
Lattice Signatures and Bimodal Gaussians

Léo Ducas∗ and Alain Durmus∗∗ and Tancrède Lepoint† and Vadim Lyubashevsky‡

{Leo.Ducas, Alain.Durmus, Tancrede.Lepoint, Vadim.Lyubashevsky}@ens.fr

Abstract. Our main result is a construction of a lattice-based digital signature scheme that represents
an improvement, both in theory and in practice, over today’s most efficient lattice schemes. The novel
scheme is obtained as a result of a modification of the rejection sampling algorithm that is at the
heart of Lyubashevsky’s signature scheme (Eurocrypt, 2012) and several other lattice primitives. Our
new rejection sampling algorithm which samples from a bimodal Gaussian distribution, combined with
a modified scheme instantiation, ends up reducing the standard deviation of the resulting signatures
by a factor that is asymptotically square root in the security parameter. The implementations of our
signature scheme for security levels of 128, 160, and 192 bits compare very favorably to existing schemes
such as RSA and ECDSA in terms of efficiency. In addition, the new scheme has shorter signature and
public key sizes than all previously proposed lattice signature schemes.

As part of our implementation, we also designed several novel algorithms which could be of indepen-
dent interest. Of particular note, is a new algorithm for efficiently generating discrete Gaussian samples
over Zn. Current algorithms either require many high-precision floating point exponentiations or the
storage of very large pre-computed tables, which makes them completely inappropriate for usage in con-
strained devices. Our sampling algorithm reduces the hard-coded table sizes from linear to logarithmic
as compared to the time-optimal implementations, at the cost of being only a small factor slower.

1 Introduction

Lattice cryptography is arguably the most promising replacement for standard cryptography after
the eventual coming of quantum computers. The most ubiquitous public-key cryptographic prim-
itives, encryption schemes [HPS98,LPR10] and digital signatures [Lyu12,GLP12], already have
somewhat practical lattice-based instantiations. In addition, researchers are rapidly discovering
new lattice-based primitives, such as fully-homomorphic encryption [Gen09], multi-linear maps
[GGH13], and attribute-based encryption [GVW13], that had no previous constructions based on
classical number-theoretic techniques. Even though the above primitives are quite varied in their
functionalities, many of them share the same basic building blocks. Thus an improvement in one
of these fundamental building blocks, usually results in the simultaneous improvement throughout
lattice cryptography. For example, the recent work on the lattice trapdoor generation algorithm
[MP12] resulted in immediate efficiency improvements in lattice-based hash-and-sign signatures,
identity-based encryption schemes, group signatures, and functional encryption schemes.

In this work, we propose an improvement of another such building block – the rejection sam-
pling procedure that is present in the most efficient constructions of lattice-based digital signa-
tures [Lyu12,GLP12], authentication schemes [Lyu09], blind signatures [Rüc10], and zero-knowledge
proofs used in multi-party computation [DPSZ12]. As a concrete application, we show that with our
new algorithm, lattice-based digital signatures become completely practical. We construct and im-
plement a family of digital signature schemes, named BLISS (Bimodal Lattice Signature Scheme)

∗ ENS Paris, France.
∗∗ ENPC and ENS Cachan, France. This work was done while the author was at ENS Paris, France.
† CryptoExperts and ENS Paris, France.
‡ INRIA and ENS Paris, France.

Implementation Security Signature Size SK Size PK Size Sign (ms) Sign/s Verify (ms) Verify/s

BLISS-0 6 60 bits 3.3 kb 1.5 kb 3.3 kb 0.241 4k 0.017 59k
BLISS-I 128 bits 5.6 kb 2 kb 7 kb 0.124 8k 0.030 33k
BLISS-II 128 bits 5 kb 2 kb 7 kb 0.480 2k 0.030 33k
BLISS-III 160 bits 6 kb 3 kb 7 kb 0.203 5k 0.031 32k
BLISS-IV 192 bits 6.5 kb 3 kb 7 kb 0.375 2.5k 0.032 31k

RSA 1024 72-80 bits 1 kb 1 kb 1 kb 0.167 6k 0.004 91k
RSA 2048 103-112 bits 2 kb 2 kb 2 kb 1.180 0.8k 0.038 27k
RSA 4096 > 128 bits 4 kb 4 kb 4 kb 8.660 0.1k 0.138 7.5k

ECDSA1 160 80 bits 0.32 kb 0.16 kb 0.16 kb 0.058 17k 0.205 5k
ECDSA 256 128 bits 0.5 kb 0.25 kb 0.25 kb 0.106 9.5k 0.384 2.5k
ECDSA 384 192 bits 0.75 kb 0.37 kb 0.37 kb 0.195 5k 0.853 1k

Table 1. Benchmarking on a desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM) with openssl 1.0.1c

for security levels of 128, 160, and 192 bits. On standard 64-bit processors, our proof-of-concept
implementations, available at [DL] under license CeCILL, constitute significant improvements over
previous lattice-based signatures and compare very favorably to the openssl implementations of
RSA and ECDSA signatures schemes (see Table 1).

As part of our implementation, we also designed several novel algorithms that could be of
independent interest. Chiefly among them is a new procedure that very efficiently samples from the
Gaussian distribution over Zm without requiring a very large look-up table. The absence of such an
algorithm made researchers avoid using the Gaussian distribution when implementing lattice-based
schemes on constrained devices, which resulted in these schemes being less compact than they could
have been [GLP12].

1.1 Related Work

Rejection Sampling. Rejection sampling in lattice constructions was first used by Lyubashevsky
[Lyu08] to construct a three-round identification scheme. A standard identification scheme is a
three round sigma protocol that consists of a commit, challenge, and response stages. The main
idea underlying their constructions and security proofs from number theoretic assumptions (e.g.
Schnorr and GQ schemes [BP02]) is that the value y committed to in the first stage is used to
information-theoretically hide the secret key s in the third stage. This is relatively straight-forward
to do in number-theoretic schemes because one can just commit to a random y and then add it
to (or multiply it by) some challenge-dependent function of s. Since all operations are performed
in a finite ring, y being uniformly random hides s. In lattice constructions, however, we need to
hide the secret key with a small y. The solution is thus to choose y from a narrow distribution
and then perform rejection sampling so that s is not leaked when we add y to it (we describe
this idea in much greater detail in Section 1.2). The improvements in lattice-based identification
schemes (and therefore signature schemes via the Fiat-Shamir transformation) partly came via
picking distributions that were more amenable to rejection sampling.

Lattice Signatures. Early lattice-based signature proposals did not have security reductions
[GGH97,HPS01,HNHGSW03], and they were all subsequently broken because it turned out that

1 ECDSA on a prime field Fp: ecdsap160, ecdsap256 and ecdsap384 in openssl.

2

f
M · g

Rejection area

x1

y1

x2

y2

x

y

(a) (xi, yi) is sampled uniformly in the area un-
der M · g, and accepted when yi 6 f(xi)

f
M · g

(b) M can be reduced when g is better
adapted to f

Fig. 1. Rejection sampling from the distribution of g to get the distribution of f

every signature leaked a part of the secret key [GS02,NR09,DN12b]. Among known provably-secure
signature schemes, [GPV08,Lyu09], [Lyu12,MP12], the most efficient seems to be that of [Lyu12]
whose most efficient instantiation has both signature and key size of the order of 9kb [GLP12] for
approximately 80 bits of security.2

1.2 Our Results and Techniques

Rejection Sampling and Signature Construction. To understand our improvement of the
rejection sampling procedure, we believe that it is useful to first give an overview of rejection
sampling and the most efficient way in which it is currently used in constructing lattice-based
signatures [Lyu12]. Rejection sampling is a well-known method introduced by von Neumann [vN51]
to sample from an arbitrary target probability distribution f , given a source bound to a different
probability distribution g. Conceptually, the method works as follows. A sample x is drawn from
g and is accepted with probability f(x)/(M · g(x)), where M is some positive real. If it is not
accepted, then the process is restarted. It is not hard to prove that if f(x) 6M ·g(x) for all x, then
the rejection sampling procedure produces exactly the distribution of f . Furthermore, because the
expected number of times the procedure will need to be restarted is M , it is crucial to keep M as
small as possible, possibly by tailoring the function g so that it resembles the target function f as
much as possible. In particular, since rejection sampling can be interpreted as sampling a random
point (xi, yi) in the area under the distribution M · g (see Figure 1) and accepting if and only if
yi 6 f(xi), reducing the area between the two curves will reduce M .

The digital signature from [Lyu12] works as follows (for the sake of this discussion, we will
present the simplest version based on SIS): the secret key is anm×nmatrix S with small coefficients,
and the public key consists of a random n × m matrix A whose entries are uniform in Zq and
T = AS mod q. There is also a cryptographic hash function H, modeled as a random oracle, which
outputs elements in Zn with small norms. To sign a message digest µ, the signing algorithm first
picks a vector y according to the distribution Dm

σ , where Dm
σ is the discrete Gaussian distribution

over Zm with standard deviation σ. The signer then computes c = H(Ay mod q, µ) and produces
a potential signature (z, c) where z = Sc + y. Notice that the distribution of z depends on the
distribution of Sc, and thus on the distribution of S – in fact, the distribution of z is exactly Dm

σ

shifted by the vector Sc.

2 In [GLP12], a 100-bit security level was claimed, but the cryptanalysis we use in this paper, which combines
lattice-reduction attacks with combinatorial meet-in-the-middle techniques [HG07], estimates the actual security
to be around 75-80 bits.

3

Span{Sc}

(Sc)⊥

(a) In the original scheme of [Lyu12]

Span{Sc}

(Sc)⊥

(b) In our scheme

Fig. 2. Improvement of Rejection Sampling with Bimodal Gaussian Distributions. In blue is the distribution of z,
for fixed Sc and over the space of all y in Figure (a) and all (b,y) in Figure (b), before the rejection step and its
decomposition as a Cartesian product over Span{Sc} and (Sc)⊥. In dashed red is the target distribution scaled by
1/M .

To remove the dependence of the signature on S, rejection sampling is used. The target distri-
bution that we want for signatures is Dm

σ , whereas we obtain samples from the distribution Dm
σ

shifted by Sc (call this distribution Dm
Sc,σ). To use rejection sampling, we need to find a positive

real M such that for all (or all but a negligible fraction) x distributed according to Dm
σ we have

Dm
σ (x) 6M ·Dm

Sc,σ(x). A simple calculation (see [Lyu12, Lemma 4.5]) shows that

Dm
σ (x)/Dm

Sc,σ(x) = exp

(−2〈x,Sc〉+ ‖Sc‖2
2σ2

)
. (1)

The value of 〈x,Sc〉 behaves in many ways as a one-dimensional discrete Gaussian, and it can be
thus shown that |〈x,Sc〉| < τσ‖Sc‖ with probability 1−exp(−Ω(τ2)). Asymptotically, the value of
τ is proportional to the square root of the security parameter. Concretely, if we would like to have,
for example, 1−2−100 certainty that |〈x,Sc〉| < τσ‖Sc‖, we would set τ = 12. Thus with probability

1 − exp(−Ω(τ2)), we have exp
(
−2〈x,Sc〉+‖Sc‖2

2σ2

)
6 exp

(
2τσ‖Sc‖+‖Sc‖2

2σ2

)
. So if σ = τ‖Sc‖, we will

have Dm
σ (x)/Dm

Sc,σ(x) 6 exp
(
1 + 1

2τ2

)
. Therefore if we set M = exp

(
1 + 1

2τ2

)
, rejection sampling

outputs signatures that are distributed according to Dm
σ where σ = τ‖Sc‖ and the expected number

of repetitions is M ≈ exp(1).3

Prior to explaining our technique to improve the scheme, we need to state how the verification
algorithm in [Lyu12] works. Upon receiving the signature (z, c) of µ, the verifier checks that ‖z‖
is “small” (roughly σ

√
m) and also that c = H(Az − Tc mod q, µ). It is easy to check that the

outputs of the signing procedure satisfy the two requirements. In this work, we show how to re-
move the factor τ (in fact even more) from the required standard deviation. Above, we described
how to perform rejection sampling when we were sampling potential signatures as z = Sc + y.
Consider now, an alternative procedure, where we first uniformly sample a bit b ∈ {−1, 1} and
then choose the potential signature to be z = bSc + y. In particular z is now sampled from the
distribution 1

2D
m
Sc,σ+ 1

2D
m
−Sc,σ. If our target distribution is still Dm

σ , then, as above, we need to have

Dm
σ (x)/

(
1
2D

m
Sc,σ(x) + 1

2D
m
−Sc,σ(x)

)
6M . By using Equation (1) and some algebraic manipulations

3 More precisely σ = τ maxS,c ‖Sc‖, since Sc is not known in advance.

4

(see Section 3.2), we obtain that

Dm
σ (x)/

(
1

2
Dm

Sc,σ(x) +
1

2
Dm
−Sc,σ(x)

)
= exp

(‖Sc‖2
2σ2

)
/ cosh

(〈x,Sc〉
σ2

)
6 exp

(‖Sc‖2
2σ2

)
, (2)

where the last inequality follows from the fact that cosh(y) > 1 for all y. Thus for rejection sampling
to work with M = exp(1), as in the previous example, we only require that σ = ‖Sc‖/

√
2 rather

than τ‖Sc‖.
Our improvement is depicted on Figure 2. Part 2(a) shows the rejection sampling as done

in [Lyu12]. There, the distribution Dm
σ (the dashed red line) must be scaled by a somewhat large

factor so that all but a negligible fraction of it fits under Dm
Sc,σ. In 2(b), which represents our

improved sampling algorithm, the distribution from which we are sampling is bimodal having its
two centers at Sc and −Sc. As can be seen from the figure, the distribution Dm

σ fits much “better”
(i.e. needs to be scaled by a much smaller factor) underneath the bimodal distribution and therefore
there is a much smaller rejection area between the two curves. As a side note, whereas in (a), a
negligible fraction of the scaled Dm

σ is still above Dm
Sc,σ, in (b), all of Dm

σ is underneath the bimodal

distribution 1
2D

m
Sc,σ + 1

2D
m
−Sc,σ.

While the above sampling procedure potentially produces much shorter signatures since the
Gaussian “tail-cut” factor τ is never used, it does not give an improved signature scheme by
itself because the verification procedure is no longer guaranteed to work. The verification checks
that c = H(Az − Tc mod q, µ) and so will verify correctly if and only if Ay = Az − Tc =
A(bSc + y)−Tc = Ay + bTc−Tc, which will only happen if bTc = Tc mod q for b ∈ {−1, 1}. In
other words, we will need Tc = −Tc mod q, which will never happen if q is prime unless T = 0.
4 Our solution, therefore, is to work modulo 2q and to set T = qI where I is the n × n identity
matrix. In this case Tc = −Tc mod 2q, and so the verification procedure will always work.

