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Abstract

The use of software buses has increased due to the
popularity of service-oriented architectures, even
though it is unknown whether software buses and
the architectures within which they reside achieve
their proposed benefits, and at what cost. If bene-
fits are not achieved or are difficult to achieve, then
evolution of systems containing a software bus will
be more difficult and costly than expected. This
thesis observes the achievement of the proposed
benefit of time decoupling, which enables two com-
ponents to participate in an interaction without
both being available at the same time. Time decou-
pling is found to be achievable, with its successful
employment depending on the granularity of oper-
ations found within components connected to the
software bus. The complexity cost of coordination
scripting shows a close to linear growth relative to
the growth of components which are coordinated.

Software buses can achieve time decoupling. Rel-
ative cost does not grow as systems using a software
bus evolve.

1 Introduction

The idea of bus-oriented software architectures
originated from the hardware bus found in com-
puter architectures. A hardware bus acts as a cen-
tral component for inter-hardware communication

and allows for a wide variety of hardware com-
ponents to be connected with each other. In the
1990s various academic software buses were pro-
posed. Similar to the hardware bus these software
buses connect a wide variety of software compo-
nents with each other.

Service-oriented architectures commonly contain
a software bus for communication between services.
Due to the increased popularity of service-oriented
architectures, usage of software buses is on the
rise; even though it is unknown whether software
buses and the architectures within which they re-
side achieve their proposed benefits, and at what
cost.

The following benefits of bus-oriented architec-
tures are mentioned in literature:

• Unconstrained connectivity between compo-
nents implemented in different languages and
developed for different platforms. Thus, a bus-
oriented architecture should be heterogeneous
by putting no restrictions on the languages and
platforms used for implementing its compo-
nents [32, 3, 23].

• Easy adaptation of the execution location of a
component. There should be no need to mod-
ify a component when its location changes [32].

• Component independence, enabling the easy
replacement of components and easier reuse of
their implementation [3].
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Unconstrained connectivity between different
languages and platforms, and the easy adaptation
of execution location are simply features offered by
a software bus. Component independence on the
other hand is not a feature. The software bus pro-
vides features which can make it easier to imple-
ment a system which achieves component indepen-
dence, but it is up to the development team to suc-
cessfully apply these features.

Independence of components is achieved by de-
coupling them. Eugster et al. define three types of
decoupling which can be provided by a communi-
cation paradigm [14], such as a software bus. Later
work by Aldred et al. formalised these types of de-
coupling [1]. For use in this thesis both works are
combined into the following definitions:

Space decoupling is provided when interacting
components are unaware of each others loca-
tion.

Synchronisation decoupling is provided when
the main thread of control of both the sending
and receiving component can continue their
execution whilst an interaction takes place be-
tween them.

Time decoupling is provided when components
do not need to participate in an interaction
at the same time. This is achieved by com-
municating through an intermediary compo-
nent which stores messages, such as a message
queue.

The achievement of space decoupling is of no par-
ticular interest to this study, because such decou-
pling is already provided by operating systems in
the form of network sockets, network addressing
and transport protocols. Synchronisation decou-
pling is also of no interest, because the achievement
of synchronisation decoupling simply depends on
whether or not such functionality is provided by
the communication platform. Time decoupling on
the other hand, does not only depend on the avail-
ability of a message queue, but also on the imple-
mentation of components and the specification of
their interaction patterns.

Achievement of time decoupling is not easy, as
software systems which aim to be time decoupled
should be developed using an event-driven pro-
gramming model, in which event handler respond

to incoming events, instead of method calls [23].
Also, for some use cases like those dealing with di-
rect user interaction, time decoupling is not appli-
cable.

Given the possible advantages of bus-oriented ar-
chitectures, and their possible implementation is-
sues the following question is proposed:

Research Question 1. What factors contribute
to the successful employment of a bus-oriented ar-
chitecture?

A bus-oriented architecture is deemed success-
ful when its proposed benefits are achieved. The
question above is broadly scoped, even though this
study is primarily aimed at factors in achievement
of component independence through time decou-
pling. This is done so that observations which are
of high interest, but not directly related to time
decoupling, are not discarded.

1.1 Complexity cost

The achievement of proposed benefits of bus-
oriented architecture cannot be the only measure
of its success. If in the process of achieving such
benefits the architecture greatly increases system
complexity, then companies might find other ar-
chitectures to be a more viable option. Complex-
ity affects the cost of maintenance [2], because the
complexity of a system’s source code affects its un-
derstandability [26, 22], which in turn affects sys-
tem maintainability, since any code maintenance
requires that the maintainer understand the source
code [5].

Within bus-oriented architectures, part of its
complexity lies in the scripting logic which speci-
fies how messages are routed between components.
Such logic can route a message based upon its con-
tent [14]. According to Hohpe and Woolf the pri-
mary issue with this type of coordination, which
they call the content-based (message) router pat-
tern, is that the scripting becomes a frequent point
of maintenance [23]. Due to these frequent changes
the complexity of this logic is of special interest,
which is why this thesis provides an answer to the
following question:

Research Question 2. What is the complexity
cost of a bus-oriented architecture?
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A case study of the ASF+SDF Meta-
Environment is performed to answer Question 1
and Question 2. The Meta-Environment is a
software system in which language definitions can
be edited, checked and compiled [25]. It utilises the
ToolBus software bus for inter-component com-
munication and has been under development for
over ten years, which enables it to provide insight
into the evolutionary properties of bus-oriented
architectures.

The Meta-Environment’s evolution is analysed
by mining its software repository. The premise of
such software repository mining research is that it
will shed light on changes that occur over time, for
a given set of measured variables [24].

1.2 Contributions

This thesis provides factors which contribute to the
achievement of time decoupling within bus-oriented
architectures. It also provides results on the com-
plexity cost of bus-oriented architectures.

These contributions are not only related to bus-
oriented architectures, but also to service-oriented
architectures. In their paper on architectural styles
for service-oriented computing, Dillon et al. indi-
cate the existence of the broker -style in which an
intermediary component is involved in the inter-
action between other components [13]. According
to Dillon et al., the WS-Notification specification
family is able to achieve time decoupling. Software
buses such as the ToolBus are brokers and can as
such provide insight into the practical benefits of
using these WS-Notification specifications.

