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Abstract. Abstract syntax trees are a very common data-structure in language
related tools. For example compilers, interpreters, documentation generators, and
syntax-directed editors use them extensively to extract, transform, store and pro-
duce information that is key to their functionality.
We present a Java back-end forApiGen, a tool that generates implementations
of abstract syntax trees. The generated code is characterized by strong typing
combined with a generic interface and maximal sub-term sharing for memory
efficiency and fast equality checking. The goal of this tool is to obtain safe and
more efficient programming interfaces for abstract syntax trees.
The contribution of this work is the combination of generating a strongly typed
data-structure with maximal sub-term sharing in Java. Practical experience shows
that this approach is beneficial for extremely large as well as smaller data types.

1 Introduction

The technique described in this paper aims at supporting theengineering of Java tools
that process tree-like data-structures. We target for example compilers, program an-
alyzers, program transformers and structured document processors. A very important
data-structure in the above applications is a tree that represents the program or docu-
ment to be analyzed and transformed. The design, implementation and use of such a
tree data-structure is usually not trivial.

A Java source code transformation tool is a good example. Theparser should return
an abstract syntax tree (AST) that contains enough information such that a transforma-
tion can be expressed in a concise manner. The AST is preferably strongly typed to
distinguish between the separate aspects of the language. This allows the compiler to
statically detect programming errors in the tool as much as possible. A certain amount
of redundancy can be expected in such a fully informative representation. To be able
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Fig. 1. General layout of theJtom compiler.

to make this manageable in terms of memory usage the programmer must take care in
designing his AST data-structure in an efficient manner.

ApiGen [1] is a tool that generates automatically implementationsof abstract syn-
tax trees in C. It takes a concise definition of an abstract data type and generates C
code for abstract syntax trees that is strongly typed and uses maximal sub-term sharing
for memory efficiency and fast equality checking. The key idea of ApiGen is that a
full-featured and optimized implementation of an AST data-structure can be generated
automatically, and with a very understandable and type-safe interface.

We have extended theApiGen tool to generate AST classes for Java. The strongly
typed nature of Java gives added functionality as compared to C. For example, using
inheritance we can offer a generic interface that is still type-safe. There are trade-offs
that govern an efficient and practical design. The problem ishow to implement maxi-
mal sub-term sharing for a highly heterogeneous data-type in an efficient and type-safe
manner, and at the same time provide a generic programming interface. In this paper we
demonstrate the design of the generated code, and that this approach leads to practical
and efficient ASTs in Java. Note that we do not intend to discuss the design of the code
generator, this is outside the scope of this paper.

1.1 Overview

We continue the introduction with our major case-study, maximal sub-term sharing and
the process of generating code from data type definitions. Related work is discussed
here too. The core of this paper is divided over the followingsections:

– Section 2 — Two-tier interface of the generated AST classes.
– Section 3 — Generic first tier, theATerm data structure.
– Section 4 — A factory for maximal sub-term sharing:SharedObjectFactory.
– Section 5 — Generated second tier, the AST classes.

Figure 5 on page 7 summarizes the above sections and can be used as an illustration
to each of them. In Section 6 we describe results of case-studies and applications of
ApiGen, before we conclude in Section 7.

1.2 Case-study: theJtom compiler

As a case-study for our work, we introduceJtom [2]. It is a pattern matching compiler,
that adds the match construct to C, Java and Eiffel. The construct is translated to normal
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instructions in the host language, such that afterward a normal compiler can be used
to complete the compilation process. The general layout of the compiler is shown in
Figure 1. The specifics of compiling the match construct are outside the scope of this
paper. It is only relevant to know that ASTs are used extensively in the design of the
Jtom compiler, so it promises to be a good case-study forApiGen.

1.3 Maximal sub-term sharing

In the fields of functional programming and term rewriting the technique of maximal
sub-term sharing, which is frequently called hash-consing, has proved its benefits [3, 4],
however not in all cases [5]. The run-time systems of these paradigms also manipulate
tree-shaped data structures. The nature of their computational mechanisms usually lead
to significant redundancy in object creation.

