
Rascal, 10 Years Later
Paul Klint

SWAT.engineering & CWI, Amsterdam
The Netherlands

paul.klint@swat.engineering

Tijs van der Storm
CWI, Amsterdam

University of Groningen, Groningen
The Netherlands

storm@cwi.nl

Jurgen Vinju
CWI & SWAT.engineering, Amsterdam

TU/e, Eindhoven
The Netherlands

jurgen.vinju@cwi.nl

Abstract—When we designed the first version of Rascal in 2009,
we jokingly promised ourselves to only write a single paper on the
language itself, and see it as vehicle for research from then on,—
that one paper became the SCAM 2009 article [2], now awarded
with the SCAM most influential paper award. Since then, Rascal
has evolved significantly, and has been successfully applied in
research, education, and industry. This extended abstract gives
an overview of the impact of Rascal over the last 10 years, and
looks at current and future developments.

Language Evolution: Since 2009 Rascal has evolved sig-
nificantly, with a more powerful grammar formalism, a re-
fined module system for extensible programming, and a new
function dispatch mechanism based on pattern matching. Fur-
thermore, Rascal has been complemented by large sets of
libraries for various programming tasks, such as visualization,
web-based GUIs, statistics, EMF-based modeling, and others.
Finally, Rascal includes a number of language front-ends
(Java, PHP, Javascript, C/C++), enabling static source code
analysis on industrial scale software projects.

Rascal has been called a “one-stop shop for meta program-
ming”; as such Rascal is not merely a language anymore, but a
complete environment, including integration with the Eclipse
IDE. This allows DSL designers to use Rascal as a language
workbench, obtaining IDE features for their DSL at very low
cost.

Research: A primary goal of Rascal has been to be a vehicle
for research in source code analysis and transformation, much
like a telescope enables research in astronomy. As such it has
been successful in enabling contributions in areas of software
analysis, software evolution, language design, language en-
gineering, model-driven engineering, parsing, domain-specific
languages, static analysis, language workbenches, and others.
Papers have been appeared in conferences like ICSE, PLDI,
ICSME, ASE, ISSTA, MSR, ECOOP, OOPSLA, Onward!,
ICPE, SCAM, <Programming>, SLE, and GPCE, including
award-winning papers [1], [3], [4].

In general, this work can be divided in two categories:
papers that used Rascal to perform research (e.g., as language
prototyping tool or source code analysis framework), or papers
that addressed specific aspects of Rascal itself, such as the
internal data structures of the implementation, or new parsing
algorithms. This reflects how Rascal plays a pivotal role in the
Software Analysis and Transformation (SWAT) group at CWI.

Use in Teaching: Next to having enabled significant re-
search results in the past 10 years, Rascal has been success-

fully used in teaching as well. Courses on software evolution
at the University of Amsterdam, Open University, Eindhoven
University of Technology, and University of Twente, have
employed Rascal to allow students create their own tools
for refactoring, code smell detection, clone detection, etc.
Similarly, at University of Groningen, Rascal is used in a
course on Software Language Engineering, where students
learn about all aspects of engineering DSLs. Finally, Rascal
has been used in tutorials on software analysis, language
extension, DSL engineering for both academic and broader
audiences.

Industry Impact: Rascal has been used in research collab-
orations with organizations like Philips Healthcare, Océ, ING
Bank, and the Netherlands Forensics Institute (NFI). In 2017,
our experience with Rascal on realistic projects, motivated the
start of the CWI spin-off company SWAT.engineering1, which
puts Rascal to use for commercial language and software
development projects.

Outlook: The CWI SWAT group is strongly committed to
sustaining Rascal, and we expect it to continue to evolve and
support research and education in the long term. Ongoing
projects are the development of a new compiler, the integra-
tion of data-dependent parsing technology, code formatting
based on machine learning, constraint-based type checking,
supporting Microsoft’s Language Server Protocol (LSP), and
maturing the Rascal eco-system through a package manager
and deployment system. To enable and invite contributions
from different institutions and companies the Rascal open
source project is facilitated by an independent organization
called UseTheSource2. For more information, we refer the
reader to http://rascal-mpl.org.

REFERENCES

[1] F. Coulon, T. Degueule, T. van der Storm, and B. Combemale. Shape-
diverse DSLs: Languages Without Borders (Vision Paper). In SLE’18,
pages 215–219, 2018.

[2] P. Klint, T. van der Storm, and J. J. Vinju. Rascal: A domain specific
language for source code analysis and manipulation. In SCAM’19, pages
168–177. IEEE, 2009.

[3] D. Landman, A. Serebrenik, and J. J. Vinju. Challenges for static analysis
of Java reflection – literature review and empirical study. In ICSE’17.
IEEE, May 2017.

[4] M. Steindorfer and J. J. Vinju. Performance modeling of maximal sharing.
In ICPE’16, 2016.

1http://www.swat.engineering
2http://usethesource.io

paul.klint@swat.engineering
storm@cwi.nl
jurgen.vinju@cwi.nl
http://rascal-mpl.org
http://www.swat.engineering
http://usethesource.io

	References

