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Chapter 1IntroductionThe subject of this masters thesis is the improvement of the run-time performance ofthe code generated by the Asf+Sdf compiler [4, 9]. The ultimate goal is to improvethe run-time performance of lists in the generated C code. See [7] for an analysisof the current behavior of the compiler. Since lists are a frequently used feature ofAsf+Sdf it is interesting to know if their implementation can be optimized. Frompractical experience with minor and major Asf+Sdf speci�cations we have learnedthat lists are sometimes a real performance hazard.Algebraic speci�cation is a rather high level programming paradigm. The listsin Asf+Sdf bring it to an even higher level, they provide the programmer withimplicit construction of lists and with abstraction from list traversal. It is a challengeto implement these high level features as e�ciently as possible.These are the two separate subjects of interest when optimizing list reduction:construction of lists and list matching. Some ideas for optimizing them are discussedin this thesis. The construction of lists in the generated code is based on a generalpurpose library. Possible optimizations might be extensions of this library that useinformation that is speci�cally available in our context. The search for optimizationsin list matching will be more fundamental. We can search for speci�c classes ofproblems that have a more e�cient rewriting strategy than the general strategy.This thesis is part of a longterm project to improve the Asf+Sdf compiler. Itis a general exploration of the possibilities of optimizing list matching. We hopeto discover techniques that possibly improve the run-time behavior of compiledspeci�cations.1.1 OverviewThe following sections of the introduction describe Asf+Sdf, the Asf+Sdf com-piler and the ATerm library. This context information is needed because we willrefer to it later on in this thesis. It will give the reader a view on the internalsof the compiler and the speci�cs concerning lists. Ideas for optimizations are pre-sented in the next chapters, followed by a chapter that summarizes related work oncompilation of list reduction. We conclude with a summary in the �nal chapter.1.2 Asf+SdfAsf+Sdf is a general algebraic speci�cation formalism. The Sdf part stands forSyntax De�nition Formalism [15]. This is a formalism for the de�nition of thesyntax of context-free languages. The formalism provides means for de�ning lexicaland context-free grammar rules, associativity, and priorities. Figure 1.1 shows an5



imports Integersexportssorts Element Setcontext-free syntaxInt ! Element\[" Element� \]" ! SethiddensvariablesE \�"[0-9]� ! Element�E [0-9]� ! Elementequations[0] [E�1 E E�2 E E�3] = [E�1 E E�2 E�3]Figure 1.1: The Set speci�cation in Asf+Sdf.example of an Sdf speci�cation. Notice the de�nition of a list sort and the de�nitionof special list variables, which are important in this thesis.The Asf part stands for Algebraic Speci�cation Formalism. It can be used forthe de�nition of many sorted algebras. But in its executable form a speci�cation isactually a de�nition of a rewrite system. The rules of the algebra are interpretedas rewrite rules from left to right. They are called equations. Any term that canbe matched on a left-hand side of an equation can be rewritten as the right-handside. Although not adding any computational power, rules in Asf can have a list ofconditions. These conditions serve to facilitate programming in Asf+Sdf. A ruleis only applicable if all conditions are true. There is no priority between normalrules, but for each function a default rule can be de�ned, which is only applicableif all other rules fail. Equations can be non left-linear.A special feature of Asf+Sdf is list matching. Asf has special list sorts. Thevariables of these sorts can match zero or more terms in a list of terms. The equa-tions section in Figure 1.1 shows how list matching could be used to remove multipleoccurrences of a term from a list. This example demonstrates that list matchingallows for very elegant speci�cations. Using list variables all elements of a list areequally accessible without the speci�cation of explicit traversal. This is what iscalled associative or 
at lists1. Note that associative lists do not add computationalpower to Asf. A proof is given in [21], where associative list matching is reducedto term matching. This reduction to term matching is not wanted in the compilerbecause that would undo the e�ciency bene�t of a builtin list construct.The connection between Sdf and Asf is made by using the non-terminals inSdf as the sorts in Asf, grammar rules are functions in Asf and any sentence inthe language(s) de�ned in the Sdf part is a term of a sort in Asf. The resultof combining Asf with Sdf is that a speci�cation writer can easily manipulatethe abstract syntax representation of parsed input using a rewrite system. Notethat not only the syntax of the input is user-de�ned, but also the syntax of thefunctions on the input are de�ned in Sdf. Another important feature of Asf+-Sdf is modularization. Asf+Sdf speci�cations are divided into modules. Modulesimport each others functionality using an easy-to-use import mechanism withoutparameterizability or renaming capabilities.1Compare this to lists in functional languages, for example, where the head of the list is theonly accessible element. The tail is the only accessible sublist.6



Asf+Sdf has been successfully used for the complete and automatic implemen-tation of programming languages2 and automatic software renovation projects3.Also, Asf+Sdf is used for the implementation of the Asf+Sdf to C compilerand other major in-house projects. Currently, there is a programming environmentknown as the Asf+Sdf Meta-Environment consisting of syntax-directed editors,a parser generator and term evaluators. The compiler that generates C code fromAsf+Sdf speci�cations is part of the new and improved meta-environment that iscurrently being developed at CWI and UvA. This compiler is the subject of thismasters thesis.Semantics of AsfWe provide the reader with an indication of the semantics of Asf because theyform the starting point of the compiler. Of course, any optimization of the compilershould be conservative with respect to the semantics of Asf. A more in depthdiscussion of the semantics of Asf can be found in [3]. The semantics of Asfare described at the level of �Asf. �Asf is the abstract syntax representation ofAsf+Sdf. �Asf is actually a single sorted algebraic speci�cation formalism. But�Asf speci�cations have conditions, default rules and list matching just like Asfspeci�cations.The idea behind the semantics of �Asf is to have a deterministic reductionstrategy for Asf+Sdf speci�cations. The key points of the semantics are:� An innermost reduction strategy.� Conditions are normalized from left to right.� All conditions must be satis�ed before a rule can be applied.� Default rules are only tried if all other rules fail.� The ordering of the rules is arbitrary.� A term is in normal form if no rule can be applied to it.Apart from these general reduction issues, there is list reduction. A rule containinglist variables is called a list pattern. List variables in a pattern can match zero ormore terms in a list. The result is that an instance of a list can match a patternin several ways. Some of the matches may not satisfy all conditions, but othersmight. Therefor we need backtracking over the possible matches within a rule to�nd a match that does satisfy all conditions. In order for the backtracking to bedeterministic, an ordering must be de�ned on the possible matches. This orderingis de�ned by:� Let list( ~X) be a list pattern.� Let X1; : : : ; Xk be the sequence of list variables in list( ~X) in order of appear-ance.� A match is a function � : Xi ! SORT� that assigns a sublist to each Xi 2 ~X.� Let jXij be the length of the list assigned to Xi by �.� Li = jX1j; : : : ; jXkj is a sequence of lengths for a speci�c match i.2For example: parsers, pretty-printers, type-checkers and interpreters.3For example, a COBOL renovation factory. 7



module Setsignaturelist( );set( );conc( , );rulesset(list(conc(*E1, conc(E, conc(*E2, conc(E, conc(*E3))))))) =set(list(conc(*E1, conc(E1, conc(*E2, *E3)))));Figure 1.2: The Set speci�cation in �Asf.Ordering the sequences Li lexicographically induces an ordering on all possiblematches. The reduction strategy of list patterns is de�ned as reducing the lexico-graphically �rst match that meets all conditions. The result is deterministic and�nite backtracking within a single rewrite rule.Having an idea of the semantics of Asf+Sdf, we are now ready to discuss theAsf+Sdf to C compiler. We now have an indication that lists inAsf+Sdf possiblyintroduce a performance hazard. Namely, they introduce the need for backtracking.1.3 The Asf+Sdf to C compilerThe compilation of Asf+Sdf speci�cations to C is described in [7]. The implemen-tation of the compiler is written as an Asf+Sdf speci�cation [9]. The �rst problemis how to represent Asf speci�cations as parse trees, since their syntax is de�neddi�erently for each speci�cation. This is solved by the introduction of a notationfor Asf+Sdf speci�cations called AsFix4 [8]. The conversion from Asf+Sdf toAsFix removes the user-de�ned syntax by writing all functions in pre�x notation.Parsed Asf+Sdf speci�cations in AsFix are like any other language with a �xedsyntax and much easier to compile.The abstract syntax representation of AsFix inside the compiler is �Asf. The�Asf speci�cations are not translated to C code in a single complicated step. Aspeci�cation is changed gradually as the more complicated features of �Asf areresolved by the compiler. The �Asf code is only converted to C at the point wherethe translation from a �Asf function to a C function seems rather natural.Figure 1.4 shows an overview of the phases in the compilation process. Thecompilation starts with the parsing of Asf+Sdf to AsFix by a separate parser.Then the modules of a speci�cation are re-shu�ed, such that each �le contains therules of a single function. Then, roughly, each of these functions runs through thefollowing stages in the compiler:1. Preprocessing �Asf:(a) AsFix is translated to �Asf.(b) Complex matching conditions are translated to assignment conditions.(c) Non-left linear rules are translated to left-linear rules.(d) List matching in rules with only one list variable is removed (*).(e) Di�erent kinds of conditions are normalized to a single format.2. Translating �Asf to C:4AsFix is an acronym for Asf+Sdf Fixed format8



