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Abstract. We propose the first distributed discrete-log key generation (DLKG) protocol from
scratch which is adaptively-secure in the non-erasure model, and at the same time completely
avoids the use of interactive zero-knowledge proofs. As a consequence, the protocol can be
proven secure in a universally-composable (UC) like framework which prohibits rewinding.
We prove the security in what we call the single-inconsistent-player (SIP) UC model, which
guarantees arbitrary composition as long as all protocols are executed by the same players. As
applications, we propose a fully UC threshold Schnorr signature scheme, a fully UC threshold
DSS signature scheme, and a SIP UC threshold Cramer-Shoup cryptosystem.
Our results are based on a new adaptively-secure Feldman VSS scheme. Although adaptive
security was already addressed by Feldman in the original paper, the scheme requires secure
communication, secure erasure, and either a linear number of rounds or digital signatures
to resolve disputes. Our scheme overcomes all of these shortcomings, but on the other hand
requires some restriction on the corruption behavior of the adversary, which however disappears
in some applications including our new DLKG protocol.
We also propose several new adaptively-secure protocols, which may find other applications,
like a distributed trapdoor-key generation protocol for Pedersen’s commitment scheme, an
adaptively-secure Pedersen VSS scheme (as a committed VSS), or distributed-verifier proofs
for proving relations among commitments or even any NP relations in general.

1 Introduction

A distributed key generation protocol is an essential component in threshold cryptography.
It allows a set of n players to jointly generate a key pair, (pk, sk), that follows the distribution
defined by the target cryptosystem, without the need for a trusted party. While the public-
key pk is output in clear, the corresponding secret-key sk remains hidden and is maintained
in a shared manner among the players via a secret sharing scheme. This should allow the
players to later use sk without explicitly having to reconstruct it. The distributed key-
generation for discrete-log based schemes, DLKG in short, amounts to the joint generation
of a random group element y as public-key and a sharing of its discrete-log (DL) x = logg(y)
as secret-key with regard to some given base g. A DLKG protocol must remain secure in
the presence of a malicious adversary who may corrupt up to a minority of the players and
make them behave in an arbitrary way. Informally, it is required that, for any adversary,
y must be uniformly distributed, and the adversary must learn nothing about x beyond
y = gx.

DLKG was first addressed by Pedersen in [18]. Gennaro et al. pointed out that Pedersen’s
scheme is not secure against a rushing adversary (and even against a non-rushing adversary)
and proposed a new (statically) secure scheme [14]. Then Frankel et al. and Canetti et al.
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introduced in [13] respectively [7] adaptively secure schemes in the erasure model, and
Jarecki and Lysyanskaya improved the schemes to work in the non-erasure model and to
remain secure under concurrent composition [16].

These DLKG protocols which are secure against an adaptive adversary rely heavily on
the use of interactive zero-knowledge proofs. This poses the question whether this is an
inherent phenomenon for adaptively secure DLKG. We answer this question in the nega-
tive. Concretely, we propose an adaptively-secure distributed key-generation protocol from
scratch which completely avoids the use of interactive zero-knowledge proofs. As a conse-
quence, the protocol can be and is proven secure in a relaxed version of Canetti’s universally-
composable (UC) framework [4], which prohibits rewinding. We show the usefulness of our
distributed key-generation protocol by showing how it gives rise to a fully UC threshold
Schnorr signature scheme as well as a fully UC threshold DSS signature scheme. To the best
of our knowledge, these are the first threshold schemes proven secure in the UC framework.
We also point out how to combine our results with [16] to get a threshold Cramer-Shoup
cryptosystem provably secure in the relaxed UC framework.

The relaxed UC framework, which we call the single-inconsistent-player (SIP) UC frame-
work, coincides with the original UC framework, except that the simulator is allowed to fail
in case the adversary corrupts some designated player Pj? , which is chosen at random from
the set of all players and announced to (and only to) the simulator. This relaxation still
allows for a powerful composition theorem in that protocols may be arbitrary composed, as
long as all subsidiary protocols involve the same set of players.

We stress once more that this relaxation only applies to the proposed distributed key-
generation protocol but not to its application for the threshold signature schemes.

Our DLKG protocol is based on a new adaptively-secure version of Feldman’s famous
(statically secure) VSS scheme. Although adaptive security was already addressed by Feld-
man in the original paper [12], and besides the well known standard Feldman VSS scheme
he also proposed an adaptively-secure version, the proposed scheme has several shortcom-
ings: (1) it requires the players to be able to reliably erase data, (2) it either proceeds over
a linear number of rounds or otherwise needs to incorporate signatures as we will point,
and (3) it requires secure communication channels (or expensive non-committing encryption
schemes). We propose a new variant of Feldman’s VSS scheme which overcomes all of these
limitations. Even though the proposed scheme is not fully adaptively secure but requires
some restriction on the corruption behavior of the adversary, this restriction is acceptable
in that it disappears in the above applications to threshold cryptography.

Furthermore, as building blocks for the above schemes or as related constructions, we
also propose several adaptively-secure protocols of independent interest which may very well
find other applications: a simple modification of Feldman’s adaptively-secure VSS scheme
which overcomes (1) and (2) above, though not (3), but is fully adaptively-secure, a new
adaptively-secure distributed trapdoor-key generation protocol for Pedersen’s commitment
scheme, an adaptively secure version of Pedersen’s VSS scheme as a committed VSS, and
(distributed-verifier) zero-knowledge proofs in the UC model.

The paper is organized as follows. Section 2 reviews the model we are considering. It
includes an introduction to the UC framework of Canetti and the new SIP UC framework. In
Sect. 3 we recall Feldman’s statically and adaptively secure VSS schemes, and we point out
an obstacle in the dispute resolution phase of the adaptive scheme, before we construct our
version in Sect. 4. Finally, Sect. 5 shows the applications to adaptively-secure DLKG and
universally-composable threshold cryptography, and some related constructions are given in
Sect. 6. For improved readability, some lengthy proofs have been moved to the appendix.
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2 Preliminaries

2.1 Communication Model

We consider a synchronized authenticated-link model where communication is divided up
into globally clocked rounds in that a message sent off by a player Ps at the beginning of
a round is guaranteed to be delivered to the recipient Pr within this round, and where a
message seemingly originating from Ps is accepted by the receiver Pr if and only if it indeed
has been sent by Ps. Moreover, we assume a broadcast channel with which every player can
send a message authentically and all players receive that message (within the same round).

In our security model, Canetti’s universally composable framework (see Sect. 2.3 below),
which per-se only incorporates unauthenticated point-to-point communication, the above
assumed channels are modeled by so called functionalities. The authenticated point-to-point
communication is modeled by functionality FAUTH, which on receiving (send, sid, Pr,m) from
Ps sends (sid, Ps, Pr,m) to Pr and the adversary; and the broadcast channel is modeled by
functionality FBC, which on receiving (send, sid,m) from Ps sends (sid, Ps,m) to all play-
ers and the adversary. For notational simplicity, however, we treat these functionalities as
being part of the communication model, and we simply say “Ps sends m to Pr” and “Ps

broadcasts m” rather than “Ps sends (send, sid, Pr,m) to FAUTH” respectively “Ps sends
(send, sid,m) to FBC”.

2.2 The Adversary

We consider an adversary A which may corrupt players at will. Corrupting a player Pj

allows A to read Pj ’s internal state and to act on Pj ’s behalf from that point on. In the
non-erasure model which we consider here, A additionally gains Pj’s complete history. A is
said to corrupt a player Pj statically, if A corrupts Pj before the protocol starts, and A is said
to corrupt Pj adaptively, if A corrupts Pj during the execution of the protocol, depending
on what A has seen so far. Correspondingly, A is called static or adaptive, depending on
whether A corrupts the players statically or adaptively. Per default, we assume A to be
adaptive. Furthermore, we allow A to be rushing. This means that A can read the messages
that are sent in some round by the uncorrupted players before having to decide on the
messages for the corrupt players in this round. Finally, A is called t-limited if it corrupts at
most t players.

2.3 Canetti’s Universally Composable Framework

In order to formally specify and prove the security of our protocols, we will use the univer-
sally composable (UC) framework of Canetti [4]. In this framework, a protocol π is compared
with an ideal functionality F . Such a functionality can be thought of as a trusted party with
whom every player can communicate in a secure (meaning private and authentic) way. There
is a number of commands specified that F will execute. Every player can securely send a
command to F , and F will faithfully carry out the command according to its specification,
and may send results back securely to (some of) the players and the adversary.

Many cryptographic constructions – including ours – actually aim at building a protocol
π for the players only (without a trusted party) that does “the same thing” as some ideal
functionality F , even in the presence of an adversary A. The framework provides on one
hand a precise definition of what it means that a protocol π securely realizes F . On the
other hand it provides the following composition theorem. For any protocol ρ that securely
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realizes functionality G in the so-called F-hybrid model, meaning that it may use F as a
subroutine, composed protocol ρπ that replaces F with a secure protocol π also securely
realizes G (in the real-life model).

To prove that a protocol π securely realizes F , one has to construct, for every adversary
A attacking the protocol in question, an ideal-life adversary, or simulator S, which gets to
attack an ideal scenario where only the players and F are present. The goal of S is to achieve
“the same” as A could have achieved by an attack on the real protocol. In the framework,
this is formalized by considering an environment Z which provides inputs to and collects
outputs from the honest players and can communicate in the real-life execution with A and
in the ideal-life execution with S, and it is required that it cannot tell the difference.

Formally, let the random variable realπ,A,Z(κ, a) denote the output of Z with input
a ∈ {0, 1}∗ after observing the real-life computation with security parameter κ ∈ N and
uniformly chosen randomness for every player and A. Let realπ,A,Z denote the ensemble
of realπ,A,Z(κ, a) for all κ and a. Similarly, let idealF ,S,Z(κ, a) and idealF ,S,Z denote
the output of Z and its ensemble, respectively, regarding the ideal-model computation. The
protocol π is said to securely realize F (in the real-life model), or simply to be secure, if
for every adversary A there exists a simulator S, such that realπ,A,Z ≈ idealF ,S,Z for
every environment Z, where ≈ denotes computational indistinguishability: for all positive
constant c ∈ N and for all sufficiently large κ and all a ∈ {0, 1}∗,

∣

∣Pr[realπ,A,Z(κ, a) = 1]− Pr[idealF ,S,Z(κ, a)]
∣

∣ < κ−c .

This extends to the security of protocols in the hybrid model. That is, protocol ρ in the
F-hybrid model securely realizes functionality G if for every hybrid-model adversary A
there exists a simulator S such that hybF

ρ,A,Z ≈ idealG,S,Z for all environments Z, where
hybF

ρ,A,Z is the ensemble of the output of Z interacting with parties running ρ in the F-
hybrid model. Then, the composition theorem guarantees that if protocol ρ securely realizes
G in the F-hybrid model and π securely realizes F in the real-life model, then the composed
protocol ρπ securely realizes G in the real-life model. For more details, see [4].

In proofs of this type of security, the simulator S, which is running in the ideal-life
execution with players P̃1, . . . , P̃n, typically works as follows. S internally runs a copy of
the adversary A and, by impersonating the real-life players P1, . . . , Pn (and functionality
F in the F-hybrid model), S simulates A’s view of an execution of the protocol consistent
with the in- and output(s) in the ideal-life execution. Any interaction between Z and A is
passed back and forth with no change. If S can simulate A’s view such that together with
the outputs of the honest P̃i’s it is computationally indistinguishable from A’s view and the
honest Pi’s outputs in a real execution with the same inputs, then Z will not be able to tell
any difference.

2.4 Single-Inconsistent-Player UC Framework

The single-inconsistent-player (SIP) technique of [7] is often used to achieve both adaptive
security and efficiency. A protocol in the SIP model is secure (i.e. securely simulatable in
the classical model of computation) if the adversary does not corrupt a designated player
which is chosen independently at random before the protocol starts. Using the terms of the
UC framework, it means that the simulator S is given as input the identity of a randomly
chosen player Pj? , and S is required to work well as long as Pj? is uncorrupted. In the
case of t-limited adversary with t < n/2, this reduces S’s success probability by a factor
of 1/2. This still guarantees security in that whatever A can do in the real-life model, S
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has a good chance in achieving the same in the ideal-life model. Indeed, in the classical
sense, a simulator is considered successful if it works better than with negligible probability.
However, with such a simulator S, the composition theorem no longer works in its full
generality. To minimize the effect of the SIP approach, we have to limit the set of players to
be the same in all subsidiary protocols. This way, Pj? can be sampled once and for all, and
the condition that Pj? remains uncorrupted applies to (and either holds or does not hold)
simultaneously for all protocols. With this limitation, the composition theorem essentially
works as before.

