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Abstract. Abstract syntax trees are a very common data-structurengukge
related tools. For example compilers, interpreters, d@ntation generators, and
syntax-directed editors use them extensively to extreamsform, store and pro-
duce information that is key to their functionality.

We present a Java back-end fgpiGen, a tool that generates implementations
of abstract syntax trees. The generated code is charalebiz strong typing
combined with a generic interface and maximal sub-termispdor memory
efficiency and fast equality checking. The goal of this t@old obtain safe and
more efficient programming interfaces for abstract syntead.

The contribution of this work is the combination of genargta strongly typed
data-structure with maximal sub-term sharing in Java.tRa@xperience shows
that this approach is beneficial for extremely large as wefiraaller data types.

1 Introduction

The technique described in this paper aims at supportingrigeneering of Java tools
that process tree-like data-structures. We target for @l@mompilers, program an-
alyzers, program transformers and structured documeiepsors. A very important
data-structure in the above applications is a tree thaksgmts the program or docu-
ment to be analyzed and transformed. The design, implet@m@nd use of such a
tree data-structure is usually not trivial.

A Java source code transformation tool is a good examplepateer should return
an abstract syntax tree (AST) that contains enough infoematich that a transforma-
tion can be expressed in a concise manner. The AST is préfesabngly typed to
distinguish between the separate aspects of the languhgeallows the compiler to
statically detect programming errors in the tool as muchassiple. A certain amount
of redundancy can be expected in such a fully informativeesgntation. To be able
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Fig. 1. General layout of thdtom compiler.

to make this manageable in terms of memory usage the progeamumst take care in
designing his AST data-structure in an efficient manner.

ApiGen [1] is a tool that generates automatically implementatiofsbstract syn-
tax trees in C. It takes a concise definition of an abstraa tgie and generates C
code for abstract syntax trees that is strongly typed anslmseimal sub-term sharing
for memory efficiency and fast equality checking. The keyaidé ApiGen is that a
full-featured and optimized implementation of an AST dstiarcture can be generated
automatically, and with a very understandable and type-isadrface.

We have extended th&piGen tool to generate AST classes for Java. The strongly
typed nature of Java gives added functionality as comparézl £or example, using
inheritance we can offer a generic interface that is stpleigafe. There are trade-offs
that govern an efficient and practical design. The problehois to implement maxi-
mal sub-term sharing for a highly heterogeneous data-type iefficient and type-safe
manner, and at the same time provide a generic programnterggne. In this paper we
demonstrate the design of the generated code, and thapihrieach leads to practical
and efficient ASTs in Java. Note that we do not intend to distius design of the code
generator, this is outside the scope of this paper.

1.1 Overview

We continue the introduction with our major case-study, ima sub-term sharing and
the process of generating code from data type definitionat&ework is discussed
here too. The core of this paper is divided over the followsagtions:

— Section 2 — Two-tier interface of the generated AST classes.

— Section 3 — Generic first tier, th&Term data structure.

— Section 4 — A factory for maximal sub-term shari@tar edCbj ect Fact ory.
— Section 5 — Generated second tier, the AST classes.

Figure 5 on page 7 summarizes the above sections and can dasisa illustration
to each of them. In Section 6 we describe results of caseestahd applications of
ApiGen, before we conclude in Section 7.

1.2 Case-study: theJtom compiler

As a case-study for our work, we introdudtem [2]. It is a pattern matching compiler,
that adds the match construct to C, Java and Eiffel. The naotss$ translated to normal



instructions in the host language, such that afterward enabcompiler can be used
to complete the compilation process. The general layouh@fcompiler is shown in
Figure 1. The specifics of compiling the match construct atside the scope of this
paper. It is only relevant to know that ASTs are used extehgivn the design of the
Jtom compiler, so it promises to be a good case-study\aiGen.

1.3 Maximal sub-term sharing

In the fields of functional programming and term rewriting ttechnique of maximal
sub-term sharing, which is frequently called hash-congiag proved its benefits [3, 4],
however not in all cases [5]. The run-time systems of thesadigms also manipulate
tree-shaped data structures. The nature of their compuotdtinechanisms usually lead
to significant redundancy in object creation.