ATerm Set(ATerm arg0) fif(check sym(arg0, listsym)) fATerm tmp0 = arg 0(arg0);ATerm tmp1[2];tmp1[0] = tmp0;tmp1[1] = tmp1;while(not empty list(tmp0)) fATerm tmp3 = list head(tmp0);ATerm tmp2[2];tmp0 = list tail(tmp0);tmp2[0] = tmp0;tmp2[1] = tmp0;while(not empty list(tmp0)) fATerm tmp4 = list head(tmp0);tmp0 = list tail(tmp0);if(term equal(tmp3, tmp4)) freturn set(list(conc(slice(tmp1[0], tmp1[1]),conc(tmp3,conc(slice(tmp2[0], tmp2[1]),tmp0)))));gtmp2[1] = list tail(tmp2[1]);tmp0 = tmp2[1];gtmp1[1] = list tail(tmp1[1]);tmp0 = tmp1[1];ggreturn make nf(setsym, arg0);gFigure 1.3: The Set speci�cation in C. This is generated code, which is slightlymoderated in favor of readability.
9
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Figure 1.4: Overview of the compilation process.(a) Construction of constructor functions.(b) Construction of C functions from �Asf rules.3. Post-processing C:(a) Tail recursive calls are replaced by goto statements (*).(b) The usage of constants is detected and they are reused (*).Stages marked with (*) are optimizing steps, the others are essential stages inthe translation process. The C functions are build from the preprocessed �Asf bytranslating the left-hand sides of the rules to a matching automaton. Also, matchingconditions are merged into the matching automaton. The right-hand sides of therules are translated to function calls. After all, the function symbols on the right-hand side of a rule are translated to C functions themselves. Assignment conditionsof the rule are directly translated to C assignments. Notice how the innermostrewriting paradigm smoothly translates to C code because each �Asf function istranslated to a separate C function.The generated C code is dependent on a support library, which is discussedin the next section. This library provides the compiled speci�cations with builtinprimitives for matching and construction of terms. This library also takes care ofgarbage collecting, which keeps the generated C code slim and limited to the essenceof matching and rewriting.Some speci�cs about the translation of list matching need to be discussed.Firstly, the associative lists inAsFix are translated to cons notation in �Asf(Figure1.2). This cons notation translates immediately to the conc builtin of Table 1.1.The other list construction builtins are introduced only at the translation stage.There, list variables are translated to calls to the slice builtin and normal variablesof list patterns are translated to calls to the make list builtin.Secondly, the lexicographically ordered matches are traversed by while loops.Multiple list variables in a pattern correspond to nested while loops. The conditionsof a rule are checked in the innermost loop. When all conditions are met, thefunction returns with a call to the translated constructor functions of the reduct.Figure 1.3 shows the Set speci�cation translated to C.10



1.4 The ATerm libraryThe generated C code uses an abstract data-type called ATerm [16]. The ATermlibrary provides functionality for the creation and manipulation of terms (in theirabstract representation). The ATerm library also provides the user with singlylinked lists. Since rewriting is replacing terms, the e�ciency of the generated codeis very dependent on the implementation of the ATerm library. A lot of e�ort wasinvested to make the library both time and memory e�cient [5]. The use of theATerm library is not limited to the compiled Asf+Sdf speci�cations. It is a generictool used in many applications.Maybe the most important feature of the ATerm library is maximal sharing ofterms. This means that only one instance of a speci�c term is in memory at aspeci�c time. Terms are checked for existence using an e�cient hashing algorithm.This technique has proven to be very memory e�cient as well as time e�cient. Forexample, due to maximal sharing the equivalence test on terms is reduced to a singlepointer comparison. A negative consequence of maximal sharing is that destructiveupdates are not supported; a completely new instance will be constructed if a termis changed.The lists in the ATerm library are of most interest in this thesis naturally,because the generated code uses ATerm lists. They are represented by a singlylinked list of nodes. Each node contains information on the length, a pointer to theATerm it holds and a pointer to the next node. List nodes are also fully shared.Please note that this does not imply that every sublist can be shared among lists;only tails can be shared among lists due to the fact that the identity of a list nodeis partly de�ned by its reference to the next node. We immediately recognize aperformance issue here. For example, if the last element of a list is removed, theentire pre�x has to be copied.The ATerm library is wrapped by the support library to make the implementa-tion of generated C code independent of the implementation of the ATerm library.Also the support library introduces some extra functionality speci�c to the rewritingprocess and some bookkeeping procedures. Because the ATerm library is used bynumerous other projects, it cannot be changed signi�cantly to improve the run-timeperformance of compiled Asf+Sdf speci�cations. Unless the semantics and otherimportant design properties of the ATerm library remain constant, any optimizationconsidering ATerms must be implemented in the support layer.Remember how the right-hand sides of rules are translated into function calls.Since lists are a builtin construct, there are library functions needed for buildingnew lists from the matched variables in the left-hand side. See Table 1.1 for asimpli�ed view of their functionality and complexity. These builtins are e�ectivelywrappers of the ATerm library. Writing more specialized builtins for the rewritingprocess might be bene�cial. Notice that conc, a very frequently used builtin, islinear in the length of its �rst argument. This is because the second argument canbe reused as a tail. The other builtins need no further speci�c explanation.
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Declaration Description ComplexityATermList singleton(ATerm t) Creates a singletonlist O(1)ATerm list head(ATermList l) Returns the head O(1)ATermList list tail(ATermList l) Returns the tail O(1)ATermList conc(ATermList l1, ATermList l2) Concatenates l1 be-fore l2 O(jl1j)Boolean not empty list(ATermList l) Determines empti-ness O(1)Boolean is single element(ATermList l) Determines if l is asingleton O(1)ATermList slice(ATermList l1, ATermListl2) Returns the ele-ments between l1and l2. O(jl2j � jl1j)ATermList make list(ATerm l) Creates a singletonif l is not alreadya ATermList, other-wise it just returns l O(1)Table 1.1: Interface of the support library for lists.
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Chapter 2Optimizing list constructionThe representation of lists in the ATerm library is a singly linked list of ATerms.This is su�cient for �nding the lexicogra�cally �rst match because we can search thelist from left to right. The traversal primitives of the ATerm library are very fast.But the natural use of the library may prohibit a more e�cient implementation ofthe construction of lists in the context of rewriting. We will search for more e�cientalgorithms or data-structures for the list construction builtins of the support library.After studying some generated C code, we had an idea that makes the actualcreation of slices unnecessary. This is idea is discussed in Section 2.1. Then, inSection 2.2 we investigate the use of destructive lists as opposed to maximallyshared lists. Destructive lists might be a solution to the problem that a singledeletion of a list element can result in the copying of the entire list.2.1 Linearization2.1.1 MotivationWhen we take a look at the C code generated from the Set example in Figure 1.3, wesee that the translation of the right hand side of the rule is an expression containingthe builtin list functions from Table 1.1. A list is a linear construct, while this right-hand side is more like a tree. Each function in this expression tree returns a listthat is constructed and kept in memory. The idea is to replace this cons expressiontree by a single function, containing all the arguments of the original expression.This build function will have all necessary information to build the reduct withoutthe need for intermediate lists1. We will have linearized the cons expression to asingle argument list. This will probably save time as well as space2. For example,the result of the linearization of the Set example is given in Figure 2.1.If maximal sharing does have such a negative e�ect on list editing operations,it is imperative to �nd a fast implementation of list construction. And, it is likelythat any optimization in this matter will have a signi�cant e�ect. We will try theidea of a build function in a pilot implementation.2.1.2 Pilot implementationFirstly, the support library was extended with the build function. This build func-tion contains all arguments of the cons expression from left to right. Notice thatthe number of arguments of this build function is not constant. We have used a C1In the context of non-strict lazy functional languages, a similar idea is presented in [12].2The intermediate slices of the cons expression are most likely only needed for the building ofthis reduct, but they will occupy space on the heap.13