Maximal sub-term sharing ensures that only one instance of any sub-term exists in
memory. If the same node is constructed twice, a pointer to the previously constructed
node is returned. The effect is that in many cases the memory requirements of term
rewriting systems and functional programs diminish significantly. Another beneficial
consequence is that equality of sub-terms is reduced to pointer equality: no traversal of
the tree is needed. If the data or the computational process introduce a certain amount
of redundancy, then maximal sub-term sharing pays off significantly. These claims have
been substantiated in the literature and in several implementations of programming lan-
guages, e.g [3].

Our contribution adds maximal sub-term sharing as a tool in the kit of the Java
programmer. It is not hidden anymore inside the run-time systems of functional pro-
gramming languages. We apply it to big data-structures using a code generator for het-
erogeneously typed abstract syntax trees. These two properties make our work different
from other systems that use maximal sub-term sharing.

1.4 Generating code from data type definitions

A data type definition describes in a concise manner exactly how a tree-like data-
structure should be constructed. It contains types, and constructors. Constructors define
the alternatives for a certain type by their name and the names and types of their chil-
dren. An example of such a definition is in Figure 2. Well-known formalisms for data
type definitions are for example XML DTD and Schemas [6], and ASDL [7].

As witnessed by the existence of numerous code generators, e.g. [1, 8, 7, 9, 10], such
concise descriptions can be used to generate implementations of tree data-structures in
any programming language. An important aspect is that if thetarget language has a
strong enough typing mechanism, the types of the data type definition can be reflected
somehow in the generated code.

Note that a heterogeneously typed AST representation of a language is important.
An AST format for a medium-sized to big language contains several kinds of nodes.
Each node should have an interface that is made specific for the kind of node. This
allows for static well-formedness checking by the Java compiler, preventing the most
trivial programming errors. It also leads to code on a higherlevel of abstraction.
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datatype Expressions
Bool ::= true

| false
| eq(lhs:Expr, rhs:Expr)

Expr ::= id(value:str)
| nat(value:int)
| add(lhs:Expr, rhs:Expr)
| mul(lhs:Expr, rhs:Expr)

Fig. 2. An example data type definition for an expression language.

As an example, suppose an AST of a Pascal program is modeled using a single
classNode that just has an array of references to otherNodes. The Java code will
only implicitly reflect the structure of a Pascal program, itis hidden in the dynamic
structure of theNodes. With a fully typed representation, different node types such as
declarations, statements and expressions would be easily identifiable in the Java code.

The classes of an AST can be instrumented with all kinds of practical features such
as serialization, the Visitor design pattern and annotations. Annotations are the ability to
decorate AST nodes with other objects. The more features offered by the AST format,
the more beneficial a generative approach for implementing the data-structure will be.

1.5 Related work

The following systems are closely related to the functionality of ApiGen:

ASDL [7, 11] is targeted at making compiler design a less tedious and error prone ac-
tivity. It was designed to support tools in different programming languages working on
the same intermediate program representation. For example, there are implementations
for C, C++, Java, Standard ML, and Haskell.

ApiGen for C [1] is a predecessor ofApiGen for Java, but written by different authors.
One of the important features is a connection with a parser generator. A syntax defini-
tion is translated to a data type definition which defines the parse trees that a parser
produces.ApiGen can then generate code that can read in parse trees and manipulate
them directly. In fact, our instantiation ofApiGen also supports this automatically, be-
cause we use the same data type definition language.

The implementation of maximal sub-term sharing inApiGen for C is based on
type-unsafe casting. The internal representation of everygenerated type is just a shared
ATerm, i.e.typedef ATerm Bool;. In Java, we implemented a more type-safe
approach, which also allows more specialization and optimization.