Changing the modulus from q to 2q and forcing the matrix T to always be qI creates several
potential problems. In particular, it is no longer clear how to perform key generation, and also the
outline for the security proof from [Lyu12] no longer holds. But we show that these problems can
be overcome. We will now sketch the key generation and the security proof based on the hardness
of the SIS problem in which one is given a uniformly random matrix B ∈ Zn×mq , and is asked to
find a short vector w such that Bw = 0 (mod q). To generate the public and secret keys, we first

pick a uniformly random matrix A′ ∈ Zn×(m−n)
q and a random (m − n) × n matrix S′ consisting

of short coefficients. We then compute A′′ = A′S′ mod q and output A = [2A′|2A′′ + qI] as the
public key. The secret key is S = [S′|−I]T . Notice that by construction we have AS = qI (mod 2q)
and S consists of small entries. The dimensions m and n are picked so that the distribution of
[A′|A′S′ mod q] can be shown to be uniformly random in Zn×mq by the leftover hash lemma.

In the security proof, we are given a random matrix B = [A′|A′′] ∈ Zn×mq by the challenger
and use the adversary that forges a signature to find a short vector w such that Bw = 0 (mod q).
We create the public key A = [2A′|2A′′ + qI] and give it to the adversary. Even though we do
not know a secret key S such that AS = qI (mod 2q), we can still create valid signatures for any
messages of the adversary’s choosing by picking the (z, c) according to the correct distributions
and then programming the random oracle as is done in [Lyu12]. When the adversary forges, we use
the forking lemma to create two equations Az = qc (mod 2q) and Az′ = qc′ (mod 2q). Combining

4 One may think that a possible solution could be to output the bit b as part of the signature, but this is not secure.
Depending on the sign of 〈z,Sc〉, one of the two values of b is more likely to be output than the other. Therefore
outputting the bit b leaks information about S.

5

U(−τσ, τσ)

−τσ τσ0

(a) from uniform distribution (repetition
rate ≈ 10)

k ·Dσ2 + U(0, k − 1)

k−k τστσ 0

(b) from our adapted distribution (repetition rate
≈ 1.47)

Fig. 3. Rejection Sampling

them together, we obtain A(z − z′) = q(c − c′) (mod 2q). Under some very simple requirements
for z, z′, c, and c′, the previous equation implies that A(z− z′) = 0 (mod q) and z 6= z′. This then
implies that 2B(z−z′) = 0 (mod q) and since 2 is invertible modulo q, we have found a w = (z−z′)
such that Bw = 0 (mod q).

The above scheme construction and proof work for SIS and equally well for Ring-SIS, when
instantiated with polynomials. As in [Lyu12], we can also construct much more efficient schemes
based on LWE and Ring-LWE by creating the matrix A′′ = A′S′ such that (A′,A′′) is not uniformly
random, but only computationally. For optimal efficiency, though, we can create the key in yet a
different manner related to the way NTRU keys are generated. The formal construction is described
in Section 4, and we just give the intuition here. We could create two small polynomials s1, s2 ∈
Z[x]/(xn + 1) and output the public key as a = q−s2

s1
(mod 2q). Notice that this implies that

as1 + s2 = q (mod 2q), and so we can think of the public key as A = [a,1] and the secret key
as S = [s1, s2]T . Assuming that it is a hard problem to find small vectors w such that Aw = 0
(mod 2q), the signature scheme instantiated in the above manner will be secure. To those readers
familiar with the key generation in the NTRU encryption scheme, the above key generation should
look very familiar, except that the modulus is 2q rather than q. Since we are not sure what happens
when the modulus is 2q, we show in Section 4 how to instantiate our scheme so that it is based on
NTRU over modulus q. We then explain how for certain instantiations, this is as hard a problem
as Ring-SIS (using the results of Stehlé, Steinfeld [SS11]) and how for more efficient instantiations,
it is a weaker assumption than the ones underlying the classic NTRU encryption scheme and the
recent construction of fully-homomorphic encryption [LATV12].

Gaussian Sampling. There are two generic methods for sampling according to a discrete Gaus-
sian distribution. The first one uses basic rejection sampling as follows: choose a uniform integer
x ∈ {−τσ, . . . , τσ} (where τ ≈ 12, as in the preceding discussion) and accept it with probability
proportional to exp(−x2/2σ2) (and restart otherwise). This involves the computation of the exp
function to high precision and requires an average of 2τ/

√
2π ≈ 10 trials, thus wasting a lot of

random bits. The second one involves storing large pre-computed data, namely the cumulative dis-
tribution table of the discrete Gaussian from −τσ to τσ. While the second method is very efficient
when given enough memory, neither of the two approaches is appropriate for use in constrained
devices.

We solve this issue by modifying the first approach to exploit the properties of discrete Gaus-
sians. We recall that a Bernoulli distribution Bc assigns 1 (True) with probability c ∈ [0, 1] and 0

6

Floating Precomputation Table Entropy
Point exp Storage : BLISS-II BLISS-IV Lookups Consumption

Näıve Reject. 10 0 0 45 + 10 log2 σ
C.D. Table Alg. 0 λτσ : 170kb 630kb log2(τσ) 2.1 + log2 σ

Knuth-Yao Alg. [GD12] 0 1/2λτσ : 85kb 315kb log2(
√

2πeσ) 2.1 + log2 σ

Our Algorithm 0 λ log2(2.4τσ2) : 2.3kb 4kb ≈ log2 σ ≈ 6 + 3 log2 σ

Table 2. Comparison of various sampling techniques and pre-computation storage sizes for our scheme.

(False) with probability 1− c. Overloading the notation for the sake of clarity, we will denote by Bc
both the distribution and a generic random variable that follows that distribution independently
of all others (thus we may write, for example, Ba⊕Bb = Ba+b−2ab). As a first step, to avoid explicit
computation of exp, we use the simple fact that for an integer x in binary form x = x1 · · ·xn we
have Bexp(−x/f) =

∧
i s.t. xi=1 Bexp(−2i/f). This allows us to sample according to Bexp(−x/f) using

only logarithmically many precomputed values exp(−2i/f). Similarly, we also design another algo-
rithm to sample according to B1/ cosh(x/f), using a Markov chain that makes less than two calls to
Bexp(−x/f) on average.

The second step is to replace the uniform distribution from which one chooses an integer by a
more adapted one (as in Figure 3(b)) to decrease the rejection rate. It is essential, though, that
the rejection rate retains an easily samplable form. To do this, we build on a specific discrete
Gaussian of variance σ2

2 = 1/(2 ln 2) for which the distribution Dσ2(x) is proportional to 2−x
2
. This

makes it very easily samplable, and the rejection rate still has the required form exp(·/f). The
final algorithm has bounded repetition rate of 1.5 rather than 2τ/

√
2π ≈ 10. All the operations are

very simple, requiring only small integer arithmetic, and are therefore well-suited for constrained
devices. The efficiency of our sampling algorithm compared to standard techniques is detailed in
Table 1.2. Algorithms and correctness proofs are detailed in Section 6.

Cryptanalysis and Experiments on NTRU Lattices. Previous cryptanalytic efforts against
schemes based on SIS and LWE mostly involved computing the Hermite factor of the underlying
average-case instance, as in the work of Gama and Nguyen [GN08], and making sure that its value
is below the level required for the desired security guarantees. In this work we undertake a more
careful cryptanalysis by using the results on BKZ 2.0 of Chen and Nguyen [CN11] in combination
with other techniques – namely dual lattice reduction and the combinatorial meet-in-the-middle
attack of Howgrave-Graham [HG07].

For optimal efficiency, the security of our scheme relies on the hardness of a type of NTRU
problem that has recently (re-)appeared in the literature [LATV12] and which, we believe, could play
a major role in the future of lattice-based cryptography (see Section 2 for the precise definition of
the problem). The only cryptanalysis of which we are aware of that studies NTRU lattices deals with
instances where the modulus is very close in size to the dimension of the lattice [GN08,HHGPW09].
It is thus unclear as to what roles each of the variables plays when looked at independently.

In our work, and also in the previously-mentioned work of [LATV12], the modulus is required
to be substantially larger than the dimension. As far as we are aware, no previous cryptanalysis
was done for these types of instances. The most complete study of the behavior of BKZ in the
presence of unusually short vector(s) is due to Gama and Nguyen [GN08] who thoroughly analyzed
the algorithm’s running time in the presence of one such vector. Their experiments show that the
hardness of finding this vector depends on the ratio λ2/λ1, that is, the gap between the second-

7

(a) Shortest vector not found (b) Shortest vector found

Fig. 4. Results BKZ-20 for n ∈ [48, 150], q ∈ [6000, 25000] and binary search on the λ1-threshold. On horizontal axis

is the value of n+ random(0,5) and on vertical axis is
(

1
.40

√
qm
2πe

/
λ1

)1/2n

shortest and the shortest vectors in the m-dimensional lattice. In practice, for BKZ-20, the shortest
vector was found when λ2/λ1 > .48 · 1.01m.

We ran similar experiment of BKZ-20 in the case of 2n-dimensional NTRU lattices where
λ1 = . . . = λn. In NTRU lattices, the gap normally occurs between the n-th and the n + 1-st
successive minima, and one might think that the ratio between these two quantities would somehow
determine the hardness of the instance. Our experiments showed that this is not the case, and the
shortest vector was found when

√
qm/2πe

/
λ1 was greater than .40 · 1.012m (see Figure 4). Despite

the fact that there is no vector in the lattice having length
√
qm/2πe this is actually consistent

with the results of [GN08]! The reason is that
√
qm/2πe is the expected length of the shortest

vector according to the Gaussian heuristic,5 and we would also expect λ2 ≈
√
qm/2πe in a random

q-ary lattice analyzed in [GN08]. Thus one could say that the hardness of finding a short vector in
q-ary lattices depends not on the gap, but rather on the ratio between the Gaussian heuristic and
the actual length of the shortest vector.

Similar to the results in [GN08], when the ratio was smaller than .40 · 1.012m, the resulting
shortest vector had length about

√
q · 1.012m. In other words, BKZ-20 behaved as if the lattice

were truly random. Because of our experiments with BKZ-20, it seems reasonable to assume that
BKZ behaves analogously for larger block sizes. Thus we can measure its efficacy according to
the BKZ 2.0 methodology in [CN11]. We would like to stress that we have no explanation for the
reason why the ratio between the Gaussian heuristic and the actual length of the vector seems to
dictate the hardness of finding short vectors in NTRU lattices. We are equally unsure whether this
phenomenon implies that these lattices are indeed as hard as the random lattices that have been
more exhaustively studied [GN08,CN11].

The general dearth of lattice cryptanalysis papers stands in contrast to the vast number of
articles proposing theoretical lattice-based constructions. Our belief is that this lack of cryptanalytic
effort is in part due to the fact that most of the papers with scheme proposals give no concrete

5 The Gaussian heuristic says that for certain types of random lattices L, we will have λ1(L) ≈ det(L)1/m ·
√

m
2πe

[GN08].

8

targets to attack. One of the proposed instantiations in the present work is a “toy example” that we
estimate has approximately 60 bits of security. Thus if it turns out that NTRU lattices are weaker
than believed, it is wholly possible that this example could be broken on a personal computer, and
we think this would be of great interest to the practical community. In addition, it could be argued
that we do not yet know enough about lattice reduction to be able to propose such “fine-grained”
security estimates like 160-bit or 192-bit. But one of the main reasons that we make these proposals
is to make it “worthwhile” for cryptanalysts to work on these problems. In short, one of our hopes
is that this work spurs on the cryptanalysis that is currently much needed in the field.

1.3 Acknowledgments

We thank the CRYPTO 2013 reviewers for their careful reading of the paper and their diligent
comments. We also thank Steven Galbraith and Pascal Paillier for useful comments on previous
versions of this work.

2 Preliminaries

2.1 Notation

For any integer q, we identify the ring Zq with the interval [−q/2, q/2) ∩ Z, and in general for
a ring R, we define Rq to be the quotient ring R/(qR). Whenever working in the quotient ring
Rq = Zq[x]/(xn + 1)(or R2q = Z2q[x]/(xn + 1)), we will assume that n is a power of 2 and q is a
prime number such that q = 1 (mod 2n). We define B = {0, 1} and T = {−1, 0, 1} the set of binary
and ternary integers and Bnw (resp. Tnw) the set of binary vectors (resp. ternary vectors) of length n
and Hamming weight w (i.e. vectors with exactly w out of n non-zero entries).Vectors, considered
as column vectors, will be written in bold lower case letters. Matrices will be written in bold upper
case letters. For a positive integer n, we write In to be the identity matrix of dimension n. We may
also more generally use it as the identity element in the ring R.

We recall that the `p-norm of a vector v is defined as ‖v‖p = (
∑

i|vi|p)1/p for p > 0, and its
`∞-norm as ‖v‖∞ = maxi|vi|. By default, we use ‖·‖ for the `2-norm.

We now state a general rejection sampling lemmathat will be used throughout the paper to
show the equivalence of two distributions. The proof of this lemma is quite standard (cf. [Lyu12]).

Lemma 2.1 (Rejection Sampling). Let V be an arbitrary set, and h : V → R and f : Zm → R
be probability distributions. If gv : Zm → R is a family of probability distributions indexed by v ∈ V
with the property that there exists a M ∈ R such that

∀v ∈ V,∀z ∈ Zm,M · gv(z) > f(z) ,

then, the output distributions of the following two algorithms are identical:

1. v ← h, z ← gv, output (z, v) with probability f(z)/
(
M · gv(z)

)
.

2. v ← h, z ← f , output (z, v) with probability 1/M .

9

2.2 Discrete Gaussian Distribution

Gaussian Distribution. The (un-normalized) Gaussian distribution with standard deviation σ ∈ R
and center c ∈ R evaluated at x ∈ R is defined by ρc,σ(x) = exp

(−(x−c)2
2σ2

)
, and more generally

by ρc,σ(x) = exp
(−‖x−c‖2

2σ2

)
for x, c ∈ Rn. When the center c is 0, we generally omit it from the

notation and simply write ρσ(x). The discrete Gaussian distribution over Z centered at 0 is defined
by Dσ(x) = ρσ(x)/ρσ(Z), and more generally, over Zm by Dm

σ (x) = ρσ(x)/ρσ(Z)m.

Tailcutting. It is generally useful to ignore large values which are unlikely to appear when drawing
according to a Gaussian distribution.

Lemma 2.2 ([MR07]). For any dimension m, σ > 0 and τ > 1, ρσ(Zm \ τσ√mB) < 2C(τ)m ·
ρσ(Z)m, where C(τ) = τ exp

(
1−τ2

2

)
< 1, and B is the centered `2 unit ball.

Therefore, to tailcut less than 2−λ of a 1-dimensional Gaussian, one should choose τ ≈
√
λ · 2 ln 2,

the typical value being τ = 12 for λ = 100.

2.3 Hardness Assumptions

All the constructions in this paper are based on the hardness of the generalized SIS (Short Integer
Solution) problem, which we define below.

Definition 2.3 (R-SISKq,n,m,β problem). Let R be some ring and K be some distribution over
Rn×mq , where Rq is the quotient ring R/(qR). Given a random A ∈ Rn×mq drawn according to the
distribution K, find a non-zero v ∈ Rmq such that Av = 0 and ‖v‖2 6 β.

