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Abstract

Coordination models and languages represent a new approach to de-

sign and development of concurrent systems. The interest in coordination

has intensified in the last few years, as evidenced by the increasing number

of conferences, tracks, and papers devoted to this topic, and by the recent

upsurge of research activity in the theoretical computer science commu-

nity in this field. The field is relatively new, and while many coordination

models and languages form a tight cluster of very similar variants, some

others are drastically different and they appear to have nothing in common

with each other. All this makes it difficult for the uninitiated to discern

the underlying similarities of various approaches to coordination. This

paper is an “easy reader” introduction to coordination models and lan-

guages, their common aims and purpose, their relevance, and their place

in the computing arena. The work on coordination at CWI is presented

here as a specific example.

1 Introduction

The size, speed, capacity, and price of computers have all dramatically changed
in the last half century. Still more dramatic are the subtle changes of the
society’s perception of what computers are and what they can, should, and are
expected to do. Clearly, this change of perception would not have been possible
without the technological advances that reduced the size and price of computers,
while increasing their speed and capacity. Nevertheless, the social impact of this
change of perception and its feedback influence on the advancement of computer
technology itself, are too significant to be regarded as mere by-products of those
technological advances.

The term “computer” today has a very different meaning than it did in the
early part of this century. Even after such novelties as mechanical and electrical

∗This article appeared in the March ’98 issue of the Bulletin of the Dutch As-
sociation for Theoretical Computer Science (NVTI), which is available on-line at
http://www.cwi.nl/NVTI/Nieuwsbrief/nieuwsbrief98.ps.gz.
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calculators had become commonplace, book-keeping, in its various forms, was
a time consuming and labor intensive endeavor for businesses and government
agencies alike. Analogous to “typist pools” that lingered on until much later,
enterprises such as accountant firms and insurance companies employed armies
of people to process, record, and extract the large volumes of essentially nu-
merical data that were relevant for their business. Since “computer” was the
term that designated these people, the machine that could clearly magnify their
effectiveness and held the promise of replacing them altogether, became known
as the “electronic computer.”

In spite of the fact that from the beginning, symbol manipulation was as
much an inherent ability of electronic computers as arithmetic and juggling of
numbers, the perception that computers are really tools for performing fast nu-
merical computations was prevalent. Problems that did not involve a respectable
amount of number crunching were either rejected outright as non-problems, or
were considered as problems not worthy of attempts to apply computers and
computing to. Subscribers to such views were not all naive outsiders, many
an insider considered such areas as business and management, databases, and
graphics, to be not only on the fringes of computer applications, but also on
the fringes of legitimacy. As late as 1970, J. E. Thornton, vice president of
Advanced Design Laboratory of Control Data Corporation, who was personally
responsible for most of the detailed design of the landmark CDC 6600 computer
system, wrote[38]:

There is, of course, a class of problems which is essentially noncom-
putational but which requires a massive and sophisticated storage
system. Such uses as inventory control, production control, and
the general category of information retrieval would qualify. Frankly,
these do not need a computer. There are, however, legitimate justi-
fications for a large computer system as a “partner” with the com-
putational usage. [emphasis added.]

Of course, by that time many people were not only convinced that legitimate
computational applications need not involve heavy number crunching, but were
already actively working to bring about the changes that turned fringe activities
such as databases and graphics into the core of computing, both as “science” as
well as in the domain of applications. Nevertheless, Thornton’s statement at the
time represented the views of a non-negligible minority that has only gradually
diminished since. While the numerical applications of computing have steadily
grown in number, size, and significance, its non-numerical applications have
simply grown even faster and vaster.
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2 Computing

