
Faster Scannerless GLR Parsing

Giorgios Economopoulos, Paul Klint, Jurgen Vinju

Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands

Abstract. Analysis and renovation of large software portfolios requires
syntax analysis of multiple, usually embedded, languages and this is be-
yond the capabilities of many standard parsing techniques. The tradi-
tional separation between lexer and parser falls short due to the limita-
tions of tokenization based on regular expressions when handling multiple
lexical grammars. In such cases scannerless parsing provides a viable so-
lution. It uses the power of context-free grammars to be able to deal with
a wide variety of issues in parsing lexical syntax. However, it comes at the
price of less efficiency. The structure of tokens is obtained using a more
powerful but more time and memory intensive parsing algorithm. Scan-
nerless grammars are also more non-deterministic than their tokenized
counterparts, increasing the burden on the parsing algorithm even fur-
ther.
In this paper we investigate the application of the Right-Nulled Gener-
alized LR parsing algorithm (RNGLR) to scannerless parsing. We adapt
the Scannerless Generalized LR parsing and filtering algorithm (SGLR)
to implement the optimizations of RNGLR. We present an updated pars-
ing and filtering algorithm, called SRNGLR, and analyze its performance
in comparison to SGLR on ambiguous grammars for the programming
languages C, Java, Python, SASL, and C++. Measurements show that
SRNGLR is on average 33% faster than SGLR, but is 95% faster on
the highly ambiguous SASL grammar. For the mainstream languages C,
C++, Java and Python the average speedup is 16%.

1 Introduction

For the precise analysis and transformation of source code we first need to parse
the source code and construct a syntax tree. Application areas like reverse en-
gineering, web engineering and model driven engineering specifically deal with
many different languages, dialects and embeddings of languages into other lan-
guages. We are interested in the construction of parsing technology that can
service such diversity; to allow a language engineer to experiment with and effi-
ciently implement parsers for real and complex language constellations.

A parser is a tool, defined for a specific grammar, that constructs a syntac-
tic representation (usually in the form of a parse tree) of an input string and
determines if the string is syntactically correct or not. Parsing often includes a
scanning phase which first splits the input string into a list of words or tokens.
This list is then further analyzed using a more powerful parsing algorithm. This

scanning/parsing dichotomy is not always appropriate, especially when parsing
legacy languages or embedded languages. Scanners are often too simplistic to
be able to deal with the actual syntax of a language and they prohibit modular
implementation of parsers. Scannerless parsing [20, 21, 29] is a technique that
avoids such issues that would be introduced by having a separate scanner [7].
Intuitively, a scannerless parser uses the power of context-free grammars instead
of regular expressions to tokenize an input string.

The following Fortran statement is a notorious example of scanning issues [1]:
DO 5 I = 1.25 . This statement supposedly has resulted in the crash of the

NASA Mariner 1.1 It is not until the decimal point that it becomes clear that
we are dealing here with an assignment to the variable DO5I.2 However, in the
slightly different statement: DO 5 I = 1,25 , DO is a keyword and the statement
as a whole is a loop construct. This example highlights that tokenization using
regular expressions, without a parsing context, can easily be non-deterministic
and even ambiguous. In order to restrict the number of possibilities, scanners
usually apply several implicit rules like, e.g., Prefer Longest Match, Prefer Key-
words, Prefer First Applicable Rule. The downside of such disambiguation is that
the scanner commits itself to one choice of tokens and blocks other interpreta-
tions of the input by the parser. A scannerless parser with enough lookahead
does not have this problem.

Another example is the embedding of Java code in AspectJ definitions and
vice versa. If a scanner is needed for the combination of the two languages,
you may end up with reserving the new AspectJ keywords from the Java code.
However, existing Java code may easily contain such identifiers, resulting in
parsing errors for code that was initially parsed correctly. One approach that
could avoid this problem would be to use two separate scanners: one that is
active while parsing pure AspectJ code and another that is active while parsing
pure Java code. Once again, the parsing context would be used to decide which
scanner is used in the tokenization. This problem does not exist when using a
scannerless parser [8].

In a classical scanner/parser approach the scanner makes many decisions
regarding tokenization. In a scannerless parser these decisions are postponed
and have to be made by the parser. Consequently, scannerless parsers generally
have to deal with more non-determinism than before, so the deterministic LR
parsing algorithms can no longer be used. However, it turns out that the non-
determinism introduced by the removal of the scanner can be gracefully handled
by Generalized LR (GLR) parsing algorithms [24, 16, 19].

Scannerless parsing remains a counter-intuitive notion, which is partly due to
our education in compiler construction where scanner optimization was a central
point of interest. So we emphasize its benefits here once more:

– Computational power: lexical ambiguity is a non-issue and full definition of
lexical syntax for real languages is possible.

1 Various (non-authoritative) sources mention that writing a “.” in instead of “,”
caused the loss of the Mariner 1.

2 Recall that Fortran treats spaces as insignificant, also inside identifiers.

2

– Modularity: languages with incompatible lexical syntaxes can be combined
seemlessly.

– Scope: to generate parsers for more languages, including ambiguous, embed-
ded and legacy languages.