If we letR = Z and K be the uniform distribution, then the resulting problem is the classical SIS
problem first defined by Ajtai [Ajt96] in his seminal paper showing connections between worst-case
lattice problems and the average-case SIS problem. By the pigeonhole principle, if β >

√
mqn/m

then the SIS instances are guaranteed to have a solution. Using Gaussian techniques, Micciancio
and Regev [MR07] improved Ajtai’s result to show that, for a large enough q as a function of n and
β, the SISq,n,m,β problem is as hard (on the average) as the Õ(

√
nβ)-SIVP problem for all lattices

of dimension n.
In 2006, a ring variant of SIS was introduced independently by Peikert and Rosen [PR06] and

Lyubashevsky and Micciancio [LM06]. In [LM06] it was shown that if R = Z[x]/(xn + 1), where n
is a power of 2, then the R-SISKq,1,m,β problem is as hard as the Õ(

√
nβ)-SVP problem in all lattices

that are ideals in R (where K is again the uniform distribution over R1×m
q).

NTRU Lattices. In the NTRU cryptosystem over the ring Rq = Zq[x]/(xn + 1) [HPS98], the key
generation procedure picks two short secret keys f ,g ∈ Rq (according to some distribution) and
computes the public key as a = g/f .6 When the norm of f ,g is large enough, it can be shown that
a is actually uniformly random in Rq [SS11], but even when the secret keys do not have enough
entropy, their quotient still appears to be pseudorandom, although no proof of this fact is known
[LATV12]. In the NTRU cryptosystem (or its more secure modification of [SS11] which is based on
the Ring-LWE problem), one encrypts a message µ, represented as a polynomial in Rq with {0, 1}
6 In the original NTRU scheme, the ring was Zq[x]/(xn − 1), but lately researchers have also used Zq[x]/(xn + 1)

when n is a power of 2. Indeed, the latter choice seems at least as secure.

10

coefficients, by picking two short vectors r, e ∈ Rq and outputting z = 2(ar + e) + µ. The security
of the scheme relies on the fact that the distribution of (a, z) is pseudo-random in R2

q .

One can define an NTRU version of the SIS problem that is at least as hard as breaking the
NTRU cryptosystem.7 In particular, given an NTRU public key a, find two polynomials v1,v2 ∈ Rq
such that ‖(v1|v2)‖ 6 β and av1 + v2 = 0 in Rq. Notice that (f ,−g) is a solution to this problem,
but in fact, finding larger solutions can also be useful in breaking the NTRU cryptosystem. In
particular, notice that for any solution (v1|v2), one can compute zv1 = 2(−rv2 + ev1) + µv1. If
β is sufficiently small with respect to ‖(r|e)‖, then z · v1 mod 2 = µv1, and µ can be recovered.
Thus, for certain parameters, the NTRU version of the SIS problem is at least as hard as breaking
the NTRU cryptosystem. As a side-note, we would like to point out that the NTRU encryption
scheme remains hard even after 15 years of cryptanalysis. The weakness in the NTRU signature
scheme, which uses the same key generation procedure, is due to the fact that signatures slowly
leak the secret key [NR09,DN12b], but this is provably (i.e. information-theoretically) avoided in
our scheme. In Appendix A, we analyze the hardness of the NTRU SIS problem using combinations
of lattice [CN11] and hybrid attacks [HG07].

3 BLISS: A Lattice Signature Scheme using Bimodal Gaussians

In this section, we present our new signature scheme along with the proof of correctness. The
security of the signature scheme is based on the hardness of the R-SISKq,n,m,β problem. We mention
that this is the “simple” version of our algorithm, its specific implementation that uses numerous
enhancements is presented in Section 4 . For simplicity, we present our algorithm for R = Z, but
it works in exactly the same way for rings R = Z[x]/(xn + 1)(see Section 4).

3.1 New Signature and Verification Algorithms

Key pairs. The secret key is a (short) matrix S ∈ Zm×n2q and the public key is given by the matrix

A ∈ Zn×m2q such that AS = qIn (mod 2q). A crucial property, for our new rejection sampling
algorithm, satisfied by the key pair, is that AS = A(−S) = qIn (mod 2q). Obtaining such a key
pair is easy and can be done efficiently. In Appendix B , we explain the key-generation procedure
which results in a scheme whose security is based on the classic SISq,n,m,β problem and in Section 4
we present an “NTRU-like” variant of the key generation which yields a more efficient instantiation
of the signature scheme.

Random Oracle Domain. We model the hash function H as a random oracle that has uniform
output in Bnκ, the set of binary vectors of length n and weight κ. An efficient construction of such
a random oracle can be found in Section 4.4.

The Signature Algorithm. The signer, who is given a message digest µ, first samples a vector y from
the m-dimensional discrete Gaussian distribution Dm

σ and then computes c ← H(Ay mod 2q, µ).
He then samples a bit b in {0, 1} and computes the potential output z ← y + (−1)bSc. Notice
that z is distributed according to the bimodal discrete Gaussian distribution 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ.

At this point we perform rejection sampling and output the signature (z, c) with probability

7 A way to state the NTRU SIS problem in terms of the R-SISKq,1,2,β problem is to set R = Z[x]/(xn + 1) and let K
be the distribution that picks small f ,g and outputs the public key A = (a,1) ∈ R1×2

q for a = g/f .

11

Algorithm 1: Signature Algorithm

Input: Message µ, public key A ∈ Zn×m2q , secret key S ∈ Zm×n2q , stand. dev. σ ∈ R
Output: A signature (z, c) of the message µ
1: y← Dm

σ

2: c← H(Ay mod 2q, µ)
3: Choose a random bit b ∈ {0, 1}
4: z← y + (−1)bSc

5: Output(z, c) with probability 1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
otherwise restart

Algorithm 2: Verification Algorithm
Input: Message µ, public Key A ∈ Zn2q, signature (z, c)
Output: Accept or Reject the signature
1: if ‖z‖ > B2 then Reject
2: if ‖z‖∞ > q/4 then Reject
3: Accept iff c = H(Az + qc mod 2q, µ)

1
/(

M exp
(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
, where M is some fixed positive real that is set large enough

to ensure that the preceding probability is always at most 1. We explain how to set M in accor-
dance with the standard deviation σ in the next section. If the signing algorithm did not output
the signature, then it is restarted and repeated until something is output. The expected number of
iterations of the signing algorithm is M .

The Verification Algorithm. The verification algorithm will accept (z, c) as the signature for µ if
the following three conditions hold:

1. ‖z‖ 6 B2

2. ‖z‖∞ < q/4

3. c = H(Az + qc mod 2q, µ)

The signer outputs signatures of the form (z, c) where z is distributed according to Dm
σ , thus

the acceptance bound B2 should be set a little bit higher than
√
mσ, which is the expected value

around which the output of Dm
σ is tightly concentrated; denoting B2 = η

√
mσ, one can set η so that

‖z‖ 6 B2 is verified with probability 1− 2−λ [Lyu12, Lemma 4.4] for the security parameter λ (in
practice, η ∈ [1.1, 1.4]). For technical reasons in the security proof, we also need that ‖z‖∞ < q/4,
but this condition is usually verified whenever the first one is and does not restrict the manner in
which we choose the parameters for the scheme(see Section 3.3). Condition 3 will also hold for valid
signatures because

Az + qc = A(y + (−1)bSc) + qc = Ay +
(
(−1)bAS

)
c + qc = Ay + (qIn)c + qc = Ay mod 2q.

3.2 Rejection Sampling: Correctness and Efficiency

We now explain how to pick the standard deviation σ and positive real M so that the signing
algorithm in the preceding section produces vectors z according to the distribution Dm

σ . Because
y is distributed according to Dm

σ , it is easy to see that in Step 4 of the signing algorithm, z is

12

distributed according to gSc = 1
2D

m
Sc,σ + 1

2D
m
−Sc,σ for fixed Sc and over the space of all (b,y). Thus

for any z∗ ∈ Rm, we have

Pr[z = z∗] =
1

2
Dm

Sc,σ(z∗) +
1

2
Dm
−Sc,σ(z∗)

=
1

2ρσ(Zm)
exp

(
−‖z

∗ − Sc‖2
2σ2

)
+

1

2ρσ(Zm)
exp

(
−‖z

∗ + Sc‖2
2σ2

)

=
1

2ρσ(Zm)
exp

(
−‖z

∗‖2
2σ2

)
exp

(
−‖Sc‖2

2σ2

)(
e−
〈z∗,Sc〉
σ2 + e

〈z∗,Sc〉
σ2

)

=
1

ρσ(Zm)
exp

(
−‖z

∗‖2
2σ2

)
exp

(
−‖Sc‖2

2σ2

)
cosh

(〈z∗,Sc〉
σ2

)
.

The desired output distribution is the centered Gaussian distribution f(z∗) = ρσ(z∗)/ρσ(Zm).
Thus, by Lemma 2.1, one should accept the sample z∗ with probability:

pz∗ =
f(z∗)

MgSc(z∗)
= 1
/(

M exp

(
− ‖Sc‖2

2σ2

)
cosh

(〈z∗,Sc〉
σ2

))
,

where M is chosen large enough so that pz∗ 6 1. Note that cosh(x) > 1 for any x, so it suffices that

M = e
1

2α2 (3)

where α is such that σ > α · ‖Sc‖.

Bound on ‖Sc‖. Notice that if we fix the repetition rate M , then the standard deviation of the
signature z, and therefore also its size, only depend on the maximum possible norm of the vector
Sc. For this reason, it is important to obtain a bound as tight as possible on this product. Several
upper bounds on ‖Sc‖ can be used such as ‖Sc‖ 6 ‖c‖1 · ‖S‖ = κ ‖S‖ (as in [Lyu12]) or ‖Sc‖ 6
s1(S) · ‖c‖ = s1(S) ·√κ where s1(S) is the singular norm of S. Here we introduce a new measure of
S, adapted to the form of c, which helps us achieve a tighter bound than with all previous methods.
We believe that this norm and the technique for bounding it could be of independent interest.

Definition 3.1. For any integer κ, we define Nκ : Rm×n → R as:

Nκ(X) = max
I⊂{1,...,n}

#I=κ

∑
i∈I

(
max

J⊂{1,...,n}
#J=κ

∑
j∈J

Ti,j

)
where T = Xt ·X ∈ Rn×n .

The following proposition states that
√
Nκ(S) is also an upper bound for ‖Sc‖.

Proposition 3.2. Let S ∈ Rm×n be a real matrix. For any c ∈ Bnκ, we have ‖Sc‖2 6 Nκ(S).

Proof. Set I = J = {i ∈ {1, . . . , n} : ci = 1}, which implies #I = #J = κ. Rewriting ‖S · c‖2 =
ct · St · S · c = ct ·T · c =

∑
i∈I
∑

j∈J Ti,j , we can conclude from the definition of Nκ. ut

In practice, we will use this upper bound (see Section 4)to bound ‖Sc‖ and derive the pa-
rameters. Some secret keys S will be rejected according to the value of Nκ(S), which is easily
computable. In addition to the gain from the use of bimodal Gaussians, this new upper bound
lowers the standard deviation σ by a factor ≈ √κ/2 compared to [Lyu12].

13

3.3 Security Proof

Any existential forger against our signature scheme can solve the R-SISKq,n,m,β problem for β = 2B2

where K is the distribution induced by the public-key generation algorithm.

Theorem 3.3. Suppose there is a polynomial-time algorithm F which makes at most s queries to
the signing oracle and h queries to the random oracle H, and succeeds in forging with non negli-
gible probability δ. Then there exists a polynomial-time algorithm which can solve the R-SISKq,n,m,β
problem for β = 2B2 with probability ≈ δ2

2(h+s) . Moreover the signing algorithm produces a signature

with probability ≈ 1/M and the verifying algorithm accepts a signature produced by an honest signer
with probability at least 1− 2m.

The proof of the theorem follows from standard arguments, and is simpler and tighter than the
proof of [Lyu12]. In a nutshell, the fact that the distribution of the signatures in the scheme does not
depend on the secret key means that the simulator can “sign” arbitrary messages without having
the secret key by programming the random oracle. Then when the adversary produces a forgery,
the simulator can extract a solution to the SIS problem. It is proved in a sequence of two lemmas. In
Lemma 3.4, we show that our signing algorithm can be replaced with Hybrid 2 (Algorithm 4), and
the statistical distance between the two outputs will be at most ε = s(s+ h)2−n+1. Since Hybrid 2
produces an output with probability exactly 1/M , the signing algorithm produces an output with
probability at least (1− ε)/M . Then in Lemma 3.5 we show that if a forger can produce a forgery
with probability δ when the signing algorithm is replaced with Hybrid 2, then we can use him to
recover a vector v 6= 0 such that ‖v‖ 6 β = 2B2 and Av = 0 mod q with probability at least
δ2/(2(s+ h)).

Algorithm 3: Hybrid 1
1: y← Dmσ
2: c← Bnκ
3: Choose a random bit b
4: z← (−1)bSc + y

5: With probability 1
/(
M exp(− ‖Sc‖2

2σ2) cosh(〈z,Sc〉
σ2)

)
:

6: output (z, c)
7: program H(Az + qc, µ) = c

Algorithm 4: Hybrid 2
1: c← Bnκ
2: z← Dmσ
3: With probability 1

M
:

4: output (z, c)
5: program H(Az + qc, µ) = c

Lemma 3.4. Let D be a distinguisher which can query the random oracle H and either the actual
signing algorithm (Algorithm 1) or Hybrid 2 (Algorithm 4). If she makes h queries to H and s
queries to the signing algorithm that she has access to, then for all but a 1 − eΩ(n) fraction of all
possible matrices A, her advantage in distinguishing the actual signing algorithm from the one in
Hybrid 2 is at most s(s+ h)2−n+1.

Proof. First, we show that the distinguisher D has advantage at most s(s+h)2−n+1 in distinguishing
the real signature scheme from an output of Hybrid 1 (Algorithm 3). The only difference between
these algorithms is that, in Hybrid 1, the output of the random oracle is chosen at random from Bnκ
and then programmed as the answer to H(Az + qc, µ) = H(Ay, µ) without checking whether the
value of (Ay, µ) was already set. Now, each time Hybrid 1 is called, the probability of generating a

14

y such that Ay is equal to one of the previous values that was queried is at most 2−n+1. Indeed, let
us notice that at most s+ h values of (Ay, µ) will ever be set. With probability at least 1− eΩ(n),
the matrix A can be written in Hermite Normal Form as A = [Ā‖I]. Finally, for any t ∈ Zn2q, since

σ > 3/
√

2π, we have

Pr[Ay = t; y← Dmσ] = Pr[y1 = (t− Āy0); y← Dmσ] 6 max
t′∈Zn2q

Pr[y1 = t′; y1 ← Dnσ] 6 2−n .

Thus if Hybrid 1 is accessed s times, and the probability of getting a collision each time is at most
(s+ h)2−n+1, the probability that a collision occurs after s queries is at most s(s+ h)2−n+1.