Maximal sub-term sharing ensures that only one instancey$§ab-term exists in
memory. If the same node is constructed twice, a pointeré@thviously constructed
node is returned. The effect is that in many cases the menegyirements of term
rewriting systems and functional programs diminish sigafiitly. Another beneficial
consequence is that equality of sub-terms is reduced tagya@quality: no traversal of
the tree is needed. If the data or the computational proogssiuce a certain amount
of redundancy, then maximal sub-term sharing pays off 8@amitly. These claims have
been substantiated in the literature and in several impiatiens of programming lan-
guages, e.g [3].

Our contribution adds maximal sub-term sharing as a toohakit of the Java
programmer. It is not hidden anymore inside the run-timéesgs of functional pro-
gramming languages. We apply it to big data-structuregusicode generator for het-
erogeneously typed abstract syntax trees. These two piegperake our work different
from other systems that use maximal sub-term sharing.

1.4 Generating code from data type definitions

A data type definition describes in a concise manner exaaly & tree-like data-
structure should be constructed. It contains types, anstnartors. Constructors define
the alternatives for a certain type by their name and the samd types of their chil-
dren. An example of such a definition is in Figure 2. Well-kmdiermalisms for data
type definitions are for example XML DTD and Schemas [6], ai8DA [7].

As witnessed by the existence of numerous code generatgrfl 8, 7,9, 10], such
concise descriptions can be used to generate implememgatfdree data-structures in
any programming language. An important aspect is that iftéhget language has a
strong enough typing mechanism, the types of the data tyfieitten can be reflected
somehow in the generated code.

Note that a heterogeneously typed AST representation afgubge is important.
An AST format for a medium-sized to big language containesa\kinds of nodes.
Each node should have an interface that is made specific éokittd of node. This
allows for static well-formedness checking by the Java dampreventing the most
trivial programming errors. It also leads to code on a hidéeel of abstraction.



datatype Expressi ons

Bool true
fal se
eq(l hs: Expr, rhs: Expr)

nat (val ue:int)
add( | hs: Expr, rhs: Expr)
mul (I hs: Expr, rhs: Expr)

I
I
Expr ::=id(value:str)
I
I
I

Fig. 2. An example data type definition for an expression language.

As an example, suppose an AST of a Pascal program is moddlegl aisingle
classNode that just has an array of references to otNedes. The Java code will
only implicitly reflect the structure of a Pascal programisithidden in the dynamic
structure of théNodes. With a fully typed representation, different node typeshsas
declarations, statements and expressions would be edsiljifiable in the Java code.

The classes of an AST can be instrumented with all kinds aftjpa features such
as serialization, the Visitor design pattern and annatatidnnotations are the ability to
decorate AST nodes with other objects. The more featuresenffby the AST format,
the more beneficial a generative approach for implementiaglata-structure will be.

1.5 Related work

The following systems are closely related to the functitypalf ApiGen:

ASDL [7,11] is targeted at making compiler design a less tedious and erooe ac-
tivity. It was designed to support tools in different progwaing languages working on
the same intermediate program representation. For exathple are implementations
for C, C++, Java, Standard ML, and Haskell.

ApiGen for C [1] is a predecessor éfpiGen for Java, but written by different authors.
One of the important features is a connection with a parseergor. A syntax defini-
tion is translated to a data type definition which defines these trees that a parser
producesApiGen can then generate code that can read in parse trees and masmipu
them directly. In fact, our instantiation éfpiGen also supports this automatically, be-
cause we use the same data type definition language.

The implementation of maximal sub-term sharingAipiGen for C is based on
type-unsafe casting. The internal representation of eyengrated type is just a shared
ATerm, i.e.t ypedef ATer m Bool ;. In Java, we implemented a more type-safe
approach, which also allows more specialization and ogtation.