Another broker-style implementation is that of
Tuple- and Triple Space. Tuple Space and the
extending Triple Space Computing claim to pro-
vide full decoupling in time [16]. In Tuple Space,
processes can write, delete and read tuples from a
globally persistent space located in a central com-
ponent [16]. Triple Space adds, amongst other
functionality, a publish/subscribe paradigm [13]
in which processes can subscribe to triples which
match a pattern and be notified when matching
triples are written to the Triple Space. The Meta-
Environment contains a very similar component
called the module-manager, whose time decoupling
features are introduced in Section 4.1.3.

1.3 Structure

The remainder of this thesis is structured as follows.
Section 2 presents background on the ToolBus, the
Meta-Environment, and the ToolBus in compari-
son to other software buses. Section 3 presents the
research method, also discussing this study’s solu-
tions to issues commonly found in repository min-
ing research. Section 4 presents the results. Sec-
tion 5 presents a discussion on the results and their
validity. Finally Section 6 concludes the work.

2 Background

Before establishing the background on several top-
ics, this section provides definitions used through-
out the remainder of this paper.

An endpoint is an entity which can participate
in communication [1].

An interaction occurs when two endpoints ex-
change information [1, 33].

A message is a unit of information which is
transported between endpoints during their inter-
action [1].

The next subsections provide the background on
the ToolBus, the Meta-Environment, and relate the
ToolBus to other software buses.

2.1 ToolBus

The ToolBus is the software bus used by the Meta-
Environment for communication between its com-
ponents. Components which are connected to the
ToolBus are called tools. The messaging abilities
of a tool are specified in a tool interface definition,
which defines the messages which can be consumed
by the tool, and the messages which are produced
by the tool. A tool interface definition is a subtype
of a process definition, which is described below.

Processes are runtime entities which perform
atomic actions, to coordinate with other processes
and tools. Process definitions specify the compo-
sition of such atomic actions using process algebra
primitives, as shown in Table 1. Process definitions
are instantiated into objects at runtime. Processes
are not singletons, because the ToolBus can instan-
tiate multiple (tool interface) process objects from
a single process definition.

The ToolBus interleaves the coordination tasks
performed by processes. Processes do not perform
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Figure 1: ToolBus scenario

any computation, and they do not modify the con-
tent of any message. One can say that the ToolBus
splits coordination and computation, where coordi-
nation is performed in processes, and computation
in tools.

Figure 1 shows a typical scenario in which pro-
cesses Pi coordinate computation in tools Tj .

2.1.1 Communication

Processes can communicate using messages or notes
or both. As the use of message is ambiguous, from
here on out a ToolBus specific message is referred
to as toolbus-message.

A toolbus-message can be send by a process to
one other process. The sending process waits until
a receiving process picks up the toolbus-message,
even if such receiving process is not available at the
time. Computation is blocked until the receiving
process has fully handled the toolbus-message and
returns control to the sending process.

A note can be broadcast from a process to mul-
tiple other processes. Notes are an implementation
of the publish/subscribe pattern. In this pattern,
subscribers have the ability to express their inter-
est in an event, and are subsequently notified of
any event, generated by a publisher, which matches
their registered interest [14]. On broadcasting a
note, it is placed in the note queues of processes
which have previously subscribed to such notes. Af-
ter broadcasting, the sending process can continue
coordinating other messages without waiting for a

reply from processes that received the note. Pro-
cesses that received the note can also continue their
coordination until they specifically request for the
note to be retrieved from their process note queue.
Thus, computation is not blocked.

Constructs similar to toolbus-messages and notes
are used for communication between processes and
tools. A process can ask a tool to perform some
function and wait for a return value. A tool can
communicate with its interface process using events
which are placed in a queue similar to a note queue.
The interface process can then later retrieve the
value from the queue.

Message data The body of toolbus-messages
and notes contains ATerms. ATerms contain data
types like integers, reals, lists [36], etc. An example
of an ATerm is set-file-name("Article.tex"),
which combines the identifier set-file-name with
a string value "Article.tex".

ATerms have a function beyond simply being
the content of a message body. Processes match
the pattern of an ATerm to define which mes-
sages they can receive. It is through this pat-
tern matching that the ToolBus achieves content-
based routing. If some process sends ATerm
set-file-name("Article.tex") then it can be
received by some other process Pr, if Pr speci-
fies the pattern set-file-name(FileName?). The
question mark following FileName is a wild card
which matches any ATerm and assigns it to the
FileName variable.

2.1.2 TScript

TScript is the scripting language used for estab-
lishing process definitions and tool interface defi-
nitions. Code listing 1 provides an example of a
tool interface definition. Table 1 contains common
primitives found within the TScript language.

The TScript example specifies a tool called the
module-manager, which is executed using the com-
mand specified. The ModuleManager tool inter-
face process executes the module-manager tool and
then waits for one of three choices between alter-
native actions. What is interesting is that atomic
actions can be nested into multiple choice (+) or
other process-oriented primitives, an option which
is used within the example to send a different mes-
sage onto the ToolBus if there is no value assigned
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tool module-manager is {

command = "__PREFIX__/bin/module-manager"

}

process ModuleManager is

let

MM : module-manager,

Key : term,

Value : term,

in

execute(module-manager, MM?)

.

(

rec-msg(mm-add-attribute(Value?))

. snd-do(MM, add-attribute(Value))

+

rec-event(MM, attribute-changed(Value?))

. snd-ack-event(MM, attribute-changed(Value))

. snd-msg(mm-attribute-changed(Value))

+

rec-msg(mm-get-attribute(Key?))

. snd-eval(MM, get-attribute(Key))

.

(

rec-value(MM, attribute(Value?))

. snd-msg(mm-attribute(Key, Value))

+

rec-value(MM, no-such-key)

. snd-msg(mm-no-such-key(Key))

)

)

*

delta

endlet

Code listing 1: Example tool interface definition

to the given key.
Using these process-oriented primitives and the

ATerm pattern matching functionality the ToolBus
can achieve its content-based routing.

2.2 The ASF+SDF Meta-
Environment

This study’s primary artefact is the ASF+SDF
Meta-Environment. The Syntax Definition Formal-
ism (SDF) provides a syntax for programming lan-
guage grammar specifications. Within the Alge-
braic Specification Formalism (ASF) one can utilise
the SDF specification to specify rewrite rules for use
within the domain of software analysis and trans-
formation. The ASF+SDF Meta-Environment pro-
vides an integrated development environment for
editing these ASF+SDF definitions, also known as
ASF+SDF modules. It makes extensive use of the

ToolBus.