ATerm Set(ATerm arg0) fif(check sym(arg0, listsym)) fATerm tmp0 = arg 0(arg0);ATerm tmp1[2];tmp1[0] = tmp0;tmp1[1] = tmp1;while(not empty list(tmp0)) fATerm tmp3 = list head(tmp0);ATerm tmp2[2];tmp0 = list tail(tmp0);tmp2[0] = tmp0;tmp2[1] = tmp0;while(not empty list(tmp0)) fATerm tmp4 = list head(tmp0);tmp0 = list tail(tmp0);if(term equal(tmp3, tmp4)) freturn set(list(build(BEGIN,CONCAT,SLICE, tmp1[0],tmp1[1],CONCAT, tmp3,CONCAT,SLICE, tmp2[0], tmp2[1],tmp0,END)));gtmp2[1] = list tail(tmp2[1]);tmp0 = tmp2[1];gtmp1[1] = list tail(tmp1[1]);tmp0 = tmp1[1];ggreturn make nf(setsym, arg0);gFigure 2.1: The generated C code from the Set speci�cation, with the build function.
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function with a variable argument list to cover this3. The proper operation on eachof the arguments is expressed by some extra arguments (tags):� BEGIN indicates the beginning of a list.� CONCAT is a separator. This separator is actually not needed, but it is therefor the sake of readability.� SLICE means that all the elements between the next two argument nodes areinserted.� MAKE LIST inserts the next ATerm as an element or, if it is a list, it insertsall elements of this list.� END indicates the end of a list. This is needed, for there is no general way ofknowing how many arguments a function has in C.These integer labels can be distinguished from all possible pointer arguments be-cause they are all odd valued. Odd values are never pointers in C in most modernimplementations. The build function collects all elements of the list into a bu�erand creates an ATerm list from this bu�er. Because the cons expression reuses thetail, care is taken such that the build function does the same thing; a list is onlyinserted into the bu�er after it is clear that more elements need to be appendedbehind it. If it was the last argument, then the result is created by inserting theelements in the bu�er in front of this list. The code of the build function can befound in Appendix A.To test the build function the generated C code of three minor speci�cations waschanged by hand: Set (Figure 1.1), Symbol-Table (Figure 2.2) and Bubble (Figure2.3). The needed adaptations were rather simple and mechanical: �rst the consexpressions were wrapped by the build function. Then every cons function and itsbrackets were replaced by a CONCAT tag, every slice function by a SLICE tag, etc.Notice that the order in which the arguments of a cons expression appear does notchange due to these editing operations.2.1.3 MeasurementsTo measure the behavior of the build function we used pro�ling information4. Thetime spent in a rewrite rule depending on the number of redices in a test term wasmeasured. The reason for using Asf+Sdf speci�cations to measure is that we needreal motivation for introducing the build function into the code generation process.A theoretical chance of a signi�cant e�ect only is not reason enough for adaptingthe compiler.SetThe Set equation removes multiple occurrences of an element from a list. Forterms we used lists with a �xed pre�x of di�erent symbols followed by a linearlyincreasing number of equal elements. The results are in Figure 2.4. This �gureshows a signi�cant speedup.3There is an upper-bound on the number of arguments in a variable argument list in C. Intro-ducing the build function induces an upper-bound on the size of list patterns. This upper-boundis su�ciently large to expect that nobody will ever reach it.4The C compiler and a program called gprof [11] provide functionality for pro�ling C programs.15



imports Layoutexportssorts Pair Label Symbol-Tablelexical syntax[a-z]+ ! Labelcontext-free syntax\(" Label \;" Label� \)" ! Pair\[" Pair� \]" ! Symbol-TableSymbol-Table \++" Symbol-Table ! Symbol-Table frightghiddensvariablesL [0-9]� ! LabelL \�"[0-9]� ! Label�P [0-9]� ! PairP \�"[0-9]� ! Pair�S [0-9 0]� ! Symbol-Tableequations[0] [] ++ S = S[1] [(L; L�0) P�0] ++ [P�1 (L; L�1) P�2] = [P�0] ++ [P�1 (L; L�0 L�1) P�2][default] [(L; L �) P�0] ++ [P�1] = [P�0] ++ [(L; L �) P�1]Figure 2.2: The Symbol-Table speci�cation.
imports Integersexportssorts Listcontext-free syntax\[" Int� \]" ! ListhiddensvariablesInt [0-9]� ! IntInt \�"[0-9]� ! Int�equations[0] Int0 > Int1 = true[Int�0 Int0 Int1 Int�1] = [Int�0 Int1 Int0 Int�1]Figure 2.3: The Bubble speci�cation.16
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Figure 2.4: The time spent in the Set equation against the number of equal elements.Symbol-TableThe Symbol-Table speci�cation merges two lists of tuples. Symbol-Table is slightlydi�erent from the other examples because the merge function has two list arguments.Again, we use lists of linearly increasing size to measure the gain. The results inFigure 2.5 show a signi�cant speedup. We also notice local maxima in both graphs.The version using the build function reaches the local maximum at signi�cantlylarger input size.To explain these local maxima, we need some insight in the behavior of thegarbage collector of the ATerm library. We pro�led:� The garbage collector by counting the number of garbage collections.� The number of block allocations. A new block is allocated when the heuristicsof the garbage collector decide that space becomes too limited.� The number of hash-table resizes. The hash-table is resized when it becomesto small to hold all the currently used ATerms.The results of this pro�ling in Figure 2.6 show a drop in the number of garbagecollections exactly when an extra block is allocated.BubbleThe Bubble speci�cation implements the Bubblesort algorithm on lists of naturals.The terms we have used here are growing lists of naturals in completely reversedorder. Figure 2.7 shows the results. We notice a slight gain in performance.17
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Figure 2.7: The time spent in the Bubble equation against the number of elements.2.1.4 AnalysisThe results of the measurements show a signi�cant gain for Set and Symbol-Table.But the gain for Bubble is less noticeable. To explain these results we need a smallmodel of the situation. We have measured the total running time of a rule. So wewill seek an expression for the time spent reducing an entire recursive rule. Ourmodel will distinguish between the time spent to build a reduct, and the rest of thework, which includes evaluating all conditions:For any recursive rewrite rule: Let fi be the time spent to �nd the ithredex. Let li be the time spent to build the ith list reduct. Let ni be thelength of the ith list. Let ti be the length of the reused tail of the ith list.Let si = ni� ti. Let R be the number of recursive calls, or redices. Anyexecution of a recursive rewrite rule consists of �nding redices, whichincludes calculating conditions, and building reducts. Thus, we modelthe execution time of a recursive rewrite rule by:T = RXi=1(fi + li) (2.1)Notice that li will always be in O(ni), but fi can be much harder. Thetime that is needed for building a list linearly depends on the numberof elements that have to be inserted into (possibly intermediate) lists.For the building lists using cons expressions we write:li = 2si (2.2)Each element in the cons expression will be inserted twice: First intoa slice or singleton and then into the resulting list. The tail elements19



are reused, so they have no e�ect on the equation. All list builtins arelinear in the size of the input.The build function does not insert the elements in slices and single-tons, therefor we write for the build function:li = si (2.3)From this model we learn that the speedup of the build function not only dependson the speci�c rewrite rule and the size of the input, but also on the speci�c locationof the redices in the list. A large reusable tail will result in a small gain. The modelalso shows that building the reduct (li) can be insigni�cant compared to the rest ofthe work (fi). This e�ect is ampli�ed by recursive behavior.SetFor the Set equation and the terms we used for testing it, �nding a redex is in lineartime. Because we used a pre�x of unequal elements in each list si is rather large.So we have a considerable speedup.Symbol-TableThe Symbol-Table equation �nds its redices in linear time. So the gain of the buildfunction is noticeable. The local maxima seen in Figure 2.5 do not �t into ourmodel. These maxima occur at very speci�c input sizes.From Figure 2.6 we learn that the maximum is caused by a suddenly decreasingnumber of garbage collections. The need for garbage collections is gone, becauseanother block of memory is allocated according to internal heuristics of the ATermgarbage collector. The tradeo� between time e�ciency and memory e�ciency inthe ATerm library is made very visible in this example.From Figure 2.6 we also conclude that the optimized version uses less memory,because it allocates an extra block at 900 elements, while the unoptimized versionalready needs it at 550 elements.BubbleThe Bubble equation has more trouble �nding a redex. Firstly, an integer compari-son is not done in constant time. And we have a worst case of n2i integer comparisonsto do for �nding each redex. We notice that �nding a redex is considerably harderthan building the reduct. Therefor, the di�erence between the unoptimized and theoptimized version is not very large.2.1.5 General implementationThe above analysis motivates the implementation of this optimization into the codegeneration process. The build function seems to have a positive e�ect on timeand memory use. The support library has already been extended with the buildfunction. For a general implementation all we need to do is extend the compilerwith a transformation of cons expressions into build function calls.Remember how lists in �Asf are already represented by cons expressions. Butthe slice and make list functions are introduced at the �nal stage in the compilationpath. This is the reason for doing this transformation on the generated C code. Thecompiler does some other transformations on the C code5. Care is taken such thatthe build function does not interfere with these; the build is introduced after allother C level transformations.5For example, constant elimination [9]. 20