JJForester [8] is a code generator for Java that generates Java codeylfrentlsyntax
definitions. It generates approximately the same intesf@Cemposite design pattern)
as we do. Unlike JJForesté&piGen does not depend on any particular parser generator.
By introducing an intermediate data type definition langjamy syntax definition that
can be translated to this language can be used as a fronv-Api3en.



abstract public class Bool extends ATermAppl { ... }
package bool

public class True extends Bool { ... }

public class False extends Bool { ... }

public class Eq extends Bool { ... }
abstract public class Expr extends ATermAppl { ... }
package expr;

public class Id extends Expr { ... }

public class Nat extends Expr { ... }

public class Add extends Expr { ... }

public class Mil extends Expr { ... }

Fig. 3. The generated Composite design sub-types a generic tieAdlar mAppl .

JJForester was the first generator to support JJTravelga$leh implementation of
the Visitor design pattern. We have copied this functidgaéhi ApiGen directly because
of the powerful features JJTraveler offers (see also Se&fjo

Pizza [13] adds algebraic data types to Java. An algebraic data typeoisaata type
definition. Pizza adds much more features to Java that deefaierto the topic of this
paper. In that sens@piGen targets a more focused problem domain and can be used as
a more lightweight approach. Also, Pizza does not suppoximme sub-term sharing.

Java Tree Builder [14] and JastAdd [15&re also highly related tools. They generate
implementations of abstract syntax trees in combinatich wyntax definitions. The
generated classes also directly support the Visitor dgsadgpern.

All and all, the idea of generating source code from data tgfaitions is a well-
known technique in the compiler construction community. Wege extended that idea
and constructed a generator that optimizes the generatid @o memory efficiency
without loosing speed. Our generated code is charactebigstrong typing combined
with a generic interface and maximal sub-term sharing.

2 Generated interface

Our intent is to generate class hierarchies from input desmns such as show in Fig-
ure 2. We propose a class hierarchy in two layers. The upper describes generic
functionality that all tree constructors should have. Tupper layer could be a simple
interface definition, but better even a class that actuailyiéments common function-
ality. There are two benefits of having this abstract layer:

1. It allows for reusable generic algorithms to be writtela itype-safe manner.
2. It prevents code duplication in the generated code.

The second layer is generated from the data type definitibarad. Figure 3 depicts
the class hierarchy that is generated from the definitiomshehe introduction (Figure



abstract public class Bool extends ATer mAppl {

publ i c bool ean isTrue() { return false; }
publi c bool ean i sFal se() { return false; }
public bool ean i sEq() { return false; }
publ i c bool ean hasLhs() { return false; }
publ i c bool ean hasRhs() { return false; }
publ i c Expr getLhs() { throw new Get Exception(...); }
public Expr getRhs() { throw new Get Exception(...); }
public Bool setLhs(Expr |hs) { throw new SetException(...); }
public Bool setRhs(Expr rhs) { throw new SetException(...); }

}

package bool ;
public class Eq extends Bool {

public bool ean i sEq() { return true; }

publ i c bool ean hasLhs() { return true; }

publ i c bool ean hasRhs() { return true; }

public Expr getLhs() { return (Expr) getArgunent(0); }

publ i c Expr getRhs() { return (Expr) getArgunment(1); }

public Bool setLhs(Expr e) { return (Bool) setArgunent(e,0);
c ) {

publ i c Bool setRhs(Expr e return (Bool) setArgunent(e,1);

}

Fig. 4. The generated predicates setters and getters f@abé type and theEq constructor.

2). The Composite design pattern is used [16]. Every typepsasented by an abstract
class and every constructor of that type inherits from thigract class. The type classes
specialize some generic tree moddler mAppl which will be explained in Section
3. The constructor classes specialize the type classes agihi even more specific
functionality.

The interface of the generated classes uses as much infomfram the data type
definition as possible. We generate an identification pegdifor every constructor as
well as setters and getters for every argument of a consttibke also generate a so-
called possession predicate for every argument of a canstrto be able to determine
if a certain object has a certain argument.

Figure 4 shows a part of the implementation of Buo| abstract class and th
constructor as an example. The abstract #8pel supports all functionality provided
by its subclasses. This allows the programmer to abstraot the constructor type
whenever possible. Note that because this code is gengnagetb not really introduce
a fragile base class problem here. We assume that everyelratitge implementation
of the AST classes inevitably leads to regeneration of thieeeclass hierarchy.