2.2.1 Static deployment structure

The Meta-Environment’s static deployment struc-
ture contains packages, programs, tools and li-
braries. In Figure 2 a coordination view1 of the
Meta-Environment is shown. The view shows in-
teractions between tools and the ToolBus. It splits
the Meta-Environment into three functional areas:
a kernel area which contains tools that provide the
primary system functionality, a SDF area which
contains tools related to SDF grammar and an ASF
area for tools related to term rewriting.

Functional areas were created, because the Meta-
Environment aims to be an open architecture tar-
geted to the design and implementation of term
rewriting environments [37]. In practice this has
lead to various different term rewriting formalism
implementations which replace the ASF area, such
as ELAN [37].

The next paragraphs will briefly discuss the
structural elements found within the Meta-
Environment.

Packages The Meta-Environment’s development
team releases multiple products. The notion of
packages was adopted to ease the deployment pro-
cess of such products. Packages are the most
coarse-grained components found within the sys-
tem. They encapsulate the source code of one or
more programs, tools or libraries. Packages are not
necessarily independent (e.g. if a program element
within a package requires the use of the toolbus
then the package depends upon the toolbus pack-
age) but because of their encapsulation multiple
products can easily be created.

Packages are part of the static deployment struc-
ture. They are not part of the Meta-Environment’s
runtime architecture, as interconnectivity between
tools specified in packages is handled by the Tool-
Bus.

Programs Programs are runnable components of
the system.

1The figure is obtained from the Meta-
Environment’s architecture documentation, located at:
http://www.meta-environment.org/doc/books/meta-
environment/architecture-meta-environment/architecture-
meta-environment.html
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Primitive Description

+ (e.g. A1 + A2) Choice between two alternative actions (A1 or A2).
. (e.g. A1 . A2) Sequential composition (A1 followed by A2).
* (e.g. A1 * A2) Iteration (zero or more times A1, followed by A2).
|| (e.g. A1 || A2) Parallel composition (A1 and A2 at the same time).
create(Process, Id?) Create Process, and provide the process Id.
snd-msg(T) Send a toolbus-message of pattern T.
rec-msg(T) Receive a toolbus-message of pattern T.
snd-note(T) Send a note of pattern T.
rec-note(T) Receive a note of pattern T.
subscribe(T) Subscribe to notes of pattern T.
unsubscribe(T) Unsubscribe to notes of pattern T.
snd-eval(Tool, T) Request evaluation of T by Tool.
rec-value(Tool, T?) Receive value of pattern T from Tool.
snd-do(Tool, T) Request action T by Tool, without return value.
rec-event(Tool, T?) Receive an event of pattern T from Tool.
snd-ack-event(Tool, T) Acknowledge receiving event of pattern T from Tool.
if ... then ... fi Guarded command.
if ... then ... else ... fi Conditional expression.
let ... in ... endlet Local variables.
:= Assignment.
rec-connect(T?) Receive a connection request from tool T.
execute(Tool, Id?) Execute Tool, and provide the tool Id.

Table 1: Selection of ToolBus TScript primitives, as provided in [3].

Tools Tools were previously mentioned in Sec-
tion 2.1. Tools are both part of the static as well
as the dynamic structure of a ToolBus application.
Static, because they are defined within the Tool-
Bus’s TScript, and are a subtype of programs. Dy-
namic, because they are a runtime entity which is
instantiated and executed from the ToolBus.

Libraries Libraries are components referenced
by the Meta-Environment’s tools to perform some
function for which no ToolBus connection is
deemed necessary.

2.2.2 Programming languages

The Meta-Environment is written in various pro-
gramming languages. The main programming
languages are C, Java and ASF+SDF, where
ASF+SDF is transformed into C code. Early ver-
sions of the Meta-Environment’s user interface were
created using Tcl/Tk, although these components
were later replaced by components written in Java.

TScript is used to define communication between
system components.

2.3 Software buses

The software bus is the primary component found
in any bus-oriented architecture. The remainder of
this section describes three software buses, and the
features they provide to achieve the proposed ben-
efits of bus-oriented architectures. This positions
the ToolBus [3] within the software bus domain.
Other buses under observation are the Polylith soft-
ware bus [32] and Information Bus [30].

2.3.1 Unconstrained language and plat-
form

There are two notions to consider regarding the
achievement of heterogeneity: the notion of control
integration which is concerned with the communi-
cation and cooperation amongst components, and
the notion of data integration which is concerned
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Figure 2: Meta-Environment coordination view

with the exchange of data structures amongst com-
ponents [3]. Within software buses these data
structures are represented as messages.

Control integration The Polylith software bus
uses a module interconnection language (MIL) for
its control integration. MILs have the purpose of
establishing the overall program structure [12]. The
Polylith MIL describes the static structure of the
system. It is based upon a simple graph model of
interconnection, with nodes corresponding to com-
ponents and edges representing the bindings be-
tween their interfaces [32]. Once ready for de-
ployment, the artefacts of a software system are
packaged according to the MIL specification, using
a concrete instance of a software bus abstraction.
This process causes the Polylith software bus to be
relatively static compared to the other systems.

The ToolBus utilises a scripting language called
TScript, as described in Section 2.1.2. It is based
upon process algebraic constructs, allowing the
specification of atomic actions, alternative compo-
sition, sequential composition and parallel compo-
sition [17].

The Information Bus provides very limited con-
trol integration, because it simply routes messages
based upon their subject [30].

Data integration All three systems propose
their own message data format and use adapters
for data integration purposes. The task of such
an adapter is to map between the implementation
language data format and the software bus message
format and vice versa. The buses put restrictions
upon the data types which can be used, such that
they are interchangeable between endpoints imple-
mented in different programming languages.

2.3.2 Adaptable execution location

The three architectures feature two very distinct
solutions for ensuring that no change needs to be
made to a component when its execution location
changes. The Polylith software bus describes the
location of components before packaging them into
a software system, thus binding them together at a
specific point in time. The ToolBus and Informa-
tion bus allow for a component to register onto the
software bus at any time. Within the ToolBus this
is done using the rec-connect(T?) primitive (Ta-
ble 1). The Information Bus utilises its publish/-
subscribe mechanism as a discovery protocol [30].
Both solutions allow components to specify their
execution location within their own configuration
environment, and then bind themselves to the bus.
In case of the ToolBus, the execution location of
tools can also be defined before executing the Tool-
Bus.
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2.3.3 Independent components

Software buses provide component decoupling
through their communication paradigm.