This is formalized as follows. We include the choice of j? in the probability space and
extend the notation idealF ,S,Z(κ, a) to represent the output distribution of Z for such a S.
Let corr denote the event that Pj? is corrupted. Suppose that protocol π securely realizes
functionality F in the SIP UC model in the sense that for any adversary A, there exists Sπ

such that for any environment Z

∣

∣Pr[realπ,A,Z(κ, a) = 1|¬corr]− Pr[idealF ,Sπ ,Z(κ, a)|¬corr]
∣

∣ < κ−c,

for any constant c and sufficiently large κ. In short, realπ,A,Z|¬corr ≈ idealF ,Sπ ,Z|¬corr.
Also suppose that a F-hybrid model protocol ρ securely realizes functionality G in the SIP
UC model in that for every A there exists Sρ such that hybF

ρ,A,Z|¬corr
≈ idealG,Sρ,Z|¬corr for

all Z. Then, the SIP universal composition theorem states that the composed protocol ρπ

securely realizes G in the (real-life) SIP UC model, i.e., for every A there exists S such that
realρπ ,A,Z|¬corr ≈ idealG,S,Z|¬corr for all Z. This theorem can be proven essentially in the
same way as for the original UC theorem with some minor adjustments. S mainly behaves
as Sρ does. For every invocation of sub-protocol π within ρ, S simulates the sub-protocol
by invoking Sπ with the same j? given to S. In this way, all simulation is done with respect
to the same SIP Pj? and corr can be treated as a global condition that holds or fails in all
invocation of sub-protocols at the same time. Since ¬corr happens with probability at least
1/2 for any n/2-limited adversary, S achieves good quality of reduction for evaluating the
security of composed protocol ρπ.

2.5 Modeling Secure Message Transmission and Committed VSS

Secure Message Transmission (SMT): Following [4], secure communication is modeled by
the following functionality.

Definition 1 (Secure Message Transmission Functionality: FSMT).
On receiving (send, sid, Pr,m) from Ps, FSMT sends (sid, Ps,m) to Pr and (sid, Ps, Pr) to S.

Note that it is required by definition of the hybrid-model that (sid, Ps, Pr) is sent to S. If
the length of m may vary, it is also given to S.

This functionality, however, cannot be realized in the synchronized communication
model where messages will never be blocked by the adversary. This is important for us
since we assume the use of a broadcast channel which essentially results in assuming all
communication be done in a synchronized way. It is known that such FSMT can be realized in
the authenticated and asynchronous communication model where S can block the message
from FSMT to Pr. The realization, say πSMT, requires the sender and the receiver to interact
in order to complete the transmission. Now, when FSMT is considered in the synchronized
communication model where S cannot block the message from FSMT to the receiver, the
message transmission in the ideal-process is atomic in such a sense that once it is invoked
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it is always completed. On the other hand, if πSMT is first invoked by an honest sender and
the sender is later corrupted by A and ordered to halt or to lead the receiver to reject, S
cannot simulate such a situation in the ideal-process since the message once sent off from
the honest sender has to be delivered to the receiver. So in the current model, πSMT must
be non-interactive to securely realize FSMT in the synchronized communication model in the
presence of an adaptive adversary.3 Although aborting the protocol is harmless as long as
its aftermath can be treated in a correct way and the model should be changed to be able
to handle this type of really ideal functionalities, we decided to ease the functionality to
fit to the current model so that unexpected flaws caused by the change of the model can
be avoided. Concretely, we consider spooled message transmission functionality, denoted by
FSSMT, to capture the case where as a consequence of a corruption the sender changes its
mind during the execution of the protocol.

Definition 2 (Spooled SMT Functionality: FSSMT).

1. On receiving (spool, sid, Pr,m) from Ps, record m and send (spooled, sid, Ps, Pr) to S.
2. On receiving (send, sid) from Ps, send (sid, Ps,m) to Pr and (received, sid) to S; or, on

receiving (send, sid,m′) from corrupted Ps, send (sid, Ps,m
′) to Pr.

In the definition of this functionality, we implicitly understand that each step is performed
only once and in order. This rule applies to all functionalities defined in this paper, unless
explicitly stated otherwise.

Finally, the following extended version of FSSMT allows the sender, in case of a dispute,
to convince the other players of the message m sent to the receiver.

Definition 3 (Spooled SMT Functionality with Opening: FSSMTwO).

1. On receiving (spool, sid, Pr,m) from Ps, send (spooled, sid, Ps, Pr) to S.
2. On receiving (send, sid) from Ps, send (sid, Ps,m) to Pr and (received, sid) to S; or, on

receiving (send, sid,m′) from corrupted Ps, send (sid, Ps,m
′) to Pr, and set m := m′.

3. On receiving (open, sid) from Ps, send (sent, sid, Ps, Pr,m) to all players and S.

It is important to see that (open, sid) is executed only if it is given from Ps. In some sense,
the sender commits the message to the network and opens it when needed.

As one can imagined, such a functionality could be realized in the straightforward way
in the secure-channel model by using digital signature functionality; the receiver signs the
received message and returns the signature to the sender through a secure-channel.

Committed VSS: An advantage of using Feldman and Pedersen VSS in protocol design
is that besides producing a (correct) sharing, they also commit the dealer to the shared
secret. Often, this commitment can be and is used in upper-level protocols. However, in the
definition of UC-secure VSS given in [4], such a commitment is hidden in the protocol and
not part of the functionality, and thus not available for external protocols. We introduce
the notion of committed VSS to overcome this inconvenience.

Let comK : SK×RK → YK be a (efficiently computable) commitment function, indexed
by a commitment key K. Typically, K is sampled by a poly-time generator (on input the
security parameter κ). A commitment for a secret s ∈ SK is computed as y = comK(s; r),

3 As pointed out by Nielsen [17], a similar problem also appears in the context of commitment schemes: the
standard commitment functionality cannot be securely realized by an interactive protocol (in which the
first message is not yet committing), not even in the asynchronous communication model. This uncovers
a flaw in essentially all “proven-secure” UC commitments [6, 11].
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where we use the semicolon ’;’ to express that the second argument, r, is chosen randomly
(from RK) unless it is explicitly given.

A committed VSS is a type of VSS where the dealer is committed to the shared secret s
by comK(s; r) as a result of the protocol execution. It is understood as a VSS whose sharing
phase leaks nothing but comK(s; r) with regard to secret s. We formally model this notion
for a threshold access structure (with threshold t + 1) by the following functionality.

Definition 4 (Committed Verifiable Secret Sharing Functionality: F
comK

VSS
).

1. On receiving (share, sid, (s, r)) from dealer Pd, send (shared, sid, Pd, comK(s; r)) to all
players and S.

2. On receiving (open, sid) from t + 1 distinct players send (opened, sid, s) to all players
and S.

Optionally, F comK
VSS might also be instructed to additionally announce r in step 2. Because

of the same reason as in the modeling of the secure message transmission, we need to allow
an adaptively corrupted dealer to change his mind during the protocol execution. As above,
this is done by incorporating spooling into the VSS functionality.

Definition 5 (Committed Verifiable Secret Sharing with Spooling: F
comK

SVSS
).

1. On receiving (spool, sid, (s, r)) from dealer Pd, send (spooled, sid, Pd, y) to S where y =
comK(s; r).

2. On receiving (share, sid) from Pd, send (shared, sid, Pd, y) to all players and S; or, on
receiving (share, sid, (s′, r′)) from corrupt Pd, send (shared, sid, Pd, y

′) to all players where
y′ = comK(s′; r′) and set s := s′.

3. On receiving (open, sid) from t + 1 distinct players, send (opened, sid, s) to all players
and S.

We stress that, in both definitions, y must be determined only from the input. This is because
in the real world, y is chosen by the possibly corrupt dealer and may follow a distribution
the simulator does not know. Hence it is too much demanding that r is generated inside the
ideal functionality.4

We would like to mention that for certain candidate protocols πVSS for committed VSS
(with spooling), whose security rely on the commitment scheme comK , the generation of the
key K needs to be added to the VSS functionality in order to be able to prove πVSS secure
in the UC framework. This is for instance the case for Pedersen’s VSS scheme as discussed
in Section 6.2.

2.6 The Discrete-Log Setting

Let κ be a security parameter and q be a prime of size κ. Let Gq denote a group of order
q, and let g be a generator. We use multiplicative notation for the group operation of Gq.
Some of our constructions require Gq to be the order-q multiplicative subgroup of Z

∗
p with

prime p = 2q + 1. Unless otherwise noted, all arithmetics are done in Zq or Gq and should
in each case be clear from the context.

4 This observation leads to an interesting consequence, namely that Pedersen VSS is not secure in the UC
framework if y is considered as a part of its output despite the fact that the shared secret is perfectly
independent of the joint view of any t corrupted players. This subject is discussed more extensively in
Section 6.2.
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Throughout, we assume that such (Gq, q, g) is given to all players, and that the Decision
Diffie-Hellman problem for (Gq, q, g) is intractable, meaning that the respective uniform dis-
tributions over DH = {(gα, gβ, gγ) ∈ Gq

3 | α · β = γ} and RND = Gq
3 are computationally

indistinguishable. This assumption implies the discrete-log assumption for (Gq, q, g): given
a random h = gω, it is computationally infeasible to compute ω.

3 The Original Feldman VSS

The Basic Scheme: Let α1, . . . , αn ∈ Zq be distinct and non-zero. In order to share a
(random) secret s ∈ Zq, the dealer selects a Shamir sharing polynomial f(X) = s + a1X +
· · ·+atX

t ∈ Zq[X] and sends sj = f(αj) privately to Pj . Additionally, he broadcasts C0 = gs

as well as Ck = gak for k = 1, . . . , t. Each player Pj now verifies whether

gsj =

t
∏

k=0

C
αk

j

k . (1)

If it does not hold for some j, then player Pj broadcasts an accusation against the dealer,
who has to respond by broadcasting sj such that (1) holds. If he fails, then the execution is
rejected, while otherwise Pj uses the new sj as his share. Correct reconstruction is achieved
simply by filtering out shares that do not satisfy (1).

This scheme is proved secure against a static adversary: Assume that A corrupts t
players Pj1 , . . . , Pjt. Given C0 = gs, the simulator S simply chooses random shares sji

∈ Zq

(i = 1 . . . t) for the corrupted players, and it computes C1, . . . , Ct with the right distribution
from gs and gsj1 , . . . , gsjt ’s by applying appropriate Lagrange interpolation coefficients “in
the exponent”. Informally, this shows that A learns nothing about s beyond gs.

This simulation-based proof though fails completely if the adversary may corrupt players
adaptively, i.e., during or even after the execution of the protocol. The problem is that given
C0 = gs, S needs to come up with C1, . . . , Ct such that if A corrupts some player Pj at
some later point, S can serve A with sj such that (1) is satisfied. However, it is not known
how to successfully provide such sj for any dynamic choice of j without knowing s, unless
A corrupts the dealer to start with.

Adaptive Security with Erasure: Feldman addressed adaptive security by providing a set-
up phase where the dealer assigns a private X-coordinate αj ∈ {1, . . . , n} to every Pj .
Additionally, he needs to convince the players of the uniqueness of their αj . This is done
in the following way. Let E be a semantically-secure public-key encryption function, with
public-key chosen by the dealer.

1. The dealer computes an encryption Aj = E(j; rj) (with random rj) for every j ∈
{1, . . . , n}, and he chooses α1, . . . , αn as a random permutation of 1, . . . , n. Then, he
broadcasts A1, . . . , An ordered in such a way that Aj appears in αj-th position, and he
privately sends (αj , rj) to Pj .

2. Each Pj locates Aj in position αj and verifies whether Aj = E(j; rj) and, if it holds,
erases rj . The dealer erases r1, . . . , rn, too.

After the erasure is completed, the dealer performs the basic Feldman VSS with X-coordinates
α1, . . . , αn. We stress that it is important that the erasures of the rj ’s must be done before
entering to the sharing phase. On reconstruction, each player broadcasts (αj , sj).
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Since each Aj can be opened only to j, player Pj is convinced of the uniqueness of αj .
Simulation against an adaptive adversary is argued separately for each phase. If a player
gets corrupted in the set-up phase, the simulator S just honestly gives the internal state
of the corrupt player to the adversary. Nothing needs to be simulated. Then, the sharing
phase is simulated similar as for the static adversary, except that, since S does not know
which players will be corrupted, it predetermines shares for a random subset of size t of the
X-coordinates {1, . . . , n}, and whenever a player Pj gets corrupted one of these prepared X-
coordinates is assigned to Pj as his αj . Since rj has already been erased, it is computationally
infeasible to determine whether Ai in position αj is an encryption of j or not.

An Obstacle in Dispute Resolution: We identify a problem in the dispute resolution of the
above scheme.5 Suppose that honest Pj accuses the dealer, and that instead of publishing
correct (αj , sj), the corrupt dealer responds by publishing (αi, si) of another honest player
Pi. Since rj and ri have been already erased, both Pj and Pi have no means to prove that
the published αi is different from the original assignment.