cons(Expression1, Expression2) ! CONCAT, Expression1, Expression2slice(Expression1, Expression2) ! SLICE, Expression1, Expression2make list(Expression) ! MAKE LIST, ExpressionFigure 2.8: TRS for translating cons expressions to arguments lists of the buildfunction.The transformation traverses the C grammar and �nds each cons expression. Itwraps the expression by the build function. Then it translates the cons expressionusing the TRS in Figure 2.8 to an argument list for the build function.2.1.6 TestingNow that we have extended the compiler and the support library with the buildfunction, it is time to test this optimization on a less trivial application. Thespeci�cation we tested was the generic pretty-printer of the new Meta-Environment[6]. This speci�cation makes frequent use of lists.After pro�ling PP we found that the gain of using the build function is minimal.In some cases, we even noticed a minimal drop in performance. When measuringthe number of list insert operations as an indication of the amount of work, wefound that the optimized version saves thousands of insert operations compared tothe normal version. But this is insigni�cant compared to the millions of insertionsin the entire speci�cation.The small overhead of the build function, due to the tags in the argument listand the need for a larger temporary bu�er to store all elements of the result, explainsthe performance drops. The generic pretty printer has more trouble with matchingthan with construction of list. We conclude that this speci�cation does not bene�tof the use of the build function.2.1.7 ConclusionThe build function has a positive e�ect on the time needed for building lists. Also, itsaves a considerable amount of memory. The gain of the build function is dependenton the speci�cation at hand. Speci�cations that have few elements in slices do notbene�t speci�cally from the build function. And speci�cations that have a hardtime �nding a redex will also notice little advantage from the build function.The implementation of this optimization consists of an extension of the supportlibrary and a modular extension of the compiler. Both do not interfere with anyexisting code.2.2 Destructive lists2.2.1 MotivationThe ATerm library does not do any destructive updates on terms. The consequencefor rewriting is that redices (terms) that are not in memory are build from scratch.When rewriting a recursive function, a lot of intermediate results are calculatedbefore a normal form is reached. When these intermediate results are lists theyusually do not di�er a lot between recursive calls. It seems like a waste of resources tobuild each intermediate result from scratch. Especially when large lists are involved,the use of a destructive data-structure might improve the runtime performance ofmany recursive rewrite rules. If we use the pieces of an existing list to build a21



redex, the complexity of building list redices might even be brought down fromO(#elements) to O(#variables).As said in the introduction, the ATerm library cannot be subject to any changes.But maybe we can do destructive updates within the controlled environment ofa single rewrite rule, using an new extension of the support library. We couldtransform ATerm lists to a destructive data-structure at the beginning of a recursiverewrite rule and convert it back to an ATerm when a local normal form is found.Because of the two conversion steps, this idea can only be bene�cial for recursiverewrite rules. The destructive representation of a list can be kept between recursivecalls.2.2.2 Pilot implementationApparently, this optimization is far more complex than the previous one. For ex-ample, the generated code must work with a completely di�erent data-structure.On the other hand, it is imperative to �nd an elegant solution, because we do notwant to change the entire compiler to perform this pretest. Read this section as afeasibility study for the application of a destructive list data-structure in the currentAsf+Sdf compiler. The pilot design falls into three major parts: the design of thedata-structure, the memory allocation and the list construction algorithms.Data-structureTo test the idea of destructive lists, we need a destructive data-structure �rst. Hereare the requirements on such a data-structure:� The operations on lists, which are mainly concatenation and slicing, must befaster than linear in the size of their arguments. We are not interested ina constant factor and the current implementation already performs in lineartime.� Conversion from ATerm list to destructive list and vice versa should be ascheap as possible.� Copying and creating a destructive lists should be relatively fast. The neededterms are not always available in memory.� The garbage collection of destructive lists must be clean and easy. We do notwant to introduce any memory leaks.� The representation of destructive lists must be memory e�cient.� The destructive lists must be compatible with the current rewriting strategy.We can change some details of the implementation, but the general strategymust remain the same. This is for the sake of simplicity.Di�erent data-structures can be considered. The �rst one that comes to mind is a Carray that represents the nodes of a list. C arrays allow for fast creation, destruction,copying and traversal. Also, this can be a very memory e�cient representation. Butconcatenation of slices using C arrays is in linear time. This contradicts one of theabove requirements. Any other acceptable data-structure in C would be some kindof linked list. An advantage of linked lists is that most operations can be done inplace. Next, we need to decide on the information stored in a node:� A reference to the actual element of the list. This is an ATerm pointer.� A reference to the next node. This is for left to right traversal.22



� A reference to the previous node. This is to facilitate slicing. The currentlist matching algorithm �nds matches slices using a left inclusive and a rightexclusive bounds. The right inclusive bounds can be found using the previouspointer in constant time.A linked list with the above speci�cations is easily implemented. But the compat-ibility with the existing generated C code is not tackled yet. When we comparethe normal ATerm lists with the above speci�cations, they almost comply. NormalATerm lists have a reference to the actual element, and a reference to the nextnode. Furthermore, they have a header containing some additional information andan extra pointer that is used to implement maximal sharing of ATerms.The idea is to use normal ATerm lists as a destructive list data-structure. Theextra pointer for maximal sharing can be used as a previous pointer because we donot need maximal sharing. We can �ll the header of this ATerm list with enoughinformation to trick the existing generated code into believing that it is a normalATerm list. This takes care of the compatibility problem; we hardly have to changeanything in the generated code. One disadvantage of using the ATerm list data-structure is that it uses more memory than required for this application6. But inthis context, simplicity of implementation is slightly more important than savingmemory cells.Finally, we need to be able to distinguish among normal ATerm lists and destruc-tive lists. The header seems to be the ideal tool for this purpose. Normal ATermlists keep a record of their length in the header. We cannot do this for destructivelists, because that would make every operation of at least linear complexity. Bysetting the length to zero of every destructive list we e�ectively distinguish themfrom normal ATerm lists.Memory allocation and freeingUsing the ATerm list nodes does not mean we can use the ATerm garbage collector.We do not want maximal sharing on these nodes, so we will have allocate and freethem ourselves. Firstly, what are the requirements on memory allocation and freeingof destructive lists? They need to be quick and simple. An extra garbage collectionscheme next to the ATerm garbage collector would not only be too complicatedin the context of a pilot implementation, it would probably also create a drop inperformance.If we do not introduce destructive lists globally, then let us assume that recursiverules will translate normal ATerm lists to destructive lists and the translation backto ATerm lists is done when a normal form is encountered. If we do not do thetransformation back to ATerm lists in the recursive rule, a separate mechanismmust be designed to do this. This contradicts the requirement of a simple garbagecollection scheme. So, the usage of our destructive data-structure is limited to asingle function. And memory allocation and garbage collection will be done withinthis rewrite rule.These choices imply that it will not be bene�cial for just any recursive ruleto use destructive lists. Only in case of tail recursion, which is replaced by a gotostatement by the compiler, the destructive lists can be maintained between recursivecalls. Although we now have a limited set of rules that comply, we are able to testthe positive e�ect of destructive lists.Firstly, there is a choice between allocating each node separately on the heap,or allocating a contiguous block of memory to hold all nodes within the function.The �rst alternative helps to ensure that no more memory is allocated than isneeded. But this solution introduces a problem with garbage collecting; during the6The header information seems to be unnecessary.23