The class for th&q constructor has been put into a package nabwad . For every
type, a package is generated that contains the classesoh#fructors. Consequently,
the same constructor name can be reused for a differentrygdata type definition.
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initialize(Bool lhs, Bool rhs) : voi
equivalent(Shared..
duplicate() : SharedObject

Fig. 5. A diagram of the complet&piGen architecture.




abstract class ATerm {

public ATerm set Annot ati on( ATerm | abel , ATer m anno);
public ATerm get Annot at i on( ATer m | abel ) ;

}

public class ATermAppl extends ATerm {

public String get Nane();

public ATernli st get Argunments();

public ATerm get Argunent (int i);

publ i c ATer mAppl set Argunent (ATermarg, int i);

}

Fig. 6. A significant part of the public methods 8ffer mandATer mAppl .

3 Generic interface

We reuse an existing and well-known implementation of matiynshared trees: the
ATerm library. It serves as the base implementation of the geeérdata-structures.
By doing so we hope to minimize the number of generated lihesde, profit from the
efficiency of the existing implementation and effortlesslypport theATerm exchange
formats. It also immediately provides the generic programgrinterface for developing
reusable algorithms.

The ATerm data structure implements maximal sub-term sharing. Hewetis
implementation can not be reused for the generated tieribg irsheritance. Why this
can not be done will become apparent in the next section.

The ATerm library offers five types of AST nodes: function applicatidists, inte-
gers, reals and placeholders. In this presentation we atrate on function application,
implemented in the clagsTer mAppl . The abstract supercla83er mimplements ba-
sic functionality for all term types. Most importantly, eyeATer mcan be decorated
with so-called annotations. We refer to [17] for furtheralistconcerning\Terms, such
as serialization and the correspondence between XMLAdadns.

The first version of our case-studigpm, was written without the help o&piGen.
ATerms were used as a mono-typed implementation of all AST nodesreTtvere
about 160 different kinds of AST nodes in them compiler. This initial version was
written quickly, but after extending the language with miga&tures the maintainability
of the compiler deteriorated. Adding new features becamddnawith the growing
number of constructors. By not using strict typing mechasisf Java there was little
static checking of the AST nodes. Obviously, this can leddng debugging sessions
in order to find trivial errors.

4 Maximal sub-term sharing in Java

Before we can continue discussing the generated classemusiefirst pick a design
for implementing maximal sub-term sharing. The key featfreur generator is that



it generates strongly typed implementations of ASTs. Tolé@mgnt maximal sub-term
sharing for all of these types we should generate a fact@atycddin build objects of the
correct types.

4.1 The Factory design pattern

The implementation of maximal sub-term sharing is alwayselaon an administration
of existing objects. In object-oriented programming a vkelbwn design pattern can be
used to encapsulate such an administration: a Factory [16].

The efficient implementation of this Factory is a key factbswccess for maximal
sharing. The most frequent operation is obviously lookipgaucertain object in the
administration. Hash-consing [5] is a technique that ojzé® exactly this. For each
object created, or about to be created, a hash code is cothfinis hash code is used
as an index in a hash table where the references to the abjeat®with that hash code
are stored. In Java, the use of so-called weak referenchs imesh table is essential to
ensure that unused objects can be garbage collected byrthal whachine.

The ATerm library contains a specialized factory for cnegtmaximally shared
ATerms: theATer nfFact ory.

4.2 Shared Object Factory

The design of the origindlTer nFFact or y does not allow extension with new types of
shared objects. In order to deal with any type of objects aerabstract factory that can
create any type of objects must be constructed. By refagjdtie ATer nfFact ory
we extracted a more generic component calledShar edObj ect Fact ory. This
class implements hash consing for maximal sharing, nothioge. It can be used to
implement maximal sharing for any kind of objects. The deggtterns used are Ab-
stractFactory and Prototype. An implementation of thisdacis sketched in Figure 7.