To efficiently settle such a dispute, digital signatures are needed: the dealer sends αj

together with his signature in the set-up phase. This allows Pj to publish the signature when
he accuses the dealer in the sharing phase. Without using digital signatures, O(t) additional
rounds are needed to settle the dispute: If Pi observes that his (αi, si) is published to respond
to the accusation from Pi, Pi also accuses the dealer and the dealer publishes the data for
Pi this time. After repeating this accuse-then-publish process at most t+1 times, the dealer
either gets stuck or exposes t + 1 correct shares.

4 Adaptive Security without Overheads and Erasures

The goal of this section is an adaptively secure Feldman VSS that provides (1) security
without the need for reliably erasing data, (2) efficient dispute resolution without digital
signatures, and (3) efficient realization over a public network, i.e. without secure channels
(or expensive non-committing encryptions).

The first two goals are achieved by a simple modification of the original Feldman VSS.
The idea is to replace the encryption function E with instantiations of a trapdoor com-
mitment scheme with certain properties whose commitment keys are provided separately
from each player so that the trapdoors are not known to the dealer. We show this modified
Feldman VSS and the security proof in Sect. 6.1. Since Pedersen’s commitment scheme
turns out to be good enough for this purpose, we have a scheme that meets (1) and (2)
solely under the DL assumption. Furthermore, the modified scheme is more efficient in the
number of communication rounds over the original adaptively-secure Feldman VSS.

Hence, what the secure-channels model is concerned, we are done. Unfortunately, we do
not know how to efficiently implement the above scheme efficiently over a public network,
even when limiting the power of the adversary as we do in Sect. 4.2 below. Therefore, we
design a new scheme which allows to seamlessly install our efficient components for public
communication presented later.

5 No dispute resolution procedure is shown in [12]. It is said that a player simply rejects the dealer when
he receives an incorrect share (and the dealer is disqualified if more than t + 1 players rejects). But this
works only if t < n/3.
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4.1 Construction in a Hybrid Model

Our approach is to let each player Pj select a random non-zero X-coordinate αj ∈ Zq

and send it privately to the dealer. When corrupted, a simulated player reveals a (fake)
X-coordinate that has been prepared in advance to be consistent with the transcript, as in
Feldman’s approach. On the other hand, in case of a dispute, each player Pj should be able
to convince the other players of his αj . This is achieved by initially sending αj to the dealer
using secure message transmission with opening, as specified in Sect. 2.5 by functionality
FSSMTwO. The scheme is detailed in Fig. 1 in the (FSSMTwO, FSSMT)-hybrid model.

[Sharing Phase]

F-1. Each Pj selects αj ← Z
∗
q and sends αj to the dealer via FSSMTwO. The dealer replaces any αj that

happens to be 0 by αj = 1.
F-2. The dealer selects f(X) = a0 + a1X + · · ·+ atX

t ← Zq[X] where a0 = s and computes Ck = gak

for k = 0, . . . , t and broadcasts (C0, . . . , Ct). To every Pi he sends si = f(αi) by using FSSMT.

F-3. Each Pj verifies gsj =
Qt

k=0
C

αk
j

k and broadcasts verified if it holds. Otherwise, Pj broadcasts
accuse dealer. For every accusation, the following sub-protocol is executed in parallel.
(a) Pj sends (open, sid) to FSSMTwO and every player receives αj . If αj = 0, then it is replaced by

αj = 1.
(b) The dealer broadcasts the corresponding sj .
(c) If (αj , sj) satisfies the verification predicate, then Pj accepts (αj , sj) as his share, otherwise

the players output a default sharing of s = 0. (Note that the players have agreement on the
published values αj and sj).

[Reconstruction Phase]

Each Pj broadcasts (αj , sj), identifiesQ ⊆ {1, . . . , n}, |Q| ≥ t+1, so that (αi, si) satisfies the verification
predicate for all i ∈ Q, reconstructs secret s by Lagrange interpolation with regard to Q, and then
outputs s.

Fig. 1. Adaptively secure Feldman-VSS πXFVSS in (FSSMTwO, FSSMT)-hybrid model.

Consider Feldman’s commitment scheme fcomg with base g: a commitment for a secret
s ∈ Zq is computed as fcomg(s; r) = fcomg(s) = gs (without using r).

Proposition 1. Protocol πXFVSS shown in Fig. 1 securely realizes functionality F
fcomg

SVSS in the
(FSSMTwO, FSSMT)-hybrid model against t-limited adaptive adversary for t < n/2.

The proof is given in Appendix A. Essentially, it uses the same idea as Feldman’s version:
the simulator prepares (random) shares s̃1, . . . , s̃t for t X-coordinates α̃1, . . . , α̃t and assigns
to every newly corrupt player Pj one of these X-coordinates as αj and the corresponding
share as sj .

4.2 Efficient Composition to the Real-life Protocol

This section provides protocols that realize FSSMT and FSSMTwO over the public network with
broadcast, i.e., without secure channels. Then, by applying the composition theorem, one
can have adaptively secure Feldman VSS as a real-life protocol. As we shall see, these
realizations are efficient but have some limitation on the adversary, which though can be
successfully overcome in our applications.
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Our constructions require an efficient bidirectional mapping between Zq and Gq while the
DDH problem should be hard to solve. This is the case when Gq is the order-q multiplicative
subgroup of Z

∗
p with prime p = 2q+1. Indeed, encoding Zq → Gq can be done by m 7→M =

m2 mod p, where m ∈ Zq is identified with its representation in {1, . . . , q}. This encoder is
denoted by M = Encode(m) and the corresponding decoder by m = Decode(M).

Receiver Non-committing Message Transmission: By πRNC, we denote a protocol that realizes
FSMT (or FSSMT) with receiver non-committing feature. That is, remains secure even if the
receiver is adaptively corrupted (in the non-erasure model), while the sender may only be
statically corrupted. Note that with such a restriction on the sender, FSMT can be realized
(without spooling). We review the construction by [16] (adapted to accept messages m ∈ Zq),
which is originally designed in a classical model but can fit to the UC model. A proof is
given in Appendix B.

A-0. (Initial step) Sender Ps chooses h← Gq and sends it to receiver Pr.
A-1. Pr selects z1, z2 ← Zq, computes y = gz1hz2 , and sends y to Ps.
A-2. Ps computes u = gr, v = hr and c = Encode(m) yr, where r ← Zq, and sends (u, v, c) to Pr.
A-3. Pr computes m = Decode(cu−z1v−z2).

Fig. 2. Protocol πRNC for receiver non-committing transmission.

Lemma 1. Under the DDH assumption, protocol πRNC securely realizes FSMT (or FSSMT)
against an adaptive adversary if the sender is only statically corrupt and S is aware of
$ with Encode(m) = g$.

The assumption that the ideal-life adversary S is aware of the DL of Encode(m) seems quite
restrictive for πRNC to be a general stand-alone tool. It is however acceptable for our purpose
as m will be chosen by S in an upper-level protocol (playing the role of the to-be-corrupted
sender) such that it knows the DL of Encode(m). We stress that this assumption does not
mean at all that S is given any kind of power to solve the DL problem.

Sender Non-committing Message Transmission with Opening: A protocol πSNC that realizes
FSSMT with sender non-committing feature follows easily from πRNC. The receiver Pr simply
uses πRNC to securely send a randomly chosen k ∈ Gq to the sender Ps (precisely, Pr sends
the message Decode(k) ∈ Zq), and then Ps sends e = kEncode(m) to Pr, who computes
m as m = Decode(ek−1). We also consider the following variant of πSNC, which we denote
by πSNCwO. All communication is done over the broadcast channel, and in an additional
phase, the opening phase, the sender Ps publishes z1 and z2, privately sampled for the secure
transmission of m, and every player verifies whether gz1hz2 = y and computes k = cu−z1v−z2

and m = Decode(ek−1). A full description is given in Figure 11 in Appendix C.

Lemma 2. Under the DDH assumption, protocol πSNC securely realizes FSSMT and πSNCwO se-
curely realizes FSSMTwO against an adaptive adversary if the receiver is only statically corrupt
and S is aware of $ with Encode(m) = g$.

The proof of Lemma 2 is similar to that of Lemma 1, although slightly more involved. For
completeness, it is given in Appendix C.
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Composition with the Efficient Realizations: We now show that when the functionalities
FSSMTwO and FSSMT in the hybrid-protocol πXFVSS are implemented by πSNCwO and πRNC, respec-
tively, then the composed protocol securely realizes F

fcomg

VSS (or F
fcomg

SVSS ) in some weakened
sense as stated below.

Theorem 1. Implementing the functionality FSSMTwO in step F-1 of the hybrid-protocol
πXFVSS from Fig. 1. by πSNCwO and FSSMT in step F-2 by πRNC results in a secure realization
of F

fcomg

VSS (or F
fcomg

SVSS ) in the real-life model, assumed that (1) the adversary corrupts the
dealer only statically, and (2) the adversary corrupts players only before the reconstruction
phase.

Proof. The claim follows essentially from Proposition 1, Lemma 1 and 2, and the compo-
sition theorem. It remains to show that the assumptions for Lemma 1 and 2 are satisfied.
By assumption (1) it is guaranteed that the receiver in πSNC and the sender in πRNC (which
in both cases is the dealer) is only statically corrupt. Furthermore, by (2) and the way
S works in the proof of Proposition 1, the messages, which are supposedly send through
FSSMTwO and FSSMT and for which S has to convince A as being the messages sent through
FSSMTwO respectively FSSMT are the values α̃1, . . . , α̃t and s̃1, . . . , s̃t, all chosen randomly from
Zq (respectively Z

∗
q) by S. Hence, S could sample them just as well by choosing $ ← Zq

and computing Decode(g$) such that the conditions for Lemma 1 and 2 are indeed satis-
fied. Finally, as the dealer may only be statically corrupted, we do not need to care about
spooling. Thus F

fcomg

VSS and F
fcomg

SVSS are equivalent here. ut

5 Applications to Threshold Cryptography

In this section, we propose several applications of the adaptively-secure Feldman VSS scheme
from the previous section. Our main applications are a distributed DL-key generation pro-
tocol and UC threshold versions of the Schnorr and the DSS signature scheme, though
we also propose some related applications which might be of independent interest like
a trapdoor-key generation protocol for Pedersen’s commitment scheme, and in Sect. 6 a
common-random-string generator with applications to zero-knowledge in the UC model and
distributed-verifier UC proofs of knowledge. Interestingly, even though our Feldman VSS
scheme has restricted adaptive security, the applications remain fully adaptively secure in
the (SIP) UC model and do not underly restrictions as posed in Theorem 1.

To simplify terminology, from now on when referring to protocol πXFVSS, we mean πXFVSS

from Fig. 1 with FSSMTwO and FSSMT replaced by πSNCwO and πRNC as specified in Theorem 1.
Furthermore, it will at some point be convenient to use a different basis, say h, rather than
the public parameter g in the core part of πXFVSS, such that for instance hs will be published
as C. This will be denoted by πXFVSS[h], and obviously securely realizes F fcomh

VSS . We stress
that this modification is not meant to affect the sub-protocols πSNCwO and πRNC.

5.1 How to Generate The First Trapdoor Commitment-Key

In many protocols, a trapdoor commitment-key is considered as given by some trusted party
so that the trapdoor information is unknown to any player. In order to achieve security from
scratch, the (trapdoor) commitment-key needs to be generated securely by the players,
without a trusted party, and without the use of a common trapdoor commitment-key. In
this section, we show such a protocol for Pedersen’s commitment scheme.
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The protocol, πHGEN, is illustrated in Fig. 3. We assume that it is triggered by a player Pi

who sends init to all players. The protocol outputs a (trapdoor) commitment-key h ∈ Gq for
Pedersen’s commitment scheme. Note that the corresponding trapdoor logg h =

∑

j∈Q
χj is

not shared among the players (in the usual way).

H-1. Every Pj chooses χj ← Zq and sends (share, sid, χj) to F
fcomg

VSS
. Let Q be the set of players whose

(shared, sid, Pj , Yj) is published by F
fcomg

VSS
. Remember that Yj = fcomg(χj) = gχj .

H-2. Every player outputs h =
Q

j∈Q
Yj .

Fig. 3. Commitment-key generation protocol πHGEN in F
fcomg

VSS
-hybrid model.

Unfortunately, one cannot expect h to be random as a rushing party can affect its
distribution. However, the protocol inherits the following two properties which are sufficient
for our purpose. (1) A simulator that simulates πHGEN can compute the DL of h, and (2)
given Y ∈ Gq, a simulator can embed Y into h so that given logg h, the simulator can
compute logg Y . The latter in particular implies that the adversary is not able to compute
the trapdoor logg h.

