Bridging Python to C++ - and vice-versa

Jack Jansen
Centrum voor Wiskunde en Informatica

Jack.Jansen@cwi.nl

Abstract

I found myself in need of good access to C++ functionality from Python. By good | mean: more than sim-
ply being able to call C++ routines or methods, but also the ability to subclass C++ baseclasses in Py-
thon, and subclass Python baseclasses in C++, similar to the functionality 2yOb/C [1] provides when you

need interoperability between Python and Objective-C.

The objective is tackled by extending the standard (but little known:-) bgen bridge to be able to parse
C++ headers, teaching it about C++ objects, inheritance and callbacks and exposing the result as a Py-

thon extension module.

There are various other solutions that allow you to automatically generate Python interfaces to C++ li-
braries, but I could not find any that I really liked: most are lacking in functionality, such as bidirectional
subclassing, some are bloatware, some are ugly. So in good open source tradition I decided to try and do
better.

At the time of writing (October 2005) this is still work in progress, so this paper will focus more on the

solutions chosen than on the actual tool.
The problem

Over the last two years the SENJ group at CWI has been busy designing and implementing the Ambu-
lant Player /2/, a multimedia playback engine. One of the design goals for the Ambulant Player is to pro-
vide the research community (including ourselves) with a framework multimedia player in which all
components can easily be replaced to test new ideas, while all other components continue working. This
allows one to concentrate on the issue at hand, such as new scheduling algorithms, without having to
worry about implementing communication, rendering, user interfaces, ete. For the purpose of this paper
we will mention only one other design goal: the implementation should be CPU-efficient and portable,
so it can be deployed not only on well-connected desktop machines but also on low-power handheld

devices with relatively low-bandwidth network connections.

The figure shows the general

design of the playback engine,

with multiple stacked boxes Parser DOM tree
denoting that there may be 2
v Q
. c
more than one implementa- g
{=
tion of a module (renderers for ©
\ Scheduler Layout 2
different media types, for ex- = Manager &
v [l
2 cC T
ample). Each of the compo- £ g
S ——=—l-—=-=-- ———m - - — F——————
nents is replaceable, and all =3
= M M [}
. Q
the interfaces are well-defined. Datasource Playable Renderer Surface g
=== r=l-—-—-—-—T-—---- M %
o - | b | I | S
Because of the efficiency goal T r ————mm—— 2
C++ was chosen as the initial 23 2
£ c
. . 55)
et . . , [
implementation language, even g g GUI window

though it somewhat conflicts
with the goal of easy extensi-
bility. Previous experience of
the team with using the Python-based GRiVS player on low-power devices were rather disappointing,

and similar stories about Java and other HLLs seemed to corroborate that.

This summer we started on an attempt to have our cake and eat it too, by opening up the Ambulant AP1
to Python. This will allow rapid development of new ideas, while the performance cost of using a HLL is
only incurred in that case. Because we wanted each and any component to be replaceable we needed a
bridging solution that not only allowed Python code to call functions and methods in C++, but also
wrapping Python objects transparently as C++ objects and subclassing of C++ baseclasses in Python and

vice versa.
Solutions we did not pick

The first solution we did not pick was a hand-coded bridge. The current API consists of about 50 inter-
faces with about 250 methods total, and as the engine is still in active development it is a moving target.

This would make the maintenance cost of hand coding, even with tools such as Pyrex, too high.

So we needed an automatic tool to generate the bridge, which quickly pointed to the Bgen tool because
the author happens to be pretty familiar with it. But, of course, in a paper one should state that various

solutions were examined and found wanting, so here is a list of tools we did not use:

e Swig /3] is probably the most popular tool, and has the advantage that it can generate bridges to vari-
ous languages. But it has a very serious drawback: the code it generates is a mix of C or C++ and Py-
thon, and pretty much impossible to debug, even attempting to read it is a challenge. Support for addi-
tional datatypes is also a pain and requires adding directives to the .h or .1i files. And new, incompati-

ble versions are released every couple of months.

e Boost /4] comes with a huge embedding framework that appears to be impossible to work around.