The formal notions of computing and computability were introduced by Church,
in terms of λ-calculus, and Turing, in terms of Turing Machines. Both Church
and Turing were inspired by Hilbert’s challenge to define a solid foundation for
(mechanical) methods of finding mathematical truth. Hilbert’s program con-
sisted of finding a set of axioms as the unassailable foundation of mathematics,
such that only mathematical truths could be derived from them by the applica-
tion of any (truth preserving) mechanical operation, and that all mathematical
truths could be derived that way. But, what exactly is a mechanical operation?
This was what Church, Turing, and others were to define. Turing himself also
intended for his abstract machine to formalize the workings of the human mind.
Ironically, his own reasoning on the famous halting problem can be used to show
that Turing Machines cannot find all mathematical truths, let alone model the
workings of the human mind. Gödel’s incompleteness theorem, which brought
the premature end of Hilbert’s program for mathematics, clearly shows the lim-
its of formal systems and mechanical truth derivation methods. Interestingly,
Gödel’s incompleteness theorem and Turing’s halting problem turned out to be
equivalent in their essence: they both show that there are (even mathematical)
truths that cannot be derived mechanically, and in both cases, the crucial step
in the proof is a variation of the diagonalization first used by Cantor to show
that the infinity of real numbers between any two numbers is greater than the
infinity of natural numbers.

It is far from obvious why Turing’s simple abstract machine, or Church’s
λ-calculus, is a reasonable formalization of what we intuitively mean by any
mechanical operation. However, all extensions of the Turing Machine that have
been considered, are shown to be mathematically equivalent to, and no more
powerful than, the basic Turing Machine. Turing and Church showed the equiv-
alence of Turing Machines and λ-calculus. This, plus the fact that other for-
malizations (e.g., Post’s) have all turned out to be equivalent, has increased the
credibility of the conjecture that a Turing Machine can actually be made to
perform any mechanical operation whatsoever. Indeed, it has become reason-
able to mathematically define a mechanical operation as any operation that can
be performed by a Turing Machine, and to accept the view known as Church’s
thesis: that the notion of Turing Machines (or λ-calculus, or other equivalents)
mathematically defines the concept of an algorithm (or an effective, or recursive,
or mechanical procedure).

3 Interaction

Church’s thesis can simply be considered as a mathematical definition of what
computing is in a strictly technical sense. Real computers, on the other hand, do
much more than mere computing in this restrictive sense. Among other things,
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they are sources of heat and noise, and have always been revered (and despised)
as (dis)tasteful architectural artifacts, pieces of furniture, or decoration mantle-
pieces. More interestingly, computers also interact: they can act as facilitators,
mediators, and coordinators that enable the collaboration of other agents. These
other agents may in turn be other computers (or computer programs), sensors
and actuators that involve their real world environment, or human beings. The
role of a computer as an agent that performs computing, in the strict technical
sense of the word, should not be confused with its role as a mediator agent that,
e.g., empowers its human users to collaborate with one another. The fact that
the computer, in this case, may perform some computation in order to enable
the collaboration of other agents, is ancillary to the fact that it needs to interact
with these agents to enable their collaboration. To emphasize this distinction,
Wegner proposes the concept of an Interaction Machine[39, 40].

A Turing Machine operates as a closed system: it receives its input tape,
starts computing, and (hopefully) halts, at which point its output tape contains
the result of its computation. In every step of a computation, the symbol written
by a Turing Machine on its tape depends only on its internal state and the
current symbol it reads from the tape. An Interaction Machine is an extension
of a Turing Machine that can interact with its environment with new input and
output primitive actions. Unlike other extensions of the Turing Machine (such
as more tapes, more controls, etc.) this one actually changes the essence of
the behavior of the machine. This extension makes Interaction Machines open
systems.