Our idea for formally capturing such a notion is that the ideal functionality challenges
the adversary S by sending a random h′ ∈ Gq and allows S to randomize it so that h′ is
transformed into h such that S knows the trapdoor for h if and only if it knows it for h′.
This clearly captures (1) and (2) above.

Definition 6 (Commitment-Key Generation Functionality: FHGEN).

1. On receiving (generate, sid) from Pi, choose h′ ← Gq and send (h′, Pi) to S.
2. On receiving γ ∈ Zq from S, compute h = h′gγ and send (com-key, sid, h) to all players

and S.

Proposition 2. Protocol πHGEN in Fig. 3 securely realizes FHGEN against t-limited adaptive
adversary for t < n/2 in the F

fcomg

VSS -hybrid SIP UC model.

Proof. If A corrupts a player, Pi, before starting πHGEN, S corrupts P̃i and gives its internal
state to A. If corrupted Pi initiates πHGEN, S lets P̃i do so by sending (generate, sid) to
FHGEN.

On receiving (h′, Pi) from FHGEN, S lets honest Pi initiate the protocol. (If Pi has been
already corrupted, S can skip this step because the initial message should have been already
broadcast by A.) To simulate the SIP Pj? , S simulates Pj? ’s invocation of the sharing phase
of F

fcomg

VSS with output (shared, sid, h′, Pj?) as if it has received corresponding input from Pj? .
S also simulates all honest players and their invocation of F

fcomg

VSS as prescribed. S obtains
χj for all j ∈ Q \ {j?} as inputs to F

fcomg

VSS . S then sends γ =
∑

j∈Q\{j?} χj to FHGEN. This

results in receiving (com-key, sid, h) from FHGEN where h = h′gγ. S delivers the message to
all players.

It is straightforward to verify that this is a perfect simulation: the only difference to the
real-life execution is that Pj? does not provide his input for F

fcomg

VSS , which though is invisible
to A and Z. ut

We claim that F
fcomg

VSS in πHGEN can be securely realized by the protocol πXFVSS from
Theorem 1. This may look contradictory since πXFVSS is secure only against static corruption
of the dealer as stated in Theorem 1, while in πHGEN every player acts as a dealer and may be
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adaptively corrupted. However, looking at the proof, except for the run launched by the SIP
Pj?, S simulates all runs of F

fcomg

VSS honestly with true inputs. Hence, for these simulations,
the situation is exactly as in the case where the dealer is statically corrupted and the secret
is known to the simulator at the beginning. Furthermore, the reconstruction phase of F

fcomg

VSS

is never invoked in πHGEN. Thus, the following holds.

Theorem 2. Implementing F
fcomg

VSS in πHGEN of Fig. 3 by πXFVSS results in a secure realization
of FHGEN against t-limited adaptive adversary for t < n/2 in the (real-life) SIP UC model.

5.2 DL-Key Generation

This section constructs an adaptively secure protocol for DLKG, whose functionality is
defined below. Clearly, from such a key-generation protocol (respectively functionality), one
expects that it outputs a public-key y and in some hidden way produces the corresponding
secret-key x (typically by having it shared among the players), such that x can be used to
do some cryptographic task like signing or decrypting if enough of the players agree [21].
However, as we want to view our protocol as a generic building block for threshold schemes,
we simply require that the secret-key x can be opened rather than be used for some specific
task. In Sect. 5.3 and 5.5 we then show concrete example threshold schemes based on our
DLKG protocol.

Definition 7 (Threshold DL Key Generation Functionality: FDLKG).

1. On receiving (generate, sid) from Pi, select x← Zq, compute y = gx, and send (key, sid, y)
to all players and S.

2. On receiving (open, sid) from t + 1 players, send (private, sid, x) to all players and S.

Our realization of FDLKG is illustrated in Fig. 5 below, and makes use of (ordinary)
Pedersen’s VSS scheme given in Fig. 4. We do not prove Pedersen’s VSS secure in the UC
framework, and in fact it is not (as a committed VSS against an adaptive adversary). The
only security requirement we need is covered by the following well-known fact.

Lemma 3. Except with negligible probability, after the sharing phase of Pedersen’s VSS,
both the si’s and ri’s of the uncorrupted players are correct sharings of s and r such that
gshr = C and such that s is reconstructed in the reconstruction phase (and s and r coincide
with the dealer’s choice in case he remains honest), or otherwise logg h can be efficiently
extracted from the adversary.

We write PedVSS
j
g,h(s) → (s1, . . . , sn, r, C,E1, . . . , En) to denote an execution of the

sharing phase of Pedersen’s VSS with secret s and player Pj acting as dealer, and with
values s1, . . . , sn, r, C,E1, . . . , En generated as described in Fig. 4.

Note that in πDLKG the additive shares xj are used to reconstruct the secret-key x, rather
than the threshold-shares implicitly given by ξj =

∑

i xij . The reason is that even though
using the threshold shares can be proven secure in the hybrid-model, it resists a security
proof when the ideal functionality FSSMT in Pedersen’s VSS is replaced by πRNC as we do
(due to the DL condition from Lemma 1). In Sect. 5.4 we show how to modify the scheme
in order to be able to use the threshold-shares as secret-key shares. Also note that using
the terminology introduced in [2], based on the results in [1], step K-3 can be seen as a
distributed-verifier zero-knowledge proof of knowledge of xj and rj such that gxj = C ′

j and

hrj = C ′′
j .
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[Sharing Phase]

P-1. The dealer selects f(X) = a0 + a1X + · · ·+ atX
t ← Zq[X] and f ′(X) = b0 + b1X + · · ·+ btX

t ←
Zq[X] where a0 = s. Let r = b0. The dealer then computes and broadcasts C = C0 = gshr and
Ck = gakhbk for k = 1, . . . , t, and he sends si = f(i) and ri = f ′(i) to Pi using FSSMT.

P-2. Each Pi verifies whether gsihri = Ei where Ei =
Qt

k=0
Cik

k . Pi broadcasts verified if it holds and
else initiates the accusation sub-protocol which is the same as that of Feldman VSS with obvious
modification.

[Reconstruction Phase]

Every player Pi publicly opens Ei to si. The secret s is reconstructed using Lagrange interpolation
from the correctly opened si’s.

Fig. 4. Pedersen’s VSS scheme: PedVSSg,h(s)→ (s1, . . . , sn, r, C, E1, . . . , En)

[Key-Generation Phase]

K-1. A player, Pi, sends (generate, sid) to FHGEN, and commitment-key h is obtained.
K-2. Each player Pj chooses xj ← Zq and executes the sharing phase of Pedersen’s VSS with se-

cret xj and commitment-key h: PedVSS
j

g,h(xj) → (xj1, . . . , xjn, rj , Cj , Ej1, . . . , Ejn). If a player
Pj refuses then a default Pedersen sharing of xj = 0 is taken instead.

K-3. Each Pj sends (share, sidj , xj) to F
fcomg

VSS
and (share, sid′

j , rj) to F
fcomh

VSS
.

K-4. If Pi receives (shared, sidj , Pj , C
′
j) and (shared, sid′

j , Pj , C
′′
j ), he verifies that Cj = C ′

jC
′′
j holds.

(Note that C ′
j = gxj and C ′′

j = hrj .) If either of such messages has not been received or the
relation does not hold, then xj is reconstructed from its Pedersen sharing, and every Pi sets
C ′

j = gxj . Output of this phase is the public-key y =
Qn

j=1
C ′

j , while each Pj stores xj as his

(additive) secret-key share, to which he is committed by Cj .

[Opening Phase]

Every player Pj publicly opens Cj by broadcasting xj and rj . If a player Pj fails to do so, xj is
reconstructed from its Pedersen sharing. Secret-key x is then computed as x =

Pn

j=1
xj .

Fig. 5. Threshold DLKG protocol πDLKG in (FHGEN,FSSMT,F
fcomg

VSS
F

fcomh
VSS

)-hybrid model.

Theorem 3. Implementing in the DLKG protocol πDLKG from Fig. 5 the functionalities
FHGEN, FSSMT, F

fcomg

VSS and F fcomh
VSS by πHGEN, πRNC, πXFVSS[g] and πXFVSS[h], respectively, results

in a secure realization of FDLKG against adaptive t-limited adversary for t < n/2 in the SIP
UC model.

Using the UC with joint state framework [8], one can prove using similar arguments that
the commitment-key h can be generated once and for all invocations of πDLKG. Furthermore,
concerning efficiency, the communication complexity of the key-generation phase is compa-
rable to that of the schemes by [16]: it requires O(n2κ) bits to be sent over the bilateral
public channels and another O(n2κ) bits to be broadcast.

The full proof of Theorem 3 is given in Appendix D. We simply sketch its idea here.
First, the simulator S simulates the generation of h such that it knows the DL of h, while
step K-2 is executed as prescribed. Then, it reconstructs the xi’s of the corrupt players, and
it computes C ′

j? and C ′′
j? for the SIP Pj? such that C ′

j? ·
∏

j 6=j? gxj = y and Cj? = C ′
j?C ′′

j? ,
where y is the value provided by FDLKG. Then it simulates the two Feldman VSSes with Pj? as
dealer, while the other executions are followed as prescribed (with inputs xj respectively rj).
As a result, the output of the key-generation phase is y. In the opening phase, having received
x = logg(y) from FDLKG, S simply adapts Pj? ’s initial xj? such that

∑

j xj = x, and it uses

the DL of h to open Cj? to (the new) xj? . The only difference in the adversary’s and thus
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the environment’s view between the simulation and a real execution lies in the encrypted
Pedersen shares of (the initial) xj? given to the uncorrupted players. By the property of
πRNC, this cannot be distinguished by the environment.

From now on, when referring to protocol πDLKG, we mean πDLKG from Fig. 5 with the
functionalities replaces by real-life protocols as specified in Theorem 3.

5.3 Universally-Composable Threshold Schnorr-Signatures

As a first example application of our DL-key generation protocol, we propose a threshold
variant of Schnorr’s signature scheme [19], provable secure in the UC framework.

The Original Scheme: A Schnorr signature for message m under public-key y = gx consists
of (c, s) such that r = gs/yc satisfies H(m, r) = c, where H is a cryptographic hash-function.
Such a signature is computed by the signer (who knows the secret-key x) by choosing k ← Zq

and computing

r = gk, c = H(m, r) and s = k + cx .

Schnorr’s signature scheme can be proven secure, in the sense of existential unforgability
against chosen message attacks, in the random oracle model. For our threshold DSS sig-
nature scheme it is important to note that it does not harm the security of the standard
Schnorr signature scheme when r is made available (as it can anyway be computed).

The UC Threshold Scheme: Our threshold version of Schnorr’s signature scheme is illus-
trated in Fig. 6.

[Key-Generation Phase]

The players execute the key-generation phase of πDLKG, resulting in a public-key y, private (additive)
secret-key shares x1, . . . , xn with corresponding commitments C1, . . . , Cn, and commitment-key h.

[Signing Phase]

In order to sign a message m, the following steps are executed.

S-1. The players once more invoke the key-generation phase of πDLKG, but skipping the generation of
h and taking h from the generation of y. Denote the output by r, the corresponding additive
secret-key shares by k1, . . . , kn, and the corresponding commitments by K1, . . . , Kn.

S-2. Each player Pj computes c = H(m, r) and publicly opens KjC
c
j to sj = kj + cxj . If a player

Pj fails to do so, sj is reconstructed from its Pedersen sharing (which is implicitly given by the
Pedersen sharings of xj and kj). Signature (c, s) is completed by s =

P

j
sj .

Fig. 6. Threshold Schnorr-signature scheme πschnorr
TSIG

Consider the ideal threshold signature functionality FTSIG by adapting the (single-signer)
signature functionality FSIG from [5] in the obvious way, as illustrated in Definition 8 below.

Definition 8 (Threshold Signature Functionality: FTSIG).

1. On receiving (generate, sid) from t+1 players, hand (key, sid) to S. On receiving (key, sid, pk)
from S send (key, sid, pk) to all players.

2. On receiving (sign, sid,m) from t + 1 players, hand (sign, sid,m) to S. On receiving
(signature, sid,m, σ) from S send (signature, sid,m, σ) to all players and record (m,σ).
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3. On receiving (verify, sid,m, σ, pk′) from some player Pj, send (verified, sid,m, v) to Pj

and S, where v is determined as follows. If pk = pk′ and the pair (m,σ) is recorded,
then v = 1. If pk = pk′ and no pair (m,σ′) for any σ′ is recorded, then v = 0. Otherwise
(i.e. if pk 6= pk′ or if (m,σ′) is recorded for σ′ 6= σ) let S decide on the value of v.

After the execution of the first step, the second and third step may be performed an unbounded
number of times, and in an arbitrary order.

Theorem 4. Protocol πschnorr

TSIG
securely realizes FTSIG against adaptive t-limited adversary for

t < n/2 in the UC model, under the DDH assumption and under the assumption that the
standard Schnorr signature scheme is secure.