JJForester [8] is a code generator for Java that generates Java code directly from syntax
definitions. It generates approximately the same interfaces (Composite design pattern)
as we do. Unlike JJForester,ApiGen does not depend on any particular parser generator.
By introducing an intermediate data type definition language, any syntax definition that
can be translated to this language can be used as a front-end to ApiGen.

4



abstract public class Bool extends ATermAppl { ... }
package bool;

public class True extends Bool { ... }
public class False extends Bool { ... }
public class Eq extends Bool { ... }

abstract public class Expr extends ATermAppl { ... }
package expr;

public class Id extends Expr { ... }
public class Nat extends Expr { ... }
public class Add extends Expr { ... }
public class Mul extends Expr { ... }

Fig. 3. The generated Composite design sub-types a generic tree classATermAppl.

JJForester was the first generator to support JJTraveler [12] as an implementation of
the Visitor design pattern. We have copied this functionality in ApiGen directly because
of the powerful features JJTraveler offers (see also Section 5).

Pizza [13] adds algebraic data types to Java. An algebraic data type is also a data type
definition. Pizza adds much more features to Java that do not relate to the topic of this
paper. In that sense,ApiGen targets a more focused problem domain and can be used as
a more lightweight approach. Also, Pizza does not support maximal sub-term sharing.

Java Tree Builder [14] and JastAdd [15]are also highly related tools. They generate
implementations of abstract syntax trees in combination with syntax definitions. The
generated classes also directly support the Visitor designpattern.

All and all, the idea of generating source code from data typedefinitions is a well-
known technique in the compiler construction community. Wehave extended that idea
and constructed a generator that optimizes the generated code on memory efficiency
without loosing speed. Our generated code is characterizedby strong typing combined
with a generic interface and maximal sub-term sharing.

2 Generated interface

Our intent is to generate class hierarchies from input descriptions such as show in Fig-
ure 2. We propose a class hierarchy in two layers. The upper layer describes generic
functionality that all tree constructors should have. Thisupper layer could be a simple
interface definition, but better even a class that actually implements common function-
ality. There are two benefits of having this abstract layer:

1. It allows for reusable generic algorithms to be written ina type-safe manner.
2. It prevents code duplication in the generated code.

The second layer is generated from the data type definition athand. Figure 3 depicts
the class hierarchy that is generated from the definition show in the introduction (Figure
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abstract public class Bool extends ATermAppl {
public boolean isTrue() { return false; }
public boolean isFalse() { return false; }
public boolean isEq() { return false; }
public boolean hasLhs() { return false; }
public boolean hasRhs() { return false; }
public Expr getLhs() { throw new GetException(...); }
public Expr getRhs() { throw new GetException(...); }
public Bool setLhs(Expr lhs) { throw new SetException(...); }
public Bool setRhs(Expr rhs) { throw new SetException(...); }

}
package bool;
public class Eq extends Bool {

public boolean isEq() { return true; }
public boolean hasLhs() { return true; }
public boolean hasRhs() { return true; }
public Expr getLhs() { return (Expr) getArgument(0); }
public Expr getRhs() { return (Expr) getArgument(1); }
public Bool setLhs(Expr e) { return (Bool) setArgument(e,0); }
public Bool setRhs(Expr e) { return (Bool) setArgument(e,1); }

}

Fig. 4. The generated predicates setters and getters for theBool type and theEq constructor.

2). The Composite design pattern is used [16]. Every type is represented by an abstract
class and every constructor of that type inherits from this abstract class. The type classes
specialize some generic tree modelATermAppl which will be explained in Section
3. The constructor classes specialize the type classes again with even more specific
functionality.

The interface of the generated classes uses as much information from the data type
definition as possible. We generate an identification predicate for every constructor as
well as setters and getters for every argument of a constructor. We also generate a so-
called possession predicate for every argument of a constructor to be able to determine
if a certain object has a certain argument.

