
Jack Jansen
Centrum voor Wiskunde en Informatica

Jack.Jansen@cwi.nl

MacPython



About this talk 

Introduction

Past - MacPython-OS9

Present - MacPython-OSX

Rant on Open Source software

Future - World Domination



About me

Active Python user since 1992, 
“responsible” for MacPython since 
1995, when Guido got rid of his 

Mac.

Work at CWI on multimedia 
research, active in SMIL standard, 
did SMIL editor/player in Python.



History: before OSX

Main distribution: binary

included IDE by Just van Rossum:

editor, debugger, profiler, etc

Applets: mini-applications that take 
the place of scripts

true standalone applications



MacOS Toolbox a.k.a. Carbon:

Windows, Dialogs, Menus, Events, 
Fonts, Resources, etc

QuickTime

Open Scripting Architecture 
(”AppleScript”)

90% automatic with bgen

MacOS technologies



Unix emulation

Matthias Neeracher’s GUSI provides 
sockets, unix-like file descriptors, 

select, Pthreads and more

It is difficult to overstate its 
importance!



Python Imaging Library

Numerical Python

Img

Tkinter with embedded Tcl/Tk

Batteries Included!



Mac users don’t have compilers

... and if they had they wouldn’t 
know how to use them

... and GUSI makes life even 
more difficult

Mac users expect software to “just 
work”

Why include 
batteries?



Very small number of active 
developers: between 2 and 25

Active user community: about 300?

Users: 10K downloads per release

where are they? what are they 
doing??!?

Community



Based on perfectly normal unix 
Python 2.3

but: use MacOSX framework

Keeps IDE, Carbon, Quicktime, OSA, 
applets

Cocoa support through PyObjC

Batteries no longer included 

MacPython-OSX



Packaging construct to allow easy 
install/removal

Framework is really “shared library 
on steroids”:

library, resources, header files, 
documentation, auxiliary programs

MacOSX frameworks



Easy uninstall: remove framework and 
application only

Some location independence while 
still allowing sharing

Tcl/Tk does it too:-)

Why use framework?



Many more useful packages for OSX 
than OS9

Often more solutions: Tkinter 
versus wxPython

too much work

Many more developers who contribute

Enter PackageManager!

Batteries not 
included!



“Package Install Manager for Python” 
was voted down:-(

Central concept: single responsible 
person(s), the scapegoat

On-line database with packages that 
are tested and tried

both source and binary

Package Manager



Does not require developer tools for 
end user

Can update itself

... except for its GUI:-(

Allows decentralization

Diminishes rush when 2.X comes out

A PEP will follow



Binary installer is essential for 
Mac

no dependency on Developer Tools!

no Terminal window, please!

But do cater for developers too

and try to allow for a shallow 
learning curve...

Distribution



you may download source

you may rebuild it yourself

you may even fix bugs

Open Source
- theory



you will download source

you shall rebuild it yourself

you must even fix bugs

Open Source
- practice



Python core is pretty good:

few dependencies on third party packages

build process tested and tried

Extensions can be bad (no offense meant!)

Small number of developers

long time between releases



Get rid of clunkyness

Solution: PyObjC

Make GUI development easier

Solution: PyObjC

Does not have to wait for 2.4

Future - the easy 
bits



Python is better than AppleScript

so let’s make it as user-friendly

Python is better than RealBasic or 
Hypercard

So let’s come up with a decent 
entry-level GUI builder

World Domination - 
part one



Python is better than ObjC

so show this to the ObjC community

Python is great for CGI

so flatten the learning curve



Mac is better than Unix

so make MacPython better than /
usr/local/bin/python

for unix-heads, that is!

Mac is better than Windows

... aww, forget about them:-)

World domination - 
Part two



Draw attention

Reviews, magazine articles

Easy access for testing the waters

Inclusion on CDs

Run from CD without installation

World domination - 
Finale



For end-users beat the ease of use 
of good shrink-wrapped software

think of YOURSELF! This 
presentation was finished 4 hours 
after first contact with Keynote

Try that with LaTeX:-)

But don’t get in the way of the 
developers... 

But seriously:



42