The Information Bus and ToolBus achieve space
decoupling by using an intermediary communica-
tion platform. Within the Polylith software bus,
space decoupling is achieved statically but removed
during the packaging process.

The ToolBus and Information Bus can provide
time decoupling through the use of message queues.
Use of message queues requires that endpoints can
subscribe to messages they are interested in. For
this purpose the Information Bus allows endpoints
to subscribe to message subjects. The ToolBus uses
pattern matching to identify messages which should
be received by a process [4].

Understanding the synchronisation decoupling
provided by a software bus requires detailed anal-
ysis of its implementation. The ToolBus is decou-
ples synchronisation of note retrieval, but sending
a note to a note queue is a blocking operation.
ToolBus-messages are coupled in synchronisation.
For the Polylith software bus, synchronisation de-
coupling likely depends on the concrete software
bus implementation provided by the software de-
veloper. The Information Bus utilises a publish/-
subscribe mechanism similar to that of the Tool-
Bus, and (most likely) synchronisation decouples
the retrieval of published messages as well.

3 Research Method

A visual outline of the research method is provided
in Figure 3. It displays artefacts and intermedi-
ate steps to create such artefacts. The steps of
applying metrics, formulae, observation and analy-
sis vary, depending on the hypothesis which is re-
searched. First, a high-level overview of the arte-
facts and steps is provided. Thereafter, Section 3.1
and Section 3.2 provide the motivation for two hy-
potheses, and the concrete implementations of the
research steps. Lastly, Section 3.3 discusses some
overall issues in repository mining, such as revision
selection and generated file handling.

The Meta-Environment’s revisions form the ini-
tial artefact. The revision control system contains
over 31000 revisions, which makes it impossible to
observe each revision individually. Therefore, a

bird-eye view of the system is needed. Such view
is created by applying metrics to revisions, to cre-
ate raw data which can then be summarised using
summarising formulae into statistics. These statis-
tics provide the bird-eye view of the system. Using
this view, changes of interest are observed, both
within the statistical representation itself, as well
as within specific revisions. These observations are
then analysed to come to a discussion, and subse-
quent conclusions.

3.1 Time decoupling

The introduction stated Research Question 1 as fol-
lows: “What factors contribute to the successful
employment of a bus-oriented architecture?”. This
question was further scoped towards achievement
of component independence as provided by a com-
munication platform. The background showed that
the ToolBus provides space decoupling and partial
synchronisation decoupling. It also showed that
notes are the primary means toward achieving time
decoupling.

Time decoupling can be used to achieve compo-
nent independence and reuse, which are develop-
ment goals for the Meta-Environment. Therefore,
the following hypothesis is proposed:

Hypothesis 1. The ToolBus’s note primitives can
successfully decouple tools in time.

Notes are the primary means toward achieving
time decoupling. When notes are not used, then
the hypothesis can be falsified. When notes are
used this is not immediate proof in support of
the hypothesis, because whether or not these notes
are used correctly is unknown, therefore qualitative
analysis is needed. The next paragraphs provide
the research steps for this hypothesis.

3.1.1 Metrics and statistics

Whether or not notes are used is measured by
counting the number of notes that are sent and
received. Notes which are sent, but never received
and vice versa, are not counted. Counting is the op-
eration of finding snd-note(T) and rec-note(T)

primitive (Table 1) occurrences, and for each oc-
currence adding 1 to the total.

The raw data is summarised into a plot which
depicts the number of send note and receive note
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occurrences for every observed revision.

3.1.2 Observation and analysis

Quantitative analysis can verify that notes are used
for communication within the Meta-Environment;
however, it cannot be used to support or reject the
hypothesis, because it does not provide any insight
into the usage of these notes. Therefore, a qualita-
tive analysis is performed to determine if note prim-
itives truly achieve time decoupling. When a revi-
sion in which tools or groups of tools are time de-
coupled is found, then the hypothesis is supported.

3.2 Complexity cost

The introduction stated Research Question 2 as
follows: “What is the complexity cost of a bus-
oriented architecture?”. In any architecture, most
of its complexity is found within its components.
Within a bus-oriented architecture, a portion of the
complexity is located within its coordination script.
The next paragraphs show why the complexity of
such coordination script is likely to increase.

As noted in the introduction, a bus-oriented ar-
chitecture claims to provide the ability to connect
independent reusable components. Software reuse
can significantly improve software quality and pro-
ductivity [19], and as a result can be associated
with reduced cost. But, building reusable compo-
nents is not a free exercise. In a case study on
reusing components in an industrial development
project, Favaro found that as the size and com-
plexity of reusable components increased it became
harder to recoup on the initial investment of creat-
ing these components [15].

Small components are thus favoured from a reuse
perspective. But cost related to connecting many
small components to a software bus could be high,
because each component requires additional script-
ing for defining its interface and for defining the

information flow between itself and other compo-
nents. With such an increase in the size of TScript
comes additional complexity. This is an issue, as
Hohpe and Woolf note, that the primary issue with
content-based message routing is that the scripting
becomes a frequent point of maintenance [23], and
therefore a factor to take into account when calcu-
lating a project’s cost.

Small reusable tools are to be expected, since
reuse of Meta-Environment tools was a develop-
ment goal from the beginning. If the Meta-
Environment does contain tools which are mostly
small, their effect on the complexity of TScript can
be measured. To do so, the following hypothesis
(which captures both the tool-size as well as the
TScript size variable) is proposed:

Hypothesis 2. If the number of small tools con-
nected to the ToolBus increases, the size of TScript
relative to the size of TScript and tool-code com-
bined, increases.

When a non-linear growth of the TScript per-
centage is observed, then the hypothesis is sup-
ported. The study only determines whether com-
plexity cost remains relatively equal during the
lifetime of the bus-oriented system. It will make
no claims as to whether or not the percentage of
TScript is better or worse than those found within
other types of architecture, as such a claim would
require the measurement of other different archi-
tectures.

3.2.1 Metrics

For the purpose of measuring the size of both
TScript as well as tool-code, the non-commented
lines of code (NLOC ) metric is used. For which
Conte et al. provide the following definition:

“A line of code is any line of program
text that is not a comment or blank
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line, regardless of the number of state-
ments or fragments of statements on the
line. This specifically includes all lines
containing program headers, declarations,
and executable and non-executable state-
ments.” [10]

NLOC for complexity TScript size is used as
a measurement for complexity, even though the cy-
clomatic complexity metric devised by McCabe [28]
is more commonly used for measuring the complex-
ity of a software system. The cyclomatic complex-
ity metric determines the number of paths through
a computer program, with branches of these paths
being located at statement such as if and for.
If McCabe complexity is an acceptable complex-
ity metric, then size is too, because several studies
found that NLOC and cyclomatic complexity show
positive correlation [35].