A prototype is an object that is allocated once, and usedf@rdnt situations many
times until it is necessary to allocate another instanaewfuch a prototype offers a
method to duplicate itself. The Prototype design allows etdtg to abstract from the
type of object it is building [16] because the actual corcdtan is delegated to the
prototype. In our case, Prototype is also motivated by efficy considerations. One
prototype object can be reused many times, without the neasbject allocation, and
when duplication is necessary the object has all privatdgiavailable to implement
the copying of references and values as efficiently as plessib

TheShar edQbj ect interface containsdupl i cat e method, anequi val ent
method to implement equivalence, anldas hCode method which returns a hash code
(Figure 7). The Prototype design pattern also has an iz#éiahethod that has different
arguments for every type of shared-object. So it can notdladed in a Java interface.
This method is used to update the fields of the prototyperiestaach time just before
it is given to thebui | d method.

For a sound implementation we must assume the followingestigs of any imple-
mentation of theshar edCbj ect interface:

! We do not use thel one() method fromObj ect because owlupl i cat e method should
return aShar edCbj ect , not anCbj ect .



public interface Sharedject {

i nt hashCode();

Shar edObj ect duplicate();

bool ean equi val ent (Shar edObj ect peer);

/1 void initialize(...); (changes with each type)

public class SharedObjectFactory {

publ i ¢ SharedObj ect buil d( SharedObj ect prototype) {

Bucket bucket = getHashBucket (prototype. hashCode());
whil e (bucket.hasNext()) {

Shar edObj ect found = bucket. next();

if (prototype.equival ent(found)) {

return found;

}
}
Shar edObj ect fresh = prototype. duplicate();

bucket . add(fresh);
return fresh;

Fig. 7. A sketch of the essential functionality 8har edObj ect Fact ory.

— dupl i cat e always returns an exact clone of the object, with the exanedspe.

— equi val ent implements an equivalence relation, and particularly reakae
that two objects of different types are never equivalent.

— hashCode always returns the same hash code for equal objects.

Any deviation from the above will most probably lead to claast exceptions at run-
time. The following guidelines are important for implemiegtthe Shar edCbj ect
interface efficiently:

— Memorize thehashCode in a private field.

— dupl i cat e needs only a shallow cloning, because once a SharedObgzeti®d
it will never change.

— Analogously,equi val ent can be implemented in a shallow manner. All fields
that areShar edObj ect just need to have equal references.

— The implementation of thieni t i al i ze method is pivotal for efficiency. It should
not allocate any new objects. Focus on copying the field eafees in the most
direct way possible.

Using theShar edObj ect Fact or y as a base implementation, tA€er nfac-
t ory is now extensible with new types of terms by constructing mplementations
of the Shar edObj ect interface, and adding their corresponding prototype dbjec
The next step is to generate such extensions automaticaityd data type definition.

10



package bool ;
public class Eq extends Bool inplenents SharedObject {

publ i c SharedObj ect duplicate() {
Eq. cl one = new Eq();
clone.initialize(lhs, rhs);
return cl one;

publ i ¢ bool ean equi val ent (Shar edObj ect peer) {
return (peer instanceof Eq) && super.equival ent(peer);
}

protected void initialize(Bool |hs, Bool rhs) {
super.initialize("Bool _Eq", new ATern{] {lhs, rhs});
}

}

Fig. 8. The implementation of th8har edObj ect interface for theEq constructor.

5 The generated implementation

The completéApiGen architecture including the generated API for our runningrax
ple is depicted in Figure 5. Two main tasks must be fulfilledhms/code generator:

— Generating the Composite design for each type in the deimitby extending
ATer mAppl , and implementing th8har edObj ect interface differently for each
class.

— Extending theATer nfact or y with a new private prototype, and a nevake
method for each constructor in the definition.

5.1 ATerm extension

Figure 8 shows how the geneder mAppl class is extended to implement &n

constructor of typdBool . It is essential that it overrides all methodsAfer mAppl

of theShar edObj ect interface, except the computation of the hash code. Thigereu

is beneficial since computing the hash code is perhaps theacowgplex operation.
Remember how evedTer mAppl has a name and some arguments (Figure 6). We

model theEq node of typeBool by instantiating arATer mAppl with name called

“Bool_Eq". The two arguments of the operator can naturally be dtagsghe arguments

of the ATer mAppl . This is how a generic tree representation is reused to immgaé a

specific type of node.