Consider an Interaction Machine I operating in an environment described as
a dynamical system E. The symbol that I writes on its tape at a given step, not
only depends on its internal state and the current symbol it reads from the tape,
but can also depend on the input it obtains directly from E. Because the behavior
of E cannot be described by a computable function, I cannot be replaced by a
Turing Machine. The best approximation of I by a Turing Machine, T, would
require an encoding of the actual input that I obtains from E, which can be
known only after the input operation. The computation that T performs, in
this case, is the same as that of I, but I does more than T because it interacts
with its environment E. What T does, in a sense, is analogous to predicting
yesterday’s weather: it is interesting that it can be done (assuming that it can
be done), but it doesn’t quite pass muster! To emphasize the distinction, we
can imagine that the interaction of I with E is not limited to just this one direct
input: suppose I also does a direct output to E, followed by another direct input
from E. Now, because the value of the second input from E to I depends on the
earlier interaction of E and I, no input tape can encode this “computation” for
any Turing Machine.

It is the ability of computers (as Interaction Machines) to interact with the
real world, rather than their ability (as mere Turing Machines) to carry on ever-
more-sophisticated computations, that is having the most dramatic impact on
our societies. In the traditional models of human-computer interaction, users
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prepare and consume the information needed and produced by their applica-
tions, or select from the alternatives allowed by a rigid structure of computation.
In contrast to these models, the emerging models of human-computer interac-
tion remove the barriers between users and their applications. The role of a user
is no longer limited to that of an observer or an operator: increasingly, users
become active components of their running applications, where they examine,
alter, and steer on-going computations. This form of cooperation between hu-
mans and computers, and between humans via computers, is a vital necessity
in many contemporary applications, where realistic results can be achieved only
if human intuition and common-sense is combined with raw, formal reasoning
and computation. The applications of computer facilitated collaborative work
are among the increasingly important areas of activity in the foreseeable future.
They can be regarded as natural extensions of systems where several users simul-
taneously examine, alter, interact, and steer on-going computations. Interaction
Machines are suitable conceptual models for describing such applications.

Interaction Machines have unpredictable input from their external environ-
ment, and can directly affect their environment, unpredictably, due to such
input. Because of this property, Interaction Machines may seem too open for
formal studies: the unpredictable way that the environment can affect their
behavior can make their behavior underspecified, or even ill-defined. But, this
view is misleading. Interaction Machines are both useful and interesting for
formal studies.

On the one hand, the open-ness of Interaction Machines and their consequent
underspecified behavior is a valuable true-to-life property. Real systems are
composed of components that interact with one another, where each is an open
system in isolation. Typically, the behavior of each of these components is ill-
defined, except within the confines of a set of constraints on its interactions
with its environment. When a number of such open systems come together
as components to comprise a larger system, the topology of their interactions
forms a context that constrains their mutual interactions and yields well-defined
behavior.

On the other hand, the concept of Interaction Machines suggests a clear
dichotomy for the formal study of their behavior, both as components in a larger
system, as well as in isolation. Just like a Turing Machine, the behavior of an
Interaction Machine can be studied as a computation (in the sense of Church’s
thesis) between each pair of its successive interactions. More interestingly, one
can abstract away from all such computations, regarding them as internal details
of individual components, and embark on a formal study of the constraints,
contexts, and conditions on the interactions among the components in a system
(as well as between the system and its environment) that ensure and preserve
well-behavedness. And this material is the thread that weaves the fabric of
coordination.

5



4 Concurrency

Interaction and concurrency are closely related concepts. Concurrency means
that computations in a system overlap in time. The computations in a con-
current system may actually run in parallel (i.e., use more than one physical
processor at a time) or be interleaved with one another on a single proces-
sor. The parallel computations in a system may or may not be geographically
distributed. What distinguishes an interactive system from other concurrent
systems is the fact that an interactive system has unpredictable inputs from an
external environment that it does not control.

