
Bacatá: a generic notebook generator for DSLs
Mauricio Verano Merino

TUe
The Netherlands

m.verano.merino@tue.nl

Jurgen J. Vinju
CWI / TUe

The Netherlands
Jurgen.Vinju@cwi.nl

Tijs van der Storm
CWI / University of Groningen

The Netherlands
storm@cwi.nl

Abstract
Interactive notebooks, such as provided by the Jupyter plat-
form [2], are gaining traction in scienti�c computing, data
science, and machine learning. Developing a Jupyter kernel
machinery for a new language, however, requires consider-
able e�ort. In this extended abstract, we present Bacatá, a
language-parametric bridge between Jupyter and the Rascal
language workbench [3]. Reusing existing language compo-
nents, such as a parsers, interpreters, Read-Eval-Print Loop
(REPLs) and autocomplete, Bacatá generates a Jupyter kernel
machinery so that the DSL can be used in notebook form.
We sketch the architecture of Bacatá and demonstrate it in
action using a DSL for image processing, called Amalga.

1 Introduction
Notebooks are gaining traction in scienti�c computing, data
science, and machine learning, due to the capabilities they
provide in terms of development, documentation, execution
and results visualization. Notebooks support live code, re-
sults computation, and narrative text, all in the same rich
media document. Consequently, they are often used for com-
putational storytelling: explaining languages, libraries, algo-
rithms, etc. in an interactive way.

Jupyter [2] is the most popular platform for constructing
notebook applications. Jupyter notebooks platform can be
divided into two main parts: the web server and the note-
book document. The web server contains di�erent kernels
(interpreters), which runs and introspect user’s code. Those
kernels enable the communication between the platform and
the language.
Constructing a Jupyter kernel for a new language is a

time-consuming and error-prone task. It requires under-
standing and handling messages through the implementa-
tion of the Jupyter’s wire protocol and connecting it to a
language-speci�c read-eval-print-loop (REPL) which com-
putes results, displays errors, and produces rich media rep-
resentations. In this extended abstract, we present Bacatá, a
language-parametric framework for creating Jupyter note-
books with minimal e�ort. Bacatá acts as a bridge between
Jupyter and languages developed within the Rascal language
workbench [3]. As a result, language components that are

DSLDI’2017, October 2017, Vancouver, Canada
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
h�ps://doi.org/10.1145/nnnnnnn.nnnnnnn

DSL

Notebook
Kernel

Generator
Bacatá.jar

kernel.json

Figure 1. High-level overview of Bacatá

already developed within Rascal can be reused to drive the
generated Jupyter kernel.
We illustrate Bacatá in the context of a DSL for image

processing algorithms (i.e. Amalga). We expect Bacatá to be
a �rst step towards extending the editor services provided by
language workbenches [1] to include interactive notebooks.

2 Bacatá
Bacatá provides a bridge between the Jupyter notebook plat-
form and Rascal [3]. Rascal is a functionalmeta-programming
language for source code analysis and transformation, and
language workbench for DSL development. It has been suc-
cessfully used for developing DSLs in the domains of �nance,
digital forensics, and game economies. Bacatá extends Ras-
cal’s current set of IDE services with support for interactive
notebooks.
Figure 1 summarizes Bacatá’s architecture. A DSL imple-

mentation is the input to a Jupyter kernel generator, which
implements how the generic Bacatá executable should pro-
cess requests and responses from and to the Jupyter notebook
server.

To create a notebook interface using Bacatá, the language
developer needs to perform the following high-level steps:

1. De�ne a Rascal moduleM containing a function which
returns a REPL value (see below).

2. Call the function genKernel, with the name and location
of moduleM , and other con�guration parameters. This
generates a JSON �le (i.e. kernel.json) containing the
proper invocation to Bacatá when it is loaded into the
Jupyter platform.