– Simplicity: no hard-wired communication between scanning and parsing.
– Declarativeness: no side-effects and no implicit lexical disambiguation rules

necessary.

So, on the one hand a language engineer can more easily experiment with
and implement more complex and more diverse languages using a parser gen-
erator that is based on Scannerless GLR parsing. On the other hand there is a
cost. Although it does not have a scanning phase, scannerless parsing is a lot
more expensive than its two-staged counterpart. The structure of tokens is now
retrieved with a more time and memory intensive parsing algorithm. A collec-
tion of grammar rules that recognizes one token type, like an identifier could
easily have 6 rules, including recursive ones. Parsing one character could there-
fore involve several GLR stack operations, searching for applicable reductions
and executing reductions. Consider an average token length of 8 characters and
an average number of stack operations of 4 per character, a scannerless parser
would do 4 ∗ 8 = 32 times more work per token than a parser that reads a pre-
tokenized string. Furthermore, a scannerless parser has to consider all whitespace
and comment tokens. An average program consists of more than 50% whites-
pace which again multiplies the work by two, raising the difference between the
two methods to a factor of 64. Moreover, scannerless grammars are more non-
deterministic than their tokenized counterparts, increasing the burden on the
parsing algorithm even more.

Fortunately, it has been shown [7] that scannerless parsers can be imple-
mented fast enough to be applied to real programming languages. In this paper
we investigate the implementation of the Scannerless GLR (SGLR) parser pro-
vided with SDF [29, 7]. It makes scannerless parsing feasible by rigorously limit-
ing the non-determinism that is introduced by scannerless parsing using disam-
biguation filters. It is and has been used to parse many different kinds of legacy
programming languages and their dialects, experimental domain specific lan-
guages and all kinds of embeddings of languages into other languages. The parse
trees that SGLR produces are used by a variety of tools including compilers,
static checkers, architecture reconstruction tools, source-to-source transformers,
refactoring, and editors in IDEs.

As SDF is applied to more and more diverse languages, such as scripting
and embedded web scripting languages, and in an increasing number of contexts
such as in plugins for the Eclipse IDE, the cost of scannerless parsing has become
more of a burden. That is our motivation to investigate algorithmic changes to
SGLR that would improve its efficiency. Note that the efficiency of SGLR is
defined by the efficiency of the intertwined parsing and filtering algorithms.

We have succeeded in replacing the embedded parsing algorithm in SGLR—
based on Farshi’s version of GLR [16]—with the faster Right-Nulled GLR algo-
rithm [22, 12]. RNGLR is a recent derivative of Tomita’s GLR algorithm that,

3

intuitively, limits the cost of non-determinism in GLR parsers. We therefore in-
vestigated how much the RNGLR algorithm would mitigate the cost of scanner-
less parsing, which introduces more non-determinism. The previously published
results on RNGLR can not be extrapolated directly to SGLR because of (A) the
missing scanner, which may change trade-offs between stack traversal and stack
construction and (B) the fact that SGLR is not a parsing algorithm per se, but
rather a parsing and filtering algorithm.The benefit of RNGLR may easily be
insignificant compared to the overhead of scannerless parsing and the additional
costs of filtering.

In this paper we show that a Scannerless Right-Nulled GLR parser and filter
is actually significantly faster on real applications than traditional SGLR. The
amalgamated algorithm, called SRNGLR, requires adaptations in parse table
generation, parsing and filtering, and post-parse filtering stages of SGLR. In
Section 2 we analyze and compare the run-time efficiency of SGLR and the new
SRNGLR algorithm. In Sections 3 and 4 we explain what the differences between
SGLR and SRNGLR are. We conclude the paper with a discussion in Section 6.

2 Benchmarking SRNGLR

In Sections 3 and 4 we will delve into the technical details of our parsing al-
gorithms. Before doing so, we first present our experimental results. We have
compared the SGLR and SRNGLR algorithms using grammars for an extended
version of ANSI-C—dubbed C’—, C++, Java, Python, SASL and Γ1—a small
grammar that triggers interesting behaviour in both algorithms. Table 1 de-
scribes the grammars and input strings used. Table 2 provides statistics on the
sizes of the grammars. We conducted the experiments on a 2.13GHz Intel Dual
Core with 2GB of memory, running Linux 2.6.20.

SGLR and SRNGLR are comprised of three different stages: parse table
generation, parsing and post-parse filtering. We focus on the efficiency of the
latter two, since parse table generation is a one-time cost. We are not interested in
the runtime of recognition without tree construction. Note that between the two
algorithms the parsing as well as the filtering changes and that these influence
each other. Filters may prevent the need to parse more and changes in the
parsing algorithm may change the order and shape of the (intermediate) parse
forests that are filtered. Efficiency measurements are also heavily influenced by
the shapes of the grammars used as we will see later on.

The SRNGLR version of the parser was tested first to output the same parse
forests that SGLR does, modulo order of trees in ambiguity clusters.