We stress that interestingly πschnorr

TSIG
securely realizes FTSIG in the standard rather than the

SIP UC model.

Proof. (Sketch) The simulator S simply executes honestly πschnorr

TSIG
. Note that the public-

key y is not dictated by FTSIG, but rather FTSIG asks S to provide it. Accordingly, S knows
the private key x and can use it in the signing phase of the real-life protocol. In order
to prove that this is a good simulation, we argue as follows. The only way Z may see a
difference is when A breaks the signature scheme, i.e., when a player provides at some
point a valid signature on a message that has not been signed. However, if there exist Z
and A that can enforce such an event with non-negligible probability, then there exists a
forger F that breaks the existential unforgability against chosen message attacks of the
standard (single-signer) Schnorr signature scheme. F works as follows. F runs Z and A,
and it simulates the action of S, i.e. the execution of πschnorr

TSIG
, as follows. It uses the SIP

simulator for the key-generation phase of πDLKG to force the output of the key-generation to
be the given public-key y. Furthermore, to sign a message m, it asks the signing oracle for
a signature (c, s) on m, it forces as above the outcome of S-1 to be r = gs/yc, and it uses a
straightforward modification of the SIP simulator for the opening phase of πDLKG to simulate
the signing phase: the simulated Pj? opens Kj?Cc

j? to s−
∑

j 6=j? sj in step S-2 (rather than
to kj? + cxj?), forcing the output of the signing phase to be the given signature (c, s).
Additionally, whenever a message-signature pair (m,σ) is asked to be verified, F first checks
whether m was never signed before and if σ is a valid signature on m. Once such a pair
(m,σ) is found, F outputs that pair and halts. Similar to the proof of Theorem 3, one
can show that if A does not corrupt the SIP then Z cannot distinguish between the real
execution of πschnorr

TSIG
(executed by the simulator S) and the SIP simulation (executed by

the forger F ). Hence, by assumption on Z and A, F outputs a signature on a message not
signed by the signing oracle with non-negligible probability. ut

We note that the above security argument concerns the weak case where the adversary
outputs a signature on a new message. One can also show that the protocol is secure in
stronger sense where the adversary attempts to yield one more signature on once signed
messages.

5.4 A DL-Key Generation Variant with Threshold Shares

The protocol πDLKG from Fig. 5 remains secure in the (FHGEN,F
fcomg

VSS F fcomh
VSS ,FSSMT)-hybrid

model if the threshold shares ξj =
∑

i xij of x are used in the opening phase rather than the
additive shares xj . Indeed, on receiving (private, sid, x), the simulator S may simply adapt
the secret-key shares ξi of the uncorrupted players such that the new ξi’s form a sharing
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of x, hereby using the non-committing property of FSSMT. However, this attempt fails short
when replacing FSSMT in the execution of Pedersen’s VSS by the (weakly secure) protocol
πRNC as we do, due to the DL condition in Lemma 1. Indeed, in order to adapt the ξi’s,
S needs to correspondingly adapt Pj? ’s sharing of xj? , such that it results in a sharing of
x −

∑

j 6=j? xj . However, S does not know the DL of (the encodings of) the adapted xj?i’s

(which are sent over FSMT) and thus πRNC is committing. Recall that in the simulation of the
original πDLKG, S only needed to adapt xj? , but not its sharing.

This problem, though, can be overcome by randomizing the secret-key shares ξi before
publishing them in the opening phase. Concretely, every player Pj Pedersen VSSes 0, and
then for every sharing of 0 every Pj adds the share he receives to ξj , resulting in a new share,

ξ̃j, of x. The opening phase is given in detail in Fig. 7. In the simulation, this randomization

gives S the opportunity to make ξ̃1, . . . , ξ̃n a sharing of x without adapting the ξi’s by letting
Pj? share x−

∑

j xj rather than 0. This can be done since the simulator knows the trapdoor
to the commitment-key. Furthermore, using πRNC to communicate the shares, this cannot be
detected by the adversary A and thus by the environment Z (under the DDH assumption).

[Key-Generation Phase]

The key-generation phase is identical to that of πDLKG from Fig. 5, except that each Pi stores ξi =
Pn

j=1
xji as his secret-key share (rather than xi), to which he is committed by Ei =

Qn

j=1
Eji.

[Opening Phase]

O’-1. Each player Pj executes Pedersen VSS for secret 0 and default commitment 1 with regard to
g and h: PedVSS

j

g,h(0) → (oj1, . . . , ojn, 0, 1, Oj1, . . . , Ojn). If a player Pj refuses then a default
sharing of 0 is taken instead. Every Pj sets oj =

Pn

i=1
oij . Write Oj =

Qn

i=1
Oij .

O’-2. Each Pj opens publicly the commitment EjOj to ξ̃j = ξj + oj . Secret-key x is reconstructed by

Lagrange interpolation from the correctly opened ξ̃j ’s.

Fig. 7. Threshold DLKG protocol π′
DLKG with threshold shares.

Similar to Theorem 3 (whose full proof is given in Appendix D) but incorporating the
above remarks, the following can be proven.

Theorem 5. Implementing in the DLKG protocol π′
DLKG

from Fig. 7 the functionalities
FHGEN, FSSMT, F

fcomg

VSS and F fcomh
VSS by πHGEN, πRNC, πXFVSS[g] and πXFVSS[h], respectively, results

in a secure realization of FDLKG against adaptive t-limited adversary for t < n/2 in the SIP
UC model.

From now on, when referring to protocol π′
DLKG

, we mean π′
DLKG

from Fig. 7 with the
functionalities replaces by real-life protocols as specified in Theorem 5.

We also fix the following terminology. We say that the players “jointly generate a
(degree-t) Pedersen sharing of 0” if they execute step O’-1 of protocol π ′

DLKG
(for a given

commitment-key h). Similarly, we say that the players “jointly generate a (degree-t) Ped-
ersen sharing of a random number” if they execute step O’-1 of protocol π ′

DLKG
modified in

that every Pj shares a random ρj ∈ Zq (rather than 0) so that the resulting sharing is a
sharing of ρ =

∑

j ρj (rather than of 0). We also consider the joint generation of degree-2t
Pedersen sharings, which can be achieved as above with obvious modifications.
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5.5 Universally-Composable Threshold DSS-Signatures

In this section, we propose a threshold variant of the DSS signature scheme [20], provable
secure in the UC framework.

The Original Scheme: In DSS, Gq is specified to be an order-q subgroup of Z
∗
p, such that

a mapping [ · ] : Gq → Zq can be defined by [h] = h mod q, where on the right hand side
h ∈ Gq ⊂ Z

∗
p is identified with its representation in {1, . . . , p − 1}. A DSS signature for

message m under public-key y = gx consists of (r, s) such that r = [gH(m)/syr/s], where H is
a cryptographic hash-function (SHA-1 according the DSS’s specification). Such a signature
is computed by the signer (who knows the secret-key x) by choosing k ← Zq and computing

r = [gk] and s = (H(m) + xr)/k .

The DSS signature scheme is believed to be secure (in the sense of existential unforgability
against chosen message attacks). For our threshold DSS signature scheme it is important to
note that it does not harm the security of the standard DSS signature scheme when R = gk

is made available, as it can anyway be computed as R = gH(m)/syr/s.

The UC Threshold Scheme: Our threshold version of the DSS signature scheme is illustrated
in Fig. 8, and it uses the DLKG-variant π′

DLKG
from Sect. 5.4. In its description we implicitly

assume that corrupt players follow the signing phase (not necessarily honestly but) in such
a way that they are not globally recognized as being corrupt. The easiest way to deal with
a caught corrupt player is to restart the signing phase but without Pj taking part (and to
have Pj excluded from any further invocations of the signing phase).

[Key-Generation Phase]

The players execute the key-generation phase of π′
DLKG, resulting in a public-key y, private threshold

secret-key shares ξ1, . . . , ξn with corresponding commitments E1, . . . , En, and commitment-key h.

[Signing Phase]

In order to sign a message m, the following steps are executed.

S-1. The players once more invoke the key-generation phase of π′
DLKG, but skipping the generation of

h and taking h from the generation of y. Denote the output by R = gk, and the corresponding
(committed) threshold secret-key shares by k1, . . . , kn. r = [R] is the first part of the signature.

S-2. The players compute s = (H(m) + xr)/k, the second part of the signature, as follows.
(a) The players jointly generate a degree-t Pedersen sharing u1, . . . , un of a random element u,

as well as two degree-2t sharings o1, . . . , on and o′1, . . . , o
′
n of 0.

(b) Every player Pj broadcasts a commitment for the degree-2t share vj = kjuj + o′j of v = ku,
proves its correctness (see comment in text), and publicly opens it (to vj).

(c) Every player Pj reconstructs v and puts kinv

j = ujv
−1 as his degree-t share of k−1.

(d) Every player Pj broadcasts the degree-2t share sj = (H(m) + ξjr)k
inv

j + oj of s and proves
its correctness.

(e) Every player Pj reconstructs s from s1, . . . , sn.

Fig. 8. Threshold DSS-Signature Scheme πdss
TSIG

The proof for the correctness of vj in step S-2 (b) is done by means of an off-the-shelf
witness-indistinguishable honest-verifier (!) zero-knowledge proof of knowledge (based on
the Pedersen commitments for kj, uj , o′j and vj), executed in parallel with every player Pi
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acting as verifier, and the correctness proof is globally accepted if at least t + 1 players Pi

broadcast a confirmation that they accept Pj ’s (bilateral) proof. The corresponding holds for
the correctness proof in step S-2 (d). The reason why we do not need to incorporate (fully)
zero-knowledge proofs is that the SIP simulator does not need to simulate any proof as it
knows a witness for every instance. The only security requirement needed from the proofs
(besides soundness) is that it should remain hidden that the SIP simulator uses different
witnesses (as in a real-life execution), which is covered by the witness-indistinguishability
property.

Theorem 6. Protocol πdss

TSIG
securely realizes FTSIG against adaptive t-limited adversary for

t < n/2 in the UC model, under the DDH assumption and under the assumption that the
standard DSS signature scheme is secure.

Proof. (Sketch) The simulator S simply executes honestly πdss

TSIG
. In order to prove that

this is a good simulation, we argue as in the proof of Theorem 4: The only way Z may
see a difference is when A breaks the signature scheme, i.e., when a player provides at
some point a valid signature on a message that has not been signed. However, if there
exist Z and A that can enforce such an event with non-negligible probability, then there
exists a forger F that breaks the existential unforgability against chosen message attacks
of the standard (single-signer) DSS signature scheme. F works as follows. F runs Z and
A, and it simulates the action of S, i.e. the execution of πdss

TSIG
, as follows. It uses the SIP

simulator for the key-generation phase of π′
DLKG

to force the output of the key-generation to
be the given public-key y. Furthermore, to sign a message m, it asks the signing oracle for
a signatures (r, s) on m, it forces R in S-1 to be R = gH(m)/syr/s (such that [R] = r), and
it honestly follows S-2, except that in step S-2 (a), in the joint generation of the Pedersen
sharing o1, . . . , on of 0, the SIP Pj? deviates from the protocol and shares a value ô (probably
different than 0) chosen such that s1, . . . , sn in step S-2 results in a sharing of s: precisely,

Pj? shares ô = s−(H(m)+ x̂r)/k̂ where x̂ and k̂ are the values to which the (simulated) ξj’s
and kj ’s reconstruct, respectively. Pj? can can do this as it knows the DL of h. Additionally,
whenever a message-signature pair (m,σ) is asked to be verified, F first checks whether m
was never signed before and if σ is a valid signature on m. Once such a pair (m,σ) is found,
F outputs that pair and halts.

It remains to show that Z cannot distinguish the real execution of πdss

TSIG
(executed

by S) from the SIP simulation (executed by F ), of course assuming that the SIP remains
uncorrupted. Using techniques from the proof of Theorem 3 (specifically, by modifying
Pj?’s executions of πRNC), we may argue that Z has no information on the shares ξj , kj ,
uj , oj and o′j of the uncorrupted players Pj . As a consequence, v1, . . . , vn and s1, . . . , sn

are random (degree-2t) sharings of a random value v respectively of s = (H(m) + xr)/k,
in the real execution as well as in the SIP simulation. Furthermore, the corresponding
correctness proofs are independent of the witness used and therefore identical in both cases.
This completes the proof. ut

5.6 Threshold Cramer-Shoup Cryptosystem

We would like to point out that the concurrent (erasure-free) threshold Cramer-Shoup
scheme from [16], which assumes a correctly generated trapdoor commitment-key h, in
combination with our protocol πHGEN for generating h results in a threshold version of the
Cramer-Shoup cryptosystem [10] which can be proven secure in the SIP UC model. Unfor-
tunately, the techniques for achieving fully UC signatures (as in Sect. 5.3 and 5.5) do not
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translate to the threshold Cramer-Shoup (or any other) cryptosystem. The reason is the
following. Because the simulator S has to produce an encryption of a default message in
order to simulate the encryption phase (as it does not know the corresponding message), S
has to “cheat” in the simulation of the decryption of such a ciphertext in order to enforce
the outcome to be the correct message (rather than the default message). Such cheating
however, seems to require a S! IP (or expensive fully non-committing encryptions). Note
that such a problem does not occur for the signature schemes, where S can simply hon-
estly follow the protocol, and the SIP is only needed to prove that this results in a “good”
simulation.