The correlation between size and cyclomatic
complexity is likely to be strong with TScript, be-
cause almost every TScript primitive introduces a
new execution path. In TScript the number of
execution paths is determined not only by guard
commands and conditional expressions such as if

and else (Table 1), but also by composition prim-
itives such as choice (+) and iteration (∗), and by
the pattern matching of messages, which allows for
execution paths to differ depending on the con-
tent of a message. Therefore, only the lines which
contain tool, process and variable declarations are
not related to complexity. Given that the Meta-
Environment’s development team uses a common
coding style for TScript, an even distribution of
coordination per line of code can be assumed.

Interleaved execution As noted in Section 2.1,
processes run interleaved at runtime. This in turn
increases the number of execution paths, because
it is unknown which coordination task is executed
at what time. The ToolBus hides execution inter-
leaving, therefore this study assumes that it does
not affect the software developer’s difficulty in un-
derstanding TScript.

3.2.2 Statistics

Based upon the raw size data, three statistics are
calculated:
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Figure 4: Lorenz curve example

• The NLOC per revision, per source code lan-
guage.

• The percentage of TScript per revision.

• The equality of the tool size distribution per
revision.

The first two statistics require no further expla-
nation, but the last statistic does.

Tool size distribution The hypothesis requires
a size distribution in which primarily small tools
are connected to the ToolBus, because it is as-
sumed that such distributions are commonly found
in systems which are created with reuse in mind.
The tool size distribution is interesting regardless
of whether or not it exposes small tools, because
different results could provide more material for
discussion.

As noted in the introduction of Section 3, a bird-
eye view is needed to detect interesting changes in
the tool size distribution. Measures like the average
and mean assume a Gaussian distribution which is
uncommon for software systems [38]. In search of a
statistic which does not require a priori knowledge
about a distribution, Vasa et al. found that the
Gini coefficient can successfully discover changes in
software systems [38].

The Gini coefficient is a numeric representation
of a Lorenz curve. In economics, the Lorenz curve
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[27] is used to show the distribution of wealth in a
subset of the world population, but it can equally
be applied to other distributions. Figure 4 shows a
Lorenz curve example of wealth distribution. The
Lorenz curve plots on the y-axis the proportion of
the distribution assumed by the bottom x% of the
population [38]. The linear line represents the line
of equality, because every part of the population
has an equal part of the distribution (x = y). The
non-linear line (Lorenz curve) represents the actual
equality of distribution. When applied to NLOC ,
a plotted Lorenz curve would show for the bottom
x% of tools, what y% of NLOC they contain.

The Gini coefficient, defined by Italian statisti-
cian Corrado Gini [21], is derived from the Lorenz
curve. Gini coefficient G is defined as:

G =
A

A + B
(1)

where A represents the area between the line of
equality and the Lorenz curve itself, and B repre-
sents the area below the Lorenz curve. The result
of the equation is bound between 0 and 1, with 0 in-
dicating perfect equality (e.g. multiset [10, 10, 10])
and 1 indicating complete inequality (e.g. multiset
[0, 0, 10]).

The Gini coefficient itself is not of interest, but
changes to it are, because those changes identify
changes within the Meta-Environment.

3.2.3 Observation and analysis

Quantitative analysis provides a result which can
be used for supporting or falsifying the hypothe-
sis. Qualitative observation can lead to discover-
ies as to why the quantitative results came to be.
For this purpose, the TScript files of major Meta-
Environment releases are compared, to determine
what effect changes which were performed between
these releases had on the complexity of coordina-
tion.

3.3 Software repository mining

The Meta-Environment is analysed by mining its
software repository. Software repositories include
sources such as revision control systems, require-
ments tracking systems, bug tracking systems and
communication archives [24]. For this study sources
of information are the Meta-Environment’s revision

control system and release log. In Section 3.3.1
the revision selection method is discussed. Sec-
tion 3.3.2 provides the method for identifying the
software system’s components and their size.

3.3.1 Revisions

The ASF+SDF Meta-Environment’s Subversion
revision control system repository, which is shared
with other products, contains over 31000 revisions.
Revision 190 is the first to contain source code of
the Meta-Environment itself.

Given the set of revisions R found in the Sub-
version repository, this study is performed on the
subset {R200, R300, Rn, . . . , R31000}, where n is the
revision number in the Subversion revision control
system. ∆n = 100 is selected, to reduce the num-
ber of temporary spikes, caused by e.g. a wrong
commit. The ∆n = 100 still maintains adequate
coverage to detect changes which affect the system
for a longer duration.

3.3.2 Component structure and size

The Meta-Environment system component struc-
ture is specified in Makefiles and tool interface def-
initions. Makefiles define the system’s programs
and libraries and the source code files associated
with them. As noted earlier, tools are a subset of
programs. This subset is identified by matching
the name of each program with the names found
in tool interface definitions. If such a match exists,
the program is deemed to be a tool.

The size of a component is measured in three
ways, depending on the source code language:

C the NLOC of C files referenced within the Make-
file and the NLOC of their header files are
summed.

Java the NLOC of all Java files is summed, be-
cause system packages composed of Java files
contain at most a single tool or library. The
type of the package is defined in a single Make-
file found in the root of the package.

TScript the NLOC of all files referenced by Make-
files is summed. TScript is associated with the
package within which it resides, with the ex-
ception of tool interface definitions, which are
associated with the tool for which they specify
a ToolBus interface.
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Measurement of component structure and size
has previously been executed by Robles et al.,
which studied the size of software packages found
in Debian Linux distributions [34]. In their
study, Robles et al. calculated the NLOC of non-
generated source code files, excluding files which
were exactly the same. Their method was almost
identical to the measurement of Java NLOC pre-
sented in this thesis. Unlike this study however,
Robles et al. did not use Makefile nor file depen-
dencies for determining which source code files were
actually used within a software package.

Generated source code is also prevalent within
the Meta-Environment’s source repository; the
source repository also contains unused copies of
source code created during the transition from the
CVS revision control system to Subversion. Both
generated code as well as unused code copies should
not be counted towards the size of components, be-
cause they do not affect the maintenance effort of
the Meta-Environment. The following paragraphs
describe the solution to these issues.