Figure 4 shows a part of the implementation of theBool abstract class and theEq
constructor as an example. The abstract typeBool supports all functionality provided
by its subclasses. This allows the programmer to abstract from the constructor type
whenever possible. Note that because this code is generated, we do not really introduce
a fragile base class problem here. We assume that every change in the implementation
of the AST classes inevitably leads to regeneration of the entire class hierarchy.

The class for theEq constructor has been put into a package namedbool. For every
type, a package is generated that contains the classes of itsconstructors. Consequently,
the same constructor name can be reused for a different type in a data type definition.
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Fig. 5. A diagram of the completeApiGen architecture.
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abstract class ATerm {
...
public ATerm setAnnotation(ATerm label, ATerm anno);
public ATerm getAnnotation(ATerm label);

}
public class ATermAppl extends ATerm {

...
public String getName();
public ATermList getArguments();
public ATerm getArgument(int i);
public ATermAppl setArgument(ATerm arg, int i);

}

Fig. 6. A significant part of the public methods ofATerm andATermAppl.

3 Generic interface

We reuse an existing and well-known implementation of maximally shared trees: the
ATerm library. It serves as the base implementation of the generated data-structures.
By doing so we hope to minimize the number of generated lines of code, profit from the
efficiency of the existing implementation and effortlesslysupport theATerm exchange
formats. It also immediately provides the generic programming interface for developing
reusable algorithms.

The ATerm data structure implements maximal sub-term sharing. However, this
implementation can not be reused for the generated tier by using inheritance. Why this
can not be done will become apparent in the next section.

TheATerm library offers five types of AST nodes: function application, lists, inte-
gers, reals and placeholders. In this presentation we concentrate on function application,
implemented in the classATermAppl. The abstract superclassATerm implements ba-
sic functionality for all term types. Most importantly, every ATerm can be decorated
with so-called annotations. We refer to [17] for further details concerningATerms, such
as serialization and the correspondence between XML andATerms.

The first version of our case-study,Jtom, was written without the help ofApiGen.
ATerms were used as a mono-typed implementation of all AST nodes. There were
about 160 different kinds of AST nodes in theJtom compiler. This initial version was
written quickly, but after extending the language with morefeatures the maintainability
of the compiler deteriorated. Adding new features became harder with the growing
number of constructors. By not using strict typing mechanisms of Java there was little
static checking of the AST nodes. Obviously, this can lead tolong debugging sessions
in order to find trivial errors.

4 Maximal sub-term sharing in Java

Before we can continue discussing the generated classes, wemust first pick a design
for implementing maximal sub-term sharing. The key featureof our generator is that
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it generates strongly typed implementations of ASTs. To implement maximal sub-term
sharing for all of these types we should generate a factory that can build objects of the
correct types.

4.1 The Factory design pattern

The implementation of maximal sub-term sharing is always based on an administration
of existing objects. In object-oriented programming a well-known design pattern can be
used to encapsulate such an administration: a Factory [16].

The efficient implementation of this Factory is a key factor of success for maximal
sharing. The most frequent operation is obviously looking up a certain object in the
administration. Hash-consing [5] is a technique that optimizes exactly this. For each
object created, or about to be created, a hash code is computed. This hash code is used
as an index in a hash table where the references to the actual objects with that hash code
are stored. In Java, the use of so-called weak references in the hash table is essential to
ensure that unused objects can be garbage collected by the virtual machine.

The ATerm library contains a specialized factory for creating maximally shared
ATerms: theATermFactory.

4.2 Shared Object Factory

The design of the originalATermFactory does not allow extension with new types of
shared objects. In order to deal with any type of objects a more abstract factory that can
create any type of objects must be constructed. By refactoring theATermFactory
we extracted a more generic component called theSharedObjectFactory. This
class implements hash consing for maximal sharing, nothingmore. It can be used to
implement maximal sharing for any kind of objects. The design patterns used are Ab-
stractFactory and Prototype. An implementation of this factory is sketched in Figure 7.