5.2 Extending the factory

The specialized make methods are essential in order todaiglr be able to abstract
from theATerm layer. An example generatathke method is shown in Figure 9. After
initializing a prototype that was allocated once in the ¢ardor method, théui | d

11



cl ass ExpressionFactory extends ATernfactory {
private bool . Eq protoBool _Eq;
publi c ExpressionFactory() {
pr ot oBool Eq = new bool . Eq() ;

public bool . Eq makeBool _Eq( Expr | hs, Expr rhs) {
prot oBool _Eq.initialize(lhs, rhs);
return (bool.Eq) buil d(protoBool _EQq);
}
}

Fig. 9. Extending the factory with a new constructeg,.

method fromShar edQbj ect Fact ory is called. The downcast ool . Eq is safe
only becauséui | d is guaranteed to return an object of the same type. This guar-
antee is provided by the restrictions we have imposed onntipdementation of any
Shar edObj ect .

Note that due to theni t i al i ze method, the already tight coupling between fac-
tory and constructor class is intensified. This method haffexeht signature for each
constructor class, and the factory must know about it pedci$his again motivates the
generation of such factories, preventing manual coevailietween these classes.

5.3 Specializing theATer mAppl interface

Recall the interface oATer mAppl from Figure 6. There are some type-unsafe meth-
ods in this class that need to be dealt with in the generatedisisses. We do want
to reuse these methods because they offer a generic ilmddadealing with ASTs.
However, in order to implement type-safety and clear erresgsaging they must be
specialized.

For example, in the generatBdol _Eq class we overridset Ar gunent as shown
in Figure 10. The code checks for arguments that do not exdtlae type validity of
each argument number. The type of the arguments can beattifférut in theBool _Eq
example both arguments have tygepr . Analogously,get Ar gunent should be
overridden to provide more specific error messages thangherig method can.

Apart from type-safety considerations, there is also sopp®dunity for optimiza-
tion by specialization. As a simple but effective optimiaat we specialize thbash-
Funct i on method ofATer mAppl because now we know the number of arguments
of the constructor. TheashCode method is a very frequently called method, so sav-
ing a loop test at run-time can cause significant speed-gps fypical benchmark that
focuses on many object creations the gain is around 10%.

A more intrinsic optimization ohashCode analyzes the types of the children
for every argument to see whether the chance of father and bhving the same
hashCode is rather big. If that chance is high and we have deeply nestteidtures,
then a lookup in the hash table could easily degenerate tearlsearch.

So, if a constructor is recursive, we slightly specialize tashCode to prevent
hashing collisions. We make the recursive arguments mgrefisiant in the hash code

12



public ATer mAppl set Argunment (ATermarg, int i) {
switch(i) {
case 0: if (arg instanceof Expr) {
return factory. makeBool _Eq((Expr) arg,
(Expr) getArgunent(1l));

} else {
throw new I || egal Argument Exception("...");
}
case 1:
default: throw new ||| egal Argunent Exception("..." + i);

}

}

Fig. 10. The genericATer mAppl implementation must be specialized to obtain type-safety.

computation than other arguments. Note that this is notectoptimization in speed,
but it indirectly makes the hash-table lookup an order of mitagle faster for these
special cases.

This optimization makes most sense in the application avEagmbolic computa-
tion, automated proof systems, and model checking. In thesas one can find such
deeply nested recursive structures representing for ebealisfs, natural numbers or
propositional formulas.

5.4 Extra generated functionality

In the introduction we mentioned the benefits of generatinglémentations. One of
them is the ability of weaving in all kinds of practical fee¢a that are otherwise cum-
bersome to implement.