reductions of a recursive rule a lot of nodes can become oblivious. These nodes areno longer referenced to by other nodes. Thus, extra bookkeeping of these nodes isrequired to prevent memory leaks.The easier solution is to allocate a larger block of memory for each rule. Allbuiltin list construction primitives can make use of this bu�er to create new nodes.The garbage collecting at the end of a function is now limited to freeing this singleblock of memory. A di�erent approach could be to share a global bu�er amongall rules that needs to be allocated only once during a calculation. But due toconditional rules, multiple recursive C functions can be on the stack at the sametime. This means that no function can clear the entire bu�er when it returns. Thiscalls for more sophisticated garbage collection, which contradicts the simplicityrequirement.In short, the following scheme was chosen: New destructive nodes are allocatedat the end of a local heap. Unused nodes are not reclaimed during the execution ofa function; the heap is freed when a recursive function returns. A function alwaysreturns normal ATerm lists.List constructionThe above decisions on the data-structure and memory allocation provide the frame-work for the algorithms of list construction. The interface of the build function of theprevious optimization is the starting point of this design. Since the build functioncontains all the arguments of the resulting list, we have all possible information athand. As opposed to cons expressions, where the information is distributed amongthe di�erent list construction builtins. If all nodes in the arguments can be reused,concatenation of slices can be done in constant time7 .The arguments of the new build function can be destructive lists as well asnormal ATerm lists. The build function returns destructive lists, so it should convertany normal arguments to destructive lists. As a side-e�ect, this postpones theconversion from ATerm lists to destructive lists to the time that it is actually needed;when a reduct is formed. Ergo, we let the build function take care of convertingfrom ATerms to destructive lists.The build function will concatenate singletons and slices in constant time. Butif only the beginning of a (destructive) list is given, it needs to be traversed tothe end. Traversal to the end of a list is postponed until another element, slice orlist needs to be concatenated. This is analogous to the way tails are reused in thenon-destructive build function.Then we have the problem of non-linearity. Consider a pattern that has twoinstances of a list variable in the right-hand side of a list pattern. The nodes of thisslice need to be copied once to construct a complete new destructive list. This prob-lem was not tackled in the pilot implementation, because the test speci�cations Set,Symbol-Table and Bubble are all linear. But in a possible general implementation,a solution for this problem must be found.2.2.3 MeasurementsWe have seen that the normal build function has positive e�ects on list construction.So we are interested in the e�ect of destructive lists compared to the performanceof the build function. The same speci�cations were adapted to use destructive lists:Set, Symbol-Table and Bubble. And the exact same terms were used to measurethe performance.The adaptation of the generated code of these speci�cations to use destructivelists was easily done due to the simplicity of the design. A local heap variable was7Constant time means not depending on the number of elements in the reduct.24
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Figure 2.9: The time spent in the Set equation against the number of elements.added to hold a pointer to a heap containing destructive list nodes. The buildfunction was renamed to the name of the destructive build function. And thearguments of normal forms were wrapped by a function that converts destructivelists back to ATerm lists.SetThe results of measuring the Set speci�cation are in Figure 2.9. The graph showsa linear increase in time for the destructive version. And a signi�cant speedupcompared to the normal build function.Symbol-TableThe graph of the Symbol-Table speci�cation is in Figure 2.10. This �gure shows aless impressive di�erence between each implementation. We notice that the localmaximum returned to approximately the same size as the implementation usingcons expressions.BubbleEven the Bubble speci�cation seems to bene�t signi�cantly from destructive lists.In Figure 2.11 we see that the graphs diverge for large lists.2.2.4 AnalysisWe extend our model of the previous analysis with an equation that approximatesthe behavior of the destructive build function:li = 1 (2.4)25
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Figure 2.10: The time spent in the Symbol-Table equation against the number ofelements.
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module Foosignaturelist( );foo( );conc( , );rulesfoo(list(conc(*E1, conc(E, conc(E, *E2)))) =foo(list(conc(*E2, *E2)))Figure 2.12: An example of a non right-linear pattern in �Asf.Here the constant one models the constant amount of list parts that have to beconcatenated. In our test speci�cations there is never the need for traversal whenbuilding the list. So, in the context of our test speci�cation, this model su�ces.The model predicts enormous gain when fi is in linear time. As seen in the Setexample, where execution time drops to almost independent of the input size. Butwhen �nding the redices is harder, such as in the Bubble speci�cation, we notice asmaller gain factor.2.2.5 General implementationThe results from the pilot implementation seem promising enough to try and �nda more general implementation of destructive lists in the compiler. But alreadywe have restricted ourselves by ensuring that the existence of a destructive list isbounded by a single rule (C function). This restriction not only prohibits a moregeneral implementation of destructive lists, it also has a negative on their possiblegain. The main issue is that the restriction causes the constant conversion fromand to ATerm lists. This conversion is in many ways an obstacle as we have seenin the previous section.In any case, the goal of this so called general implementation is to show thatdestructive lists is, or is not a possible solution to the performance issues of lists inthe Asf+Sdf compiler. If we have a slightly more general implementation in thecompiler of destructive lists, we can compile a non-trivial speci�cation and drawsome conclusions. The three test cases missed some features that can complicatethe implementation of destructive lists severely:� Non right-linear patterns. List variables can occur more than once in theright-hand side of a list pattern.� Passing destructive lists to conditions.Non-linear patternsFigure 2.12 shows a non-linear set pattern in �Asf. If we build the right-handside from the matched variables we obviously need to copy the values of the doublevariables. This problem can be solved either run-time or compile-time. A run-timesolution would be to adapt the destructive build function to keep track of the usedvariables. This solution inherently comes with a signi�cant overhead. So we choosefor a compile-time solution.A straightforward solution is to detect multiple occurrences of a variable and tochange the tags in front of these variables to indicate that copying is needed. Notethat this solution does imply a more complicated build function, since we need todistinguish among more di�erent tags than before. Figure 2.13 we show the result27



arg0 = list(dbuild(BEGIN, CONCAT, MAKE LIST, tmp[0], tmp[0], END));goto label_foo; ww�arg0 = list(dbuild(BEGIN, CONCAT, COPY MAKE LIST, tmp[0], tmp[0],END));goto label_foo;Figure 2.13: The right-hand-side of example of Figure 2.12 in C code. Multiple oc-curring variables are resolved by introducing COPY tags. Notice that tail recursionis resolved by a goto statement.of transforming the argument list of the build function to take care of multipleoccurrences of variables. This transformation is added to the compiler8.Passing destructive lists to conditionsThe evaluation of conditions introduces some problems. The arguments of someof the conditions in a recursive rewrite rule might be destructive lists. If we con-vert these lists back normal shared lists before we pass them on to the conditions,chances are that the performance drops signi�cantly; we will introduce the e�ect oftranslating lists back and forth in each recursive call.Take the compiled speci�cation in Figure 2.14 for example. A slice (list variable)is passed to an assignment condition. After that, the slice is used in the buildfunction to construct the right-hand-side. If the condition translates the list to anormal ATerm list, the build function will translate it to a destructive list. In thenext recursive step, the condition will translate the list again, etc.On the other hand, if we pass a destructive list to a condition, its consistencyis in danger. The assignment condition in Figure 2.14 for example, might very wellcontain a rewrite function that uses a slice of the list to check something. Withouta detailed data-
ow analysis of the entire Asf+Sdf speci�cation, we can neverbe sure if we can use the list after we have turned it over to a condition. Such adata-
ow analysis is beyond the scope of this masters thesis, but it may be an ideafor future work.We need to make sure that conditions never change destructive lists. To accom-plish this a trick is used: remember how we give each recursive rule its own heap ofdestructive nodes. We can check if a destructive list has its nodes on the local heapby comparing memory addresses9. If its nodes are on a di�erent heap, we need tocopy before we can change. If a condition only investigates a destructive list, thenthere is no unnecessary converting. Still, if we use this solution, there is a chanceof converting list from and to destructive lists in each recursive call. Which is theexact opposite of what we are trying to accomplish. Also notice that the strategy ofalways returning normal ATerm lists prohibits the reuse of the results of conditions.There is another consequence of passing destructive lists to conditions. A listcan be become part of a larger term, without being changed. This way a destructivelist can appear inside of a normal form, which evidently goes wrong when the callingfunction returns and frees its local heap. One way to ensure that a destructive listis never part of a normal form is to adapt the builtins that create normal forms10to traverse all terms and convert destructive lists. We tried this approach and wenoticed a large drop in performance.8The rewrite function to do this transformation is very similar to the Set equation.9Each local heap is a consecutive block of memory.10These builtins are part of the support library.28