We next emphasize that the outputs of Hybrid 1 and Hybrid 2 exactly follows the same distri-
bution.This is a direct consequence of Lemma 2.1: Hybrid 1 exactly plays the role of algorithm A
and Hybrid 2 corresponds to F , where M = exp(1/(2α2)) and

f(z) = exp
(
−‖z‖2 /(2σ2)

)
, gc(z) = exp

(
−‖z‖2 /(2σ2)

)
exp

(
−‖Sc‖2 /(2σ2)

)
cosh

(
〈z,Sc〉/σ2

)
.

By Lemma 2.1 the outputs of Hybrid 1 and Hybrid 2 follow the same distribution (since we have
M · gc > f for all v). ut

Lemma 3.5. Suppose there exists a polynomial-time algorithm F which makes at most s queries
to the signer in Hybrid 2, h queries to the random oracle H, and succeeds in forging with probability
δ. Then there exists an algorithm with the same time-complexity as F which, for a given B ← K,
finds with probability at least ≈ δ2/(2(s+h)) a non-zero v ∈ Zm such that ‖v‖ 6 2B2 and Bv = 0.

Proof. Let B ← K be the matrix for the generalized SIS instance we want to solve. We slightly
transform B to create a public key A as in the signature scheme and publish it as the public
key A ∈ Zn×m2q ; notice that this modification is such that A mod q = 2B for our key generation
procedures. Therefore finding a vector v such that Av = 0 mod q yields Bv = 0 mod q because 2
is invertible modulo q.8 Denote by t = s+ h the bound on the number of times the random oracle
H is called or programmed during F ’s attack.

First, we pick random coins φ and ψ respectively for the forger and the signer. We also pick the

values that will correspond to the responses of the random oracle c1, . . . , ct
$← Bnκ. We now consider

a subroutine A taking as input (A, φ, ψ, c1, . . . , ct).

The first step of the subroutine is to initialize F by giving it the public-key A and the random
coins φ. Then, it proceeds to run F . Whenever F wants some message signed, A runs the signing
algorithm of Hybrid 2 using the signer random coins ψ to produce a signature. During signing or
when F will make queries to the random oracle, the random oracle H will have to be programmed,
and the response of H will be the first ci in the list (c1, . . . , ct) that has not been used yet. (Of
course, A keeps a table of all queries to H, so in case the same query is made twice, the previously
answered ci will be replied.) When F finishes running and outputs a forgery (with probability δ),
our subroutine A simply outputs F ’s output {(z, c), µ}.
8 More precisely, for the SIS-based generation detailed in Appendix B, denoting B = (B1|−B2) ∈ Zn×(m−n)

q ×Zn×nq ,
define A = (2B1|qIn − 2B2). The matrix A follows the same distribution as in the key generation of Appendix B
because of the use of the leftover hash lemma, and A mod q = 2B. For the “NTRU-like” key generation used to
instantiate our scheme in Section 4, we get from the NTRU SIS assumption a matrix B = (B1| −B2) = (a| − 1)
where a = (2g + 1)/f and we define A = (2B1|q1 − 2B2) = (2a|q − 2) that is, a public key with the same
distribution as in Section 4. Moreover we get A mod q = 2B = (2a| − 2).

15

Recall that the output of A verifies ‖z‖∞ < q/4 and ‖z‖ 6 B2 and c = H(Az + qc, µ). Notice
that if the random oracle H was not queried or programmed on some input w = Az + qc, then F
has only a 1/|Bnκ| chance of producing a c such that c = H(w, µ). Thus with probability 1−1/|Bnκ|,
c must be one of the ci’s, and so the probability that F succeeds in a forgery. Thus the probability
that c = cj for some j is δ − 1/|Bnκ|.

Type 1 Forgery. Suppose that cj was a response to a signing query made by F on (w′, µ′) =
(Az′ + qcj , µ

′). Then we would have

H(Az + qcj , µ) = H(Az′ + qcj , µ
′).

If µ 6= µ′ or Az + qcj 6= Az′ + qcj , it means that F found a pre-image of cj . Therefore with
overwhelming probability, we have µ = µ′ and Az + qcj = Az′ + qcj . This yields A(z − z′) =
0 mod 2q. We know that z 6= z′ (otherwise the signatures would be the same). Moreover, since
‖z‖∞ , ‖z′‖∞ 6 q/4, we have z − z′ 6= 0 mod q. Finally, the condition on the `2-norm of z and z′

gives ‖z− z′‖ 6 2B.

Type 2 Forgery. Assume now that cj was a response to a random oracle query made by F . In
this case we record this signature (z, cj) on the message µ, and we generate fresh random elements

c′j , . . . , c
′
t

$← Bnκ. By the General Forking Lemma of Bellare and Neven [BN06], we obtain that
the probability that c′j 6= cj and the forger uses the random oracle response c′j (and the query
associated to it) in the forgery is at least

(
δ − 1

|Bnκ|
)
·
(δ − 1/|Bnκ|

t
− 1

|Bnκ|
)
.

Thus, with the above probability, F outputs a signature (z′, c′j) of the message µ and Az + qcj =
Az′ + qc′j. We finally obtain

A
(
z− z′

)
= q
(
cj − c′j

)
mod 2q .

Since cj − c′j 6= 0 mod 2, we have z − z′ 6= 0 mod 2q. Moreover, we have ‖z− z′‖∞ < q/2: this
implies that v = z− z′ 6= 0 mod q. Finally, we have

Av = 0 mod q and ‖v‖ 6 2B2 ,

that is v is a solution to a SISKq,n,m,β with β = 2B2. ut

4 Practical Instantiation of BLISS

In this section, we present a practical instantiation of our signature scheme inspired by the NTRU
key-generation. We present optimizations and discuss implementation issues for each step of the
signing algorithm (Algorithm 1). The signature scheme was implemented as a proof of concept on
a desktop computer. Parameters proposals and timings are provided in Section 5.

16

4.1 Key-Generation

Given densities δ1 and δ2, we generate random polynomials f and g with d1 = dδ1ne coefficients in
{±1}, d2 = dδ2ne coefficients in {±2} and all other coefficients set to 0 until f is invertible.9 The
secret key is given by S = (s1, s2)t = (f , 2g + 1)t.

The public key is then computed as follows: set aq = (2g+1)/f ∈ Rq (aq is defined as a quotient
modulo q). Next, define A = (2aq, q − 2) ∈ R1×2

2q . One easily verifies that:

AS = 2aq · f − 2(2g + 1) = 0 mod q
AS = q(2g + 1) = q · 1 = 1 mod 2 ,

that is AS = q mod 2q. Finally, (A,S) is a valid key pair for our scheme.
Denote by Kn,δ1,δ2 the distribution that picks small f and g as uniform polynomials with exactly

d1 entries in {±1} and d2 entries in {±2} and outputs the public key B = (a, 1) ∈ R1×2
q for

a = (2g + 1)/f .
The public key generated above A taken modulo q follows the distribution 2Kn,δ1,δ2 ; that is,

such key-pair generation algorithm gives a scheme based on R-SIS
Kn,δ1,δ2
q,1,2,β .

Rejection According to Nκ(S). In practice after generating S, we restart when Nκ(S) > C2 · 5 ·
(d1 + 4d2) · κ for a fixed constant C. This constant is chosen so that 25% of the keys are accepted,
decreasing the overall security by at most 2 bits.

Computation of Nκ(S). Recall that

Nκ(S) = max
I⊂{1,...,n}

#I=κ

∑
i∈I

(
max

J⊂{1,...,n}
#J=κ

∑
j∈J

Ti,j

)
where T = St · S ∈ Rn×n .

However, in order to obtain Nκ(S), it is not required to compute the 2·
(
n
κ

)
sums in the definition.

Indeed, it suffices to compute T = St ·S, then sort the columns of T, sum the κ larger values in each
line, sort the resulting vector and to sum its κ larger components. Notice moreover that working
in Z2q[x]/(xn + 1) implies that S is composed of rotations (possibly with opposed coefficients) of
si’s, and this (ideal) structure is thus also present in T. Thus it suffices to compute the vector

t =
(
〈s1, s1〉+ 〈s2, s2〉, 〈s1,x · s1〉+ 〈s2,x · s2〉, . . . , 〈s1,x

n−1 · s1〉+ 〈s2,x
n−1 · s2〉

)
,

and derive T = (t,x · t, . . . ,xn−1 · t).

Theoretical Bound. We provide below a (theoretical) asymptotic bound on Nκ(S) for the purposes
of completeness. The following proposition easily generalizes to the form of our secret keys (see
Corollary 4.2).

Proposition 4.1. For a fixed density δ ∈ (0, 1), and w = dδne, let s ∈ Z[x]/(xn + 1) be chosen
uniformly in Tnw, and S ∈ Zn×n denotes its matrix representation. Then, for any ε > 0, we have:

Nκ(S) 6 wκ+ κ2O
(
w1/2+ε

)
except with negligible probability.

9 In order to get a better entropy/length ratio, we include a few entries in {±2} in the secret key, increasing resistance
to the Hybrid attack.

17

Proof. The first term wκ arises from the diagonal coefficients of T = St · S, equals to ‖s‖2 = w. It
remains to bound the non-diagonal terms of T . For i 6= j,

Yi,j =
∑

16k6n

εi,j,k · si+k · sj+k ,

where εi,j,k ∈ {±1} are some fixed coefficients, and the indices are taken modulo n. The key
argument is to split this sum into two parts, so that each part contains only independent terms.
This is possible when i − j 6= 0 and n is a power of 2: one easily checks that there exists a set
K ⊂ Zn such that K + i and K + j form a partition of Zn. Thus, we rewrite

Yi,j = σi,j + σ̄i,j where σi,j =
∑
k∈K

εi,j,k · si+k · sj+k and σ̄i,j =
∑

k∈Zn\K

εi,j,k · si+k · sj+k .

Focusing on the sum σi,j (a similar argument holds for σ̄i,j), one can restrict the sum to its non-
zero terms and notice that the remaining terms are uniformly random in {−1, 1} and independent
from each other. Finally σi,j is the sum of at most w uniform variables over {−1, 1} and therefore
σi,j 6 w1/2+ε except with negligible probability.10 ut

Corollary 4.2. Let f ,g ∈ Z[x]/(xn + 1) be chosen uniformly in Tnw, F,G ∈ Zn×n be their matrix
representations, and set St = (F|2G + In) ∈ Zn×2n. Then,

Nκ(S) 6 (5w + 1)κ+ κ2O
(
w1/2+ε

)
.

Proof. This follows easily from the fact that St · S = FT · F + 4GT ·G + G + GT + In, yielding
Nκ(S) 6 Nκ(F) + 4Nκ(G) + 2κ2 + κ. ut

4.2 Gaussian Sampling

In Line 1 of Algorithm 1, we want to produce y = (y1,y2)t where y1,y2 are polynomials over
Z2q[x]/(xn + 1) with coefficients distributed according to a centered discrete Gaussian distribution
of standard deviation σ. In Section 6, we provide a new technique to perform efficiently discrete
Gaussian sampling on constrained devices. However in an environment with enough memory, using
the cumulative distribution table algorithm is the easiest and fastest solution (see Table 1.2).
Namely, we tabulate the approximate cumulative distribution of the desired distribution, i.e. the
probabilities pz = Pr[x 6 z : x ← Dσ] for z ∈ [−τσ, τσ], precomputed with λ bits of precision.
At sampling time, one generates y ∈ [0, 1) uniformly at random, then performs a binary search
through the table to locate some z ∈ Z such that y ∈ [pz−1, pz) and outputs z. A GCC-profiling
of our program reveals that this step takes about 35% of the entire running-time, including the
entropy generation using sha-512.

4.3 Multiplication of two polynomials

In Line 2 of Algorithm 1, the element Ay = a1 · y1 + a2 · y2 ∈ Z2q[x]/(xn + 1) is given as input to
the random oracle. Since a2 = q − 2 is a constant, a2 · y2 is straightforward to obtain. It remains
to (efficiently) compute the product of a1 by y1 over Z2q[x]/(xn + 1).

10 By Hoeffding bound for example, or classical properties of random walks.

18

Because of the particular shape of a1 in the NTRU-like key generation, namely that a1 is lifted
from Zq[x]/(xn+1) to Z2q[x]/(xn+1) by multiplying its coefficients by 2 (i.e. a1 = 2·a′1), computing
a1·y1 over Z2q[x]/(xn+1) can be done by computing the product a′1·y1 over Zq[x]/(xn+1) and then
multiplying the coefficients of the result by 2. Now multiplying two polynomials of Zq[x]/(xn + 1)
for q prime is made efficient by choosing a modulus q such that q = 1 mod 2n: there exists then
a primitive 2n-th root ω of unity modulo q. Finally, the multiplication can be done in complexity
O(n log n) via a Number Theoretic Transform (i.e. Fast Fourier Transform over a finite field).
Details on these standard techniques can be found for example in [PG12,Ber08]. Notice that one
does not need to work with vectors of size 2n as the component-wise multiplication of the NTT
representations of size n of a′1(ωx) and y1(ωx) gives the NTT representation of [a′1 · y1](ωx) ∈
Zq[x]/(xn + 1).

4.4 Hashing to Bnκ

We discuss how to build a hash function outputting uniform vectors in Bnκ from a standard hash
function H (used in Line 2 of Algorithm 1). In [Lyu12], it was suggested to use a Hash function
with κ log2

(
n
κ

)
bits of output (recall that #Bnκ =

(
n
κ

)
, and thus #Tnκ = 2κ

(
n
κ

)
), and then apply a

one-to-one map to Tnκ. Such a mapping can be found in [FS96] but its complexity is quadratic in n;
this is quite inefficient especially for large parameters. To avoid this costly algorithm, the authors
of [GLP12] used an efficient procedure injectively mapping 160-bit strings to T512

32 ; they increased
the value κ from 20 to 32 to gain efficiency, yielding a larger signature size.

Overview. We here give an alternative solution that is both efficient and optimal (i.e. κ is minimal
for a target entropy) to produce random elements in Bnκ. In a few words, our approach consists in
obtaining κ′ > κ values x1 . . . xκ′ in Zn, and setting the coordinates cxi of the challenge c to 1,
starting from i = 1, and until ‖c‖1 = κ. If some coordinate cxj is already set to 1 one just ignores
this xj . If we run out of values xj , we would restart the process using a different seed. In the
following we describe more precisely this algorithm and show it indeed produces a uniform random
function over Bnκ if H is indeed a uniform random function over Zkn.

Detailed Construction and Correctness. Let n be a power of 2 and H0 : {0, 1}∗ → Zκ′n with κ′ > κ
be a random function outputting κ′ log2 n bits (parsed as κ′ elements in Zn). We consider the set
S ⊂ Zκ′n of vectors that have at least κ different entries. The probability that a uniform element in
Zκ′n lies in S is:

A = 1− |Z
κ′
n \ S|
|Zκ′n |

.

When A is not negligible, one can efficiently build a random function H̃ : {0, 1}∗ → S as
H̃(x) = H(x|i), where i is the smallest index such that H(x|i) ∈ S. This is somehow a rejection
sampling technique applied to a random function. Finally, in average, one call of H̃ requires 1/A
calls to H.

Fact 4.3. With the notation above, |Zκ′n \ S| 6
(
n
κ−1

)
(κ− 1)κ

′
.