A prototype is an object that is allocated once, and used in different situations many
times until it is necessary to allocate another instance, for which a prototype offers a
method to duplicate itself. The Prototype design allows a Factory to abstract from the
type of object it is building [16] because the actual construction is delegated to the
prototype. In our case, Prototype is also motivated by efficiency considerations. One
prototype object can be reused many times, without the need for object allocation, and
when duplication is necessary the object has all private fields available to implement
the copying of references and values as efficiently as possible.

TheSharedObject interface contains aduplicatemethod1, anequivalent
method to implement equivalence, and ahashCodemethod which returns a hash code
(Figure 7). The Prototype design pattern also has an initialize method that has different
arguments for every type of shared-object. So it can not be included in a Java interface.
This method is used to update the fields of the prototype instance each time just before
it is given to thebuild method.

For a sound implementation we must assume the following properties of any imple-
mentation of theSharedObject interface:

1 We do not use theclone()method fromObject because ourduplicatemethod should
return aSharedObject, not anObject.
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public interface SharedObject {
int hashCode();
SharedObject duplicate();
boolean equivalent(SharedObject peer);
// void initialize(...); (changes with each type)

}
public class SharedObjectFactory {

...
public SharedObject build(SharedObject prototype) {

Bucket bucket = getHashBucket(prototype.hashCode());
while (bucket.hasNext()) {
SharedObject found = bucket.next();
if (prototype.equivalent(found)) {

return found;
}

}
SharedObject fresh = prototype.duplicate();
bucket.add(fresh);
return fresh;

}
}

Fig. 7. A sketch of the essential functionality ofSharedObjectFactory.

– duplicate always returns an exact clone of the object, with the exact same type.
– equivalent implements an equivalence relation, and particularly makes sure

that two objects of different types are never equivalent.
– hashCode always returns the same hash code for equal objects.

Any deviation from the above will most probably lead to classcast exceptions at run-
time. The following guidelines are important for implementing theSharedObject
interface efficiently:

– Memorize thehashCode in a private field.
– duplicate needs only a shallow cloning, because once a SharedObject iscreated

it will never change.
– Analogously,equivalent can be implemented in a shallow manner. All fields

that areSharedObject just need to have equal references.
– The implementation of theinitializemethod is pivotal for efficiency. It should

not allocate any new objects. Focus on copying the field references in the most
direct way possible.

Using theSharedObjectFactory as a base implementation, theATermFac-
tory is now extensible with new types of terms by constructing newimplementations
of theSharedObject interface, and adding their corresponding prototype objects.
The next step is to generate such extensions automatically from a data type definition.
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package bool;
public class Eq extends Bool implements SharedObject {

...
public SharedObject duplicate() {

Eq.clone = new Eq();
clone.initialize(lhs, rhs);
return clone;

}
public boolean equivalent(SharedObject peer) {

return (peer instanceof Eq) && super.equivalent(peer);
}
protected void initialize(Bool lhs, Bool rhs) {

super.initialize("Bool_Eq", new ATerm[] {lhs, rhs});
}

}

Fig. 8. The implementation of theSharedObject interface for theEq constructor.

5 The generated implementation

The completeApiGen architecture including the generated API for our running exam-
ple is depicted in Figure 5. Two main tasks must be fulfilled bythe code generator:

– Generating the Composite design for each type in the definition, by extending
ATermAppl, and implementing theSharedObject interface differently for each
class.

– Extending theATermFactory with a new private prototype, and a newmake
method for each constructor in the definition.

5.1 ATerm extension

Figure 8 shows how the genericATermAppl class is extended to implement anEq
constructor of typeBool. It is essential that it overrides all methods ofATermAppl
of theSharedObject interface, except the computation of the hash code. This reuse
is beneficial since computing the hash code is perhaps the most complex operation.

Remember how everyATermAppl has a name and some arguments (Figure 6). We
model theEq node of typeBool by instantiating anATermAppl with name called
“Bool Eq”. The two arguments of the operator can naturally be stored as the arguments
of theATermAppl. This is how a generic tree representation is reused to implement a
specific type of node.