6 Related Constructions

6.1 Adaptively-Secure Feldman VSS in Secure Channel Model

Here we present another adaptively secure Feldman VSS without erasure in FSSMT-hybrid
model. This scheme is more efficient than the one in Fig. 1, but does not fit to the efficient
realization of FSSMT shown in Fig. 2 (essentially due to the DL condition of Lemma 1).
Accordingly, the scheme is useful only in the secure channel model where FSSMT is realized
by a (possibly physical) secure channel.

Our construction is based on a special kind of commitment scheme, which we call a
trapdoor claw-free commitment scheme. The claw-freeness means that for independently
generated commitment keys K and K ′, it is infeasible to compute (s, r) and (s′, r′) such that
comK(s; r) = comK′(s′; r′). And the trapdoor property means that besides the commitment
key K the key-generation algorithm also outputs a trapdoor τ such that given τ, τ ′, s, r, s′,
one can efficiently compute r′ such that comK(s; r) = comK′(s′; r′).

The well-known Pedersen commitment scheme pcomg,h(s; r) = gshr satisfies all of the
above conditions, where the trapdoor τ is given by τ = logg(h): If there exists an algorithm
A that outputs (s, r) and (s′, r′) such that gshr = gs′h′r′ for randomly chosen h and h′,
one can use A to solve logg Y for random Y by embedding it into h and h′ as h = Y and
h′ = Y gρ with random ρ. On the other hand, given τ = logg(h) and τ ′ = logg(h

′), it is easy
to compute r′ for any s, r and s′ such that gshr = gs′h′r′ , namely r′ = (s + τr − s′)/τ ′.

Our modification to (the original) Feldman’s adaptively-secure VSS scheme simply re-
places the encryption E in the set-up phase by a trapdoor claw-free commitment scheme
comK as above, whose commitment keys are given from each player. This is illustrated in
Fig. 9.

X-1. Every Pj generates a commitment-key Kj and broadcasts it.
X-2. The dealer computes a commitment Aj = comKj

(j; rj) (with random rj) for every j ∈ {1, . . . , n},
and he chooses α1, . . . , αn as a random permutation over 1, . . . , n. Then, he broadcasts A1, . . . , An

ordered in such a way that Aj appears in αj-th position, and he privately sends (αj , rj) to Pj .
Simultaneously, the dealer starts to execute the sharing phase of the basic Feldman VSS, taking
αj as Pj ’s X-coordinate.

X-3. Each Pj identifies Aj in αj-th position and accepts the assignment if Aj = comKj
(j; rj), and he

accepts his share sj if it satisfies the verification predicate (1) for the received αj . Otherwise, he
accuses the dealer who in turn has to publicly open Aj (to j) and announce sj .

Fig. 9. Protocol πCFVSS for adaptively secure Feldman-VSS in FSSMT-hybrid model.
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An accusation by a player Pj is handled as in the basic Feldman VSS scheme, except
that the dealer broadcasts (sj , αj , rj) (rather than only sj) and besides (1) it is also publicly
verified whether Aj in αj-th position satisfies Aj = comKj

(j; rj). Unlike to the original
adaptively-secure Feldman VSS, where the set-up phase, i.e. the distribution of the αj ’s,
needs to be strictly separated from the actual sharing phase, these phases may interleave in
this new variant. This saves one round of communication compared to the original scheme
even if no accusation happens. The reconstruction phase remains unchanged. We denote
this modified and parallelized Feldman VSS protocol by πCFVSS. The security of πCFVSS in the
UC framework can be stated as follows.

Theorem 7. Protocol πCFVSS securely realizes F
fcomg

SVSS in the FSSMT-hybrid model (without
erasures) against t-limited adaptive adversary for t < n/2.

The proof is omitted since it can be done using essentially the same reasoning as for Propo-
sition 1, except for the uniqueness of the assignments among honest players as claimed
below.

Claim. For every honest Pi and Pj, αi 6= αj holds with overwhelming probability.

Proof. A dealer who successfully assigns duplicate αj to different honest players can be
reduced to the following adversary A: Adversary A is given K1, . . . ,Kn generated by players.
A is allowed to corrupt up to t < n/2 players and obtains corresponding trapdoor key τj on
corruption. Then A specifies Ki and Kj and outputs (s, r), (s′, r′) that satisfy comKi

(s; r) =
comKj

(s′; r′).
Now we show a reduction from A to breaking claw-free property as follows. Given K

and K ′ for which we want to find a claw, guess i? and j? randomly from {1, . . . , n} and
set Ki? = K and Kj? = K ′. Generate (Ki, τi) for all other players. Then run A with
K1, . . . ,Kn. Whenever A corrupts a player Pi, give τi. If A corrupts Pi? or Pj? then abort.
If A happens to choose Ki? and Kj? and outputs correct (s, r), (s′, r′), output (s, r), (s′, r′)
as a claw. This reduction works only when the initial guess comes true. Accordingly, we
have εdup < n2εclaw where εdup is the probability that duplicated αj is successfully assigned
and εclaw the probability of finding a claw, respectively. Since εclaw is assumed negligible,
this proves the claim. ut

Instantiating com by Pedersen’s commitment scheme pcom, one can improve the reduc-
tion to be tight by exploiting the following facts. (1) K can be generated without knowing τ .
Thus, it is not necessary to give τ to A on corruption. And (2) one can embed K and K ′

to all K1, . . . ,Kn thanks to the random self-reducibility. By embedding K and K ′ respec-
tively to the first and last n/2 keys, A eventually specifies Ki and Kj that embed K and
K ′ with probability better than 1/2. This yields a claw. If either K or K ′ is embedded in
both specified keys, it results in breaking the ordinary binding property of pcom, which is
assumed to be successful only with negligible probability.

6.2 Pedersen’s VSS as Committed VSS

Pedersen VSS, as given in Fig. 4, is a twin-base version of Feldman VSS. Instead of com-
mitting to secret s by gs it uses so-called Pedersen commitment pcomg,h(s; r) = gshr with
random r. As a result, the shared secret is statistically independent of the joint view of any
t players if the shares are delivered in an unconditionally secure way. Accordingly, it seems
that if the shares are delivered in a non-committing way, the scheme is in fact secure against
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adaptive adversaries: the simulator simply shares some secret, and then uses the trapdoor
for the commitment scheme (the DL of h) in order to open the shares in an appropriate
way in the reconstruction phase. This intuition, however, is correct only in a restricted
sense. That is, if the output of the VSS functionality is limited to the reconstructed secret,
while its commitment C (possibly chosen by a corrupt dealer) is not part of the output and
thus cannot be used in external protocols. Hence, the original Pedersen VSS is secure as a
non-committing VSS. On the other hand, if C is used in external protocols and thus needs
to be part of the output of the VSS functionality, then the original Pedersen VSS is not
secure against adaptive adversaries. The reason is that the corrupted dealer might choose
C according to a strange and secret distribution that is unknown to the simulator, hence
the simulator has to perform the simulation with given C to adjust to its distribution. Now
the simulator encounters the same difficulty observed in the original Feldman’s VSS.

Adaptively secure Pedersen VSS, πXPVSS, as a committing VSS can be obtained by simply
applying the randomized X-coordinate technique used for Feldman’s VSS to the original
Pedersen’s VSS. As pointed out in Sect. 2.5, a technical subtlety is that the key h needs to
be generated as part of the scheme (rather than considering it as given) in order to describe
and prove secure the scheme correctly in the UC framework. (Even in the classical model, it is
an important issue though often overlooked.) Optimally, h is uniformly distributed, which
could for instance be achieved by the key-generation phase of FDLKG (respectively πDLKG).
However, we claim that imposing uniform h is an overkill for the security of Pedersen’s
VSS. Indeed, Pedersen’s VSS only requires that the dealer is not aware of logg h while on
the other hand the simulator is, which is exactly the property specified by FHGEN. Since
FHGEN is much less expensive than FDLKG with our respective realizations, using FHGEN is a
more practical choice. Reflecting this argument, we introduce the combined functionality
F

pcomg,?

HGEN+SVSS that captures Pedersen VSS in the UC framework. F
pcomg,?

HGEN+SVSS first generates
key h simply by following the specification of FHGEN and then executes the sharing and
reconstruction phases of F

pcomg,h

SVSS . We illustrate the scheme in Fig. 10 for completeness.

[Key Generation Phase]

The dealer invokes FHGEN and every player obtains h.

[Sharing Phase]

P-1. The dealer initiates the protocol by sending sharing to every player.
P-2. Each Pj selects αj ← Z

∗
q and sends it to the dealer by using FSSMTwO. The dealer replaces any αj

that happens to be 0 by αj = 1.
P-3. The dealer selects f(X) = a0 + a1X + · · ·+ atX

t ← Zq[X] and f ′(X) = b0 + b1X + · · ·+ btX
t ←

Zq[X] where a0 = s. Let r = b0. The dealer then computes and broadcasts C = C0 = gshr and
Ck = gakhbk for k = 1, . . . , t, and he sends sj = f(αj) and ri = f ′(αj) to Pi by FSSMT.

P-4. Each Pj verifies gsj hrj =
Qt

k=0
C

αk
j

k and broadcasts verified if it holds. Otherwise, Pj initiates the
accusation sub-protocol which is the same as that of Feldman VSS with obvious modification.

[Reconstruction Phase]

Each Pj broadcasts (αj , sj , rj) and identifies Q ⊆ {1, . . . , n} so that, for all j ∈ Q, gsj hrj =
Qt

k=0
C

αk
j

k

holds. Then Pj reconstructs secret s by Lagrange interpolation with regard to Q, and outputs s.

Fig. 10. Adaptively secure Pedersen VSS πXPVSS in (FSSMTwO FHGEN,FSSMT)-hybrid model.
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Proposition 3. Under the DL assumption, Protocol πXPVSS in Fig. 10 securely realizes func-
tionality F

pcomg,?

HGEN+SVSS in the (FSSMTwO,FHGEN,FSSMT)-hybrid model against t-limited adaptive ad-
versary for t < n/2.

Using similar arguments as for Theorem 1, πXPVSS gives rise to an efficient real-life version
secure under the conditions (1) and (2) from Theorem 1.

The proof of Proposition 3 essentially follows the lines of the security proof for adap-
tive Feldman VSS (proof of Proposition 1) with obvious modifications. The main difference
is that for the proof of Proposition 3 we need to argue that under the assumed hardness
of computing DLs, the shares sj provided by the corrupted players Pj during the recon-
struction phase are consistent with the shares of the honest players (except with negligible
probability). But this follows from the fact that if not, then the simulator can compute the
DL of the generated key h and thus of any DL instance by embedding it into h.

6.3 Common-Random-String Generator

Note that if in πDLKG the opening phase is invoked right after step K-2 (and steps K-3
and K-4 are skipped) then this modified protocol realizes a common-random-string (CRS)
generator, which produces a random element from Zq. Name our modified protocol by πCRS

and the obvious CRS generator functionality by FCRS. We have:

Theorem 8. Protocol πCRS securely realizes FCRS against adaptive t-limited adversary for
t < n/2 in the SIP UC model.

Similar protocols were used in [7, 16], though with the difference that the generation of
h either required secure channels, or could not be proven secure without rewinding the
adversary and thus disallows a UC-like security proof.

As shown in [7, 16], such a CRS generator allows the following application. Consider an
execution of a standard three-move public-coin honest-verifier zero-knowledge proof protocol
with challenge-space Zq (like Schnorr’s protocol for proving the knowledge of a DL or the
Chaum-Pedersen protocol [9] for proving the equality of two DLs) where the first message
and the answer are broadcast (by the prover) and the random challenge is generated jointly
by an invocation of FCRS. Such an execution still guarantees soundness, while it can be
simulated without rewinding the possibly corrupt verifier. In [7, 16], this property holds
under the assumption of a correctly generated h, while with our protocol πHGEN it holds
from scratch. The simulator can simply first produce an accepting transcript of the proof
protocol using the honest-verifier zero-knowledge simulator, and then enforce the outcome
of πCRS to be the chosen challenge. This proof protocol can be useful in the construction
of UC secure protocols; however, we stress that it is not a secure realization of the zero-
knowledge functionality FZK (modified to multiple verifiers). Secure realizations of FZK in a
distributed-verifier setting are sketched in Sect. 6.4.