Proof. Notice that |Zκ′n \ S| is the set of vectors over Zn of length κ′ with at most κ − 1 distinct
coordinates. To obtain this set, one may first choose a subset K ⊂ Zn of size κ− 1 (

(
n
κ−1

)
choices),

19

and then chooses the κ′ coordinates in K ((κ − 1)κ
′

choices). Note that vectors with strictly less
than κ− 1 coordinates have been counted several times. More formally:

Zκ
′
n \ S =

⋃
K⊂Zn
|K|<κ−1

Kκ′ =
⋃

K⊂Zn
|K|=κ−1

Kκ′ . ut

For our parameters, this gives 1/A 6 1.00001 using a 512-bit hash function for H (e.g. BLISS-IV:
n = 29, κ′ = 56, κ = 39).

It remains to map the domain S to Bnκ. For x ∈ S, let I be the set of the κ first distinct
coordinates values of x, and set f(x) =

∑
i∈I ei ∈ Bnκ where e1, . . . , en are the canonical vectors

of Zn. Each image y ∈ Bnκ has the same amount of f -preimages in S, therefore Ĥ : {0, 1}∗ → Bnκ
defined as Ĥ(x) = f ◦ H̃(x) is also a random function.

4.5 Multiplication of S by a sparse vector c

In Line 4 of Algorithm 1, one should compute Sc. Let Si, i = 1, 2 denotes the n × n matrix over
Z2q whose columns vectors are the xj · si’s for j = 0, . . . n− 1 In particular we have that

si · c = Sic .

Now, since c is a sparse binary vector, one should not use the NTT to compute si · c for this
step (contrary to Section 4.3). Indeed, the absolute value of the coefficients of s1 and s2 is smaller
than 5, yielding ‖si · c‖∞ 6 5κ � 2q, i = 1, 2. Therefore, computing (s1 · c) and (s2 · c) can be
performed very efficiently by additions over Z (i.e. without reduction modulo 2q) of κ pre-stored
columns of Si. Notice moreover that working over Z2q[x]/(xn + 1) allows to reduce the memory
storage overhead to zero: all the columns of Si are rotations (possibly with opposite coefficients) of
si.

4.6 Rejection Sampling according to 1/ exp and 1/ cosh

In Line 5 of Algorithm 1, one should reject with probability 1/(M exp(−x/f) cosh(x′/f)). To avoid
floating-point computations of the transcendental functions exp and cosh, we use the techniques
described in Section 6 to do it efficiently with a very small memory footprint. Notice that the
precomputed values can be the same both for Gaussian sampling and this rejection sampling step.

4.7 Signature Compression

Recall that the signature is a pair (z, c) where z = (z1, z2)t follows the Gaussian distribution D2n
σ .

Working with A in Hermite Normal Form. As in [GLP12], in order to compress our signature,
we need to have A in Hermite Normal Form. Now, during the key-generation process, we explicitly
constructed A = (a1, q − 2) such that

a1 · s1 + (q − 2)s2 = q mod 2q .

Let us define ζ such that ζ · (q − 2) = 1 mod 2q. Next, instead of calling the random oracle on
(Ay mod 2q, µ), we can call it on

(
(ζA)y mod 2q, µ

)
because ζA = (ζa1, 1) is in Hermite Normal

Form.

20

Dropping the low-order bits of z2. We denote by d the number of bits we would like to drop
in z2. For every integer x in the range [−q, q) and any positive integer d, x can be uniquely written

x = bxed · 2d + [x mod 2d] ,

where [x mod 2d] ∈ [−2d−1, 2d−1). Thus bxed can be viewed as the “high-order bits” of x and
[x mod 2d] as its “low-order bits”.

In [GLP12], the signature size is reduced by dropping almost all the information about z2 in the
signature. Such a strategy impacts security, as it reduces to an easier SIS problem (it may allow an
attacker to forge using longer vectors). Let us describe a similar feature for our signature scheme.
First, we replace the random oracle H input by(⌊

(ζA)y
⌉
d
, µ
)

=
(⌊
ζ · a1 · y1 + y2 mod 2q

⌉
d
, µ
)

=
(⌊
ζ · a1 · z1 + ζ · q · c + z2 mod 2q

⌉
d
, µ
)
. (4)

The idea of [GLP12], transposed to our settings, was to define a vector z̃2 with coefficients
in {0,±2d} and a limited number of coefficients z̃2[i] = z2[i] (coming from the need of reduction
modulo 2q after the addition with small but non negligible probability) such that⌊

(ζA)y
⌉
d

=
⌊
ζ · a1 · z1 + ζ · q · c + z̃2 mod 2q

⌉
d
.

Unfortunately the workaround which consists in storing some coefficients uncompressed, i.e. of the
form z̃2[i] = z2[i], yields a signature scheme which is not strongly unforgeable. Indeed it is easy to
forge a signature by modifying the least-significant bit of one of the uncompressed values, and this
does not modify the high-order bits of the sum with very high probability.11

Let us describe how to solve this issue for our signature scheme. We want to replace z2 by a
small vector z†2 such that⌊

(ζA)y
⌉
d

=
⌊
ζ · a1 · z1 + ζ · q · c mod 2q

⌉
d

+ z†2 .

Unfortunately without additional modification, the security proof does not go through because of a
similar issue as in [GLP12], i.e. the coefficients z2[i] of z2 which, added to

(
ζ · (a1 ·z1)[i]+ζ ·q ·c[i]

)
,

force us to reduce the result modulo 2q in Equation (4). Let us define p = b2q/2dc; we have
2q = p · 2d + ν with a small ν (typically ν = 1 in our parameters). Now we modify the random
oracle H input by (⌊

(ζA)y
⌉
d

mod p, µ
)
,

and define
z†2 =

(⌊
(ζA)y

⌉
d
−
⌊
ζ · a1 · z1 + ζ · q · c mod 2q

⌉
d

mod p
)
∈ [0, p)n .

The coefficients of z†2 are small modulo p. We redefine the signature to be (z1, z
†
2, c) instead of

(z1, z2, c), and during the verification, we check that

H
(
z†2 +

⌊
ζ · a1 · z1 + ζ · q · c mod 2q

⌉
d

mod p, µ
)

= c ,

that
∥∥∥(z1‖2dz†2)

∥∥∥ 6 B2 and that
∥∥∥(z1‖2dz†2)

∥∥∥
∞

6 B∞.

Finally, we have the following theorem:

11 As a direct consequence, the scheme of [GLP12] is not strongly unforgeable.

21

Theorem 4.4. Let us consider the signature scheme of Section 4.8. Assume that d > 3, q ≡
1 mod 2d−1, and 2B∞ + (2d + 1) < q/2. Suppose there is a polynomial-time algorithm F which
succeeds in forging with non negligible probability. Then there exists a polynomial-time algorithm
which can solve the R-SISKq,n,m,β problem for β = 2B2 + (2d + 1)

√
n.

Proof. The differences with the proof of Theorem 3.3 are detailed in Appendix C. ut

Compressing Most Significant Bits of z1 and z†2. The simplest representation of the entries
of z1 then requires dlog2(8σ)e 6 log2(16σ) bits. Yet, the entropy of these entries is actually smaller:

Fact 4.5. Let X be distributed as Dσ, that is a centered discrete Gaussian variable. Then the
entropy of X is upper-bounded by:

H(X) 6
1

σ3
+ log2(

√
2πeσ) ≈ log2(4.1σ) .

Now, Huffman coding provides (almost) optimal encoding for data when their distribution is
exactly known. More precisely:

Theorem 4.6 (Huffman Coding). For any random variable X over a finite support S, there
exist an injective prefix-free code C : S → {0, 1}∗ such that:

H(X) 6 E [|C(X)|] < H(X) + 1 .

To keep the compression efficient, we choose to only encode the highest bits of all entries; the lower
are almost uniform and therefore we do not loose anything by not compressing them. Moreover, if
by packing several independent variables X1, . . . , Xk, we can decrease the overhead to 1/k.

4.8 Final KeyGen, Sign and Verify Algorithms

In this section, we describe the final algorithms to instantiate BLISS with the parameters of Sec-
tion 5. Notice that to obtain the signature size indicated Table 1 (page 2), one need to use Huffman

Coding to compress the highest bits of z1 and z†2. Let us define p = b2q/2dc where d is the number
of dropped bits.

Algorithm 5: BLISS Key Generation

Output: Key pair (A,S) such that AS = q mod 2q
1: Choose f ,g as uniform polynomials with exactly d1 entries in {±1} and d2 entries in {±2}
2: S = (s1, s2)t ← (f , 2g + 1)t

3: if Nκ(S) > C2 · 5 · (dδ1ne+ 4dδ2ne) · κ then
4: restart
5: end if
6: aq = (2g + 1)/f mod q (restart if f is not invertible)
7: Output(A,S) where A = (2aq, q − 2) mod 2q

22

Algorithm 6: BLISS Signature Algorithm

Input: Message µ, public key A = (a1, q − 2) ∈ R1×2
2q , secret key S = (s1, s2)t ∈ R2×1

2q

Output: A signature (z1, z
†
2, c) of the message µ

1: y1,y2 ← DZn,σ
2: u = ζ · a1 · y1 + y2 mod 2q
3: c← H(bued mod p, µ)
4: Choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c

7: Continue with probability 1
/(

M exp
(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
otherwise restart

8: z†2 ← (bued − bu− z2ed) mod p

9: Output (z1, z
†
2, c)

Algorithm 7: BLISS Verification Algorithm

Input: Message µ, public key A = (a1, q − 2) ∈ R1×2
2q , signature (z1, z

†
2, c)

Output: Accept or Reject the signature
1: if ‖(z1|2d · z†2)‖2 > B2 then Reject

2: if ‖(z1|2d · z†2)‖∞ > B∞ then Reject

3: Accept iff c = H
(⌊
ζ · a1 · z1 + ζ · q · c

⌉
d

+ z†2 mod p, µ)

5 Parameters and Benchmarks

In this section, we first propose parameters sets for the scheme BLISS described in Section 4. Next,
we compare the benchmarks of our proof-of-concept implementations with the openssl running
times of RSA and ECDSA.

5.1 Parameters Sets

In Table 5, we propose several sets of parameters to implement the R-SISK variant of our scheme
described in Section 4. The signature schemes BLISS-I and BLISS-II are respectively optimized for
speed and compactness and offer 128 bits of security (i.e. long-term protection [NIS11,ECR12]).
The signature schemes BLISS-III and BLISS-IV offer respectively 160 and 192 bits of security.
The two last lines provide typical security measurement against direct lattice attack in terms
of Hermite factor, but slightly better attacks exist. Therefore, our security claims are derived
from an extensive analysis based on BKZ-2.0 simulation [CN11] in interaction with other tech-
niques [MR09,MM11,HG07] detailed in Appendix A.

One of the objectives of this work was to determine whether the scheme from [Lyu12] could
be improved so as it remains sufficiently secure for a dimension n = 256. Even though this seems
possible when only considering direct lattice attacks, it turns out to be slightly out of reach according
to the analysis of Appendix A. Any additional trick might unlock an extremely efficient 80-bit secure
signature scheme; it seems to us a challenging but worthwhile goal. We do however propose a toy
variant BLISS-0 in this dimension for which we expect up to 60 bits of security. Yet, we believe it
would require a significant effort to break this toy variant; we leave it as a challenge to motivate

23

Name of the scheme BLISS-0 BLISS-I BLISS-II BLISS-III BLISS-IV

Security Toy (6 60 bits) 128 bits 128 bits 160 bits 192 bits

Optimized for Fun Speed Size Security Security

n 256 512 512 512 512
Modulus q 7681 12289 12289 12289 12289

Secret key densities δ1, δ2 .55 , .15 .3 , 0 .3 , 0 .42 , .03 .45, .06
Gaussian standard deviation σ 100 215 107 250 271

α .5 1 .5 .7 .55
κ 12 23 23 30 39

Secret key Nκ-Threshold C 1.5 1.62 1.62 1.75 1.88
Dropped bits d in z2 5 10 10 9 8

Verification thresholds B2, B∞ 2492, 530 12872, 2100 11074, 1563 10206,1760 9901, 1613

Repetition rate 7.4 1.6 7.4 2.8 5.2
Entropy of challenge c ∈ Bnκ 66 bits 132 bits 132 bits 161 bits 195 bits

Signature size 3.3kb 5.6kb 5kb 6kb 6.5kb
Secret key size 1.5kb 2kb 2kb 3kb 3kb
Public key size 3.3kb 7kb 7kb 7kb 7kb

SIS parameter β/
√
q

63 = 1.0083m 441 = 1.0060m 409 = 1.0059m 289 = 1.0055m 231 = 1.0053m
(as in Theorem 4.4)

Ring-Unique-SVP
14 = 1.0051m 46 = 1.0037m 46 = 1.0037m 30 = 1.0033m 25 = 1.0031m

parameter
√

qm
2πe

/
λ1

Table 3. Parameter proposals

further advance in lattice cryptanalysis. Notice that choosing a non power-of-two dimension n would
have been possible but yields several unwelcome consequences: on efficiency first as NTT becomes
at least twice slower and the geometry is worse (our constant C grows), but also on simplicity as
one will no longer work as on the simple quotient by xn + 1. However, it is possible to get about
100 bits of security in dimension n = 379 for signatures of size 4kb. In comparison [Lyu12, Set-IV]
and [GLP12, Set-I] have respective signature sizes of 15kb and 9.5kb, for a claimed security of 100
bits.12

5.2 Timings

In Table 1, we provide running times of our proof-of-concept implementation of our signature
scheme with the parameters provided above, on a desktop computer. We also provide running
times for the openssl implementations of RSA and ECDSA. Notice that, despite the lack of
optimization on our proof-of-concept implementation, we derived interesting timings. First, our
verification time is nearly the same for each of our variants, and is much faster than the RSA and
the (even worse) ECDSA verifications by a factor 10 to 30. Secondly, excluding RSA which is really
slow, the signature algorithm of BLISS-I is as fast as ECDSA-256 (with the same claimed security).
We refer to [NIS11,ECR12] to get the equivalence between the key length of RSA and ECDSA and
the expected security in bits.

Besides, we expect our scheme to be much more suitable to embedded devices than both RSA
and ECDSA, mainly because our operation are done with a very small modulus (less than 16
bits). By design, the binary representation of q is 11 0000 0000 0001, that is q has a very small

12 Our analysis in Appendix A shows that the security of [GLP12, Set-I] may actually a little lower than claimed.

24

Hamming weight; this structure might yield interesting hardware optimizations. The main issue for
such architectures is the generation of discrete Gaussian, addressed in Section 6.

6 Efficient Gaussian Sampling for Lightweight Devices

Since its introduction, and with the noticeable exception of NTRU, lattice-based cryptosystems
operating at a standard security level have remained out of reach of constrained devices by several
orders of magnitude. A first step towards a practical lattice-based signature scheme was achieved
by [GLP12] with an implementation on a low-cost FPGA, by avoiding Gaussians, at the cost of
some compactness and security compared to [Lyu12].