The study and the application of concurrency in computer science has a long
history. The study of deadlocks, the dining philosophers, and the definition of
semaphores and monitors were all well established by the early seventies. Theo-
retical work on concurrency, e.g., CSP[22, 23], CCS[28], process algebra[12], and
π-calculus[29, 30], has helped to show the difficulty of dealing with concurrency,
especially when the number of concurrent activities becomes large. Most of
these models are more effective for describing closed systems. A number of pro-
gramming languages have used some of these theoretical models as their bases,
e.g., Occam[24] uses CSP and LOTOS[13] uses CCS. However, it is illuminating
to note that the original context for the interest in concurrency was somewhat
different than the demands of the applications of today in two respects:

• In the early days of computing, hardware resources were prohibitively
expensive and had to be shared among several programs that had nothing
to do with each other, except for the fact that they were unlucky enough
to have to compete with each other for a share of the same resources. This
was the concurrency of competition. Today, it is quite feasible to allocate
tens, hundreds, and thousands of processors to the same task (if only we
could do it right). This is the concurrency of cooperation. The distinction
is that whereas it is sufficient to keep independent competing entities
from trampling on each other over shared resources, cooperating entities
also depend on the (partial) results they produce for each other. Proper
passing and sharing of these results require more complex protocols, which
become even more complex as the number of cooperating entities and the
degree of their cooperation increase.

• The falling costs of processor and communication hardware only recently
dropped below the threshold where having very large numbers of “active
entities” in an application makes sense. Massively parallel systems with
thousands of processors are a reality today. Current trends in processor
hardware and operating system kernel support for threads1 make it pos-
sible to efficiently have in the order of hundreds of active entities running

1Threads are preemptively-scheduled light-weight processes that run within one operating-
system level process and share the same address space.
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in a process on each processor. Thus, it is not unrealistic to think that a
single application can be composed of hundreds of thousands of active en-
tities. Compared to classical uses of concurrency, this is a jump of several
orders of magnitude in numbers, and in our view, represents (the need
for) a qualitative change.

The practical use of massively parallel systems is often limited to applica-
tions that fall into one of a few simple concurrency structures. In fact, although
MIMD2 systems have been available for some time, they are hardly ever used
as MIMD systems in an application. The basic problem in using the MIMD

paradigm in large applications is coordination: how to ensure proper commu-
nication among the hundreds and thousands of different pieces of code that
comprise the active entities in a single application. A restriction of the MIMD

model, called SPMD3, introduces a barrier mechanism as the only coordination
construct. This model simplifies the problem of concurrency control by allow-
ing several processors, all executing the same program, but on different data,
proceed at their own pace up to a common barrier, where they then synchronize.

There are applications that do not fit in the uniformity offered by the SPMD

model and require more flexible coordination. Examples include computations
involving large dynamic trees, symbolic computation on parallel machines, and
dynamic pipelines. Taking full advantage of the potential offered by massively
parallel systems in these and other applications requires massive, non-replicated,
concurrency.

The primary concern in the design of a concurrent application must be its
model of cooperation: how the various active entities comprising the application
are to cooperate with each other. Eventually, a set of communication primitives
must be used to realize whatever model of cooperation application designers
opt for, and the concerns for performance may indirectly affect their design.
Nevertheless, it is important to realize that the conceptual gap between the
system supported communication primitives and a concurrent application must
often be filled with a non-trivial model of cooperation.

The models of cooperation used in concurrent applications of today are es-
sentially a set of ad hoc templates that have been found to be useful in practice.
There is no paradigm wherein we can systematically talk about cooperation
of active entities, and wherein we can compose cooperation scenarios such as
(and as alternatives to) models like client-server, workers pool, etc., out of a
set of primitives and structuring constructs. Consequently, programmers must
directly deal with the lower-level communication primitives that comprise the
realization of the cooperation model of a concurrent application.

2Multiple Instruction, Multiple Data
3Single Program, Multiple Data
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5 Coordination

Coordination languages, models, and systems constitute a new field of study
in programming and software systems, with the goal of finding solutions to the
problem of managing the interaction among concurrent programs. Coordination
can be defined as the study of the dynamic topologies of interactions among In-
teraction Machines, and the construction of protocols to realize such topologies
that ensure well-behavedness. Analogous to the way in which topology abstracts
away the metric details of geometry and focuses on the invariant properties of
(seemingly very different) shapes, coordination abstracts away the details of
computation in Interaction Machines, and focuses on the invariant properties of
(seemingly very different) programs. As such, coordination focuses on program
patterns that specifically deal with interaction.