5.2 Extending the factory

The specialized make methods are essential in order to let the user be able to abstract
from theATerm layer. An example generatedmakemethod is shown in Figure 9. After
initializing a prototype that was allocated once in the constructor method, thebuild
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class ExpressionFactory extends ATermFactory {
private bool.Eq protoBool_Eq;
public ExpressionFactory() {

protoBoolEq = new bool.Eq();
}
public bool.Eq makeBool_Eq(Expr lhs, Expr rhs) {

protoBool_Eq.initialize(lhs, rhs);
return (bool.Eq) build(protoBool_Eq);

}
}

Fig. 9. Extending the factory with a new constructorEq.

method fromSharedObjectFactory is called. The downcast tobool.Eq is safe
only becausebuild is guaranteed to return an object of the same type. This guar-
antee is provided by the restrictions we have imposed on the implementation of any
SharedObject.

Note that due to theinitializemethod, the already tight coupling between fac-
tory and constructor class is intensified. This method has a different signature for each
constructor class, and the factory must know about it precisely. This again motivates the
generation of such factories, preventing manual coevolution between these classes.

5.3 Specializing theATermAppl interface

Recall the interface ofATermAppl from Figure 6. There are some type-unsafe meth-
ods in this class that need to be dealt with in the generated sub-classes. We do want
to reuse these methods because they offer a generic interface for dealing with ASTs.
However, in order to implement type-safety and clear error messaging they must be
specialized.

For example, in the generatedBool Eq class we overridesetArgument as shown
in Figure 10. The code checks for arguments that do not exist and the type validity of
each argument number. The type of the arguments can be different, but in theBool Eq
example both arguments have typeExpr. Analogously,getArgument should be
overridden to provide more specific error messages than the generic method can.

Apart from type-safety considerations, there is also some opportunity for optimiza-
tion by specialization. As a simple but effective optimization, we specialize thehash-
Function method ofATermAppl because now we know the number of arguments
of the constructor. ThehashCode method is a very frequently called method, so sav-
ing a loop test at run-time can cause significant speed-ups. For a typical benchmark that
focuses on many object creations the gain is around 10%.

A more intrinsic optimization ofhashCode analyzes the types of the children
for every argument to see whether the chance of father and child having the same
hashCode is rather big. If that chance is high and we have deeply nestedstructures,
then a lookup in the hash table could easily degenerate to a linear search.

So, if a constructor is recursive, we slightly specialize the hashCode to prevent
hashing collisions. We make the recursive arguments more significant in the hash code
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public ATermAppl setArgument(ATerm arg, int i) {
switch(i) {

case 0: if (arg instanceof Expr) {
return factory.makeBool_Eq((Expr) arg,

(Expr) getArgument(1));
} else {

throw new IllegalArgumentException("...");
}

case 1: ...
default: throw new IllegalArgumentException("..." + i);

}
}

Fig. 10.The genericATermAppl implementation must be specialized to obtain type-safety.

computation than other arguments. Note that this is not a direct optimization in speed,
but it indirectly makes the hash-table lookup an order of magnitude faster for these
special cases.

This optimization makes most sense in the application areasof symbolic computa-
tion, automated proof systems, and model checking. In theseareas one can find such
deeply nested recursive structures representing for example lists, natural numbers or
propositional formulas.

5.4 Extra generated functionality

In the introduction we mentioned the benefits of generating implementations. One of
them is the ability of weaving in all kinds of practical features that are otherwise cum-
bersome to implement.

Serialization. The ATerm library offers serialization ofATerms as strings and as a
shared textual representation. So, by inheritance this functionality is open to the user
of the generated classes. However, objects of typeATermAppl are constructed by
theATermFactory while reading in the serialized term. From this genericATerm
representation a typed representation must be constructed. We generate a specialized
top-down recursive binding algorithm in every factory. It parses a serialized ATerm,
and builds the corresponding object hierarchy, but only if it fits the defined data-type.