At this time, all known algorithms to sample according to a distribution statistically close to a
discrete Gaussian distribution on a lattice [GPV08] require either long-integer arithmetic [DN12a]
at some point or large memory storage [Pei10,GD12]. Some progress was made in [DN12a], showing
that “lazy techniques” can limit the need for high precision; one can use floating-point numbers at
double precision (53 bits) most of the time, native on high-end architectures but costly on embedded
devices.

Section Outline. The main goal of this section is to show how to efficiently sample discrete Gaussian
without resorting to large precomputed tables, nor evaluations of transcendental function. The first
step is being able to sample according to a Bernoulli distribution with bias of the form exp(−x/f)
(and 1/ cosh(x/f)) without actually computing transcendental functions (Section 6.2). The second
step is to build an appropriate and efficient distribution (see Figure 3(b)) as input of rejection
sampling to reduce its rejection rate (Section 6.3). Our new algorithm still requires precomputed
tables, but of much smaller size; precisely of size logarithmic in σ rather than linear.

6.1 Discrete Gaussian Sampling: Prior Art

Laziness. Laziness is an algorithmic trick saving both computation and entropy consumption; for
our purpose, it is used in two cases of application. First, as in many compilers, when computing
a ∧ b and a ∨ b, b is not always evaluated depending on the value of a. The second concerns the
comparisons r < c: the result might be decided only knowing their first different bit; for a uniform
r ∈ [0, 1), only 2 bits are needed on average. In practice however, one may apply this technique
word by word rather than bit by bit.

Sampling with a Constant Bias. Sampling from a distribution statistically close to a Bernoulli
variable Bc for a given bias c is easy: to get a variable (2−λ)-close to Bc, take an approximation of
c up to λ correct bits, then sample a uniform real r ∈ [0, 1) up to λ bits of precision and answer 1
if and only if r < c.

General Algorithm. A general algorithm to sample according to a discrete Gaussian distribution
Dσ,c centered in c ∈ R was proposed in [GPV08] and is depicted on Figure 3(a) for c = 0. It uses
rejection sampling from the uniform distribution U over [c − τσ, c + τσ] by outputting a uniform
integer x with probability p(x) = exp(−(x−c)2/(2σ2)). This algorithm requires about 2τ/

√
2π trials

in average, and thus O(τ log2(σ)) bits of entropy using laziness. The main drawback is the need
to compute the exp function with very high-precision. Additionally, an average of 2τ/

√
2π ≈ 10

trials until acceptance is rather expensive. We address those issues in Sections 6.2 and 6.3, where
we show how to avoid explicit computations of exp and decrease the repetition factor to 1.47.

25

Cumulative Distribution Table (CDT). In [Pei10], Peikert suggested to use a cumulative distribution
table to sample more efficiently (with complexity O(log2 σ)) when c is known in advance. One
tabulates the approximate cumulative distribution of the desired distribution, i.e. the probabilities
pz = Pr[x 6 z : x← Dσ,c] for z ∈ [c−τσ, c+τσ], precomputed with λ bits of precision. At sampling
time, one generates y ∈ [0, 1) uniformly at random, performs a binary search through the table to
locate some z ∈ Z such that y ∈ [pz−1, pz) and outputs z. This approach consumes O(log2(σ)) bits
of entropy, which is optimal up to a constant factor. The main drawback of this approach resides
in the size of the table. Taking our set of parameters (see Section 5), the storage requirement is
(λτσ) bits, i.e. up to 630kb, which is unsuitable for many embedded devices.

Combination with the Knuth-Yao Algorithm. In an extensive study on discrete Gaussian distri-
butions [GD12], Galbraith and Dwarakanath suggest to combine the previous method with the
Knuth-Yao algorithm. This leads to a significant decrease of the table size by a factor slightly less
than 2. Unfortunately, the obtained tables remain prohibitively large.

In the following, we show how to achieve a much smaller precomputation storage (up to 4kb
for our parameters) at the expense of more input entropy (see Table 1.2, page 7).

6.2 Efficient Sampling of Bexp(−x/f) and B1/ cosh(x/f)

Requirements. To implement the rejection step, it is enough to sample according Bexp(−x/f) and
B1/ cosh(x/f) where x is a bounded integer and f a fixed real. Our sampler for Bexp(−x/f) will also
be useful later to build our efficient Gaussian Sampler.

Main Idea. Our solution uses the fact that appropriate combinations of Bernoulli variables can
easily produce new Bernoulli variables with combined biases. We make use of that observation
to avoid an explicit computation of c and require much fewer precomputed values. Typically, if
one has access to Bernoulli variables Ba,Bb three new Bernoulli variables are easily derived from
them: B1−a = ¬Ba, Bab = Ba ∧ Bb and Ba+b−ab = Ba ∨ Bb. We build a new operator � such that
Ba � Bb = Ba/(1−(1−a)b) = Ba � Bb, allowing one to homomorphically introduce fractions in the
Bernoulli algebra.

Efficient Bernoulli Sampling with Exponential Biases. The problem is as follows: for a fixed real
f , a positive integer x 6 2` given as input, sample a random Boolean according to Bexp(−x/f).
Using the simple homomorphic property of the exponential function, our approach, implemented
by Algorithm 8, requires only ` precomputed entries, and no evaluation of transcendental functions.

Lemma 6.1. For any integer x ∈ [0, 2`), Algorithm 8 outputs a bit according to Bexp(−x/f).

Proof. Denoting the binary decomposition of x by x =
∑`−1

i=0 xi2
i with xi ∈ {0, 1}, we have

Bexp(−x/f) = Bexp(−
∑
i xi2

i/f) = B∏
i exp(−xi2i/f) =

∧
i s.t. xi=1

Bexp(−2i/f) . ut

26

Algorithm 8: Sampling Bexp(−x/f) for x ∈ [0, 2`)

Input: x ∈ [0, 2`) an integer in binary form x = x`−1 · · ·x0

Precomputation: ci = exp(−2i/f) for 0 6 i 6 `− 1
for i = `− 1 to 0

if xi = 1 then
sample Ai ← Bci
if Ai = 0 then return 0

return 1

Algorithm 9: Sampling Ba � Bb
sample A← Ba
if A then return 1
sample B ← Bb
if ¬B then return 0
restart

Remark 6.2. Notice that Algorithm 8 is defined so that the smallest probabilities are checked first,
so that the algorithm can terminate faster. Notice that this algorithm is very fast, and uses at worst
2dlog2(x)e bits of entropy, and much less on average for random x.

Efficient Bernoulli Sampling with Inverse Hyperbolic Cosine Biases. During the final rejection step
of our signing procedure, one needs to reject with probability 1/ cosh(x/f) for a given f . Recall
that

1

cosh(x/f)
=

2

exp(|x| /f) + exp(− |x| /f)
=

exp(− |x| /f)
1/2 + 1/2 · exp(−2 |x| /f)

. (5)

To sample efficiently according to the Bernoulli distribution B1/ cosh(x/f), we reuse the previous
generator for Bexp(−x/f) with no explicit evaluation of exp or cosh. In order to deal with the fraction
in Equation (5), we introduce a new operation denoted � and computed according to Algorithm 9.

Lemma 6.3 (Correctness and Efficiency of Algorithm 9). For any a, b ∈ (0, 1] we have,
Ba � Bb = Ba/(1−(1−a)b) and Algorithm 9 terminates after an average of 1/(1− (1− a)b) trials.

Proof. At each trial, the probability of restarting is (1− a)b. Now, the probability that it outputs
1 is easily computed as the sum over each trial:

Pr[Ba � Bb = 1] = a

∞∑
k=0

(1− a)kbk =
a

1− (1− a)b
ut

Corollary 6.4. For any x ∈ R we have: B1/ cosh(x) = Bexp(−|x|) �
(
B1/2 ∨ Bexp(−|x|)

)
and Algo-

rithm 9 requires less than 1.53 calls to Bexp(−|x|) on average.

Proof. Correctness is a direct application of the previous lemma. Set X = exp(− |x|). Algorithm 9
for the computation of the Bernoulli variable BX�

(
B1/2 ∨ BX

)
can be seen as the following Markov

chain:

27

A B C

01

1−X
X

1/2

1/2

X

1−X1−X

Let M denote the restriction of the transition matrix to the states A,B and C (indexed in that
order), and let v = (1, 0, 0)t be the initial density vector. The density vector after k steps is Mk ·v,
so the average number of steps through each state A,B and C is given by the vector

w = (wA, wB, wC) =

∞∑
k=0

Mk · v = (I3 −M)−1 · v

where

M =

 0 0 X
1−X 0 0

0 1
2 0

 and (I3 −M)−1 · v =
1

2 +X(X − 1)

 2
−2X + 2

1−X

 .

Since the calls to Bexp(−|x|/f) are performed during the states A and C, the average number

of calls to this Bernoulli sampling is C(X) := wA + wC = 3−X
2+X(X−1) . One easily derives an upper

bound for C(X):

C(X) 6
5 + 4

√
2

7
≈ 1.523,

reached when X = 3− 2
√

2. ut

6.3 Sampling Centered Discrete Gaussian Variables

Based on Algorithm 8 to sample efficiently from Bexp(−x/f), it is now possible to obtain a Gaus-
sian distribution via generic rejection sampling algorithm as in [GPV08], trading high-precision
evaluation of transcendental functions against a table of log2(τ2σ2) precomputed values (see Fig-
ure 3(a)). However, the algorithm still requires (2τ/

√
2π) ≈ 10 trials on average to output an x

statistically close to the correct distribution. This is due to the significant distance between the
uniform distribution and the target distribution.

In what follows, we introduce a new sampling algorithm with an average number of rejections
smaller than 1.47. We achieve that result by sampling from a specific distribution denoted Dk,σ2 , for
which sampling is easy. The distribution Dk,σ2 is much closer to the target distribution Dkσ2 than
the uniform distribution (see Figure 3(b)), leading to a huge acceleration of rejection sampling.

The Binary Discrete Gaussian Distribution. Let us introduce the binary discrete Gaussian distribu-
tion Dσ2 , which is a discrete Gaussian with specific variance σ2

2 = 1/(2 ln 2) ≈ 0.849 and probability
density

ρσ2(x) = e−x
2/(2σ2

2) = 2−x
2

for x ∈ Z .

We will combine Dσ2 with the uniform distribution to produce the distribution Dk,σ2 (see Fig-
ure 3(b)). We will only focus on the positive half of Dσ2 denoted D+

σ2 = {x ← Dσ2 : x > 0}.
Algorithm 10 is designed to sample according to D+

σ2 very efficiently using only unbiased random
bits.

28

Lemma 6.5. Algorithm 10 outputs positive integers according to D+
σ2. On average, the algorithm

terminates after 2/ρσ2(Z+) < 1.3 trials, consuming 2.6 bits of entropy overall.

Proof. We denote ρσ2(I) =
∑

i∈I 2−i
2

for I ⊆ Z+, the probability that the algorithm returns x ∈ Z+

is ρσ2(x)/ρσ2(Z+) where ρσ2(Z+) =
∑∞

i=0 2−i
2 ≈ 1.564. We now observe that the binary expansion

of ρσ2({0, . . . , j}) is of the form

ρσ2({0, . . . , j}) =

j∑
i=0

2−i
2

= 1 . 1 0 0 1 0 . . . 0︸ ︷︷ ︸
4

1 0 . . . 0︸ ︷︷ ︸
6

1 . . . 0 . . . 0︸ ︷︷ ︸
2(j−2)

1 0 . . . 0︸ ︷︷ ︸
2(j−1)

1 .

Thus, each trial of Algorithm 10 implicitly chooses a random real r ∈ [0, 2) that will be rejected
if r > ρσ2(Z+). It then computes the cumulative table (scaled by ρσ2(Z+)) on the fly and reject if
necessary. On average, the algorithm completes after 2/ρσ2(Z+) < 1.3 trials, consuming 2.6 bits of
entropy. ut

Building the Centered Discrete Gaussian Distribution. Based on our efficient sampling for the
distribution D+

σ2 , we can now easily build the positive discrete Gaussian distribution with standard
deviation σ = kσ2 for k ∈ Z+. We refer to our Algorithm 11 based on the property

D+
k,σ2

= k · D+
σ2 + U(0, k − 1),

and where we reject the result with probability exp(−y(y+ 2kx)/(2σ2)) where x and y respectively
follow the distributions D+

σ2 and U(0, k − 1).

Theorem 6.6. For any integer input k, Algorithm 11 outputs positive integers according to D+
σ

for σ = kσ2. On average, it requires less than 1.47 + 1
k trials. Consequently, Algorithm 12 outputs

integers according to Dσ, and requires about 1 + 1
5σ trials.

Remark 6.7. Entropy consumption for each trials is: 2.6 bits for x ← D+
σ2 , log2 k bits for y ←

U({0 . . . k − 1}), and ≈ 1 + log2 σ for rejection bit b ← Bexp(−y(y+2kx)/(2σ2)) (measured in practice
for this particular distribution), for a total of ≈ 4 + 2 log2 σ.

Proof. Let us start with the fact that any output z is uniquely written as kx+y for y ∈ {0, . . . , k−1}.
Thus the probability under which z is output is proportional to

ρσ2(x) exp

(
−y(y + 2kx)

2σ2

)
= exp

(
− x2

2σ2
2

− 2kxy + y2

2σ2

)
= exp

(
−(kx+ y)2

2σ2

)
= ρσ(z) .

Notice that working with positive discrete Gaussian distributions ensures that exp
(
− y(y+2kx)

2σ2

)
6 1

since x and y are both positive. Therefore the repetition rate M is upper-bounded by

M = ρkσ2(Z+)/
(
kρσ2(Z+)

)
6
(
kσ2

√
π/2 + 1

)
/
(
kρσ2(Z+)

)
6 1.47 + 1/

(
kρσ2(Z+)

)
. ut

Finally, we apply Algorithm 12 to build the (full) discrete Gaussian distribution Dσ over Z.

29

Algorithm 10: Sampling D+
σ2

Output: An integer x ∈ Z+ according to D+
σ2

generate a bit b← B1/2

if b = 0 then return 0
for i = 1 to ∞ do

draw random bits b1 . . . bk for k = 2i− 1
if b1 . . . bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i

end for

Algorithm 11: Sampling D+
kσ2

for k ∈ Z
Input: An integer k ∈ Z
Output: An integer z ∈ Z+ according to D+

σ

sample x ∈ Z according to D+
σ2

sample y ∈ Z uniformly in {0, . . . , k − 1}
z ← kx+ y
sample b← Bexp(−y(y+2kx)/(2σ2))

if ¬b then restart
return z

Algorithm 12: Sampling Dkσ2 for k ∈ Z
generate an integer z ← D+

kσ2
if z = 0 restart with probability 1/2
generate a bit b← B1/2 and return (−1)bz

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th Annual ACM
Symposium on Theory of Computing, pages 99–108, Philadephia, Pennsylvania, USA, May 22–24, 1996.
ACM Press.

[Ber08] Daniel J. Bernstein. Fast multiplication and its applications. In Joe Buhler and Peter Stevenhagen,
editors, Algorithmic number theory: lattices, number fields, curves and cryptography, pages 325–384.
Cambridge University Press, 2008.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS
06: 13th Conference on Computer and Communications Security, pages 390–399, Alexandria, Virginia,
USA, October 30 – November 3, 2006. ACM Press.