Generated source code In one version of the
Meta-Environment, generated code makes up over
50% of all C source code [11]. Generated source
code files are identified manually, because auto-
matic recognition is deemed less reliable. To reduce
the required identification effort, files which were
found to be generated in one revision are deemed
to be generated in all following revisions, i.e. if a
file is found to be generated in R5000 it is assumed
that it remains generated during the life-time of the
system.

Unused source code The use of Makefiles for
component structure detection ensures that source
code which is no longer in use does not affect a
component’s size. When no longer in use, either
the directory which contains these source code files
is no longer referenced by the Makefile in the par-
ent directory, or the Makefile itself does no longer
reference these files.

4 Results

The following subsections provide the statistics and
observations (as shown in the research method, Fig-
ure 3) for both hypotheses. Section 4.1 provides
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Figure 5: Number of snd-note(T) and rec-note(T)
occurrences. For R200 to R31000, interval = 100.

results concerning Hypothesis 1. Thereafter, Sec-
tion 4.2 and Section 4.3 provide results concerning
Hypothesis 2. A discussion of the results in pro-
vided in Section 5.

4.1 Time decoupling

Figure 5 presents the results on the amount of note
communication found in the Meta-Environment.
Notes are used before R4200, but not visible in the
measurement, because the opposite communication
ends are not yet referenced by Makefiles. Findings
indicate two primary usages (scenarios) of notes,
which are discussed in the next paragraphs.

From R4200 to R17000 notes are far more sent
than received, indicating that a receiving endpoint
is called from multiple sending endpoints. Analy-
sis of R10000 shows that the ui-status ATerm is
sent from 99 locations to 7 receiving locations, ac-
counting for 75% of all note communication. The
ui-status ATerm is used to provide the Meta-
Environment’s user interface with information on
the status of executing tools. Each of the 7 re-
ceiving locations is aimed at receiving specific text-
messages, e.g. for errors, ordinary text-messages,
etc.

From R17100 onward a significant rise and fall
of receive and send note calls respectively is ob-
served. This change coincides with the introduc-
tion of a module-manager tool, which was added as
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part of an architectural change during development
of the Meta-Environment 2.0 version. The module-
manager is further described in Section 4.1.3.

Scenarios in depth As part of the qualita-
tive analysis the following paragraphs describe
note usage scenarios which were abstracted from
concrete usage scenarios found within the Meta-
Environment’s TScript. These descriptions and
their implications are further discussed in Section 5.
To aid in the understanding of these descriptions
Figure 6 provides a visual representation. The sub-
figures use a UML2 Sequence Diagram notation,
with the following additional semantics:

• Arrows represent both ends of communica-
tion between entities, thus msg(T) represents a
snd-msg(T) primitive on the sending side and
a rec-msg(T) primitive on the receiving side.

• If the content of a message is not important
for understanding the diagram, T is used.

4.1.1 Basic coordination

The basic coordination scenario shown in Figure 6a
is the fundamental scenario found within all ver-
sions of the Meta-Environment. The scenarios pre-
sented in Section 4.1.2 and Section 4.1.3, both use
this scenario.

Two tools Tx and Ty communicate using their
interface processes (Px and Py). The event pub-
lished by Tx is communicated using various toolbus-
messages, Pn sends a note to Pm which continues
communication to Py via toolbus-messages. Within
the sequence diagram, Pn and Pm represent a vari-
able number of processes, such that it is also pos-
sible for Px and Py to directly communicate using
a note.

When the set of communication paths between
Px and Py contains both paths which are and paths
which are not decoupled, then these processes and
their associated tools are only partly time decou-
pled.

4.1.2 Concurrent return coordination

The concurrent return coordination scenario is pri-
marily used to provide the user interface with up-
dated information about the state of ASF+SDF
modules and operations performed on them. The

coordination scenario is concurrent in the sense
that information is send to the user interface whilst
computation initiated by the user interface tool is
still taking place inside other tools.

There are two slightly different implementations,
of which the first is presented in Figure 6b. It de-
picts a single tool Tx which communicates using its
interface process Px. On receiving an event from
Tx, Px coordinates with a number of other pro-
cesses (represented by Pn) and tools. When a tool
associated with Pn completes a portion of its com-
putation, it sends a toolbus-message to Py which
in turn sends a note to Px. This implementation is
for instance used to provide an updated ASF+SDF
module dependency graph to the user interface.

The second implementation is slightly different.
It is presented in Figure 6c. Within it Py becomes
the second tool interface process of Tx. Pn commu-
nicates with Py using a note, after which Py directly
communicates with Tx. This implementation is pri-
marily used for sending ui-status ATerms to the
user interface, using the Status-display process.

4.1.3 Module-manager

At R17100 the module-manager tool is introduced.
One of the main responsibilities of the module-
manager is to propagate state changes across
ASF+SDF module dependencies, i.e. module A
is reprocessed if module A depends upon B and
B is reprocessed. For this purpose the module-
manager stores the state (e.g. “unavailable”, “ed-
itable”, etc.) of ASF+SDF modules and pro-
vides events to listener processes when their state
changes. These listener processes coordinate with
tools to perform computation.

The scenario is presented in Figure 6d. A listener
process, such as Plistener subscribes to, and waits
for notes to be published by the module-manager
tool Tmm, via its process Pmm. The listener pro-
cess acts as a façade in front of utility processes
such as Putil. These utility processes implement the
‘business process’. They call upon multiple tools to
perform computation. After Putil has finished its
business process, it notifies the module-manager of
the new state, by changing an attribute located in
the module-manager. After which Tmm triggers an-
other attribute-changed event.
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(a) Basic

(b) Concurrent #1 (c) Concurrent #2

(d) Module-manager

Figure 6: UML2 sequence diagrams of coordination scenarios.

14



0 5000 10000 15000 20000 25000 30000

0
10

20
30

40

Revision #

N
um

be
r 

of
 to

ol
s

Figure 7: Number of tools. For R200 to R31000,
interval = 100.

4.2 Tool-size distribution

Figure 7 shows that the number of tools increases as
the Meta-Environment evolves. Figure 8 presents
the results of tool-size distribution measurement
for four revisions, These distributions show that as
the system evolves the distribution moves towards
tools of mostly NLOC < 1000. Figure 9 confirms
that the equality of the tool-size distribution re-
mains quite constant from R8000 on out. This indi-
cates that at no time during the system’s evolution
it contained a very different tool-size distribution
than the ones shown in Figure 8 (with the excep-
tion of the top-left distribution). The listing below
sheds light on the distribution changes indicated by
the changing Gini coefficient.