While low-power devices are not a primary target for the bridge this still appeared to be a bit too

much of a good thing.
£

was not on the radar until too late (about two weeks before this paper was writ-

e In all fairness, Sip

ten:-). It seems to be more stable and produce better code than Swig, but it shares its directive prob-

lem.
The C++ and Python object model

I'will assume that readers are familiar with the C++ object model, and only step aside for a moment to
explain the main points about the Python object model. We concentrate here on the so-called “new style
classes”, which were introduced in Python 2.2. The definitive reference for these are PEP 252 /6] and

PEP 253

Here I will only say that the new Python object model provides enough framework to interoperate with
all the behavior that other languages may require: splitting of allocation and initialization of objects, easy

calling of base class methods, cross-language access to members in base classes and much more.
The bgen tool

Bgen is a little-known part of the Python core distribution. It was written over 10 years ago by Guido van
Rossum, and while it is in principle a general tool its main application has always been the generation of
Python extension modules that interface to the MacOS toolbox modules. This history is reflected in a
number of design choices, but the generality of the tool has allowed it to keep up with the changing

times fairly easily.
Here is what bgen does in a nutshell:

1. Parse a standard C “.h” file, without any adornments such Swig or Sip require. This is done with a
regular expression parser that has very limited knowledge of the C language, but manages to find the

function declarations and deduce the parameters, ete.

EXTERN _API(void)
HideDialogItem(
DialogRef theDialog,
DialogItemIndex itemNo) ONEWORDINLINE (0xA827);

EXTERN_API(Boolean)
IsDialogEvent (const EventRecord * theEvent) ONEWORDINLINE (0xA97F);

Read a user-supplied set of filters and transforms,

and apply these to the declarations. These trans-

. . foo.h
forms can change parameler signatures in a pretty
powerful way. This is important, because it allows
things like representing a C negative return value as \/
fooscan.py
an exception, or a pair of arguments “const char
. L . - Parse < I—— RE's and
*buf, int *bufsize” as a Python string. The filter rules
can also drop declarations based on unsupported
Lypes, names, elc.
Decide whether the resulting declaration should be Filter
treated as a normal function or as a method. Many
C toolkits follow a somewhat object-oriented para-
. .) \ \/
digm by having a standard first (or last) argument,
as in HideDialogItem(DialogRef theDialog, foogen.py
...). These will become methods of the Window
object on the Python side without any additional
glue code such as Swig needs. \/ foosupport.py
. . Type
The resulting declarations are dumped as Python Generate code [KJ————— declarations
source, which will be executed later. ;:i
f = Method(void, 'HideDialogItem', \V/
(DialogRef, 'theDialog', InMode),
(DialogItemIndex, 'itemNo', InMode), foomodule.c
) .
methods.append(f)

f = Function(Boolean, 'IsDialogEvent',
(EventRecord_ptr, 'theEvent',6 InMode),
)

functions.append(f)

Read a user-supplied file of type declarations. Bgen contains an extensible library of predefined
types, for which it knows how these should be initialized, converted from Python to C and vice-
versa, passed to C and cleaned up. The library not only contains the standard ints, floats and strings
but also various types of buffers and exception/error conditions, and wrapper types that encapsulate
a C type, usually a pointer, in a Python object. The extensible nature is important here, because to-
gether with the transformation mentioned earlier it allows fairly natural signatures on the Python
side.

DialogRef = OpaqueByValueType("DialogRef", "D1lgObj")
DialogItemIndex = Type("DialogItemIndex", "h")

Now it is time to read the function and method declarations again. Usually the type declarations will
include at least one wrapped object to which the methods are added. The non-method functions are
added to a module object, as are the wrapper objects.

module = MacModule('_Dlg', 'Dlg', includestuff, finalstuff, initstuff)

object = MyObjectDefinition('Dialog', 'DlgObj', 'DialogRef')
module.addobject (object)

execfile("dlggen.py")

for £ in functions: module.add(f)
for £ in methods: object.add(f)

pu|

Finally, bgen recursively iterates over the module to generate the C code. This is actually a fairly
simple process, because a lot of delegation is used. For example, to generate the argument parsing a
method generator will first call the “declare” and “initialize” method of each argument (which will in
turn delegate to their types), then output the first bit of the Pyarg_parse call, then call the getargs-
Format method for each argument to return the format character(s), then call getArgsargs for each

argument to get the arguments needed for the PyArg_prarse call.
Extending bgen to C++

Extending Bgen to work for C++ in stead of for C required work in a number of areas. First of all, the
parser needs to become quite a bit more powerful, because it will have to learn about scopes (for classes
and namespaces) plus all the extra gaak functionality such as argument default values and inline func-
tions. Initially we thought a tool like gce-xml /8/ would be needed to parse the header files, but luckily we
decided to try a quick regular expression hack first, and... Lo and behold, it worked fine! The trick was to
create two RE parsers, one to be used outside class declarations and one inside, and to switch them on

the class keyword and counting braces.

Adding the methods to the relevant objects was actually simpler in C++ than in C, because the parser

has all the information and does not need to depend on user-provided instructions.