Serialization. The ATerm library offers serialization oATerms as strings and as a
shared textual representation. So, by inheritance thistifumality is open to the user
of the generated classes. However, objects of #per mAppl are constructed by
the ATer nfact or y while reading in the serialized term. From this gené&lerm

representation a typed representation must be construskedenerate a specialized
top-down recursive binding algorithm in every factory. Hrpes a serialized ATerm,
and builds the corresponding object hierarchy, but onlififs the defined data-type.

The Visitor design patterns the preferred way of implementing traversal over object
structures. Every class implements a certain interfage Y&.si t abl e) allowing a

Vi si t or to be applied to all nodes in a certain traversal order. Thiggh pattern
prevents the pollution of every class with a new method fa particular aspect of a
compilation process, the entire aspect can be separatdd aufi si t or class. JJ-
Traveler [12] extends the Visitor design pattern by gerneraj the visiting order. We
generate the implementation of tiliesi t abl e interface in every generated construc-
tor class and some convenience classes to support gemericaversal with JJTraveler.

13



Pattern matchingis an algorithmic aspect of tree processing tools. Withopatern
matching tool, a programmer usually constructs a sequefcestedi f orswi t ch
statements to discriminate between a number of pattertter®Panatching can be au-
tomated using a pattern language and a corresponding lietergr a compiler that
generates the nestedl andswi t ch statements automatically.

As mentioned in the introduction, our largest case-stitdyn [2] is such a pattern
matching compiler. One key feature @tbm is that it can be instantiated for any data-
structure. As an added featufgiGen can instantiate thétom compiler such that the
programmer can use our generated data-structures, antl g@tlex patterns in a
type-safe and declarative manner.

6 Experience

ApiGen for Java was used to implement several Java tools that oeeslike data
structures. The following are the two largest applications

— The GUI of an intergrated development environment.
— TheJtom compiler.

6.1 Benchmarks

Maximal sub-term sharing does not always pay off, sinceltcasss is governed by
several trade-offs and overheads [5]. We have run benclenatiich have been used
earlier in [4], for validating our design in terms of effic@n Several design choices
were put to the test by benchmarking the alternatives. Tl mot only confirmed
that maximal sub-term sharing does pay off significantlyialsJava applications:

— A heterogeneously typed representation of AST nodes istfésin a mono-typed
representation, because more information is staticabylaile.

— Specializing hash-functions improves the efficiency &littit in most cases, and
enormously for some deeply recursive data-structuresentherhash-function would
have degenerated to a constant otherwise.

— The design ofShar edObj ect Fact ory based on AbstractFactory and Proto-
type introduces an insignificant overhead as compared tergéng a completely
specialized less abstract Factory.

6.2 The GUI of an intergrated development environment

The ASF+SDF Meta-Environment [18] is an IDE which suppohis development of
A SF+SDF specifications. The GUI is written in Java with Swing. It isqaletely sepa-
rated from the underlying language components, and conuates only via serializa-
tion of objects that are generated usiygGen APIs.

Three data-structures are involved. An error data-stradtuused to for displaying
and manipulating error messages that are produced byafitfeomponents in the IDE.
A configuration format is used to store and change configurgtarameters such as
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datatype Tree
Graph ::= graph(nodes: NodelLi st ,
edges: Edgeli st
attributes: AttributeList)

Node ::= node(id: Nodeld, attributes:AttributeList)
Edge ::= edge(from Nodel d, to: Nodel d, attri butes: Attri buteLi st)
Attribute ::= boundi ng-box(first: Point, second: Poi nt)

| color(col or: Col or)
| curve-points(points: Pol ygon)

Fig. 11. A part of the datatype definition for graphs, which is 55 LOGadtal.

menu definitions, colors, etc. The largest structure is plgfarmat, which is used for
visualizing all kinds of system and user-defined data.

ApiGen for Java is used to generate the APIs of these three dattises. The
graph API consists of 14 types with 49 constructors that teatetal of 73 children
(Figure 11).ApiGen generates 64 classes (14 + 49 + a factory), adding up 71338 line
of code. The amount of hand-written code that uses Swingsiaal the data-structure
is 1171 lines. It actually uses only 32 out of 73 generatetbggtl setter out of 73, 4
possession predicates, 10 identity predicates, and 4a@edanake methods of this gen-
erated API. Note that all 73 make methods are used by therfefictiathe deserialization
algorithm which is called by the GUI once. The graph data emlly redundant at
the leaf level, where every edge definition refers to two nuataes that can be shared.
Also, node attributes are atomic values that are sharegdifigiant amounts.