6.4 Adaptively Secure Distributed-Verifier Proofs

In designing threshold cryptography, it is quite common to prove some relation (or knowl-
edge) about committed witnesses in zero-knowledge manner. In the UC framework, however,
zero-knowledge proofs are extremely expensive components: they are realized by combining
a generic non-interactive zero-knowledge proof with a common-reference string generator, or
UC-secure commitment scheme (which anyway needs common reference string) with generic
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zero-knowledge proof system for an NP-complete language such as Hamiltonian. They are
generic and powerful, but cannot be directly used for practical subjects such as showing
equality of discrete-logs or knowledge of a representation.

Combining our results with techniques developed in [1, 2], one can construct adaptively
secure efficient distributed-verifier zero-knowledge proofs in universally composable way for
many practical subjects. We illustrate a concrete example. Suppose that a prover needs to
show that a triple, (gα, gβ, gγ) is in multiplicative relation α · β = γ, which is equivalent
to showing that the triple is in DH. This can be done as follows. A prover shares α twice:
once using the sharing phase of πXFVSS[g] and once using that of πXFVSS[g

β] with base gβ.
Furthermore, in the second execution, the same sharing polynomial and X-coordinates as in
the first execution are used. Hence the second execution is completed only by broadcasting
a new commitment of the sharing polynomial, which is verified by the players by using the
same share and X-coordinate received in the first execution. This guarantees that indeed
the same secret, α, has been shared. Note that (gβ)α, supposed to be gγ , is published in the
second execution. Finally, the prover shares β (or γ) using the sharing phase of πXFVSS[g] with
base g. If all sharing phases are accepted, the proof is accepted. Given (gα, gβ, gγ), S can
simulate the prover by simulating the dealer in each execution of πXFVSS. In the case of corrupt
prover who completes the proof, S can extract α and β from the set of uncorrupted players.
Hence the simulator can extract a witness (α, β) needed to invoke ideal zero-knowledge
functionality.

The techniques of [1, 2] also apply to other commitment schemes that Feldman’s, and
allow to prove other relations as well like equality and additive and inverse relations among
committed values. From these building blocks, one can even construct an adaptive dis-
tributed verifier proof for any NP relation by following the construction in [2].
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A Proof of Proposition 1

First, we consider a statically corrupted dealer, i.e., Pd is corrupted by A before πXFVSS

starts. In this case, S corrupts P̃d to give its internal state to A and then follows all sub-
sequent instructions from A. If A initiates the sharing phase on behalf of corrupted dealer
Pd, S simulates all the honest players as prescribed. Once the sharing phase is completed,
each honest player Pj holds (αj , sj) that satisfies the verification predicate and each inde-
pendently chosen αj is different from others with overwhelming probability > 1 − n2/q.
S reconstructs secret s′ (which may differ from Pd’s actual input s) by interpolation, and
then sends (spool, sid, s′) and (share, sid) to F

fcomg

SVSS under the name of P̃d, and delivers the
outputs to their intended players. Obviously, S succeeds in providing a perfect simulation
except with negligible probability.

Next, we assume that the dealer remains uncorrupt forever. On receiving (spooled, sid, Pd, Y )
from F

fcomg

SVSS , the simulator S works as follows. The item numbers correspond to those in
Fig. 1.

F’-1. Simulate each honest player and FSSMT by following their prescription. If A corrupts
a player, Pi, corrupt P̃i and give its internal state with αi used in this step. Let
{j1, . . . , jk} be set of identities of the players corrupted by the end of this step.
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F’-2. Simulate dealer Pd as follows. Set α̃i = αji
for 1 ≤ i ≤ k, and α̃i ← Z

∗
q for k+1 ≤ i ≤ t.

Then select s̃i ← Zq and compute Ei = gs̃i for i = 1, . . . , t. Let C0 = Y and broadcast
(C0, C1 . . . , Ct) that satisfies the following system of equations.
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(2)

Operator ’?’ is a usual matrix multiplication but replacing addition/multiplication
with multiplication/exponentiation. For instance, E1 = Y 1C1

α̃1
1 . . . Ct

α̃t
1 . From the in-

verse of the above Vandermonde matrix, (C1, . . . , Ct) can be computed easily without
solving discrete logarithms. Now, send sji

= s̃i to each corrupt Pji
, and sj ← Zq to

each honest Pj via FSSMT.
If A corrupts a player Pj at this stage, set (αj , sj) = (α̃k+1, s̃k+1). Then corrupt P̃j

and give its internal state and (αj , sj) to A. Then let k := k + 1.
F’-3. Pj is simulated to broadcast verified whatever it receives. For any accusation to Pd,

simulate Pd and all honest players as prescribed. Note that honest players will never
accuse Pd, and that Pd can answer all accusations correctly. If A corrupts a player,
build the internal state of the player in the same way as in the previous step.

Observe that α̃1, . . . , α̃t distributes as in the real execution (some follow the choice of
corrupt players and others are chosen uniformly). Also, all s̃1, . . . , s̃t are chosen uniformly
and other variables are in correct relation. Although αj and/or sj given to A as a part of
corrupt Pj ’s internal state may be different from those actually sent to and received by Pj

(namely when Pj is corrupted after the transmission of sj), this is not observed by A due to
the non-committing property of FSSMTwO and FSSMT. Accordingly, all data observed by A and
hence Z within πXFVSS and F

fcomg

SVSS with regard to the sharing phase distributes identically.
Considering the reconstruction phase, when S receives (open, sid, s) from F

fcomg

SVSS , it re-
covers the sharing polynomial, say f(X), defined by points (0, s), (α̃1, s̃1), . . . , (α̃t, s̃t). Then
S computes (α̃t+1, s̃t+1), . . . , (α̃n, s̃n) where α̃j ← Z

∗
q and s̃j = f(α̃j), and it assigns each

of these newly computed points to each honest player so that they cast the points as their
shares. If a player, Pj , is post-corrupted, S corrupts P̃j and hands its internal state together
with the assigned point to A.

As in the sharing phase, this simulated reconstruction phase provides Z a view that is
perfectly indistinguishable from that in real-life model.

Finally, suppose that the dealer is corrupted during (of after) the execution of the
protocol. To start with, on receiving (spooled, sid, Pd, Y ) from F

fcomg

SVSS , the simulator S follows
the above description (for the case of an uncorrupt dealer). If the dealer in this simulation is
corrupted before step F-2, S corrupts the dealer in the ideal-process and obtains the secret
s. Then S hands it to A and follows the instructions concerning corrupted Pd to the end of
the protocol, while honestly simulating the uncorrupt players. When the sharing phase is
completed, S recovers s′ from the joint view of the honest majority and sends (share, sid, s′)
to F

fcomg

SVSS . If the dealer is corrupted after step F-2 but before the reconstruction takes
place, S obtains s by corrupting the dealer in the ideal-process. Then, as above in the
reconstruction phase, S reconstructs the sharing polynomial f(X) from the t + 1 points,
(0, s), (α̃1, s̃1), . . . , (α̃t, s̃t), computes the remaining points (α̃t+1, s̃t+1), . . . , (α̃n, s̃n) that are
consistent with the polynomial, and hands everything over to A as part of the dealer’s interal
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state. When the sharing phase is completed, S sends (share, sid, s) to F
fcomg

SVSS (respectively
(share, sid, 0) in case the sharing phase results in a default sharing of 0). In both cases,
the reconstruction phase is simulated by letting every uncorrupt player Pj honestly follow
the protocol, using his assigned point. Again, this simulation is perfect (and succeeds with
overwhelming probability). ut

B Proof of Lemma 1

Construction of S: Hereafter, whenever element X is drawn from Gq, S first picks x← Zq

and then computes X = gx so that all DLs are known. To remember this random choice
with witness, we denote it by X

w
←Gq.

We distinguish between the following cases. In case (1), the sender is (statically) corrupt,
and in case (2), the sender remains uncorrupt.

Case (1): S corrupts P̃s statically, gives its internal state to A, and follows subsequent
instructions about Ps from A. If corrupt Ps later initiates πRNC, S simulates Pr honestly.
If at some point during the execution of πRNC A corrupts Pr, S corrupts P̃r and follows
subsequent instruction about Pr from A. On the other hand, if Pr remains uncorrupt and
outputs a message m on completion of πRNC (which might differ from the message Z sent
to P̃s), S sends (send, sid, P̃r,m) to FSMT (respectively (spool, sid, P̃r,m) and (send, sid) to
FSSMT) under the name of P̃s and delivers the output of FSMT (respectively FSSMT) to its
destination. This simulation is clearly perfect.

Case (2): On receiving (sid, P̃s, P̃r) from FSMT, S starts πRNC. Subsequent behavior of S
depends on the timing that A corrupts receiver Pr as follows.

SA-0. In the initial step, S chooses h
w
←Gq for Ps and sends it to Pr.

SA-1. (Pre-corruption) If Pr is corrupted before y is sent off, S corrupts P̃r and gives A the
internal state of P̃r. On receiving (P̃s,m), S continues the simulation by simulating
Ps honestly in the execution of πRNC with message m.

SA-2. If pre-corruption does not happen, S honestly follows step A-1. Then it samples
u, v, c

w
←Gq for Ps and sends (u, v, c) to Pr. (As a result, (h, u, v) distributes differently

as in the real execution.)
SA-3. (Post-corruption) If Pr is corrupted after the transmission phase is completed, S

gives A the internal state of P̃r as above. S also gives (z1, z2) that satisfies y = gz1hz2

and c = Encode(m)uz1vz2 where m is the message observed in the internal state
of P̃s. Such (z1, z2) can be computed easily (except with negligible probability 1/q)
since all the discrete-logs of h, y, u, v, c are known to S by construction, and that of
Encode(m) by assumption.

Reduction to DDH: We show that if there exists an adversary A and an environment Z such
that realπRNC,A,Z 6≈ idealFSMT,S,Z for the above simulator S, then the DDH assumption
does not hold. Precisely, we construct a distinguisher D, which uses such Z and A, and
whose output distribution is given by realπRNC,A,Z if D’s input is chosen uniformly in DH

and by idealFSMT,S,Z if it is chosen uniformly in RND. Since the simulation differs from the
real run only in step SA-2, we only consider case (2) in the following.

Let (gα, gβ, gγ) be a DDH instance chosen at random either from DH or from RND.
On input (gα, gβ, gγ), D runs Z and A as well as (ideal-life) players P̃1, . . . , P̃n and the
functionality FSMT, and it simulates an execution of πRNC exactly as S does above, except for
the following modifications. In step SA-0, D sets h = gα, and in step SA-2, D sets u = gβ,
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v = gγ and c = Encode(m)uz1vz2 , where m is the message P̃s received from Z. Finally, D
outputs the output bit of Z.

First, consider the case (gα, gβ, gγ) ∈ DH, i.e., γ = αβ. Observe that for r = β, it holds
that u = gr, v = hr and c = Encode(m)uz1vz2 = Encode(m)yr. Thus, D simulates the play-
ers perfectly as in πRNC and hence the output distribution of Z is identical to realπRNC,A,Z .
Next, consider the case where (gα, gβ, gγ) is random in RND. Clearly, D produces the same
simulation as S, except if (h, u, v) ∈ DH, which happens with probability 1/q and in which
case S fails to handle a post-corruption. Accordingly, D’s output distribution is statistically
close to idealFSMT,S,Z . So, if Z distinguishes realπRNC,A,Z and idealFSMT,S,Z , then D dis-
tinguishes the respective uniform distributions over DH and RND with essentially the same
advantage. ut

C Proof of Lemma 2

We focus on the claim concerning πSNCwO and FSSMTwO. The proof of the security of πSNC as a
realization of FSSMT can easily be extracted. For completeness, we illustrate protocol πSNCwO

in Fig. 11. Steps B-0 to B-3 are exactly the same as πRNC except that all communication
is done via broadcast (although we keep the terminology “send”) and that the role of the
sender and the receiver is reversed.

[Transmission Phase]

B-0. Receiver Pr chooses h← Gq and sends it to sender Ps.
B-1. Ps selects z1, z2 ← Zq, computes y = gz1hz2 , and sends y to Pr.
B-2. Pr computes u = gr, v = hr and c = k yr, where k ← Gq, r ← Zq, and sends (u, v, c) to Ps.
B-3. Ps recovers k = c u−z1v−z2 and sends e = k Encode(m) to Pr.
B-4. Pr outputs m = Decode(e k−1).

[Opening Phase]

C-1. Ps publishes z1, z2 and m.
C-2. Every player verifies whether y = gz1hz2 , and, if true, computes k = c u−z1v−z2 and outputs

m = Decode(e k−1).

Fig. 11. Protocol πSNCwO for sender non-committing transmission with opening.