The Visitor design patternis the preferred way of implementing traversal over object
structures. Every class implements a certain interface (e.g. Visitable) allowing a
Visitor to be applied to all nodes in a certain traversal order. This design pattern
prevents the pollution of every class with a new method for one particular aspect of a
compilation process, the entire aspect can be separated outin a Visitor class. JJ-
Traveler [12] extends the Visitor design pattern by generalizing the visiting order. We
generate the implementation of theVisitable interface in every generated construc-
tor class and some convenience classes to support generic tree traversal with JJTraveler.
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Pattern matchingis an algorithmic aspect of tree processing tools. Without apattern
matching tool, a programmer usually constructs a sequence of nestedif or switch
statements to discriminate between a number of patterns. Pattern matching can be au-
tomated using a pattern language and a corresponding interpreter or a compiler that
generates the nestedif andswitch statements automatically.

As mentioned in the introduction, our largest case-studyJtom [2] is such a pattern
matching compiler. One key feature ofJtom is that it can be instantiated for any data-
structure. As an added feature,ApiGen can instantiate theJtom compiler such that the
programmer can use our generated data-structures, and match complex patterns in a
type-safe and declarative manner.

6 Experience

ApiGen for Java was used to implement several Java tools that process tree-like data
structures. The following are the two largest applications:

– The GUI of an intergrated development environment.
– TheJtom compiler.

6.1 Benchmarks

Maximal sub-term sharing does not always pay off, since its success is governed by
several trade-offs and overheads [5]. We have run benchmarks, which have been used
earlier in [4], for validating our design in terms of efficiency. Several design choices
were put to the test by benchmarking the alternatives. They have not only confirmed
that maximal sub-term sharing does pay off significantly in such Java applications:

– A heterogeneously typed representation of AST nodes is faster than a mono-typed
representation, because more information is statically available.

– Specializing hash-functions improves the efficiency a little bit in most cases, and
enormously for some deeply recursive data-structures where the hash-function would
have degenerated to a constant otherwise.

– The design ofSharedObjectFactory based on AbstractFactory and Proto-
type introduces an insignificant overhead as compared to generating a completely
specialized less abstract Factory.

6.2 The GUI of an intergrated development environment

The ASF+SDF Meta-Environment [18] is an IDE which supports the development of
ASF+SDF specifications. The GUI is written in Java with Swing. It is completely sepa-
rated from the underlying language components, and communicates only via serializa-
tion of objects that are generated usingApiGen APIs.

Three data-structures are involved. An error data-structure is used to for displaying
and manipulating error messages that are produced by different components in the IDE.
A configuration format is used to store and change configuration parameters such as
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datatype Tree
Graph ::= graph(nodes:NodeList,

edges:EdgeList,
attributes:AttributeList)

Node ::= node(id:NodeId, attributes:AttributeList)

Edge ::= edge(from:NodeId,to:NodeId,attributes:AttributeList)

Attribute ::= bounding-box(first:Point,second:Point)
| color(color:Color)
| curve-points(points:Polygon)
| ...

Fig. 11.A part of the datatype definition for graphs, which is 55 LOC intotal.

menu definitions, colors, etc. The largest structure is a graph format, which is used for
visualizing all kinds of system and user-defined data.

ApiGen for Java is used to generate the APIs of these three data-structures. The
graph API consists of 14 types with 49 constructors that havea total of 73 children
(Figure 11).ApiGen generates 64 classes (14 + 49 + a factory), adding up 7133 lines
of code. The amount of hand-written code that uses Swing to display the data-structure
is 1171 lines. It actually uses only 32 out of 73 generated getters, 1 setter out of 73, 4
possession predicates, 10 identity predicates, and 4 generated make methods of this gen-
erated API. Note that all 73 make methods are used by the factory for the deserialization
algorithm which is called by the GUI once. The graph data is especially redundant at
the leaf level, where every edge definition refers to two nodenames that can be shared.
Also, node attributes are atomic values that are shared in significant amounts.