Table 3 and Figure 1 show the arithmetic mean time of five runs and Table 4
provides statistics on the amount of work that is done. GLR parsers use a Graph
Structured Stack (GSS). The edges of this graph are visited to find reductions
and new nodes and edges are created when parts of the graph can be reduced
or the next input character can be shifted. Each reduction also leads to the
construction of a new parse tree node and sometimes a new ambiguity cluster. An
ambiguity cluster encapsulates different ambiguous trees for the same substring.

4

Name Grammar description Input size
(chars/lines)

Input description

C’ ANSI-C plus ambiguous excep-
tion handling extension

32M/1M Code for an embedded sys-
tem

C++ Approaches ISO standard, with
GNU extensions

2.6M/111K Small class that includes
much of the STL

Java Grammar from [8] that imple-
ments Java 5.0

0.5M/18k Implementation of The
Meta-Environment [5]

Python Derived from the reference man-
ual [28], ambiguous due to miss-
ing off-side rule implementation

7k/201 spawn.py from Python dis-
tribution

SASL Taken from [26], ambiguous due
to missing off-side rule implemen-
tation

2.5k+/114+ Standard prelude, concate-
nated to increasing sizes

Γ1 S ::= SSS | SS | a; triggers
worst-case behavior [12]

1–50/1 Strings of a’s of increasing
length

Table 1. Grammars and input strings used.

NNT NP RNP States Shifts+Gotos Reductions LA Reductions
SGLR SRNGLR SGLR SRNGLR

C’ 71 93 94 182k 37k 18k 23k 5.9k 6.3k
C++ 90 112 102 112k 18k 19k 19k 1.5k 1.5k
Java 81 112 116 67k 9.7k 5.9k 6.0k 1.0k 1.1k
Python 56 74 85 22k 3.4k 1.7k 1.9k 0 0
SASL 16 21 22 4.5k 0.9k 0.5k 0.6k 0 0
Γ1 0 0 0 13 30 13 15 0 0

Table 2. Grammar statistics showing nullable non-terminals (NNT), nullable produc-
tions (NP), right-nullable productions (RNP), SLR(1) states, shifts and gotos, reduc-
tions and reductions with dynamic lookahead restriction (LA Reductions).

For both algorithms we count the number of GSS edge visits, GSS node creations,
edge and node visits for garbage collection, and parse tree node and ambiguity
cluster visits for post-parse filtering. Note that garbage collection of the GSS is
an important factor in the memory and run-time efficiency of GLR.

For this benchmark, SRNGLR is on average 33% faster than SGLR with a
smallest speedup of 9.8% for C and a largest speedup of 95% for SASL. Appar-
ently the speedup is highly dependent on the specific grammar. If we disregard
SASL the improvement is still 20% on average and if we also disregard Γ 50

1

the average drops to a still respectable 16% improvement for the mainstream
languages C, C++, Java and Python. The results show that SRNGLR parsing
speed is higher (up to 95%) for grammars that are highly ambiguous such as
SASL. SRNGLR also performs better on less ambiguous grammars such as Java
(14% faster). The parsing time is always faster, and in most cases the filtering
time is also slightly faster for SRNGLR but not significantly so.

The edge visit statistics (Table 4 and Figure 3) explain the cause of the
improved parsing time. Especially for ambiguous grammars the SGLR algorithm
traverses many more GSS edges. According to the time measurements this is
significant for real world applications of scannerless parsing.

5

C’ C++ Java Python SASL80 Γ1
50

S SRN S SRN S SRN S SRN S SRN S SRN

Speed (chars/sec.) 385k 443k 121k 175k 404k 467k 178 904 78 1k 4.7 24
Parse time (sec.) 84.2 73.2 21.5 14.9 2.1 1.8 39.2 7.7 4.8k 202.2 10.8 2.1
Filter time (sec.) 102.9 95.5 5.7 5.6 0.8 0.7 327.3298.8 1.6 1.6 7.7 9.5
Total time (sec.) 187.2168.8 27.3 20.6 2.9 2.5 366.5306.5 4.8k 203.9 18.5 11.6
Speedup (%) 9.8 24.5 13.8 16.4 95 37.6

Table 3. Speed (characters/second), Parse time (seconds) , Filter time (seconds), Total
time (seconds) and Speedup (%) of SGLR (S) and SRNGLR (SRN). k = 103.

C’ C++ Java Python SASL80 Γ 50
1

S SRN S SRN S SRN S SRN S SRN S SRN

ET 149M 44M 26M 6.6M 3.2M 0.9M 90M 3.4M 71B 165M 48M 0.7M
ES 81M 18M 145M 27M 5.0M 0.9M 1.8B 234M 16B 14B 28M 14M
NC 141M 143M 19M 20M 3.0M 3.0M 157k 157k 2.4M 2.4M 252 252
EC 154M 157M 30M 31M 3.5M 3.4M 962k 962k 44M 44M 3.9k 3.9k
GC 13M 13M 6.2M 6.8M 0.7M 0.6M 2.0M 2.0M 88M 88B 14k 14k
FAC 30k 30k 5.6k 5.6k 0 0 83k 83k 48k 48k 1.2k 2.1k
FNC 241M 241M 13M 13M 1.6M 1.6M 707M 707M 3.1M 3.1M 1.1M 1.3M