ATerm Bar(ATerm arg0) flabel Bar:if(check sym(arg0, listsym)) fATerm tmp0 = arg 0(arg0);ATerm tmp1[2];tmp1[0] = tmp0;tmp1[1] = tmp1;while(not empty list(tmp0)) fATerm tmp3 = list head(tmp0);ATerm tmp2[2];tmp0 = list tail(tmp0);tmp2[0] = tmp0;tmp2[1] = tmp0;while(not empty list(tmp0)) fATerm tmp4 = list head(tmp0);tmp0 = list tail(tmp0);if(term equal(tmp3, tmp4)) fATerm tmp5 = mycondition(list(tmp0));if(check sym(tmp5, listsym)) farg0 = list(dbuild(BEGIN, CONCAT, SLICE, tmp1[0],tmp1[1], CONCAT, tmp3, CONCAT,SLICE, tmp2[0], tmp2[1],MAKE LIST, tmp0, END));goto label Bar;gtmp2[1] = list tail(tmp2[1]);tmp0 = tmp2[1];gtmp1[1] = list tail(tmp1[1]);tmp0 = tmp1[1];ggreturn make nf(Barsym, arg0);g Figure 2.14: A compiled speci�cation with list variables in conditions.
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If checking all normal forms for destructive lists is ine�cient, we need to restrictthe search for destructive lists. Unfortunately, there is no easy way of doing this.The conditions in Asf+Sdf rules are the cause of this. They make it possible to\bury" a destructive list deep inside of a normal form. Possibly with a speci�cationwide data-
ow analysis, we could �nd out which terms need converting.2.2.6 ConclusionUsing the pilot implementation of destructive lists we have shown that destructivelists can result in a serious gain in performance. Problems that were tackled arethe choice of data-structure and the list building algorithm.But our design severely limited a possible general implementation. The conver-sion from and to destructive lists is a major bottleneck, especially when lists arepassed to conditions. A more general approach would certainly bene�t the possiblegain of destructive lists. If destructive lists are wanted in the generated code, werecommend a global introduction of non shared list nodes. This would relief us fromthe burden of conversion. A global garbage collecting scheme for destructive nodeswould have to be designed coexisting with the garbage collection of fully sharedterms.Consistency problems when passing destructive lists to conditions were solvedhere by a memory comparison depending on the local heap allocation. In a possiblegeneral application of destructive lists, applying the same trick might not be pos-sible. Possible solutions could use a compile-time data-
ow analysis of the entirespeci�cation, run-time reference counting or a combination of these techniques.We were not able to test a non-trivial speci�cation due to the above problems.There is an obvious opportunity for future work.
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Chapter 3Optimizing list matchingAs said in the previous chapter, the ATerm library performs well at list traversal.The general approach to extensively search a list for a pattern works well, but inthe case of direct recursive rewrite rules there is more information on matches. Forexample, in the Set speci�cation in Figure 1.1 elements that are matched in the�rst list variable certainly do not occur in the rest of the list. We know that forsure, because we just searched the list for them and did not �nd anything. So, thenext recursive call does not have to check them again.Recursive list patterns are prone to be ine�cient. In the current implementation,each recursive call does an extensive search on a possible match. Recursive patternsare a frequently used programming style inAsf+Sdf. The combination of recursionand list matching results in very concise and clear speci�cations. For example, thisprogramming style is used extensively in the generic pretty printer of the Meta-Environment [6]. Almost the entire functionality of this speci�cation is encodedusing list matching rules and most of them are recursive. The result is a highlyreadable speci�cation but after compilation we are left with a rather ine�cientexecutable. If the generic pretty printer was written using explicit list traversal1 wewould have obtained a rather obscure speci�cation, but with a better performance.It would be preferable to have both readable and e�cient speci�cations, so we willtry to �nd a solution for this problem.This chapter describes a search for a general approach to exploit extra infor-mation due to recursive rules. If a general solution cannot be found, there is stillthe possibility of handling speci�c recursive patterns. In both cases, there are twoproblems to be tackled. Firstly, how do we detect such patterns? Secondly, whatoptimizing strategy do we use? The goal is to create a compiler that can optimizespeci�cations without help of the speci�cation writer2.One of the reduction strategies mentioned in [1] is the multiple reduction strategyfor regular (orthogonal) rewrite systems. The strategy �rst identi�es all possiblematches in a term and then simultaneously contracts them. We would like some-thing similar for list patterns, although they are by de�nition not regular. Firstidentifying matches would relief us from searching from the beginning in each re-cursive call.One of the issues here is not to change the normalization properties of a rule.The speci�cation writer expects a lexicographical ordering on the matches. Somepatterns might depend on that, others might be executed using a di�erent andpossibly faster strategy to get the same resulting normal form. List patterns that areguaranteed to reach a unique normal form using any reduction strategy are called1I.o.w. without list matching2Some formal languages, like Stratego [22], take another approach and let the user guide therewriting process to obtain an e�cient implementation.31



con
uent. The Set equation in Figure 1.1 is an obvious example. The followingexample equation is a trivial non con
uent pattern:[X�; a; a; Y �] = [X�; b; a; Y �] (3.1)In [20] several properties of Asf+Sdf speci�cations are calculated automaticallyusing Asf+Sdf. Unfortunately, none of these methods apply to our setting. Ingeneral, it is not always easy to prove con
uence of non-regular rewrite systems3.Besides the discussion on con
uence, it is interesting to know if there are reduc-tion strategies that perform faster than the straightforward lexicographical order-ing. Firstly, we will present some ideas for reduction strategies on recursive rules.Secondly, we will address the problem of detection.3.1 Continuous list patternsFor instance, consider the class of left-linear list patterns that start with a listvariable and end with a list variable. The second constraint is that these two listvariables do not occur in the conditions. The third constraint is that these listvariables are part of the reduct too. This is what such patterns look like:f(X�; <pattern>; Y �) = f(X�; <pattern>0; Y �) (3.2)We name this the class of continuous list patterns. The key functionality of therule is coded in <pattern>. The list variables X� and Y � only serve to indicatethat this <pattern> may occur anywhere in the list.We observe that the right-hand sides of such patterns contain the matched vari-able X�. The recursive call to f will try to �nd <pattern> in X�, which is possiblysuper
uous; the current instance of f has already decided that X� can not bematched with <pattern>. Especially when a lot of conditions have to be evaluatedfor each match, not searching this pre�x again will save time.The right-hand side of the rule might introduce a redex that contains matcheson a smallerX�. Therefor, we need another check of the list before we can be sure itis in normal form. An idea for an optimization is to change all continuous patternsto this:f(<pattern>0; Y �) = f(Z�) =) f(X�; <pattern>; Y �) = f(X�; Z�) (3.3)This rule recursively calls f on the list without the X� pre�x and then recursivelycalls f again on the entire list. The new rule ensures that the X� is not searchedimmediately to �nd the next redex. But eventually, the pre�x will be searched bythe recursive call. Having added a new recursive call to the rule, we actually domore work than we did before. So this idea fails due to the possibility of introducingnew redices matching a smaller X� that need to be searched for. We try to �x thisproblem in the next section.3.2 Guarded list variablesConsider the following subclass of the continuous patterns:f(X�; V;<pattern>; Y �) = f(X�; V;<pattern>0; Y �) (3.4)Where V is called a guard for X� and is allowed to be in the conditions. X� iscalled a guarded pre�x. The lexicographical ordering of matches guarantees that3Con
uence is an undecidable property of general rewrite systems [13].32



X� does not contain <pattern>. But in the general case, X� should be searchedagain in case a new redex is introduced that matches with <pattern> on a part ofthe old X�. In this case the guard V next to X� prevents this and searching thelist again becomes super
uous.3.2.1 Possible implementation techniquesAfter the �rst match, X� can be left out of the computation completely. But afterthe computation of the recursive rule has �nished, X� must be concatenated infront of the result. We can introduce this optimization either at the �Asf level, orat the C code level. The problem of detecting such a pattern is tackled in Section3.4.At the �Asf level, we would require introducing an extra concatenation func-tion for concatenating the X with the result of f . But the resulting term of theconcatenation would be a call to f again, and the list would be checked for redicesagain. So, we also need a new primitive in the support library to indicate that aterm is guaranteed in normal form. Adapting the compiler to add a concatenationfunction, and to accommodate a normal form attribute is not a trivial task.At the C code level, the concatenation can be done without introducing anextra function. And the C code can be adapted to return a normal form afterconcatenating. On the other hand, the transformation of C code in the compiler ismuch more complicated due to the more complicated syntax of C.3.3 Special list patternsFor some often used patterns there might be a speci�c smart implementation. Thedesigner of the compiler uses his intelligence to �nd a smart and equivalent imple-mentation of a certain pattern and the compiler is only sophisticated enough todetect the pattern and replace the rule.So we have two issues here: �rstly we need a collection of frequently occurringspecial patterns with smart implementations. Secondly, we need a uniform mannerto detect them in the compiler. There is currently only one frequently used listpattern that has a known smart implementation; the famous Set pattern.3.3.1 The Set patternThis is the Set pattern in �Asf, with cons notation replaced by associative notationfor the sake of readability:V =W =) f(X�; V; Y �;W;Z�) = f(X�; V; Y �; Z�) (3.5)In the conventional generated code, this rule will result in a lot of redundant search-ing. Consider rewriting this rule to:V =W &f(V; Z�) =f(V; Z�2 ) &f(Y �; Z�2 ) =f(Z�3 ) =) f(X�; V; Y �;W;Z�) = f(X�; V; Z�3 ) (3.6)Now, it seems to be guaranteed that each element is compared with all others onlyonce. Which is exactly what the author of such a pattern implies. It is imperativethat the extra conditions are added below the original conditions to ensure that therecursive calls will only be made in case a redex is found. This transformation isan extended case of the guarded list patterns. We notice the unnecessary searchingdue to the recursive call in the right-hand side: the conditions remove all doubly33
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Figure 3.1: The time spent in the Set equation after transforming it.occurring elements from the list, so the recursive call on the right-hand side iscompletely super
uous.Figure 3.1 shows the results after applying this transformation to the Set equa-tion by hand. There seems to be some gain. We also measured the same transformedrule after adapting the C code to return a normal form directly at the right-handside. There was no signi�cant di�erence measured there.3.4 Detecting patternsWhatever optimizations of patterns we come up with, special or more general, weneed a way of detecting them in the compiler. A uniform approach for all patternswould be preferable. It would be very nice to to be able to add an optimizablepattern without changing a lot of extisting code. It seems natural to try anddetect list patterns using list patterns. Which means, in the current compiler, thatthese patterns need to be detected before the simpli�cation to �Asf. After all, theassociative list notation is translated to cons notation in that phase (Section 1.4).But this location for detecting is impractical, the detection of a pattern and theactual transformation would be as far apart as possible. We can either adapt �Asfto keep the associative lists, or we can awkwardly translate cons notation back toassociative notation to solve this problem4.Apart from these practical considerations, we need a fundamental idea of pat-tern5 equality. A starting point is to take syntactical equality of a �Asf rule moduloa renaming relation �. We recognize the following complications:� Function symbols di�erent from the outermost symbol in the left in the right-hand side of a rule must be checked recursively for equality.4Note that keeping the associative notation would also bene�t the use of the build function.5Remember that a list pattern is a synonym for a rule containing list variables.34