The error and configuration data types are much smaller, arisl the user-code
that implements functionality on them. Almost all genedagetters are used in their
application, half of the predicates, no setters and no madaoas. The reason is that
the GUI is mainly a consumer of data, not a producer. The daprdduced by tools
written in C or AsF+SDF, that use the C APIs which have been generated from the
same data type definitions. So, thegaGen definitions effectively serve as contracts
between producers and consumers of data.

6.3 Jtom based onApiGen

The ASTs used idtom have 165 different constructors. We defined a datatype &seth
constructors and generated a typed representation ApiGgn.

There are 30 types in this definition, e.g. Symbol, Type, Nafeem, Declaration,
Expression, Instruction. By using these class names iretheecbde it has become more
easily visible in which part of the compiler architectureyrbelong. For example, the
“Instructions” are only introduced in the back-end, whitaywill find much references
to “Declaration” in the front-end of the compiler. As a resiuhe code has become
more self documenting. Also, by reverse engineering the A&istructors to a typed
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definition, we found a few minor flaws in the compiler and weifiled some hard parts
of the code.

ApiGen generates 32.544 lines of Java code for this datatype. Q$lyiathe au-
tomationApiGen offers is beneficial in terms of cost price in this case. Impating
such an optimized and typed representation of this type dfw&uld not only be hard,
but also a boring and expensive job. Of the generated cod¥ Dd@he getters, make
functions and identity predicates are used in the compilene of the possesion predi-
cates and setters are used. Note that application of claesgrtools such as JAX [19]
would help to reduce the bytecode size by removing the codééosetters and the
possession predicates.

The Jtom compiler contains a number of generic algorithms for telamersal and
origin tracking. These algorithms already used the ATertarface, but now they are
checked statically and dynamically for type errors. Theegated specializations en-
force that all ASTs that are constructed are well formed wadpect to the original data
type definition.

Measuring the run-time efficiency and the memory consumptiothe compiler
again produced numbers in favor of maximal sub-term shaAfthough we have to
admit that the compiler was designed a priori with maximalrsig in mind, so dis-
abling the sharing results in a rather redundant datatsireiclt allowed us to forget
about the size of the AST while designing the compiler. We stane all relevant in-
formation inside the ASTs without compromising memory agngtion limitations.
Our experiences indicate that maximal sub-term sharirogvalla compiler designer to
concentrate on the clarity of his data and algorithms rathem on efficiency consider-
ations.

The effect of introducing the generated layer of types inXtwen compiler could
not be measured quantitatively. The reason is that the ruregsion is no longer com-
parable (in terms of functionality) to the previous versi@sed on the untypetlerm
library. The details of the compilation changed too much @kenany clear conclu-
sion. Still, theJtom compiler is as fast as it was before, and the code is now better
maintainable.

7 Conclusions

We presented a powerful approadipjGen for Java, to generate classes for ASTs based
on abstract data type descriptions. These classes havetetimmterface. The generic
ATerm layer allows reusability, the specific generated layeoitices type-safety and
meaningful method names.

We conclude that compared to mono-typed ASTs that implememtmal sub-term
sharing we have gained a lot of functionality and type-gafetd improved efficiency.
Secondly, compared to a non-sharing implementation of Ald$ses one can expect
significant improvements in memory consumption, in the @mes of redundant object
creation.

To be able to offer maximal sub-term sharing in Java we havedaced a reusable
Shar edObj ect Fact or y. Based on the AbstractFactory and Prototype design pat-
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terns, it allows us to generate strongly typed maximallyetialass hierarchies with
little effort. The class can be reused in different contéixéd require object sharing.

The generated classes are instrumented with practicalréssasuch as a generic
programming layer, serialization, the Visitor design eatt and pattern matching. We
demonstrated their use by discussingitem compiler, and some other smaller exam-
ples.
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