Construction of S: As in the proof of Lemma 1, whenever an element X is drawn from Gq,
S first picks x ← Zq and then computes X = gx so that all DLs are known. To remember
this random choice with witness, we denote it by X

w
←Gq.

We distinguish between the following cases:

(1) The receiver is statically corrupted (and the sender is statically or adaptively corrupted).
(2) The receiver is never corrupted and the sender is statically corrupted.
(3) The receiver is never corrupted and the sender is adaptively corrupted.

Case (1): S corrupts receiver P̃r at the beginning and gives its internal state to A. On
receiving (spooled, sid, P̃s, P̃r) from FSSMTwO, S invokes πSNCwO and simulates Ps honestly.
If A corrupts Ps before e is sent off, S corrupts P̃s and gives A P̃s’s internal state and all
random choices used in the simulation of Ps so far. On the other hand, if Ps is not corrupted
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at step B-3, S gets back to the ideal-process and waits for message (received, sid, P̃s,m) sent
to the corrupt P̃r. Once received, S continues the simulation by computing e correctly with
this m. If Ps is corrupted at any further point, S corrupts P̃s and gives A P̃s’s internal state
and all random choices of Ps. If Ps does not get corrupted in the transmission phase and S
receives (sent, sid, P̃s, P̃r,m) from FSSMTwO, S publishes (z1, z2) chosen by Ps so that message
m is recovered by following the protocol. Since there is no make-believe, S works perfectly
like A from the viewpoint of Z.

Case (2): S corrupts P̃s, gives its internal state to A, and follows subsequent instruction
about Ps from A. If corrupt Ps later initiates πSNCwO, S simulates Pr honestly. If the trans-
mission phase of πSNCwO is completed and Pr outputs a message m (which might differ from
the message Z sent to P̃s, S sends (spool, sid, P̃r,m) and (send, sid) to FSSMTwO under the
name of P̃s and delivers the output of FSSMTwO to its destination. In the opening phase,
if corrupt Ps publishes correct (z′1, z

′
2), S simulates all players to output corresponding

m′ = Decode(e c−1uz′
1vz′

2) and sends (open, sid) to FSSMTwO on behalf of corrupt Ps, upon
which FSSMTwO publishes m. Note that y = gz′

1hz′
2 and thus Encode(m′) = e c−1uz′

1vz′
2 =

e c−1(gr)z′
1(hr)z′

2 = e c−1yr = Encode(m). Therefore, as in the above cases, S works per-
fectly.

Case (3): On receiving (spool, sid, P̃s, P̃r) from FSSMTwO, S starts πSNCwO. Subsequent behavior
of S depends on the timing that A corrupts sender Ps as follows.

SB-0. In the initial step, choose h
w
←Gq for Pr.

SB-1. (Pre-corruption) If Ps is corrupted before (u, v, c) is sent off from Pr, S behaves as
in Case (2) up to the end of the protocol execution.

SB-2. If pre-corruption does not happen, S continues simulation up to B-2 and select
(u, v, c)

w
←Gq

3 for Pr. (As a result, (h, u, v) distributes differently than in the real-life
execution.)

SB-3. (Mid-corruption) If Ps is corrupted before e is sent off, S gives A the internal state
of P̃s. If Pr further receives e ∈ Gq from corrupt Ps, S sets m = Decode(e c−1uz1vz2)
in step B-4, and sends (send, sid, P̃r,m) to FSSMTwO so that P̃r outputs m.

SB-4. If mid-corruption does not happen, S continues simulation by selecting e
w
←Gq for

Ps in B-3. Once the transmission phase is done, S resumes the ideal-process and
completes the transmission phase by handling the rest of messages from FSSMTwO as
specified.

SB-5. (Post-corruption) If Ps is corrupted after the transmission phase is completed, S cor-
rupts P̃s. It then computes (z1, z2) that satisfies y = gz1hz2 and c = eEncode(m)−1uz1vz2

where m is the message observed in the internal state of P̃s. Such (z1, z2) exists (unless
(h, u, v) ∈ DH, which happens with negligible probability 1/q) and can be computed
easily since all the discrete-logs of h, u, v, c, y, e are known to S by construction, and
that of Encode(m) by assumption. S gives such (z1, z2,m) to A with the internal
state of P̃s.

Finally, if corrupted Ps publishes correct (z′1, z
′
2) in the opening phase, S simulates all players

to output m′ = Decode(e c−1uz′
1vz′

2) and sends (open, sid) to FSSMTwO. On the other hand,
if Ps is not yet corrupted and (sent, sid, Ps, Pr,m) is sent from FSSMTwO, S computes (z1, z2)
adjusted to this m in the same way as shown in SB-5 and publishes (z1, z2).

Concerning the question whether m = m′, we only need to look at the case of mid- or
post-corruption, as in case of pre-corruption equality follows as in Case (2). We argue that (in
case of mid- or post-corruption) m 6= m′ can happen only with negligible probability, under
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the DL assumption. Note that by construction y = gz1hz2 and c = eEncode(m′)−1uz1vz2 ,
and by the correctness y = gz′

1hz′
2 and c = eEncode(m′)−1uz′

1vz′
2 . Therefore, if m 6= m′ then

(z1, z2) 6= (z′1, z
′
2) and thus the two representations gz1hz2 = y = gz′

1hz′
2 allow to compute the

DL of h. It follows that the existence of A and Z that achieve m 6= m′ with non-negligible
probability implies the existence of a algorithm that contradicts the DL assumption: simply
adapt S in that it embeds a DL problem into h and, up to the point Ps gets corrupted,
computes y, c and !e as y = gz1hz2 , c = kuz1vz2 and e = Encode(m) k, where m is the
message sent from Z to Pj . Note that this modification does not affect Z’s view, except if
(h, u, v) ∈ DH which happens with negligible probability 1/q.

Reduction to DDH: Assuming that the unique opening is achieved as above, we now show
that if there exists an adversary A and an environment Z such that realπSNCwO,A,Z 6≈
idealFSSMTwO,S,Z for the above simulator S, then the DDH assumption does not hold.
Precisely, we construct a distinguisher D, which uses such Z and A, and whose output
distribution is given by realπSNCwO,A,Z if D’s input is chosen uniformly in DH and by
idealFSSMTwO,S,Z if it is chosen uniformly in RND. Since the simulation differs from the real
run only in step SB-2, we only consider Case (3) with Mid- or Post-corruption hereafter.

Let (gα, gβ, gγ) be an DDH instance chosen at random either from DH or from RND.
On input (gα, gβ, gγ), D runs Z and A as well as (ideal-life) players P̃1, . . . , P̃n and the
functionality FSSMTwO, and it simulates an execution of πSNCwO exactly as S does above,
except for the following modifications. That is, D sets h = gα in SB-0, u = gβ, v = gγ and
c = k uz1vz2 in SB-2, and e = mk in SB-4. Here, k is chosen randomly as k

w
←Gq and m is

the message P̃s received from Z. Finally, D outputs the output bit of Z.
Now, consider the case (gα, gβ, gγ) ∈ DH, i.e., γ = αβ. Observe that for r = β, it holds

that u = gr, v = hr and c = k uz1vz2 = k yr. Thus, D simulates the players perfectly
as in πSNCwO and hence the output distribution of Z is identical to realπSNCwO,A,Z . Next,
consider the case (gα, gβ, gγ) ∈ RND, where γ is independent of α and β. In this case,
(y, u, v, c, e) distributes uniformly over Gq

5 and D simulates the players in the same way as
done by S (unless (h, u, v) ∈ DH, which happens with negligible probability 1/q) and the
ensemble of the output distribution of Z is statistically close to idealFSSMTwO,S,Z . So, if
Z distinguishes realπSNCwO,A,Z and idealFSSMTwO,S,Z , then D distinguishes the respective
uniform distributions over DH and RND with essentially the same advantage. ut

D Proof of Theorem 3

We start by proving πDLKG from Fig. 5 secure in the (FHGEN,FSSMT,F
fcomg

VSS ,F fcomh
VSS )-hybrid

model.
On receiving (key, sid, y) from FDLKG, S simulates the generation phase by honestly fol-

lowing the protocol except that it simulates FHGEN in step K-1 such that it knows the DL
of h as well as for the following modification. After step K-2, S reconstructs xj and rj

of any corrupt player Pj from the corresponding shares of the uncorrupt players and sets
C ′

j? = y/
∏

j 6=j? gxj and C ′′
j? = Cj?/C ′

j?. We show later the uniqueness of xj and rj . Then,
instead of Pj? sending xj? and rj? to the ideal functionalities F

fcomg

VSS and F fcomh
VSS , S simply

makes them output (shared, sidj? , Pj?, C ′
j?) and (shared, sid′j? , Pj?, C ′′

j?), respectively, as if
they have received corresponding inputs from Pj? .

On receiving (private, sid, x) from FDLKG, S simulates the opening phase honestly as
prescribed, except that it makes Pj? open Cj? to x −

∑

j? 6=j xj . This can be done as S
knows the trapdoor to the commitment scheme.
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We show the following properties of the simulation, of which each holds except with
negligible probability under the DL assumption: (1) the uncorrupt players hold correct
sharings of values xj and rj such that gxjhrj = Cj for every player Pj , (2) the xj ’s used to
compute x in the opening phase coincide with the xj ’s held by S (except for Pj?), and (3)
the output of the simulated generation phase equals the y provided by FDLKG.

Property (2) implies that the output of the simulated opening phase is indeed x = logg y;
hence, the output behavior of the simulated protocol is as dictated by FDLKG. Furthermore,
it follows by inspection that the adversary A’s view of the simulation is (statistically)
indistinguishable from its view of a real protocol execution. Indeed, the difference only lies
in xj? ’s (Pedersen) shares, of which A sees at most t. This then completes the security proof
of FDLKG in the (FHGEN,FSSMT,F

fcomg

VSS ,F fcomh
VSS )-hybrid-model.

Before showing the security of FDLKG in the real-life model when replacing the ideal
functionalities by protocols as specified, we prove the claimed properties. (1) and (2) clearly
hold with respect to any uncorrupt player Pj . With respect to corrupt Pj , (1) and (2)
essentially follow from Lemma 3. If either of them does not hold, then one can use A
(and Z) to solve the discrete logarithm problem by embedding an instance h′ of the discrete
logarithm problem into h in the course of the simulation of FHGEN as shown in Section 5.1 and
computing the DL of h (and thus of h′) using Lemma 3. Concerning (3), if the output is not
y then at least for one corrupt player Pj (for which xj is not reconstructed in step K-4), the
values x′

j and r′j sent to F
fcomg

VSS and F fcomh
VSS , respectively, differ from xj and rj reconstructed

by S. However, as gxjhrj = Cj = gx′
jhr′j , this allows to compute the DL of h and we can

conclude as above.
Next, we show that we can safely replace FSSMT by πRNC in the subprotocols PedVSS

j
g,h

in πDLKG. Consider the following simulator S ′ in the (FHGEN,F
comg

VSS ,Fcomh
VSS )-hybrid model. S ′

follows the specification of S above but executes protocol πRNC whenever S calls for FSSMT.
Every instance of πRNC is honestly executed except if the sender is Pj? and the receiver, say
Pi, is still uncorrupt when Pj? comes to step A-2 of πRNC. In that case, Pj? computes u, v
and c in step A-2 as u, v ← Gq and c = Encode(m)uz1vz2 , where m is the input to πRNC and
z1 and z2 are the values chosen by the simulated player Pi in step A-1. This way, uncorrupt
Pi still receives the correct message m while the communication reveils no information on
m. In order to show that this is a good simulation, we consider an artificial execution of
πDLKG with FSSMT replaced by πRNC, with the same modification as above: if the sender of
a message m is Pj? and the receiver Pi is still uncorrupt when Pj? comes to step A-2 of
πRNC, then Pj? computes u, v and c in step A-2 as u, v ← Gq and c = Encode(m)uz1vz2

(where we assume that Pi privately told Pj? the values z1, z2 chosen in step A-1). By earlier
observations that the difference between πDLKG and its simulation only lies in the Pedersen
shares of the uncorrupt players, it follows that Z cannot distinguish between the simulation
provided by S ′ and the above artificial execution, as the communication of the shares of the
uncorrupt players reveals no information. On the other hand, it is straightforward to show
that if Z can distinguish the artificial execution from the real execution of πDLKG with FSSMT

replaced by πRNC, then (together with A) Z can be used to solve the DDH problem: one
simply embeds a (randomized) DDH-problem instance (gα, gβ, gγ) into (h, u, v) of πRNC and
observes Z’s output, similar as in the proof of Lemma 1 and 2.

Finally, using similar observations as for Theorem 2, it follows that πDLKG securely realizes
FDLKG in the real-life model when additionally replacing FHGEN, F

fcomg

VSS and F fcomh
VSS by πHGEN,

πXFVSS[g] and πXFVSS[h], respectively. This concludes the proof. ut
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