� The same goes for foreign symbols in the conditions.� Equality for single rules is not enough, we need to check all rules with thesame outermost symbol in the left-hand side.These are necessary requirements for equality of �Asf functions. A uni�cationalgorithm over � will provide the equality test for a single rule. This syntacticalmatching algorithm is too strict for detecting more abstract classes of patterns. Weneed meta variables to provide us with abstract rules or abstract functions.These meta variables range over parts of �Asf rules. The most natural way is tolet the meta variables range over the nonterminals of the �Asf grammar. Since thecompiler is implemented in Asf+Sdf, we can use normal Asf+Sdf variables asmeta variables. And we can conveniently use Asf+Sdf matching as the uni�cationalgorithm.One of the hazards of optimizing abstract classes is that the designer of a classof patterns can under-specify a class, creating false positives. This might resultin serious compilation errors. Another pitfall is that two optimizable classes canhave a non-empty intersection. One pattern instance might bene�t from the �rstoptimization, but the next might bene�t from the other. Finding a smart orderingfor the optimizable classes will bene�t the resulting code (if that is possible).Some optimizations can be done at the �Asf level. These can be applied atthe time of detection. But other optimizations might be more subtle, and need ap-propriate C level transformations. These �Asf functions should be annotated withthis information, such that the compiler can do the appropriate transformations atthe right time.3.5 DiscussionThis work is not �nished. We have located a bottleneck in the execution of Asf+-Sdf speci�cations: recursive list patterns. Some starting points for attacking thisproblem have been proposed: Firstly, we propose to change �Asf to have associativelists instead of cons lists to improve matching capabilities. Secondly, we have startedto partition the recursive patterns, introducing the continuous patterns and theguarded patterns. Thirdly, we presented some thoughts on the detection of classes(abstract patterns).To implement a quick pilot test of any of the ideas presented in this chapteris not feasible. The current design of the compiler does not easily allow for suchadaptations.
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Chapter 4Related workIn this chapter we discuss research related to optimizing matching and rewritingof lists. We will study the possible application of ideas to compilation of lists inAsf+Sdf speci�cations. Other implementations of formal languages include: Elan[2], Clean [19] and Opal [18]. But we start with a discussion on an optimizingtechnique for lazy functional languages: deforestation.4.1 DeforestationIn [23] a technique is introduced that transforms programs in non-strict lazy func-tional languages to eliminate intermediate term construction: deforestation. Espe-cially when using lists, which is an often stimulated functional programming style,deforestation can result in signi�cant run-time speedups.Deforestation of functional programs is described by �rst unfolding and inliningcompositions of functions and then rewriting speci�c patterns to eliminate inter-mediate results. Let us consider how we could apply some kind of deforestationalgorithm to the compilation of Asf+Sdf speci�cations.Firstly, we have to solve inlining of compositions. At compile-time, we want tosubstitute function compositions like f(g(t)) for a specialized function (fg)(t). Sucha composite function then contains more information about the entire computationof f(g(t)) locally and might allow for speci�c optimizing steps1. We immediatelynotice that the combination of innermost reduction and the evaluation of conditionsis a deadly combination. After all, the composition (fg) must check the conditionsfor both f and g. But the evaluation of the conditions of f depend on the right-hand side of g due to innermost reduction, so we have to evaluate g and constructits normal form anyway. This example also translates to the case where g has noconditions, but f does.If, by chance, no matching is done on the arguments of f , then we can safelyinline g into f . But since there is no matching, we cannot access any intermediatelists. So this type of inlining will probably not allow for any optimizations, exceptfor saving a single reduction step.Restricting ourselves to compositions f(g(t)) where both f and g have no condi-tions might help. We can now substitute g(t) by its right-hand side at compile-time,e�ectively saving a single run-time reduction. But does this allow for any conserva-tive deforesting transformations on (fg)? We suspect that any transformation on(fg), where (fg) is de�ned by substituting the right-hand side of g in the de�ni-1A more real example: some �Asf rule could �rst sort a list and then eliminate doubly occurringelements by specifying List0 = set(sort(List)) in the conditions. We could change this conditionusing an optimizable composition to: List0 = setsort(List).37



tion of f , will be incompatible with innermost reduction. In the general case, theoutermost symbol just does not contain enough information to predict its outcomewhen its arguments are not yet in normal form, which is the case at compile time.Once more, we need more information on the speci�cation before we can applysuch smart optimizations: data-
ow analysis. Or we restrict ourselves even more:take the functions g which right-hand sides only consist of constructors and normalforms. We now have all information at compile-time to construct an (fg) that,for example, eliminates the construction of the intermediate result of g. Considerthe following example of a rewriting system. The function f concatenates its threearguments using a function g that concatenates its two arguments:f(a; b; c) = g(g(a; b); c)g(a; b) = cons(a; b) (4.1)We have a function composition on the right-hand-side of f : g(g(a; b); c). We createa special function for this composition, named (gg), by substituting the right-handside of g into the �rst argument of g itself. Then we can substitute all occurrencesof g(g(t)) by (gg)(t): f(a; b; c) = (gg)(a; b; c)g(a; b) = cons(a; b)(gg)(a; b; c) = cons(cons(a; b); c) (4.2)The (gg) function might now allow for an optimization. An obvious optimizationwould be to transform (gg) and eliminate the construction of cons(a; b) by applyingthe build function: (gg)0(a; b; c) = build(BEGIN; a; b; c;END)) (4.3)We have eliminated the construction of cons(a; b). This was only possible after theinlining of g.It has become clear that some kind of deforestation technique is possible for aspeci�c subset of Asf+Sdf functions. If this subset is large enough to have ane�ect on non-trivial applications is unknown. Furthermore, we need more researchin the actual application of these ideas into the compiler.4.2 ElanElan is a speci�cation language similar to Asf+Sdf, but with some distinct fea-tures. It does not have list matching, but it has AC matching [17]. In Elan the userhas the possibility to declare associative and commutative functions. AC matchingbacktracks over a term modulo associativity and commutativity.The following example extracted from [17] demonstrates to use of AC matching.Consider the polynomials with integer coe�cients am �Xm + � � �+ a1 �X + a0. Ifwe want to simplify polynomials by deleting terms with a null coe�cient, we simplywrite the rule: P + 0 � P ! P in Elan. The use AC matching leads to concisespeci�cations in the context of associative and commutative operators. The sameexample using Asf+Sdf list matching would be: P1 + 0 � P2 + P3 = P1 + P32,which is slightly larger due to the absence of commutativity.There are some striking similarities between AC matching in Elan and listmatching in Asf+Sdf. Most importantly, both introduce the need for local back-tracking over a function. Secondly, they both handle associativity. In a certain way,2P1 and P3 are list variables that much zero or more summands.38