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 162–177, Santa Barbara,
CA, USA, August 18–22, 2002. Springer, Berlin, Germany.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon Lee
and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture
Notes in Computer Science, pages 1–20, Seoul, South Korea, December 4–8, 2011. Springer, Berlin,
Germany.

[DL] Léo Ducas and Tancrède Lepoint. A Proof-of-concept Implementation of BLISS. Available under the
CeCILL License at http://bliss.di.ens.fr.

[DN12a] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using lazy floating-point arithmetic.
In Wang and Sako [WS12], pages 415–432.

[DN12b] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis of ntrusign counter-
measures. In Wang and Sako [WS12], pages 433–450.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 643–662,
Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin, Germany.

[ECR12] ECRYPT II. Ecrypt II yearly report on algorithms and keysizes (2011-2012). Available on http:

//www.ecrypt.eu.org/, 2012.
[FS96] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator provably as secure

as syndrome decoding. In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, vol-
ume 1070 of Lecture Notes in Computer Science, pages 245–255, Saragossa, Spain, May 12–16, 1996.
Springer, Berlin, Germany.

[GD12] Steven D. Galbraith and Nagarjun C. Dwarakanath. Efficient sampling from discrete gaussians for
lattice-based cryptography on a constrained device. Available on http://www.math.auckland.ac.nz/

~sgal018/pubs.html, 2012.

30

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
41st Annual ACM Symposium on Theory of Computing, pages 169–178, Bethesda, Maryland, USA,
May 31 – June 2, 2009. ACM Press.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction
problems. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of
Lecture Notes in Computer Science, pages 112–131, Santa Barbara, CA, USA, August 17–21, 1997.
Springer, Berlin, Germany.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2013.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st Annual
ACM Symposium on Theory of Computing, pages 25–32, Seattle, Washington, USA, May 15–17, 1989.
ACM Press.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography:
A signature scheme for embedded systems. In Emmanuel Prouff and Patrick Schaumont, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 530–547, Leuven, Belgium, September 9–12, 2012. Springer, Berlin, Germany.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 31–51,
Istanbul, Turkey, April 13–17, 2008. Springer, Berlin, Germany.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme pruning. In
Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 257–278, French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Sympo-
sium on Theory of Computing, pages 197–206, Victoria, British Columbia, Canada, May 17–20, 2008.
ACM Press.

[GS02] Craig Gentry and Michael Szydlo. Cryptanalysis of the revised NTRU signature scheme. In Lars R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 299–320, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer,
Berlin, Germany.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits.
In STOC, pages 545–554, 2013.

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 150–169, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Berlin,
Germany.

[HHGPW09] Jeff Hoffstein, Nick Howgrave-Graham, Jill Pipher, and William Whyte. The LLL Algorithm: Sur-
vey and Applications, chapter Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign.
Information Security and Cryptography. Springer, 2009.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HNHGSW03] Jeffrey Hoffstein, Jill Pipher Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. In Marc Joye, editor, Topics in Cryptology
– CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science, pages 122–140, San Francisco,
CA, USA, April 13–17, 2003. Springer, Berlin, Germany.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem.
In Joe Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998.

[HPS01] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NSS: An NTRU lattice-based signature scheme.
In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 211–228, Innsbruck, Austria, May 6–10, 2001. Springer, Berlin,
Germany.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algorithms using
dynamical systems. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 447–464, Santa Barbara, CA, USA, August 14–18,
2011. Springer, Berlin, Germany.

31

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann Pitassi,
editors, 44th Annual ACM Symposium on Theory of Computing, pages 1219–1234, New York, NY,
USA, May 19–22, 2012. ACM Press.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knapsacks are collision resistant.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP 2006: 33rd
International Colloquium on Automata, Languages and Programming, Part II, volume 4052 of Lecture
Notes in Computer Science, pages 144–155, Venice, Italy, July 10–14, 2006. Springer, Berlin, Germany.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 1–23, French Riviera, May 30 – June 3, 2010. Springer, Berlin,
Germany.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks. In Ronald
Cramer, editor, PKC 2008: 11th International Conference on Theory and Practice of Public Key
Cryptography, volume 4939 of Lecture Notes in Computer Science, pages 162–179, Barcelona, Spain,
March 9–12, 2008. Springer, Berlin, Germany.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes
in Computer Science, pages 598–616, Tokyo, Japan, December 6–10, 2009. Springer, Berlin, Germany.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas Jo-
hansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in
Computer Science, pages 738–755, Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of LWE
search-to-decision reductions. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 465–484, Santa Barbara, CA, USA, Au-
gust 14–18, 2011. Springer, Berlin, Germany.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
volume 7237 of Lecture Notes in Computer Science, pages 700–718, Cambridge, UK, April 15–19,
2012. Springer, Berlin, Germany.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian mea-
sures. SIAM J. Comput., 37(1):267–302, 2007.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryptography,
pages 147–191. Springer, Berlin, 2009.

[NIS11] NIST Special Publication 800-131A. Transitions: Recommendation for transitioning the use of cryp-
tographic algorithms and key lengths. Available on http://csrc.nist.gov, 2011.

[NR09] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU
signatures. Journal of Cryptology, 22(2):139–160, April 2009.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Tal Rabin, editor, Advances in
Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 80–97, Santa
Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Germany.

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-based cryptography
on reconfigurable hardware. In Alejandro Hevia and Gregory Neven, editors, Progress in Cryptol-
ogy - LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in
Latin America, volume 7533 of Lecture Notes in Computer Science, pages 139–158, Santiago, Chile,
October 7–10, 2012. Springer, Berlin, Germany.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Con-
ference, volume 3876 of Lecture Notes in Computer Science, pages 145–166, New York, NY, USA,
March 4–7, 2006. Springer, Berlin, Germany.

[Rüc10] Markus Rückert. Lattice-based blind signatures. In Masayuki Abe, editor, Advances in Cryptology
– ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 413–430, Singapore,
December 5–9, 2010. Springer, Berlin, Germany.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture
Notes in Computer Science, pages 27–47, Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

32

[vN51] John von Neumann. Various techniques used in connection with random digits. J. Research Nat. Bur.
Stand., Appl. Math. Series, 12:36–38, 1951.

[WS12] Xiaoyun Wang and Kazue Sako, editors. Advances in Cryptology - ASIACRYPT 2012 - 18th Inter-
national Conference on the Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science. Springer,
2012.

A Security Analysis

In this section, we describe how known attacks apply to our scheme. First, we describe in Ap-
pendix A.1 combinatorial attacks on the secret key, namely brute-force and meet-in-middle attacks.

Then we consider lattice reduction attacks. Typical measurements of lattice problem hardness
(the so called Hermite factor, see [CN11]) are given in Table 5 (page 24), measuring how hard it is
to find vectors of a given norm in a random lattice. We first apply this measure to the hardness of
the underlying SIS problem, as if the lattice used was truly random (c.f. Section A.2).

Yet, the lattice is not truly random, as by design it contains unusually short vectors. Therefore,
one may try to directly recover the secret by lattice reduction: find the secret key (f ,g) as a short
vector in the primal lattice Λ = {(x,y) ∈ R2 : aqx + y = 0 mod q}. Unfortunately, the only
study [GN08] of the behavior of lattice algorithms in the presence of unusually short vectors only
considers the unique-SVP problem, in which there is only one unusually short vector. In the NTRU-
like case, there is a basis of n of them. We provide new experiments showing that the behavior is
similar; that it is dictated by the ratio between the actual shortest vector, its expected length in a
random lattice and the Hermite factor (c.f. Section A.3).

An alternative attack to recover unusually short vectors of a lattice is to use short (but quite
larger) dual lattice Λ× vectors to detect its presence, and then recover it [MR09,MM11] using
search-to-decision reduction; quantification of this attack is detailed in Section A.4.

Finally, it is possible to combine lattice reduction and combinatorial techniques: Howgrave-
Graham designed in [HG07] an attack against NTRU keys combining a meet-in-the-middle strategy
with lattice reduction. This attack applies to our scheme, as detailed in Section A.5, but also on
the previous related schemes [Lyu12,GLP12]. Notice that there is no mention of this attack in
the security analysis of the latter schemes; therefore in order to compare, we also include security
measurements for those schemes.

We base our security projection on the BKZ 2.0 simulation methodology [CN11] that models
the behavior of BKZ including the latest improvements [GNR10,HPS11].

Note that we only sketch the attack principles; we refer the interested reader to the original
articles [HNHGSW03,HG07,CN11,MR09,MM11] for more detail. We emphasize that the statisti-
cal attacks [NR09,DN12b] provably (i.e. information-theoretically) do not apply here because of
rejection sampling: the output distribution of the signature scheme is independent of the secret
key.

A.1 Brute-force and Meet-in-the-Middle Key Recovery Attack

The key-recovery problem is as follows: given a ∈ Zq[x]/(xn + 1), find small polynomials f ,g such
that a(2g + 1) − f = 0 (knowing that such a solution exists). Precisely, we know that both f and
g have respectively d1 = dnδ1e entries in {−1,+1} and d2 = dnδ2e entries in {−2,+2}.

33

Brute-force Key Recovery. The brute-force attack simply consists in picking a random vector g
according to the key-generation distribution, and checking whether f = a(2g + 1) is a polynomial
with ternary coefficients. To measure the complexity of this attack, one simply measures the en-
tropy of g: this entropy yields a lower bound on the time to exhaust all possible values. The time
complexity of this attack is therefore T = 2d1+d2

(
n
d1

)(
n−d1
d2

)
.

For more complex attacks, it may be simpler to model all the entries of the secret key as
independent random variables, each of them having entropy:

e = δ0 log2 δ0 + δ1 log2

δ1

2
+ δ2 log2

δ2

2
.

In this model, the total entropy is n · e, which is at most log n greater than the true entropy.

Meet-in-the-Middle Attack. Odlyzko proposed a MiM attack of running time the square root of
the latter attack (but with additional memory consumption). It was designed against the NTRU
signature scheme, but it also applies here. We refer to [HNHGSW03] for details, and give only a
short explanation of a simplified version: exhaust g1 as the first half bits of g and store g1 in several
labeled boxes (of an hash table) according to the values of f1 = a(2g1 + 1). Then search for the
second half g2 of g by computing f2 = a(2g2) mod q: the labeling is designed so that to ensure a
collision whenever f1 + f2 is ternary.

This attacks runs in time and memory about 2n·e/2, since the entropy of a half of the vector is
n · e/2.

A.2 Hardness of the underlying SIS problem

Attack Overview. In this section we measure the hardness of forging a signature according to our
security proof. We will consider the running time necessary for the BKZ algorithm to find a vector
of norm β = 2B2 + (2d + 1)

√
n in a random q-ary lattice according to the latest analysis in [CN11].

While the lattice Λ is not perfectly random because of the presence of unusually short vectors, the
next section analyzes how hard it is to detect and find those unusually short vectors.

Remark A.1. Note that we have β > q, yet the q-vectors give no proper solution to the SIS instance
since it is required that the short solution is non-null modulo q. This is one of the reasons our scheme
constraints the `2 and the `∞ norms of signature vectors; this ensures that the reduction provides
a vector v such that ‖v‖∞ < q/2, and thus is non-null modulo q. While we could have chosen
larger values for B∞ and still have a valid security reduction, choosing it as small as possible for
correctness can only make the scheme more secure.

Quantification. The hardness of this SIS problem is dictated by the ratio β/
√
q and the dimension

m, precisely it is necessary to run BKZ with a blocksize providing a Hermite factor δm < β/
√
q.

The relation between the block-size δ and the running time is interpolated from [CN11].

Margins. The cost given in the last line of Table 4 is expressed as the number of nodes to visit in
the enumeration tree of the enumeration subroutine of BKZ. Each visit requires about 100 CPU
cycles, and BKZ needs to perform at least 2n such enumerations, adding an additional 10 bits to
those numbers. Yet, those numbers do not directly give rise to an attack as they are derived from
a security reduction; actually forging seems to require finding vectors smaller by a factor 2.

34

Table 4. Hardness of the underlying SIS instance

Scheme BLISS-0 BLISS-I BLISS-II BLISS-III BLISS-IV

SIS parameter β/
√
q

63 = 1.0083m 441 = 1.0060m 409 = 1.0059m 289 = 1.0055m 231 = 1.0053m
(as in Theorem 4.4)

Required Block Size 125 215 220 245 260

Enum. Cost log2 T 53 130 136 168 188

A.3 Primal Lattice Reduction Key Recovery

Attack Overview. The attack consists in applying lattice reduction to the primal lattice Λ hoping
that the short vector found will be the secret key. This problem can be seen as a ring variant of the
unique-SVP problem. Recall that we ran experiments (see Section 1.2) suggesting that BKZ behaves
similarly in the presence of either only one unusually short vector or a basis of n of them, even for
larger block sizes; therefore we measure hardness according to the BKZ 2.0 methodology [CN11].

Table 5. Cost of finding the Ring-unique shortest vector via primal lattice reduction

Scheme BLISS-0 BLISS-I BLISS-II BLISS-III BLISS-IV

Ring-Unique-SVP
14 = 1.0051m 46 = 1.0037m 46 = 1.0037m 30 = 1.0033m 25 = 1.0031m

parameter
√

qm
2πe

/
λ1

Required Block Size 270 > 300 > 300 > 300 > 300

Enum. Cost log2 T 200 > 240 > 240 > 240 > 240

A.4 Dual Lattice Reduction Key Recovery

Attack Overview. The attack consists in using short dual lattice vectors as a distinguisher for
the existence of a very short vector s in a lattice [MR09]. Then, one may use the distinguisher
to completely recover this very short vector using the reduction of Micciancio and Mol [MM11],
inspired by the Goldreich-Levin Theorem [GL89].

Quantification. For a q-ary lattice Λ of dimension m, using a vector v ∈ Λ× (where Λ× is the dual
lattice) and assuming its direction is random, one is able to distinguish the existence of an unusual
short vector s in the dual with probability ε = e−πτ

2
, where τ = ‖v‖ · ‖s‖ /(q√m).

Next, using this distinguisher as an oracle, it is possible to recover one entry of the private key
except with small fixed probability, using 1/ε2 calls to that oracle. We then iterated over different
block-sizes (5 by 5) to minimize the total cost T/ε2, where T is the running time of the enumeration
subroutine of BKZ.

Remark A.2. Rather than trying to find the proper secret key s = (f | − 2g + 1) as a short solution
to (2aq, 2)ts = 0 mod q, one would search directly s′ = (f |g) as a shorter solution to (aq,−1)ts′ =
1 mod q.