3. Call the function startNotebookServer to start the Jupyter
Web server to load the kernel given as parameter (e.g.
M); Bacatá will start Rascal with M , and from then
on relay communication from Jupyter to the proper
handlers de�ned by the obtained REPL value.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

DSLDI’2017, October 2017, Vancouver, Canada Mauricio Verano Merino, Jurgen J. Vinju, and Tijs van der Storm

The Bacatá executable is language-parametric; all language-
speci�c con�guration is de�ned in Rascal through the REPL

datatype returned by main, which is de�ned as follows:

data REPL = repl(

Result(str), // the REPL evaluator ;
Completion(str,int), // the completor
Mode // the syntax highlighting mode

);

The �rst argument is a function representing the interpreter;
it receives the entered source string and returns a Result.
A result consists of an HTML element returned as a string
and/or a set of error messages. The second argument is a
function for tab-completion: given the current input and the
position of the cursor, it returns a list of suggestions which
will be shown in the editor. Finally, the last argument is a
value describing a CodeMirror syntax-highlighting mode for
use in the Jupyter code editor1; such modes can optionally be
automatically derived from a Rascal context-free grammar.
Apart from communicating between the evaluator and

completor on the one hand and the Jupyter server, on the
other hand, Bacatá also intercepts the standard output and
error streams of the interpreter and connects them to their
corresponding Jupyter streams. This means that an existing,
console-based REPL for a DSL, can be reused as is in the
context of Jupyter.

3 Case Study: Amalga
Amalga is a DSL for image processing algorithms which
have been implemented in Rascal. The aim of Amalga is to
abstract some of the programming complexity for people
who need to write image processing algorithms, but lack
a background in computer science. These algorithms have
to satisfy some restrictions in terms of performance and
portability. Amalga captures these constraints explicitly, and
translates high-level algorithms to Halide [4], a language for
image processing and computational photography. Halide is
an embedded DSL in C++ which produces highly optimized
code for multiple platforms.

We have implemented a notebook interface for Amalga us-
ing Bacatá. Commands entered in the notebook are compiled
to C++, then to native code, and executed in the background.
If the output of execution is an image, it is shown directly
in the browser by having the “interpreter” (in the REPL data
type) returning an img tag as a result, loading the image
from disk.
Figure 2 shows an example of the Jupyter notebook gen-

erated using Bacatá for Amalga. As it can be seen in the
�gure, some of the commands produce a rich output, but
some others do not provide an explicit output (i.e. they pro-
duce intermediate steps). Moreover, Bacatá also supports the
display of error messages. The type of output displayed by

1h�ps://codemirror.net/demo/simplemode.html

Figure 2. Example of an Amalga’s notebook

each command is entirely implemented in the Amalga REPL
module.

4 Conclusion
Interactive notebooks are becoming a popular way to inter-
act with programming languages. In this extended abstract,
we have presented Bacatá, a language-parametric framework
for de�ning Jupyter kernels for DSLs de�ned in the Rascal
language workbench. Bacatá abstracts the low-level wire pro-
tocol of Jupyter by o�ering a high-level registration API that
can be used directly from within Rascal. As result, existing
language artifacts (grammars, completors, REPLs etc.) can
be reused with only little glue code. We expect notebooks
to be an integral part of a language workbench’s interactive
language services.
As future direction for Bacatá, we plan to explore better

code completion by allowing the REPL interpreter to share
its state with the completor function and provide support
for rich, interactive output and visualization through the
embedding of Rascal’s Salix GUI library2.

References
[1] Sebastian Erdweg, Tijs van der Storm, Markus Völter, and Lau-

rence Tratt et al. 2015. Evaluating and comparing language work-
benches. Computer Languages, Systems & Structures 44 (2015), 24–47.

[2] Jupyter. 2015. Jupyter notebook. (2015). Retrieved July 24, 2017 from
h�p://jupyter.org

[3] Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2011. EASY Meta-
programming with Rascal. In GTTSE III. 222–289.

[4] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,
Saman Amarasinghe, and Frédo Durand. 2012. Decoupling Algorithms
from Schedules for Easy Optimization of Image Processing Pipelines.
ACM Trans. Graph. 31, 4, Article 32 (July 2012), 12 pages. h�ps://doi.
org/10.1145/2185520.2185528

2h�ps://github.com/cwi-swat/salix

https://codemirror.net/demo/simplemode.html
http://jupyter.org
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2185520.2185528
https://github.com/cwi-swat/salix

	Abstract
	1 Introduction
	2 Bacatá
	3 Case Study: Amalga
	4 Conclusion
	References