imports SDFexportssorts Restriction Restrictions Lookaheadscontext-free syntax\(" Symbols \�=�" Lookaheads \)" ! Restriction\[" Restriction� \]" ! RestrictionsfLookahead \;"g� ! LookaheadshiddensvariablesR [0-9]� ! RestrictionR \�"[0-9]� ! Restriction�L [0-9]� ! LookaheadL \�"[0-9]� ! fLookahead \;"g�[ST][0-9]� ! Symbol[ST]\�"[0-9]� ! Symbol�[ST]\+"[0-9] ! Symbol+equations[0] [R�1 (S�1 S S�2 �=� L�1) R�2 (T�1 S T�2 �=� L�2) R�3] = [ ::: ]Figure 4.1: A nested list pattern in the Asf+Sdf implementation of the parsergenerator of the Meta-Environment. Brackets were added and the right-hand-sideof the rule was omitted to improve readability.AC matching is more general than list matching and therefor more complex. Notethat the current Elan compiler does not handle all occurrences of AC matchingyet [2].The matching algorithm for AC matching is far more complicated than thelist matching algorithm in our compiler. Although in [17] an optimization of asubset of the AC patterns is proposed, even this matching algorithm remains toocomplicated for simple list matching in Asf+Sdf. But, there is a class of listmatching patterns that are almost as complex as AC matching problems: non-linear nested list patterns. Nested list pattern are not frequently used in Asf+Sdfspeci�cations. But this might be due to their ine�ciency problems. A real worldexample of a listed nest pattern is found in the parser generator of the new Meta-Environment (Figure 4.1). This pattern contains three list types in two layers. Sucha pattern results in very ine�cient backtracking behavior of the compiled code. Thisclass of patterns is not directly analogous to some kind of AC patterns, but applyingsome of the ideas of AC matching to this class of problems might be bene�cial. Forexample, the use of constraint propagation to reduce the search space.Considering the complexity of such algorithms and the scope of this thesis, wepostpone further research in this subject.4.3 CleanClean is a lazy functional programming language with a very fast implementation.The semantics and implementation ofClean are not based on the usual �-reductionscheme, but on general graph rewriting. By applying a functional reduction strategyon the graphs, a functional execution scheme is obtained.One of the features of Clean that are of interest to us is the uniqueness typing39



system. This typing system calculates at compile-time which terms are used byonly one single function, allowing this function to do destructive updates. Cleanfeatures indexed arrays. Especially when indexed arrays are updated destructively,a serious gain in performance is noted [14]. This supports our conclusions in Section2.2 on the application of destructive updates on Asf+Sdf lists.But, uniqueness typing does depend on type annotations made by the Cleanprogrammer. And uniqueness of objects is inferred in the context of a functionalreduction strategy. So, we cannot borrow the uniqueness type inference systemdirectly.4.4 OpalOpal is a speci�cation language that combines algebraic speci�cation with func-tional programming. Data-structures (types) are de�ned using algebraic speci�ca-tion. But the execution of Opal speci�cations �ts into the functional programmingparadigm. Opal programs are extended with a �rst-order property language toexpress certain properties of functions.By adding algebraic properties to functional programs, more information is avail-able for an optimizing compiler [10]. We notice that once more optimizations aredependent on the intelligence of the programmer3. The approach of adding speci�cinformation the guide the rewriting process is also found in other languages4. It re-mains to be seen if an optimizing compiler for a formal language can be constructedthat does not need such methods.In Opal, there is a garbage collecting scheme that sometimes allows for destruc-tive updates: the selective update/reuse analysis. It is based on static and dynamicreference counting.

3Compare this to uniqueness typing in Clean.4For example, Stratego [22]. 40



Chapter 5ConclusionWe have considered two aspects of list rewriting separately: list construction andlist matching. The main focus was on list construction. In this chapter we willbrie
y summarize the conclusions and give directions for future work.List constructionLinearization of expressions that build lists proved to be a feasible optimization.It saves time and memory usage by applying this algorithm for list construction.Linearized list construction can easily be added to the current compiler.We noticed that for most non trivial speci�cations the construction of lists isnot the major bottleneck. The gain of linearization can even dissappear in thesigni�cance of matching. As an aside, we noticed the trade-o� between time andmemory e�ciency in the garbage collector very clearly.Related work and the study of compiled Asf+Sdf code motivated our investi-gation into the use of destructive lists. We have shown in a pilot implementationthat they can provide us with even faster execution of list matching rules. Prob-lems that were tackled for this pilot implementation can be helpfull in a futureimplementation: the data-structure and the list construction algorithm.The above conclusions motivated implementing destructive lists in a more gen-eral way. The restrictions we imposed on ourselves were not to change the currentrun-time environment of compiled Asf+Sdf speci�cations (the ATerm library) andnot to change the current compiler too much. We encountered a number of issues:� Allocation and destruction of list nodes.� Conversion to and from destructive lists.� Evaluation of conditions containing lists.We have solved each of these problems separately, but their combination proved tobe either ine�cient, or not leading to a correct algorithm. The conclusion is thatour initial restrictions prohibit the general use of destructive lists in the Asf+Sdfcompiler.In the light of future work, the most natural way seems to extend the ATermlibrary with destructive list nodes and to extend the compiler with either or bothreference counting and some compile-time data-
ow analysis to cover consistencyissues. 41



List matchingWe have argued that recursive list patterns are a bottleneck in the execution ofAsf+Sdf speci�cations. Then we investigated some preliminary ideas for optimiz-ing them, introducing continuous patterns and guarded patterns.The main utility needed for optimizing such patterns is detection of speci�cpatterns and classes of patterns. We have brie
y investigated the possible algorithmfor detection, proposing some techniques and identifying some problems.Our conclusions on this subject are inde�nite, there is more work to be done.Other directions of future workThe subject of optimizing formal languages is alive. We have found and discussedinteresting techniques applied in the domain of functional languages. Their appli-cation in the domain of innermost rewriting is not yet totally clear, but we haveindicated a possible way of applying a technique called deforestation.Reducing the search space for a matching algorithm is done in the Elan sys-tem. Parts of its algorithmic techniques might be applicable to reduce the work ofnested list patterns, which are too ine�cient to be used in the current Asf+Sdfimplementation.
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Appendix AThe build functionThe following C function is the implementation of the build function which is de-scribed in Section 2.1. This function can be added to either the ATerm library, orthe support library. The (trivial) utility functions for memory allocation of tempo-rary bu�ers are left out for the sake of brevity.#include <aterm1.h>#include <aterm2.h>...typedef enum { END = 0, CONCAT = 1, SLICE = 3, MAKE_LIST = 5,BEGIN = 7 } buildOperation;static ATerm vbuild(buildOperation first, va_list args);/* A temporary buffer for holding list elements */static ATerm* buffer;/* Name: build* Args: buildOperations and ATermList pointers* Pre : first = BEGIN, the last argument must be END,* each SLICE is followed by 2 ATermLists,* each MAKE_LIST is followed by 1 ATermList or 1 ATerm.* Post: A list containing all elements specified by the arglist* in order of appearance is returned.*/ATerm build(buildOperation first, ...){ va_list args;ATerm result;va_start(args, first);result = vbuild(first, args);va_end(args);return result;}
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/* Name: vbuild [internal function]** See function: build for specific pre and postconditions,* they are identical for vbuild. Only the* argument list is given as a va_list in this* function.*/static ATerm vbuild(buildOperation first, va_list args) {ATermList result = ATempty;int arg;int len = 0;/* We process the argument list, from left to right,* using the END tag as a stopcondition.** A temporary buffer is used to keep the elements that* have to appear in the resulting list. But a list is only* added to the buffer when we see that another element needs* to be appended behind it. This way we can reuse the final argument* as the tail for the result by inserting the elements in* the buffer in front of it.*/for(arg = first; arg != END; arg = va_arg(args, buildOperation)){switch(arg) {case BEGIN:case CONCAT:case MAKE_LIST:break;case SLICE:{ /* Get the next two args and interpret them as ATermLists */ATermList list1 = va_arg(args, ATermList);ATermList list2 = va_arg(args, ATermList);if(!ATisEmpty(list1) && !ATisEqual(list1, list2)) {/* resize the buffer to be able to contain the previous tail* and the slice*/RESIZE_BUFFER(len + ATgetLength(result) + ATgetLength(list1) - ATgetLength(list2));/* First insert the temporary tail into the buffer */for( ;!ATisEmpty(result); result = ATgetNext(result), len++)buffer[len] = ATgetFirst(result);/* Add the elements of the slice to the buffer */for( ;!ATisEqual(list1,list2); list1 = ATgetNext(list1), len++)buffer[len] = ATgetFirst(list1);}}break;
44



default:{ /* the argument is interpreted as an ATerm */ATerm term = (ATerm) arg;/* Create a new temporary tail from the argument, if arg is a list */if(ATgetType(term) == AT_LIST) {if(!ATisEmpty((ATermList) term)) {/* resize the buffer to be able to contain the previous tail */RESIZE_BUFFER(len + ATgetLength(result));/* First insert the previous temporary tail into the buffer */for( ;!ATisEmpty(result); result = ATgetNext(result), len++)buffer[len] = ATgetFirst(result);/* Set the temporary tail to the last list we found */result = (ATermList) term;}}/* Otherwise a singleton is added to the buffer */else {/* resize the buffer to be able to contain the previous tail* and the new element*/RESIZE_BUFFER(len + ATgetLength(result) + 1);/* First insert the previous temporary tail into the buffer */for( ;!ATisEmpty(result); result = ATgetNext(result), len++)buffer[len] = ATgetFirst(result);/* Then add the new element to the buffer */buffer[len++] = term;}}break;}}/* Finally, reuse the temporary tail by appending the buffer* in front of it, creating the result list*/while(--len >= 0)result = ATinsert(result, buffer[len]);return (ATerm) result;}
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