Table 4. Workload data. Edges traversed searching reductions (ET), edges traversed
searching existing edge (ES), GSS nodes created (NC), GSS edges created (EC), edges
traversed for garbage collection (GC), ambiguity nodes created while filtering (FAC),
and parse tree nodes created while filtering (FNC). k = 103, M = 106, B = 109

Filtering time is improved in all but the Γ1 case, although the improvement
is not greater than 10%. The workload statistics show that about the same
number of nodes are created during filtering. The differences are lost in the
rounding of the numbers, except for the Γ1 case which shows significantly more
node creation at filtering time. This difference is caused by different amounts of
sharing of ambiguity clusters between the two versions. The amount of sharing
in ambiguity clusters during parsing, for both versions, depends on the arbitrary
ordering of reduction steps. I.e. it is not relevant for our analysis.

Notice that the parse time versus filtering time ratio can be quite different
between languages. This highly depends on the shape of the grammar. LR fac-
tored grammars have higher filtering times due to the many additional parse
tree nodes for chain rules. The Python grammar is an example of such a gram-
mar, while SASL was not factored and has a minimum number of non-terminals
for its expression sub-language. Shorter grammars with less non-terminals have
better filtering speed. We expect that by “unfactoring” the Python grammar a
lot of speed may be gained.

Figure 2 depicts how SRNGLR improves parsing speed as the input length
grows. For Γ1 it is obvious that the gain is higher when the input gets larger.
Note that although Γ1 does not have any right-nullable productions (see Table
2) there is still a significant gain. The reason for this is that SRNGLR prevents
work from being done for all grammars (see Section 3).

From these results we may conclude that SRNGLR clearly introduces a struc-
tural improvement that increases the applicability of scannerless GLR parsing to

6

parsing

Runtime (secs)

Γ1

25
20
15
10
5
0

Runtime (secs)

Γ1

25
20
15
10
5
0

Runtime (secs)

Γ1

25
20
15
10
5
0

Runtime (secs)

SASL

5200
4160
3120
2080
1040

0

filtering

Runtime (secs)

SASL

5200
4160
3120
2080
1040

0

Runtime (secs)

SASL

5200
4160
3120
2080
1040

0

Runtime (secs)

Python

400
320
240
160
80
0

Runtime (secs)

Python

400
320
240
160
80
0

other

Runtime (secs)

Python

400
320
240
160
80
0

Runtime (secs)

Java

3

2

1

0

Runtime (secs)

Java

3

2

1

0

Runtime (secs)

Java

3

2

1

0

Runtime (secs)

C++

30
24
18
12
6
0

Runtime (secs)

C++

30
24
18
12
6
0

Runtime (secs)

C++

30
24
18
12
6
0

Runtime (secs)

C

190
152
114
76
38
0

Runtime (secs)

C

190
152
114
76
38
0

Runtime (secs)

C

190
152
114
76
38
0

Fig. 1. Runtime comparison between SGLR (first col.) and SRNGLR (second col.).
The other bar accounts for the time taken to read and process the input string and
parse table.

srnglr
sglr

Input string length (number of characters)

Parsing time (seconds)

5045403530252015

12

10

8

6

4

2

0

Fig. 2. Comparison of SGLR and
SRNGLR parsing time for Γ1.

SASL

Python Γ1

Java

C++

C

Reduction of edge traversals by RNGLR

Parse time improvement

100%95%90%85%80%75%70%

100%

80%

60%

40%

20%

0%

Fig. 3. Correlation between saving of
edge traversals and parsing speedup.

large programs written in highly ambiguous scripting languages such as Python
and SASL. Also, we may conclude that it introduces a significant improvement
for less ambiguous or non-ambiguous languages and that the shape of a grammar
highly influences the filtering speed.

3 SGLR and RNGLR

In this section we outline the RNGLR and SGLR algorithms and highlight the
main differences between them. There are four main differences between the
SGLR and RNGLR algorithms:

– Different parse tables formats are used; SLR(1) [29] versus RN [12].
– SGLR does more traversals of the GSS during parsing than RNGLR.
– Different parse forest representations are used; maximally shared trees [27]

versus SPPF’s [19].

7

– SGLR implements disambiguation filters [7] whereas RNGLR does not.

The RNGLR algorithm combines adaptations in the parse table generation al-
gorithm with simplifications in the parser run-time algorithm. It is based on
Tomita’s algorithm, called Generalized LR (GLR) [24]. GLR extends the LR
parsing algorithm to work on all context-free grammars by replacing the stack of
the LR parsing algorithm with a Graph Structured Stack (GSS). Using the GSS
to explore different derivations in parallel, GLR can parse sentences for gram-
mars with parse tables that contain LR conflicts rather efficiently. However, the
GLR algorithm fails to terminate on certain grammars. Farshi’s algorithm fixes
the issue in a non-efficient manner, by introducing extra searching of the GSS
[16]. This algorithm is the basis for SGLR. The RNGLR algorithm fixes the same
issue in a more efficient manner.