Next we needed to handle name overloading, and we decided to cop out on that for the moment: dupli-
” @

cate names get “_17,“_27, ete appended for the time being. But we envision using the same trick as for

constructors later.

Constructors turned out to map fairly well to the Python object model, except for multiple constructor
signatures. This is the same problem as general name overloading, but here we really needed the over-
loading. It turns out that if is fairly easy to implement multimethods in a Python C extension module by
doing a sequence of PyArg_Parse calls if you take some care in which order you do them:
if (PyArg Parse(_args, “i”, &ival)) {
// body for method(int ival)
} else

if (PyArg Parse(_args, *“s”, &sval)) {
// body for method(const char *sval)

Support for std: :string and such was just more code, nothing special. Other STL types we have
punted on for the moment. Same for exceptions and operator overloading: they are not implemented yet

but they should not pose any special problems (he says, optimistically:-).

At this point we had a fairly functional bridge that allowed calling C++ methods and functions from Py-
thon, and the next task was generating the reverse. We noted that all the relevant information was still in
the generated Python file with the declaration info, so the only thing we needed to do was re-read it but
putting the info in completely different implementations of Module and objectbefinition. These would
then generate C++ to Python bridge code in stead of the reverse. And even this turned out not to be all
that much work: passing an argument from Python to C++ is pretty similar to passing a return value
from C++ to Python and vice versa, so most of the code was there, it only had be be refactored a bit and

driven in a different way.

The same thing turned out to be true for generating the .h and .cpp files for the reverse bridge, which
was again similar to generating the PyTypeObject and PyMethodDef structures and the actual implemen-

tations of the methods.

There were two areas that we did not have to worry about, luckily: constructors and non-function mem-
bers. Our interfaces did not include constructors, all objects were constructed with factory functions .
Similar for non-function members, these are never part of interfaces. For the future, constructors are
probably reasonably easy to implement, and for members we can probably use the Python slots mecha-

nism in a similar way to what PyObjC does.

We did need one constructor per interface, so we could wrap Python objects in a C++ wrapper when
passing it from Python to C++, but this was easy. The constructor got a Python object, did some rudi-
mentary checking (the Python object needs to have attributes for all the needed C++ methods) and that
was that.

Now the only thing needed was to tell the Python to C++ bridge about the available wrappers and we
were all done: transparent passing of C++ objects to Python and the reverse. There were a few minor
issues here, such as trying to make sure we did not do double wrapping (if a C++ object is passed to Py-
thon it gets a Python wrapper around it, but when we pass it back to C++ we want to pass the original

object, not that Python wrapper wrapped in another C++ wrapper).
Results so far

This is all very recent work, so we have not had a chance to exercise it thoroughly, but we have managed
to create a “non-player” in Python. This non-player goes through all the motions of reading, parsing and
scheduling a document, but in stead of actually displaying media it prints messages of the form “at time
hh:mm:ss I should have displayed image http:/bla.bla.bla”. Given the architecture of the Ambulant
Player this means that all sorts of things, including subclassing both ways, threading, locking, and gar-

bage collection, probably work.

We have also started to use the bridge to create a unit test suite for the Ambulant player. This is some-
thing we have sorely missed, but all C++ unit test frameworks appeared to be rather a lot of effort to de-

ploy, so we are happy we can now use the Python unit test framework.
Future work

Some of the things that need to be done are sketched in the text, but one thing is conspicuously absent

from this document, and really needs to be addressed: the weak points of bgen.

As you will have guessed by now bgen is not without them, being so mature but so little-used:-) The
main problem is that the learning curve for deploying it in a new project, especially for the first time, is
very steep. While its power resides in the ability to extend it any which way by subclassing the various
Type and Object and ObjectDefinition classes this is also its downside: without that subclassing there
is very little it can do. Similar for the RE parser: very powerful once you get the hang of it but usually the

default parser will not work for your problem at hand without serious tweaking.

I have a number of ideas in this area, however. Actually, I have quite a large number of ideas, but I miss
the accompanying amount of time. So let me end this paper with a cordial request to contact me if you

feel like investing some of your spare time in bgen.

References

1] http://pyobje.sourceforge.net/

2] http://www.ambulantplayer.org/

3] http://www.swig.org/

[4] http://www.boost.org/libs/pvthon/doc/

!'In the Python to C++ bridge we did require the constructors, because the Python code may want to

subclass specific C++ implementations of interfaces.

http://www.pvthon.org/peps/pep-0252.html

http://www.pvthon.org/peps/pep-0253.hunl

http://www.geexml.org/

