information exchange and
reuse.

The potential implementation of the Mix’n’Match technique
is described in terms of the Berlage environment architec-
ture. This description provides the basis for the wide-spread

implementation of Mix’n’Match style module usage with
public standards and tools for the Web. It can also act as a
guide for the development of future standards to facilitate the
use of modularized style on the Web.

One issue that remains to be address is how broad of a docu-
ment topic domain can be covered by the same module
instances. Can one design module instance apply to, for
example, both Fiets and the design of airplane components?
The answer to this question lies in experimenting with
Mix’n’Match-like environments that work for broader docu-
ment domains. Also remaining to be addressed is what the
nature of authoring practice would be in a Mix’n’Match-like
environment. What issues are raised by authoring a single
component of style rather than an entire presentation? Can
an environment be made in which authors trust that the aes-
thetic intentions encode state in their modules will not be
overridden by other modules during processing? These ques-
tions would be answered by further use of environments such
as the one described in this paper.

ACKNOWLEDGMENTS
The GRiNS environment was implemented by Sjoerd Mul-
lender, Jack Jansen and Guido van Rossum. The Fiets art-
work and graphic design was created by Maja Kuzmanovic.
The development of GRiNS was funded in part by the Euro-
pean Union ESPRIT Chameleon project. The images for
Fiets used in this paper come from the Amsterdam Heritage
Website [1].

REFERENCES
1. City of Amsterdam Municipal Department for Preserva-

tion and Restoration of Historic Buildings and Sites.
Amsterdam Heritage, URL: http://www.amsterdam.nl/
bmz/adam/adam.html.

2. Bordegoni, M., Faconti, G., Feiner S., Maybury, M.T.,
Rist, T., Ruggieri, S., Trahanias, P. and Wilson, M. A.
Standard Reference Model for Intelligent Multimedia
Presentation Systems. Computer Standards and Inter-
faces 18(6,7) (December 1997), pp. 477-496.

3. Bray, T., Paoli, J. and Sperberg-McQueen, C.M., Exten-
sible Markup Language (XML), W3C Recommenda-
tion (January 1998), URL: http://www.w3.org/TR/
REC-xml.html.

4. Bulterman, D.C.A, Hardman, L., Jansen, J. Mullender,
K.S. and Rutledge, L. GRiNS: A GRaphical INterface
for Creating and Playing SMIL Documents, in Proc.
Seventh International World Wide Web Conference
(Melbourne, Australia, April 1998).

5. Bulterman, D.C.A., Rutledge, L. Hardman, L and van
Ossenbruggen, J. Supporting Adaptive and Adaptable
Presentation Semantics, in Proc. The 8th IFIP 2.6
Working Conference on Database Semantics (Rotorua,
New Zealand, January 5-8, 1999).

6. Clark, J. Jade — James’ DSSSL Engine, URL: http://
www.jclark.com/jade/.

7. Clark, J. SP — An SGML System Conforming to Inter-
national Standard ISO 8879 — Standard Generalized
Markup Language, URL: http://www.jclark.com/sp/.

8. Clark, J. XP — An XML Parser in Java, URL: http://
www.jclark.com/xml/xp/.

9. CWI (Centrum voor Wiskunde en Informatica). GRiNS
— The GRaphical iNterface to SMIL, URL: http://
www.cwi.nl/GRiNS/.

10. DeRose, S. and Durand, D. Making Hypermedia Work:
A User's Guide to HyTime. Kluwer Press, Boston,
1994.

11. Goldfarb, C. The SGML Handbook. Oxford University
Press, 1991.

12. Graf, W.H. Intelligent multimedia layout: a reference
architecture for the constraint-based layout of multime-
dia presentations. Computer Standards and Interfaces
18(6,7) (December 1997), pp. 515-524.

13. Halasz, F., and Schwartz, M. “The Dexter Hypertext
Reference Model”. Communications of the ACM. Vol.
37, No. 2, February 1994.

14. Hardman, L., Bulterman, D.C.A., and van Rossum, G.
“The Amsterdam Hypermedia Model: Adding Time
and Context to the Dexter Model”. Communications of
the ACM. Vol. 37, No. 2, February 1994.

15. Hardman, L., Worring, M. and Bulterman, D.C.A. Inte-
grating the Amsterdam hypermedia model with the
standard reference model for intelligent multimedia
presentations. Computer Standards and Interfaces
18(6,7) (December 1997), pp. 497-507.

16. Hoschka, P. (ed.). Synchronized Multimedia Integration
Language, World Wide Web Consortium Recommenda-
tion. June 1998. URL: http://www.w3.org/TR/REC-
smil/.

17. International Standards Organization. Hypermedia/
Time-based Structuring Language (HyTime), Second
Edition, ISO/IEC IS 10744:1997. International Stan-
dards Organization, 1997.

18. International Standards Organization. Document Style
Semantics and Specification Language (DSSSL), ISO/
IEC IS 10179:1996. International Standards Organiza-
tion, 1996.

19. International Standards Organization. Standard Gener-
alized Markup Language (SGML), ISO/IEC IS
8879:1985. International Standards Organization, 1985.

20. International Standards Organization. Coding of multi-
media and hypermedia information — Part 5: Support
for base-level interactive applications (MHEG-5), ISO/
IEC IS 13522-5:1997. International Standards Organi-
zation, 1997.

21. Rutledge, L. Hardman, L., van Ossenbruggen, J. and
Bulterman, D.C.A. Structural Distinctions Between
Hypermedia Storage and Presentation, in Proc. ACM
Multimedia 98 (Bristol, England, September 12-16,
1998), pp. 145-150.

22. Rutledge, L., Hardman, L., van Ossenbruggen, J. and
Bulterman, D.C.A. Implementing Adaptability in the
Standard Reference Model for Intelligent Multimedia
Presentation Systems, in Proc. Multimedia Modeling 98
(Lausanne, Switzerland, October 12-15, 1998), pp. 12-
19.

23. Rutledge, L., van Ossenbruggen, J., Hardman, L. and
Bulterman, D. Practical Application of Existing Hyper-
media Standards and Tools, in Proc. Digital Libraries 98
(Pittsburgh, USA, June 23-26, 1998), pp. 191-199.

24. Rutledge, L., van Ossenbruggen, J., Hardman, L. and
Bulterman, D. A Framework for Generating Adaptable
Hypermedia Documents, in Proc. ACM Multimedia 97
(Seattle, USA, November 9-13, 1997), pp. 121-130.

25. Rutledge, L., van Ossenbruggen, J., Hardman, L. and
Bulterman, D.C.A. Generic Hypermedia Structure and
Presentation Specification, in Proc. Electronic Publish-
ing 97 (Canterbury, England, April 14-16, 1997), pp.
177-187.

26. Van Ossenbruggen, J., Hardman, L. Rutledge, L., and
Eliëns, A. Style Sheet Support for Hypermedia Docu-
ments, in Proc ACM Hypertext 97. (Southampton,
England, April 6-11, 1997), pp. 216-217.