RNGLR introduces a modified LR parse table: an RN table. RN tables are
constructed in a similar way to canonical LR tables, but in addition to the
standard reductions, reductions on right nullable rules are also included. A right
nullable rule is a production rule of the form A ::= αβ where β

∗⇒ ε3. By
reducing the left part of the right nullable rule (α) early, the RNGLR algorithm
avoids the problem that Tomita’s algorithms suffered from and hence does not
require Farshi’s expensive correction. However, since the right nullable symbols
of the rule (β) have not been reduced yet it is necessary to pre-construct the
parse trees of those symbols. These nullable trees are called ε-trees and since
they are constant for a given grammar, they can be constructed at parse table
generation time and included in the RN parse table. The early RN reduction
will construct a full derivation simply by including the pre-constructed trees.

It is well known that the number of parses of a sentence with an ambiguous
grammar may grow exponentially with the size of the sentence [9]. To avoid
exponential complexity, GLR-style algorithms build an efficient representation
of all possible parse trees, using subtree sharing and local ambiguity packing.
However, the SGLR and RNGLR algorithms construct parse trees in different
ways and use slightly different representations. RNGLR essentially follows the
approach described by Rekers – the creation and sharing of trees is handled
directly by the parsing algorithm – but does not construct the most compact
representation possible. The SGLR algorithm uses the ATerm library [27] to
construct parse trees thereby taking advantage of the maximal sharing it imple-
ments. This approach has several consequences. The parsing algorithm can be
simplified significantly by replacing all parse tree creation and manipulation code
with calls to the ATerm library. Although the library takes care of all sharing,
the creation of ambiguities and cycles requires extra work (see Section 4.1).

As previously mentioned, in addition to the different construction approaches,
a slightly different representation of parse forests is used. RNGLR labels interior
nodes using non-terminal symbols and uses packing nodes to represent ambigui-
ties [22]. SGLR labels interior nodes with productions and represents ambiguous

3 α, β are possibly empty lists of terminals and non-terminals, ε is the empty string
and

∗⇒ represents a derivation in zero or more steps

8

trees using ambiguity clusters labeled by non-terminal symbols. The reason that
production rules are used to label the interior nodes of the forest is to implement
some of the disambiguation filters that are discussed later in this section.

The SGLR algorithm is different from RNGLR mainly due to the filters that
are targeted at solving lexical ambiguity. Its filters for priority and preference
will be discussed as well. SGLR introduces the following four types of filters:
follow restrictions, rejects, preferences and priorities. Each filter type targets a
particular kind of ambiguity. Each filter is derived from a corresponding declar-
ative disambiguation construct in the SDF grammar formalism [7]. Formally,
each filter is a function that removes certain derivations from parse forests (sets
of derivations). Practically, filters are implemented as early in the parsing ar-
chitecture as possible, i.e. removing reductions from parse tables or terminating
parallel stacks in the GSS.

Four filter types. We now briefly define the semantics of the four filter types for
later reference. A follow restriction is intended to implement longest match and
first match behavior of lexical syntax. In the following example, the -/- operator
defines a restriction on the non-terminal I. Its parse trees may not be followed
immediately by any character in the class [A-Za-z0-9], which effectively results
in longest match behavior for I:

I ::= [A-Za-z][A-Za-z0-9] ∗ I -/- [A-Za-z0-9] (3.1)

In general, given a follow restriction A -/- α where A is a non-terminal and α
is a character class, any parse tree whose root is A ::= γ will be filtered if its
yield in the input string is immediately followed by any character in α. Multiple
character follow restrictions, as in A -/- α1.α2 . . . αn, generalize the concept. If
each of the n characters beyond the yield of A, fit in their corresponding class
αi the tree with root A is filtered. Note that the follow restriction incorporates
information from beyond the hierarchical context of the derivation for A, i.e. it
is not context-free.

The reject filter is intended to implement reservation, i.e. keyword reserva-
tion. In the following example, the {reject} attribute defines that the keyword
public is to be reserved from I:

I ::= [A-Za-z][A-Za-z0-9] ∗ I ::= “public”{reject} (3.2)

In general, given a production A ::= γ and a reject production A ::= δ{reject},
all trees whose roots are labeled A ::= δ{reject} are filtered and any tree whose
root is labeled A ::= γ is filtered if its yield is in the language generated by δ.
Reject filters give SGLR the ability to parse non-context-free languages such as
anbncn [29].

The preference filter is intended to select one derivation from several al-
ternative overlapping (ambiguous) derivations. The following example uses the
{prefer} attribute to define that in case of ambiguity the preferred tree should
be the only one that is not filtered. The dual of {prefer} is {avoid}.

I ::= [A-Za-z][A-Za-z0-9] ∗ I ::= “public” {prefer} (3.3)

9

In general, given n productions A ::= γ1 to A ::= γn and a preferred production
A ::= δ{prefer}, any tree whose root is labeled by any of A ::= γ1 to A ::= γn
will be filtered if its yield is in the language generated by δ. All trees whose roots
are A ::= δ{prefer} remain. Dually, given an avoided production A ::= κ{avoid}
any tree whose root is A ::= κ{avoid} is filtered when its yield is in one of the
languages generated by γ1 to γn. In this case, all trees with roots A ::= γ1 to
A ::= γn remain. Consequently, the preference filter can not be used to recognize
non-context-free languages.