The error and configuration data types are much smaller, and so is the user-code
that implements functionality on them. Almost all generated getters are used in their
application, half of the predicates, no setters and no make methods. The reason is that
the GUI is mainly a consumer of data, not a producer. The data is produced by tools
written in C or ASF+SDF, that use the C APIs which have been generated from the
same data type definitions. So, theseApiGen definitions effectively serve as contracts
between producers and consumers of data.

6.3 Jtom based onApiGen

The ASTs used inJtom have 165 different constructors. We defined a datatype for these
constructors and generated a typed representation usingApiGen.

There are 30 types in this definition, e.g. Symbol, Type, Name, Term, Declaration,
Expression, Instruction. By using these class names in the Java code it has become more
easily visible in which part of the compiler architecture they belong. For example, the
“Instructions” are only introduced in the back-end, while you will find much references
to “Declaration” in the front-end of the compiler. As a result, the code has become
more self documenting. Also, by reverse engineering the ASTconstructors to a typed
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definition, we found a few minor flaws in the compiler and we clarified some hard parts
of the code.

ApiGen generates 32.544 lines of Java code for this datatype. Obviously, the au-
tomationApiGen offers is beneficial in terms of cost price in this case. Implementing
such an optimized and typed representation of this type of AST would not only be hard,
but also a boring and expensive job. Of the generated code 100% of the getters, make
functions and identity predicates are used in the compiler.None of the possesion predi-
cates and setters are used. Note that application of class pruning tools such as JAX [19]
would help to reduce the bytecode size by removing the code for the setters and the
possession predicates.

TheJtom compiler contains a number of generic algorithms for term traversal and
origin tracking. These algorithms already used the ATerm interface, but now they are
checked statically and dynamically for type errors. The generated specializations en-
force that all ASTs that are constructed are well formed withrespect to the original data
type definition.

Measuring the run-time efficiency and the memory consumption of the compiler
again produced numbers in favor of maximal sub-term sharing. Although we have to
admit that the compiler was designed a priori with maximal sharing in mind, so dis-
abling the sharing results in a rather redundant data-structure. It allowed us to forget
about the size of the AST while designing the compiler. We canstore all relevant in-
formation inside the ASTs without compromising memory consumption limitations.
Our experiences indicate that maximal sub-term sharing allows a compiler designer to
concentrate on the clarity of his data and algorithms ratherthan on efficiency consider-
ations.

The effect of introducing the generated layer of types in theJtom compiler could
not be measured quantitatively. The reason is that the current version is no longer com-
parable (in terms of functionality) to the previous versionbased on the untypedATerm
library. The details of the compilation changed too much to make any clear conclu-
sion. Still, theJtom compiler is as fast as it was before, and the code is now better
maintainable.

7 Conclusions

We presented a powerful approach,ApiGen for Java, to generate classes for ASTs based
on abstract data type descriptions. These classes have a two-tier interface. The generic
ATerm layer allows reusability, the specific generated layer introduces type-safety and
meaningful method names.

We conclude that compared to mono-typed ASTs that implementmaximal sub-term
sharing we have gained a lot of functionality and type-safety, and improved efficiency.
Secondly, compared to a non-sharing implementation of AST classes one can expect
significant improvements in memory consumption, in the presence of redundant object
creation.

To be able to offer maximal sub-term sharing in Java we have introduced a reusable
SharedObjectFactory. Based on the AbstractFactory and Prototype design pat-
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terns, it allows us to generate strongly typed maximally shared class hierarchies with
little effort. The class can be reused in different contextsthat require object sharing.

The generated classes are instrumented with practical features such as a generic
programming layer, serialization, the Visitor design pattern, and pattern matching. We
demonstrated their use by discussing theJtom compiler, and some other smaller exam-
ples.
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