< R1400 Contains less than two tools. The result-
ing perfect equality is not depicted.

R1400 to R8000 Initial system evolution is chaotic.
This is caused primarily by the small number
of tools and their frequent change in size. Be-
tween R3200 and R4100, a lot of new tools are
added. Resulting in the distribution as shown
at the top-left of Figure 8. The distribution of
R8000 is shown at the top-right of Figure 8.

R8100 to R15800 The Gini coefficient slowly de-
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Figure 8: Tool-size distribution. For R4100, R8000

(top row) and R15800, R27500 (bottom row).
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clines as the tool-size distribution becomes
more equal (Figure 8, bottom-left). This is
primarily caused by an increase of tools within
the 100 to 1300 lines of code range, while no
significant modifications are made to tools over
2000 lines of code.

R15900 to R17800 The Gini coefficient changes sig-
nificantly, as various Java Meta-Environment
user interface plugin tools are introduced.

R17900 to R29000 During this period the distribu-
tion remains fairly stable. The number of small
tools increases, but this increase in equality is
negated by the editor-plugin tool, which was
introduced at R17600 and has slowly grown to
2500 lines of code (Figure 8, bottom-right).

R29100 < A sudden decline, caused by the move-
ment of code associated with a tool to a li-
brary.

4.3 Percentage of TScript

Figure 10 presents the percentage of TScript found
in tools, compared to the total size of TScript and
tool-code combined. Figure 11 presents the indi-
vidual size of TScript and tool-code. Given that
the tool-size distribution for < R1400 could not be
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Figure 11: Lines of TScript, C and Java associated
with tools. For R1400 to R31000, interval = 100.

calculated, these and any remaining figures start at
R1400.

The TScript percentage peak at R4000 is caused
by Makefiles referencing TScript before referencing
associated C source code.

The sharp increases in C and Java NLOC occur
for either of two reasons: (1) packages which were
under development, but not previously referenced
by the Meta-Environment, were added as a refer-
ence; or (2) Makefiles start referencing previously
existing subdirectories, which contain large quanti-
ties of source code. TScript size is hardly affected
by these referencing issues, because most TScript is
located within the meta package, which is included
from R190 onward. Measuring the size of previously
unreferenced packages and source code files at an
earlier time to reduce sharp increases is not pos-
sible, because Makefile identification of component
types is needed for determining whether or not a
source code file is part of a tool (see Section 3.3.2).

In Figure 10, the Meta-Environment’s releases
are labelled. The listing below provides an obser-
vation of changes taking place between these re-
leases. It provides additional information for use
within the discussion.

1.0 to 1.2 The growth in TScript is primarily at-
tributable to the addition of processes to dis-
play ASF+SDF evaluator errors and the split-
ting and extension of coordination related to
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the modification of ASF+SDF modules. The
splitting is comparable to the extract method
refactoring [18] in that a single large process
is refactored into a process which calls upon
other smaller processes to perform the same
functionality.

1.2 to 1.3 The Meta-Environment aims to pro-
vide an open environment for creating term
rewriting engines [37]. For this purpose the
development team added hooks [37], which are
messages that are sent from the generic part of
the Meta-Environment to a specific rewriting
formalism (such as ASF). Hooks add another
layer of coordination, thus causing an increase
the size of TScript.

Further changes include (1) the removal of du-
plicate TScript by creating utility processes
which are called by multiple other processes;
and (2) further extension of functionality re-
lated to ASF+SDF modules.

1.3 to 1.4 Flexibility of the Meta-Environment
is increased by extracting the storage of
ASF+SDF module information found in the
module-db tool into a separate term-store tool.
This results in a net increase in TScript, be-
cause the old process for handling ASF+SDF
module information is maintained to act as
a wrapper for the term-store processes. The
measured drop in C NLOC at R9300 is caused
by the removal of the module-db tool.

Another major refactoring increases the flexi-
bility of the Meta-Environment’s user interface
button actions. Whereas these actions were
previously hard-coded into the user interface
they can now be modified within the system’s
TScript.

1.4 to 1.5.3 Achievement of more flexibility was
not a goal for these releases. The replacement
of the Meta-Environment’s Emacs text editor
by a Java Swing implementation causes some
TScript to be added. Additional functionality
in the user interface which provides more er-
rors and warnings to the user causes additional
growth. The decrease of C NLOC at revision
R13100 is attributable to the refactoring of the
structure-editor tool, which implements user
interaction with syntax trees.

1.5.3 to 2.0RC1 Various changes have a large
impact on the Meta-Environment’s architec-
ture. At R17100 the module-manager tool is
introduced.

The large increase in Java NLOC at R17500 is
caused by the replacement of the user inter-
face, previously programmed in Tcl/Tk, with
various new Java SWING interface tools.

2.0RC1 to 2.0.3 Further 2.0 releases aim to
transfer the functionality provided in version
1.5.3 to the new architecture. In addition,
some new functionality is added. TScript
growth at this point is primarily located within
the utility processes, in which the ‘business
process’ is further specified (as noted in Sec-
tion 4.1.3).

5 Discussion

The discussion is split into four sections. Sec-
tion 5.1 and Section 5.2 each provide a discus-
sion on results for the two hypotheses individu-
ally. Afterwards, Section 5.3 provides a discus-
sion on the transaction handling within the Meta-
Environment. Section 5.4 discusses the validity of
the results.

5.1 Time decoupling

The note usage results displayed in Figure 5 in-
dicate that notes are used. Qualitative analysis
presented in Section 4.1.1, shows that the basic
scenario can provide time decoupling between pro-
cesses and tools. The concurrent return scenario
presented in Section 4.1.2, shows that use of such
a basic scenario does not always lead to true time
decoupling. The attempt to time decouple the user
interface leads to a situation in which information
which is meant for display to the user may be stored
until a later time, when the usefulness of this infor-
mation has long surpassed. The module-manager
scenario presented in Section 4.1.3 shows true time
decoupling, albeit not at the level of individual
tools. Therefore, Hypothesis 1 is accepted.

Conclusion 1. Achievement of time decoupling
within a bus-oriented architecture is possible.

The following section discusses how and why the
development team used notes the way they did.