The priority filter solves operator precedence and associativity. The following
example uses priority and associativity:

E ::= E “→” E{right} > E ::= E “or” E{left} (3.4)

The > defines that no tree with the “→” production at its root will have a child
tree with the “or” at its root. This effectively gives the “→” production higher
precedence. The {right} attribute defines that no tree with the “→” production
at its root may have a first child with the same production at its root. In general,
we index the > operator to identify for which argument a priority holds and map
all priority and associativity declarations to sets of indexed priorities. Given an
indexed priority declaration A ::= αBiβ >i Bi ::= δ, where Bi is the ith symbol
in αBiβ, then any tree whose root is A ::= αBiβ with a subtree that has Bi ::= δ
as its root at index i, is filtered. The priority filter is not known to extend the
power of SGLR beyond recognizing context-free languages.

4 SRNGLR

We now discuss the amalgamated algorithm SRNGLR that combines the scan-
nerless behaviour of SGLR with the faster parsing behaviour of RNGLR. The
SRNGLR algorithm is mainly different in the implementation of SGLR’s filters
at parse table generation time. All of SGLR’s filters need to be applied to the
static construction of RNGLR’s ε-trees. However, there are also some changes
in the other stages, parse-time and post-parse filtering. The reject filter was
changed for clarification and for improving the predictability of its behavior.
Note however that the latter change was applied to both SGLR and RNGLR
before measuring performance differences.

4.1 Construction of ε-trees

The basic strategy is to first construct the complete ε-trees for each RN reduction
in a straightforward way, and then apply filters to them. We collect all the
productions for nullable non-terminals from the input grammar, and then for
each non-terminal we produce all of its derivations, for the empty string, in a
top-down recursive fashion. If there are alternative derivations, they are collected
under an ambiguity node.

We use maximally shared ATerms [6] to represent parse trees. ATerms are
directed acyclic graphs, which prohibits by definition the construction of cycles.

10

However, since parse trees are not general graphs we may use the following trick.
The second time a production is used while generating a nullable tree, a cycle
is detected and, instead of looping, we create a cycle node. This special node
stores the length of the cycle. From this representation a (visual) graph can be
trivially reconstructed.

Note that this representation of cycles need not be minimal, since a part of the
actual cycle may be unrolled and we detect cycles on twice visited productions,
not non-terminals. The reason for checking on productions is that the priority
filter is specific for productions, such that after filtering, cycles may still exist,
but only through the use of specific productions.

4.2 Restrictions

We distinguish single character follow restrictions from multiple lookahead re-
strictions. The first are implemented completely statically, while the latter have
a partial implementation at parse table generation time and a partial implemen-
tation during parsing.
Parse table generation. An RN reduction A ::= α ·β with nullable tree Tβ in
the parse table can be removed or limited to certain characters on the lookahead.
When one of the non-terminals B in Tβ has a follow restriction B -/- γ, Tβ may
have less ambiguity or be filtered completely when a character from γ is on the
lookahead for reducing A ::= α · β. Since there may be multiple non-terminals
in Tβ , there may be multiple follow restrictions to be considered.

The implementation of follow restrictions starts when adding the RN reduc-
tion to the SLR(1) table. For each different kind of lookahead character (token),
the nullable tree for Tβ is filtered, yielding different instances of Tβ for different
lookaheads. While filtering we visit the nodes of Tβ in a bottom-up fashion. At
each node in the tree the given lookahead character is compared to the applicable
follow restrictions. These are computed by aggregation. When visiting a node la-
belled C ::= DE, the restriction class for C is the union of the restriction classes
of D and E. This means that C is only acceptable when both follow restrictions
are satisfied. When visiting an ambiguity node with two children labeled F and
G, the follow restrictions for this node are the intersections of the restrictions of
F and G. This means that the ambiguity node is acceptable when either one of
the follow restrictions is satisfied.

If the lookahead character is in the restricted set, the current node is filtered,
if not the current node remains. The computed follow restrictions for the current
node are then propagated up the tree. Note that this algorithm may lead to the
complete removal of Tβ , and the RN reduction for this lookahead will not be
added. If Tβ is only partially filtered, and no follow restriction applies for the
non-terminal A of the RN reduction, the RN reduction is added to the table,
including the filtered ε-tree.
Parser run-time. Multiple character follow restrictions cannot be filtered stat-
ically. They are collected and the RN-reductions are added and marked to be
conditional as lookahead reductions in the parsetable. Both the testing of the
follow restriction as well as the filtering of the ε-tree must be done at parse-time.

11

Before any lookahead RN-reduction is applied by the parsing algorithm, the
ε-tree is filtered using the follow restrictions and the lookahead information from
the input string. If the filtering removes the tree completely, the reduction is not
performed. If it is not removed completely, the RN reduction is applied and a
tree node is constructed with a partially filtered ε-tree.