Coordination is relevant in design, development, debugging, maintenance,
and reuse of all concurrent systems. Coordination models and languages are
meant to close the conceptual gap between the cooperation model of an ap-
plication and the lower-level communication model used in its implementation.
The inability to deal with the cooperation model of a concurrent application in
an explicit form contributes to the difficulty of developing working concurrent
applications that contain large numbers of active entities with non-trivial co-
operation protocols. In spite of the fact that the implementation of a complex
protocol is often the most difficult and error prone part of an application de-
velopment effort, the end result is typically not recognized as a “commodity”
in its own right, because the protocol is only implicit in the behavior of the
rest of the concurrent software. This makes maintenance and modification of
the cooperation protocols of concurrent applications much more difficult than
necessary, and their reuse next to impossible.

A number of software platforms and libraries are presently popular for eas-
ing the development of concurrent applications. Such systems, e.g., PVM, MPI,
CORBA, etc., are sometimes called middleware. Coordination languages can
be thought of as the linguistic counterpart of these platforms which offer mid-
dleware support for software composition. One of the best known coordination
languages is Linda[16, 27], which is based on the notion of a shared tuple space.
The tuple space of Linda is a centrally managed space which contains all pieces
of information that processes want to communicate. Linda processes can be
written in any language augmented with Linda primitives. There are only four
primitives provided by Linda, each of which associatively operates on (e.g., reads
or writes) a single tuple in the tuple space.

Besides the “generative tuple space” of Linda, a number of other interest-
ing models have been proposed and used to support coordination languages
and systems. Examples include various forms of “parallel multiset rewriting”
or “chemical reactions” as in Gamma [10], models with explicit support for
coordinators as in MANIFOLD[7], and “software bus” as in ToolBus[11]. A sig-
nificant number of these models and languages are based on a few common
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notions, such as pattern-based, associative communication [1], to complement
the name-oriented, data-based communication of traditional languages for par-
allel programming.

Coordination languages have been applied to the parallelization of computa-
tion intensive sequential programs in the fields of simulation of Fluid Dynamics
systems, matching of DNA strings, molecular synthesis, parallel and distributed
simulation, monitoring of medical data, computer graphics, analysis of financial
data integrated into decision support systems, and game playing (chess). See
[2, 17, 21] for some concrete examples.

6 Classification

Coordination models and languages can be classified as either data-oriented or
control-oriented. For instance, Linda uses a data-oriented coordination model,
whereas MANIFOLD is a control-oriented coordination language. The activity
in a data-oriented application tends to center around a substantial shared body
of data; the application is essentially concerned with what happens to the data.
Examples include database and transaction systems such as banking and airline
reservation applications. On the other hand, the activity in a control-oriented
application tends to center around processing or flow of control and, often, the
very notion of the data, as such, simply does not exist; such an application is
essentially described as a collection of activities that genuinely consume their
input data, and subsequently produce, remember, and transform “new data”
that they generate by themselves. Examples include applications that involve
work-flow in organizations, and multi-phase applications where the content,
format, and/or modality of information substantially changes from one phase
to the next.

Coordination models and languages can also be classified as either endoge-
nous or exogenous. For instance, Linda is based on an endogenous model,
whereas MANIFOLD is an exogenous coordination language. Endogenous mod-
els and languages provide primitives that must be incorporated within a compu-
tation for its coordination. In applications that use such models, primitives that
affect the coordination of each module are inside the module itself. In contrast,
exogenous models and languages provide primitives that support coordination
of entities from without. In applications that use exogenous models primitives
that affect the coordination of each module are outside the module itself.