35

Table 6. Cost of distinguish the existence of the shortest vector via primal lattice reduction

Scheme BLISS-0 BLISS-I BLISS-II BLISS-III BLISS-IV [Lyu12, Set-IV] [GLP12, Set-I]

Best Block Size b 110 220 220 240 245 190 130

Enum. Cost: log2 T 45 136 136 162 168 103 56

Hermite Factor: δ 1.0088m 1.0059m 1.0059m 1.0056m 1.0056m 1.0067m 1.0081m

Dist. Advantage: log2 ε −5.5 −20 −20 −19 −21 −7 −5

Total Cost: log2(T/ε2) 56 177 177 201 211 118 67

Margins. To stay on the safe side, we do not include the additional n2 factor to the running time
of this attack: indeed there are n coordinates to guess, and each BKZ reduction requires at least
n enumerations; one might then be tempted to claim an additional 20 bits of security. Yet it is
unclear whether one needs to run the full BKZ reduction to get new short vectors, neither if one
can reuse the same short dual vector to guess each coordinate. Even though we do not claim an
attack in time 267 on [GLP12], we believe that claiming more than 90 bits of security is a long
shot. The difference between our measurement and theirs might be explained by the fact that the
authors only considered the case where ε was close to 1.

A.5 Hybrid MiM-Lattice Key Recovery

Attack Overview. The attack from [HG07] uses lattice reduction as a preprocessing step, in order
to decrease the search space of combinatorial attacks. Precisely, one first chooses parameters r
and R, and applies lattice reduction on the sub-lattice generated by the vectors of the sub-basis
br, . . . ,bR−1 (see Figure 5), in order to run the MiM attack only over the 2n−R last coordinates.

In order to perform the combinatorial attack, one needs to obtain a basis whose last orthogonal-
ized vector is large enough. Precisely, the basis needs to be good enough so that Babai’s algorithm
properly solves BDD on the error s′ = (s1, . . . , sR, 0, . . . , 0). A necessary condition is therefore:〈

s′,b?i
〉
/ ‖b?i ‖2 6 1/2 , (6)

where the b∗1, . . . ,b
∗
R is the Gram-Schmidt orthogonalization of b1, . . . ,bR.

Quantification. Once again, we assume that the lattice reduction algorithm provides a basis of ran-
dom direction. Therefore, we model the quantity 〈s′,b?i 〉 / ‖b?i ‖2 as a Gaussian of standard deviation
‖s′‖ /(

√
R ‖b?i ‖). Denoting γ =

∥∥b?R−1

∥∥, one models by the GSA (geometric series assumption) that∥∥b?R−1−i
∥∥ = γ × δ2i, where δ 6 1.007 is the Hermite factor. To verify Equation (6) with reasonable

probability (say at least 0.01), it is required that γ > 2.5 ‖s′‖ /
√
R.

We thus determine the security against this attack as follows: to claim λ bits of security, set R
so that it takes 2λ time and memory to exhaust the last 2n − R entries of the secret. Recall that
e denotes the entropy of a single entry, each step of the Meet in the Middle attack requires O(n2)
operations, and at least e ·R bits of storage, therefore we set R such that R · e = 2λ− log2(e ·R)−
log2(n2).

Then we determine γ, and run BKZ 2.0 simulation according to [CN11], increasing block-size
until γ > 2.5 ‖s′‖ /

√
R. Finally, deduce the cost of lattice reduction and verify it is greater than

2λ. Note that r is derived from the behavior of this simulation. Analysis results are described in
Table 7.

36

i

logq ‖b?i ‖
1

2nr n

(a) Before reduction

i

logq ‖b?i ‖
1

R 2nr

logq γ

n

(b) After reduction

Fig. 5. Basis Profile during the Hybrid Attack

Table 7. Hybrid MiM+Lattice Reduction Attack Parameters

Scheme BLISS-0 BLISS-I BLISS-II BLISS-III BLISS-IV [Lyu12, IV] [GLP12, I]

MiM Search Cost log2M 60 128 128 160 192 100 80

Entropy per Secret Key Entry 2.11 1.18 1.18 1.60 1.77 1.58 1.58

MiM Search Dimension R 46 194 194 183 201 110 85

Required Block Size 165 245 245 > 300 > 300 220 140

BKZ Enum. Cost log2 T 84 168 168 > 200 > 200 150 60

Margins. There is a small security margin coming from the fact that we set the parameters so that
the attack succeeds with probability 0.01, which would add about 7 bits of security, and again 10
extra bits because BKZ requires at least 2n enumeration. More importantly we considered that
the attacker has 2λ memory available; in practice it is unlikely that an attacker may have as much
memory available as the number of bit-operations.13

B Key Generation for a SIS-Based Scheme

In this section, we explain how to generate the key pair (A,S) so that

AS = qIn ∈ Zn×n2q ,

where the distribution of A is statistically close to the uniform distribution, in order to obtain a
general SIS-based variant of our scheme.

Leftover Hash Lemma. We first recall the classical Leftover Hash Lemma. A distribution D
is ε-uniform if its statistical distance from the uniform distribution is at most ε, where the sta-
tistical distance ∆(D1, D2) between two distributions D1, D2 over a finite domain X is given by
∆(D1, D2) = 1

2

∑
x∈X |D1(x)−D2(x)|.

Let X and Y be finite sets. A family H of hash functions from X to Y is said to be pairwise-
independent if for all distinct x, x′ ∈ X, Prh←H [h(x) = h(x′)] = 1/|Y |.
13 In 2007, there were no more than 271 bits of storage globally, while all general-purpose computers could execute 287

operations in a year. Storage growth is 23% a year versus 58% for computing power (see http://news.usc.edu/

\#!/article/29360/How-Much-Information-Is-There-in-the-World). There are about 2160 atoms on earth.

37

Lemma B.1 (Leftover Hash Lemma [HILL99]). Let H be a family of pairwise hash functions
from X to Y . Suppose that h ← H and x ← X are chosen uniformly and independently. Then,
(h, h(x)) is 1

2

√
|Y |/|X|-uniform over H× Y .

From the LHL, one can deduce the following lemma for finite linear combinations modulo the prime
q:

Lemma B.2. Let m > 2. Set x1, . . . , xm ← Znq uniformly and independently, set s1, . . . , sm ←
(−2α, 2α) ∩ Z, and set y =

∑m
i=1 si · xi mod q. Then (x1, . . . , xm, y) is 1/2

√
qn/2(α+1)·m-uniform

over Zn·(m+1)
q .

Proof. Let us consider the hash function family H from (−2α, 2α)m to Zq in which each member
h ∈ H is parameterized by the element (x1, . . . , xm) ∈ Zmq . Given s ∈ (−2α, 2α)m, we define
h(s) =

∑m
i=1 si · xi ∈ Zq. The hash function family is clearly pairwise independent since q is prime.

Therefore by Lemma B.1, (h, h(x)) is 1/2
√
qn/2(α+1)·m-uniform over Zm+1

q . ut

SIS-based Scheme. Define m′ = m+n. Choose a uniform matrix A′q ∈ Zn×mq and a random small

S′ ∈ Zm×nq with coefficients in (−2α, 2α). Define Aq = (A′q| − A′qS
′) ∈ Zn×m′q . By Lemma B.2,

the statistical distance between the distribution of Aq and the uniform distribution over Zn×m′q

is at most n · 1/2
√
qn/2(α+1)·m. Thus, for this statistical distance to be negligible in the security

parameter λ, we need

m >
2(λ− 1 + dlog2(n)e) + ndlog2(q)e

α+ 1
.

Set the secret key as S =

(
S′

In

)
∈ Zm

′×n
2q . One observes that AqS = 0 mod q. It remains to

set the public key as A = (2A′q|qIn − 2A′qS
′) ∈ Zn×m

′
2q . Then one easily checks that AS = qIn.

Also, we have that A mod q = 2Aq is uniform modulo q. Notice that this construction is easily
adaptable to the ring settings.

C Security Proof with Dropped Bits

Recall from Section 4.7 that a signature is a tuple (z1, z
†
2, c) with

z†2 =
⌊
ζ · a1 · y1 + y2

⌉
d
−
⌊
ζ · a1 · z1 + ζ · q · c

⌉
d

mod p ,

where p = b2q/2dc and that the random oracle is called on(⌊
ζ · a1 · y1 + y2

⌉
d

mod p, µ
)

=
(
z†2 +

⌊
ζ · a1 · z1 + ζ · q · c

⌉
d

mod p, µ
)
.

We recall the theorem stating that our scheme is secure when dropping bits.

Theorem C.1 (Restatement of Theorem 4.4). Let us consider the signature scheme of Sec-
tion 4.8. Assume that d > 3, q ≡ 1 mod 2d−1, and 2B∞ + (2d + 1) < q/2. Suppose there is a
polynomial-time algorithm F which succeeds in forging with non negligible probability. Then there ex-
ists a polynomial-time algorithm which can solve the R-SISKq,n,m,β problem for β = 2B2+(2d+1)

√
n.

38

The proof of this theorem follows the same blueprint than the proof of Theorem 3.3. Namely,
by a straightforward adaptation of Lemma 3.4, one can show that our signing algorithm can be
replaced by Hybrid 3 (Algorithm 13). Next, an adaptation of Lemma 3.5 states that if an algorithm
can produce a forgery with non-negligible probability when the signing algorithm is replaced by
Hybrid 3, then we can use it to recover a vector v 6= 0 mod q such that ‖v‖ 6 β = 2B2 +(2d+1)

√
n

and Av = 0 mod q.

Algorithm 13: Hybrid 3
1: c← Bnκ
2: z1, z2 ← Dnσ
3: With probability 1

M
:

4: z†2 ← (bζ · a1 · z1 + ζ · q · c + z2ed − bζ · a1 · z1 + ζ · q · ced) mod p
5: output (z1, z

†
2, c)

6: program H(bζ · a1 · z1 + ζ · q · c + z2ed mod p, µ) = c

Throughout the rest of the section, we focus on the modifications in the proof of Lemma 3.5 to
deal with the dropping bits, i.e. we assume that F succeeds in forging the signature by outputting
(z1, z

†
2, c) where c = cj ∈ {c1, . . . , ct} was obtained from either a previous signing query, or a

previous random oracle query.

C.1 Preliminaries

We have the following facts:

Fact C.2. Let q be an odd integer and define ζ ∈ [0, 2q− 1] such that ζ · (q− 2) = 1 mod 2q. Then
ζ = q−1

2 if (q − 1)/2 is odd or ζ = q−1
2 + q if (q − 1)/2 is even.

Proof. We have that
q − 1

2
· (q − 2) = q · q − 1

2
− q + 1 = 1 mod q .

Therefore ζ = q−1
2 mod q and the fact holds according to the parity of (q − 1)/2. ut

Fact C.3. Let d > 2, q be an integer such that q ≡ 1 mod 2d−1, and let p = b2q/2dc. Then
p · 2d = 2q − 2.

C.2 Proof

Assume the challenger has a signature (z′1, z
′†
2, c
′
j) such that

bζ · a1 · z1 + ζ · q · cjed + z†2 mod p = bζ · a1 · z′1 + ζ · q · c′jed + z′
†
2 mod p .

There exists k ∈ {0,±1}n such that the following equation holds over Z:

bζ · a1 · z1 + ζ · q · cjed − bζ · a1 · z′1 + ζ · q · c′jed + z†2 − z′
†
2 = kp .

Now we multiply the previous equation by 2d, and this yields modulo 2q:

ζ · a1 · z1 + ζ · q · cj − e− ζ · a1 · z′1 − ζ · q · c′j + e′ + 2d(z†2 − z′
†
2) = k · p2d mod 2q ,

39

where e = [ζ · a1 · z1 + ζ · q · cj mod 2q] mod 2d and e′ = [ζ · a1 · z′1 + ζ · q · c′j mod 2q] mod 2d. This
yields by Fact C.3:

(ζ · a1) · (z1 − z′1) + 2d(z†2 − z′
†
2) + ζ · q · (cj − c′j) + (e′ − e) + 2k = 0 mod 2q . (7)

Thus, if we define
v =

(
z1 − z′1, 2

d(z†2 − z′
†
2) + (e′ − e) + 2k

)t ∈ R2×1 ,

we have that
(ζ · a1, 1) · v = 0 mod q ,

and thus multiplying by 2:
(a1, 2) · v = 0 mod q .

Now, we have that ‖v‖2 6 2B2 + (2d + 1) · √n and ‖v‖∞ 6 2B∞ + (2d + 1) < q/2. Indeed

‖v‖2 6
∥∥∥(z1 − z′1, 2

d(z†2 − z′
†
2)
)∥∥∥

2
+
∥∥(0, (e′ − e + 2k)

)∥∥
2

6 2B2 +
∥∥(0, (e′ − e + 2k)

)∥∥
∞ ·
√
n

6 2B2 + (
∥∥(0, (e′ − e)

)∥∥
∞ + 2 ‖k‖∞) · √n

6 2B2 + (2d − 1 + 2) · √n
6 2B2 + (2d + 1) · √n .

Similarly for the infinite norm, we get

‖v‖∞ 6 2B∞ + (2d + 1) < q/2 .

It remains to show that v 6= 0 mod q to conclude. By the condition ‖v‖∞ < q/2, it suffices to
show that v 6= 0 mod 2q.

Case #1: [z1 6= z′1 mod 2q]. Since

v =
(
z1 − z′1, 2

d(z†2 − z′
†
2) + (e′ − e) + 2k

)t
,

we have v 6= 0 mod 2q. This case includes both type-1 and type-2 forgeries.

Case #2: [z1 = z′1 mod 2q and cj = c′j]. In that case, we have e = e′, and for the signatures to

be different we have z†2 6= z′†2. Therefore

v =
(
0, 2d(z†2 − z′

†
2) + 2k

)t
.

Now ‖2k‖∞ < 2d, then v 6= 0 mod 2q. This case is only possible for type-1 forgeries.

Case #3: [z1 = z′1 mod 2q, cj 6= c′j and z†2 = z′†2 mod 2q]. In that case, Equation (7) yields

e′ − e + 2k = ζ · q · (cj − c′j) mod 2q .

Now cj − c′j 6= 0 mod 2, therefore e′ − e + 2k 6= 0 mod 2q. Since

v =
(
0, (e′ − e) + 2k

)t
,

we have v 6= 0 mod 2q. This case is only possible for type-2 forgeries.

40

Case #4: [z1 = z′1 mod 2q, cj 6= c′j and z†2 6= z′†2 mod 2q]. In that case

v =
(
0, 2d(z†2 − z′

†
2) + (e′ − e) + 2k

)t
.

Since cj 6= c′j , there exists i such that cj [i] 6= c′j [i]. Without loss of generality, we can assume that
c′j [i] = 1 and thus cj [i] = 0. Therefore,

e′[i] =
(
x+ ζ · q mod 2q

)
mod 2d ,

and
e[i] = x mod 2d ,

where x =
(
ζ ·(a1 ·z1)[i]

)
mod 2q. Now ζ ·q = q mod 2q because ζ = 1 mod 2 by Fact C.2. Therefore

e′[i] =
(
x+ q mod 2q

)
mod 2d .

Now,
(
x+ q mod 2q

)
= x± q over Z. Therefore,(

e′[i]− e[i]
)

mod 2d =
(
(x± q)− x

)
mod 2d

is odd. This proves that v[i] is odd, and therefore that v 6= 0 mod 2q. This case is only possible for
type-2 forgeries.

41