4.3 Priorities

Parse table generation. The priority filters only require changes to be made
to the parse table generation phase; the parser runtime and post parse filtering
phases remain the same as SGLR. The priority filtering depends on the chosen
representation of the ε-trees (see also Section 3); each node holds a production
rule and cycles are unfolded once. Take for example S ::= SS{left}|ε. The filtered
ε-tree for this grammar should represent derivations where S ::= SS can be
nested on the left, but not on the right. The cyclic tree for S must be unfolded
once to make one level of nesting explicit. Then the right-most derivations can
be filtered. Such representation allows a straightforward filtering of all trees
that violate priority constraints. Note that priorities may filter all of the ε-tree,
resulting in the removal of the corresponding RN reduction.

4.4 Preferences

Parse table generation. The preference filter strongly resembles the priority
filter. Preferences are simply applied to the ε-trees, resulting in smaller ε-trees.
However, preferences can never lead to the complete removal of an ε-tree.
Post-parse filter. RN reductions labeled with {prefer} or {avoid} are processed
in a post-parse filter. This was already present in SGLR and has not needed any
changes.

4.5 Rejects

Parse table generation. If any nullable production is labeled with {reject},
then the empty language is not acceptable by that production’s non-terminal.
If such a production occurs in an ε-tree, we can statically filter according to the
definition of rejects in Section 3. If no nullable derivation is left after filtering,
we can also remove the entire RN reduction.
Parser run-time. Note that we have changed the original algorithm [29] for re-
ject filtering at parser run-time for both SGLR and SRNGLR. The completeness
and predictability of the filter have been improved. The simplest implementation
of reject is to filter redundant trees in a post-parse filter, directly following the
definition of its semantics given in Section 3. However, the goal of the imple-
mentation is to prohibit further processing on GSS stacks that can be rejected
as early as possible. This can result in a large gain in efficiency, since it makes
the parsing process more deterministic, i.e. there exist on average less parallel
branches of the GSS during parsing.

12

The semantics of the reject filter is based on syntactic overlap, i.e. ambiguity
(Section 3). So, the filter needs to detect ambiguity between a rejected production
A ::= γ{reject} and a normal production for A ::= δ. The goal is to stop further
processing reductions of A. For this to work, the ambiguity must be detected
before further reductions on A are done. Such ordering of the scheduling of
reductions was proposed by Visser [29]. However, the proposed ordering is not
complete. There are grammars for which the ordering does not have the desired
effect and rejected trees do not get filtered. Especially nested rejects and rejects
of nullable productions lead to such issues. Later alternative implementations of
Visser’s algorithm have worked around these issues at the cost of filtering too
many derivations.

Instead we have opted for not trying to order reductions anymore and to
implement an efficient method for not using rejected productions in derivations.
The details of this reject implementation are:

– Edges created by a reduction of a rejected production are stored separately
in GSS nodes. We prevent other reductions traversing the rejected edges,
thereby preventing possible further reductions on many stacks.

– In GLR, edges collect ambiguous derivations, and if an edge becomes rejected
because one of the alternatives is rejected, it stays rejected.

– Rejected derivations that escape are filtered in a post-parse tree walker. They
may escape when an alternative, non-rejected, reduction creates an edge and
this edge is traversed by a third reduction before the original edge becomes
rejected by a production marked with {reject}.

Like the original, this algorithm filters many parallel stacks at run-time with
the added benefit that it is more clearly correct. We argue that: (A) we do
not filter trees that should not have been filtered, (B) we do not depend on
the completeness of the filtering during parse time, and (C) we do not try to
order scheduling of reduce actions, which simplifies the code that implements
SRNGLR significantly.
The Post-parse filter of rejects simply follows the definition of its semantics as
described in Section 3. For the correct handling of nested rejects, it is imperative
to apply the filter in a bottom-up fashion.

5 Related work

The cost of general parsing as opposed to deterministic parsing or parsing with
extended lookahead has been studied in many different ways. Our contribution
is a continuation of the RNGLR algorithm applied in a different context.

Despite the fact that general context-free parsing is a mature field in Com-
puter Science, its worst case complexity is still unknown. The algorithm with
the best asymptotic time complexity to date is presented by Valiant [25]. How-
ever, because of the high constant overheads this approach is unlikely to be used
in practice. There have been several attempts at speeding the run time of LR
parsers that have focused on achieving speed ups by implementing the handle

13

finding automaton (DFA) in low-level code, [4, 13, 17]. A different approach to
improving efficiency is presented in [2, 3], the basic ethos of which is to reduce
the reliance on the stack. Although this algorithm fails to terminate in certain
cases, the RIGLR algorithm presented in [14] has been proven correct for all
context-free grammars.

Two other general parsing algorithms that have been used in practice are
the CYK [10, 15, 30] and Earley [11] algorithms. Both display cubic worst case
complexity, although the CYK algorithm requires grammars to be transformed
to Chomsky Normal Form before parsing. The BRNGLR [23] algorithm achieves
cubic worst case complexity without needing to transform the grammar.