Endogenous models are sometimes more natural for a given application.
However, they generally lead to intermixing of coordination primitives with
computation code, which entangles the semantics of computation with coordina-
tion protocols. This intermixing tends to scatter communication/coordination
primitives throughout the source code, making the cooperation model and the
coordination protocol of an application nebulous and implicit: generally, there is
no piece of source code identifiable as the cooperation model or the coordination
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protocol of an application, that can be designed, developed, debugged, main-
tained, and reused, in isolation from the rest of the application code. On the
other hand, exogenous models encourage development of coordination modules
separately and independently of the computation modules they are supposed
to coordinate. Consequently, the result of the substantial effort invested in
the design and development of the coordination component of an application
can manifest itself as tangible “pure coordinator modules” which are easier to
understand, and can also be reused in other applications.

7 Coordination at CWI

Experimental research on coordination has been going on at CWI since 1990.
This work has produced IWIM[4, 3], a novel model for control-oriented coordi-
nation; MANIFOLD[5, 3, 9, 7], a pure coordination language based on the IWIM

model; preliminary studies on the formal semantics of MANIFOLD[34, 33]; and
Visifold[15], a visual programming environment for MANIFOLD. The imple-
mentation of the second version of MANIFOLD is now complete and it is being
used in a number of applications. Theoretical work on the formal semantics
of MANIFOLD and the mathematical models underlying IWIM and MANIFOLD

are presently on-going.
Theoretical and experimental work on coordination were unified in 1997 un-

der the Theme SEN3: Coordination Languages within the Software Engineering
Cluster at CWI. This Theme aims at cross-fertilization of formal and applied
research on coordination. The activity in SEN3 is on (1) development of formal
methods, notably (operational) semantic models as a unifying basis for the de-
velopment of debugging and visualization tools for coordination languages; (2)
enhancements to and experiments with the MANIFOLD language and its visual
programming and debugging environment; and (3) using MANIFOLD to work
on real applications of coordination programming in areas such as numerical
computing, distributed constraint satisfaction, and shallow water modeling.

8 Manifold

MANIFOLD is a coordination language for managing complex, dynamically
changing interconnections among sets of independent, concurrent, cooperating
processes[5]. The processes that comprise an application are either computa-
tion or coordinator processes. Computation processes can be written in any
conventional programming language. Coordinator processes are clearly distin-
guished from the others in that they are written in the MANIFOLD language.
The purpose of a coordinator process is to establish and manage the communi-
cations among other (computation or coordinator) processes. MANIFOLD is a
control-oriented, exogenous coordination language based on the IWIM model.
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IWIM stands for Idealized Worker Idealized Manager and is a generic, ab-
stract model of communication that supports the separation of responsibilities
and encourages a weak dependence of workers (processes) on their environment.
Two major concepts in IWIM are separation of concerns and anonymous commu-
nication. Separation of concerns means that computation concerns are isolated
from the communication and cooperation concerns into, respectively, worker and
manager (or coordinator) modules. Anonymous communication means that the
parties (i.e., modules or processes) engaged in communication with each other
need not know each other. IWIM-sanctioned communication is either through
broadcast of events, or through point-to-point channel connections that, gen-
erally, are established between two communicating processes by a third party
coordinator process.

MANIFOLD is a strongly-typed, block-structured, event driven language,
meant for writing coordinator program modules. As modules written in MANIFOLD

represent the idealized managers of the IWIM model, strictly speaking, there is
no need for the constructs and the entities that are common in conventional
programming languages; thus, semantically, there is no need for integers, floats,
strings, arithmetic expressions, sequential composition, conditional statements,
loops, etc.4 The only entities that MANIFOLD recognizes are processes, ports,
events, and streams (which are asynchronous channels), and the only control
structure that exists in MANIFOLD is an event-driven state transition mecha-
nism. Programming in MANIFOLD is a game of dynamically creating (coor-
dinator and/or worker) process instances and dynamically (re)connecting the
ports of some of these processes via streams, in reaction to observed event
occurrences. The fact that computation and coordinator processes are abso-
lutely indistinguishable from the point of view of other processes, means that
coordinator processes can, recursively, manage the communication of other co-
ordinator processes, just as if they were computation processes. This means
that any coordinator can also be used as a higher-level or meta-coordinator,
to build a sophisticated hierarchy of coordination protocols. Such higher-level
coordinators are not possible in most other coordination languages and models.

MANIFOLD encourages a discipline for the design of concurrent software that
results in two separate sets of modules: pure coordination, and pure computa-
tion. This separation disentangles the semantics of computation modules from
the semantics of the coordination protocols. The coordination modules con-
struct and maintain a dynamic data-flow graph where each node is a process.
These modules do no computation, but only make the prescribed changes to the
connections among various processes in the application, which changes only the
topology of the graph. The computation modules, on the other hand, cannot

4For convenience, however, some of these constructs, syntactically, do exist in the
MANIFOLD language. Currently, only the front-end of the MANIFOLD language compiler
knows about such “syntactic sugar” and translates them into processes, state transitions,
etc., so that as far as the run-time system (or even the code generator of the MANIFOLD

compiler) is concerned, these familiar constructs “do not exist” in MANIFOLD.

11



possibly change the topology of this graph, making both sets of modules easier
to verify and more reusable. The concept of reusable pure coordination mod-
ules in MANIFOLD is demonstrated, e.g., by using (the object code of) the same
MANIFOLD coordinator program that was developed for a parallel/distributed
bucket sort algorithm, to perform function evaluation and numerical optimiza-
tion using domain decomposition[6, 18].

The MANIFOLD system runs on multiple platforms and consists of a com-
piler, a run-time system library, a number of utility programs, and libraries
of builtin and predefined processes of general interest. Presently, it runs on
IBM RS6000 AIX, IBM SP1/2, Solaris, Linux, and SGI IRIX. A MANIFOLD

application consists of a (potentially very large) number of processes running
on a network of heterogeneous hosts, some of which may be parallel systems.
Processes in the same application may be written in different programming
languages and some of them may not know anything about MANIFOLD, nor
the fact that they are cooperating with other processes through MANIFOLD

in a concurrent application. A number of these processes may run as indepen-
dent operating-system-level processes, and some will run together as light-weight
processes (preemptively scheduled threads) inside an operating-system-level pro-
cess. None of this detail is relevant at the level of the MANIFOLD source code,
and the programmer need not know anything about the eventual configuration
of his or her application in order to write a MANIFOLD program.

MANIFOLD has been successfully used to implement parallel and distributed
versions of a semi-coarsened multi-grid Euler solver algorithm in MAS2 at CWI.
This represents a real-life heavy-duty Computational Fluid Dynamics applica-
tion where MANIFOLD enabled restructuring of existing sequential Fortran code
using pure coordination protocols that allow it to run on parallel and distributed
platforms. The results of this work are very favorable: no modification to the
computational Fortran 77 code, simple, small, reusable MANIFOLD coordina-
tion modules, and linear speed-up of total execution time with respect to the
number of processors (e.g., from almost 9 to over 2 hours)[19, 20].

Other applications of MANIFOLD include its use in modeling cooperative In-
formation Systems[31, 32], coordination of Loosely-Coupled Genetic Algorithms
on parallel and distributed platforms[36, 37], coordination of multiple solvers in
a concurrent constraint programming system[8], and a distributed propositional
theorem checker in the Theme SEN2: Specification and Analysis of Embedded
Systems at CWI.

9 Examples

An interesting example of an exogenous coordination protocol is a MANIFOLD

program described in [6] that receives two process type definitions (A, and M)
and recursively creates instances of itself (processes xi), A (processes ai), and
M (processes mi), and (re)connects the streams routing the flow of information
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among them. This abstract coordination protocol can be compiled separately,
and linked with the object code of other processes to build an application. It is
immaterial what exactly processes A and M do, and process instances xi, ai, and
mi, that are created at run time, can run on various hosts on a heterogeneous
platform. The depth of the recursion (i.e., the exact number of xi’s) depends on
the number of input units, and the number of units each instance of ai decides
for itself to consume. What matters is the pattern of communication among,
and creation of, these process instances.