Note however that the SGLR and the SRNGLR algorithm described in this
paper is more than a parsing algorithm. Filtering is a major factor too, which
makes SRNGLR incomparable to other parsing algorithms.

6 Conclusions

We improved the speed of parsing and filtering for scannerless grammars signif-
icantly by applying the ideas of RNGLR to SGLR. The disambiguation filters
that complement the parsing algorithm at all levels needed to be adapted and
extended. Together the implementation of the filters and the RN tables make
scannerless GLR parsing quite a bit faster. The application areas in software
renovation and embedded language design are directly serviced by this. It allows
experimentation with more ambiguous grammars, e.g. interesting embeddings of
scripting languages, domain specific languages and legacy languages.

Acknowledgements. We are grateful to Arnold Lankamp for helping to
implement the GSS garbage collection scheme for SRNGLR. The first author
was partially supported by EPSRC grant EP/F052669/1.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. John Aycock and R. Nigel Horspool. Faster generalised LR parsing. In Proceed-
ings 8th International Compiler conference, volume 1575 of LNCS, pages 32–46,
Amsterdam, March 1999. Springer-Verlag.

3. John Aycock, R. Nigel Horspool, Jan Janousek, and Borivoj Melichar. Even faster
generalised LR parsing. Acta Inform., 37(9):633–651, 2001.

4. Achyutram Bhamidipaty and Todd A. Proebsting. Very fast YACC-compatible
parsers (for very little effort). Softw., Pract. Exper., 28(2):181–190, February 1998.

5. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J.J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: a Component-Based Language
Development Environment. In R. Wilhelm, editor, CC’01, volume 2027 of LNCS,
pages 365–370. Springer-Verlag, 2001.

6. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient Anno-
tated Terms. Softw., Pract. Exper., 30(3):259–291, 2000.

14

7. M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser. Disambiguation Fil-
ters for Scannerless Generalized LR Parsers. In R. Nigel Horspool, editor, Compiler
Construction, volume 2304 of LNCS, pages 143–158. Springer-Verlag, 2002.

8. Martin Bravenboer, Éric Tanter, and Eelco Visser. Declarative, formal, and exten-
sible syntax definition for AspectJ. SIGPLAN Not., 41(10):209–228, 2006.

9. Keneth Church and Ramesh Patil. Coping with syntactic ambiguity or how to put
the block in the box on the table. American Journal of Computational Linguistics,
8(3–4):139–149, July–December 1982.

10. John Cocke and Jacob T. Schwartz. Programming languages and their compilers.
Technical report, Courant Institute of Mathematical Sciences, New York Univer-
sity, 1970.

11. Jay Earley. An efficient context-free algorithm. Comm. ACM, 13(2):94–102, Feb
1970.

12. Giorgios Robert Economopoulos. Generalised LR parsing algorithms. PhD thesis,
Royal Holloway, University of London, August 2006.

13. R. Nigel Horspool and Michael Whitney. Even faster LR parsing. Softw., Pract.
Exper., 20(6):515–535, June 1990.

14. Adrian Johnstone and Elizabeth Scott. Automatic recursion engineering of reduc-
tion incorporated parsers. Sci. Comp. Programming, 68(2):95–110, 2007.

15. T. Kasami and K. Torii. A syntax analysis procedure for unambiguous context-free
grammars. J. ACM, 16(3):423–431, 1969.

16. Rahman Nozohoor-Farshi. GLR parsing for ε-grammars. In Masaru Tomita, editor,
Generalized LR Parsing, chapter 5, pages 61–75. Kluwer Academic Publishers,
Netherlands, 1991.

17. Thomas J. Pennello. Very fast LR parsing. In SIGPLAN Symposium on Compiler
Construction, pages 145–151. ACM Press, 1986.

18. J. Rekers. Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam, 1992.

19. D.J. Salomon and G.V. Cormack. Scannerless NSLR(1) parsing of programming
languages. SIGPLAN Not., 24(7):170–178, 1989.

20. D.J. Salomon and G.V. Cormack. The disambiguation and scannerless parsing of
complete character-level grammars for programming languages. Technical Report
95/06, Dept. of Computer Science, University of Manitoba, 1995.

21. Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers. ACM Trans.
Program. Lang. Syst., 28(4):577–618, 2006.

22. Elizabeth Scott, Adrian Johnstone, and Rob Economopoulos. BRNGLR: a cubic
Tomita-style GLR parsing algorithm. Acta Inform., 44(6):427–461, 2007.

23. M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publishers, 1985.

24. L. G. Valiant. General context-free recognition in less than cubic time. J. Comput.
System Sci., 10:308–315, 1975.

25. M.G.J. van den Brand. Pregmatic, a generator for incremental programming en-
vironments. PhD thesis, Katholieke Universiteit Nijmegen, 1992.

26. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient annotated
terms. Softw., Pract. Exper., 30(3):259–291, 2000.

27. Guido van Rossum. Python reference manual. http://docs.python.org/ref/.
28. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of

Amsterdam, 1997.
29. D. H. Younger. Recognition and parsing of context-free languages in time n3.

Inform. and control, 10(2):189–208, 1967.

15