Entirely different applications can use (the object code of) this same MANIFOLD

program as their coordination protocol[6]. For example, we have used this pro-
tocol to perform parallel/distributed sorting, by supplying:

• as A, a sorter, each instance of which takes in n > 0 input units, sorts
them, and produces the result as its output; and

• as M , a merger, each instance of which produces as its output the merged
sequence of the two sequences of units it receives as its input.

We have also used this protocol to perform parallel/distributed numerical
optimization, e.g., of a complex function by supplying:

• as A, an evaluator, each instance of which takes in an input unit describing
a (sub)domain of a function, and produces its best estimate of the optimum
value of the function in that (sub)domain; and

• as M , a selector, each instance of which produces as its output the best
optimum value it receives as its input.

10 Formal Models and Semantics

The formal (operational) semantics of MANIFOLD is defined in terms of a two-
level transition system[14]. The first level consists of a (large) number of tran-
sition systems, each of which defines the semantics of a single process, indepen-
dently of the rest. The second level consists of a single transition system that
defines the interactions among the first-level transition systems. The details of
the internal activity of the first-level transition systems (e.g., their computa-
tions) are irrelevant for, and therefore unobservable by, the second-level transi-
tion system. This two-level approach to formal semantics reflects the dichotomy
of computation vs. coordination that is inherent in MANIFOLD, and represents
a novel application of transition system in formal semantics. More generally,
this approach is useful for the definition of the formal semantics of other coordi-
nation languages as well. The key concept here is that the second level abstracts
away the (computational) semantics of the first level processes, and is concerned
only with their (mutually engaging) externally observable behavior.
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Related to transition systems are the notions of bisimulation and bisimilar-
ity which reflect the intuitive concept of the equivalence (or similarity) of the
externally observable behavior of concurrent systems. Bisimulation is used to
define the formal notion of coinduction as the counterpart for the familiar prin-
ciple of induction. Coinduction, bisimulation, and coalgebras[25, 35] comprise a
mathematical machinery analogous to the more familiar notions of induction,
congruence, and algebras, that is suitable for the study of concurrency and
coordination.

Traditionally, initial algebras have been used as mathematical models for
finite data types, such as finite lists. Their counterparts, final coalgebras, are
used as mathematical models for infinite data types and for the semantics of
object-oriented programming languages. More generally, coalgebras can serve
as models for dynamical and transition systems. Coalgebraic models seem very
appealing candidates for a mathematically sound foundation for the semantics
of MANIFOLD. MANIFOLD’s strict separation of computation from communica-
tion, plus the fact that it is based on an exogenous model of coordination, leads
to a clear dichotomy of internal vs. externally observable behavior of each pro-
cess. This, in turn, corresponds directly with the inherent “strict information
hiding” property of coalgebras. On the other hand, coalgebraic models for the
semantics of MANIFOLD raise interesting challenges in the field of coalgebras:
to reflect the compositionality of MANIFOLD, a suitable theory of composition
of coalgebras is necessary.

An alternative approach to a mathematical foundation for the semantics of
MANIFOLD can be sought in other category-theoretical models. The essence of
the semantics of a coordinator process in MANIFOLD can be described as tran-
sitions between states, each of which defines a different topology of information-
carrying streams among various sets of processes. What is defined in each such
state is reminiscent of an (asynchronous) electronic circuit. Category theo-
retical models have been used to describe simple circuit diagrams[26]. Exten-
sions of such models to account for the dynamic topological reconfiguration of
MANIFOLD is a non-trivial challenge which, nevertheless, points to an interest-
ing model of computation.
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