17



5.1.1 Note usage

Analysis of the Meta-Environment made clear that
the use of notes is in no way meant to handle situa-
tions in which a tool is unavailable and would need
to be invoked at a later time. This development
choice is legitimate, because the Meta-Environment
tools run on a single computer system, which makes
the assumption that all tools are available a valid
one.

Instead, the Meta-Environment uses notes to
provide time decoupling for dealing with fire and
forget situations. In these situations, tasks per-
formed by tools can be executed concurrently, with-
out blocking the computation of other tools, like for
example the user interface. The Status-display

process discussed in Section 4.1.2 provides a nice
example, and there are other similar observed
cases in which a basic coordination scenario is
found. Such time decoupling is mostly unidirec-
tional, which means that a tool Tx is not time cou-
pled to other tools, but the other tools are time
coupled to tool Tx.

The Status-display process is fully decoupled
in time, because it receives notes exclusively, and no
outward communication is observed. Of no other
observed process can be said with absolute cer-
tainty that it is decoupled from tools other than
its own, because other tool interface processes were
found to send or receive at least a single toolbus-
message. A fully time decoupled tool interface pro-
cess implies a fully time decoupled tool, as long as
no other time coupled tool interface processes inter-
act with the tool and the tool communicates exclu-
sively through the ToolBus. The Status-display

process is not the only process which communicates
with its tool, but still does present a case in which
full time decoupling of a single tool is within reach.

The module-manager scenario changed the time
decoupling of tools. The continuous triggering of
listeners with notes that indicate an ASF+SDF
module state change, and the subsequent modifi-
cation of the the module-manager’s state by utility
processes, time decouples groups of tools. It allows
a listener to pull new work from its note queue at
any time, without being time coupled to any other
listeners or tools not associated with the task at
hand.

5.2 Complexity cost

In Section 4.2, the tool distributions shown in Fig-
ure 8 shows that the Meta-Environment contains
mostly small tools. Figure 7 shows that the number
of tools increases as the Meta-Environment evolves.
These two results form the premise for Hypothe-
sis 2. The results presented in Section 4.3 indi-
cate that the size of TScript relative to the size of
TScript and tool-code combined, does not increase
in an exponential or cubic fashion over time. Hy-
pothesis 2 indicated that such a relative increase
was to be expected. Given the results the hypoth-
esis is falsified.

Conclusion 2. The complexity cost of coordina-
tion scripting shows a close to linear growth rela-
tive to the growth of components which are coor-
dinated.

In the introduction to Hypothesis 2, provided
in Section 3.2, it was noted that every additional
tool likely requires additional scripting for defining
the information flow between itself and other tools.
The Meta-Environment team has surmounted this
obstacle by designing well defined paths of inter-
connection within TScript. This limits the possible
interconnections and, therefore, the number of lines
of TScript needed to provide such interconnection.

A good example is the module-manager, which
acts as a Mediator [20] to reduce the number of
interconnections between listener processes. It re-
duces the number of possible interconnections, be-
cause each additional listener processes adds only a
single dependency between itself and the module-
manager, instead of dependencies between itself
and all other listener processes.

Another example would be the handling of but-
ton click actions, which are coordinated through
various standard button handling processes until
veering of to the process that performs the associ-
ated computation.

5.2.1 Language complexity

TScript is a complex language to work with. Its
primitives all provide some sort of decision point,
in terms of the execution path, the type of com-
position, etc. The if-else primitives and com-
position primitives such as + and *, are all rela-
tively simple compared to the pattern matching of
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messages which takes place in snd-msg/note and
rec-msg/note primitives.

The development team developed the Meta-
Environment without using a TScript development
environment, but such tooling could be beneficial
to the development process. The lack of tooling
was found to be a disadvantage whilst performing
this study, because the interaction amongst pro-
cesses and tools had to be observed by searching
through text files, which proved to be time consum-
ing and error prone. Similarly, developers of the
Meta-Environment find the undisciplined message
pattern hard to cope with [11]. Tooling could dy-
namically infer which ATerms can match to which
other ATerms at runtime, and using this informa-
tion provide the user with capabilities like (1) navi-
gating from the message sending and receiving loca-
tion to the other endpoint(s), and (2) creating pro-
cess dependency graphs. Such advantages, which
are often found with statically typed languages are
useful for program design, maintenance and under-
standing [6].

5.3 Coarse-grained operations

The Meta-Environment consists of many fine-
grained tool operations which are combined to per-
form some useful activity. These fine-grained op-
erations share data dependencies with each other,
which makes it difficult to achieve successful time
decoupling, because tools depend too much upon
the state within other tools.

When the use of notes became a more dominant
choice within the Meta-Environment, developers
noticed that a lot of race conditions took place. An
example can be found in the user interface’s text
editor. Based upon the text content of this editor,
various computational actions (such as checking the
syntax of the text) are performed, whilst the user is
still typing. The computational result is then send
back to the user interface, which displays it to the
user. The sequence in which these results are pro-
vided was not predetermined, causing results which
were no longer accurate to be displayed to the user.

Possible solutions to this problem are to add
a transaction mechanism or lock data to re-
move race conditions. Such a transaction
management mechanism was therefore added
to the Meta-Environment in the form of a
transaction-manager tool. Manual management

of transactions adds complexity to the system,
as every location at which race conditions can
take place needs to be identified and encapsulated
within a transaction. A solution, which reduces
this complexity and therefore makes the achieve-
ment of time decoupling easier, is to create more
coarse-grained operations, such that the opera-
tions themselves become an implicit transaction
boundary. Of course not all race conditions can
be captured by creating coarse-grained operations,
therefore a transaction management feature is still
needed. The lack of a transaction facility within
TScript is a big loss, as this requires the creation
of additional tools, whilst clearly such a standard
facility is needed for notes to be a usable feature.

There is a drawback to the creation of coarse-
grained tool operations. Functionality which was
previously shared between multiple tools, pro-
grammed in multiple languages, is now hidden in-
side a single tool. Therefore, such functionality can
no longer be reused by tools written in different pro-
gramming languages or for different platforms, and
thus part of the system’s heterogeneity is lost.

5.4 Threats to validity

Threats to validity concern issues which affect
claims made in this thesis.

5.4.1 Construct validity

Construct validity concerns the question whether
or not results of a study are an indication for the
theoretical concept which is supposed to be mea-
sured.

This thesis uses complexity as a concept that de-
fines the ease of understanding (part of) a system.
Human understanding is still being researched, and
no definitive methods for measuring understanding
of software systems are available. This study works
with the assumption that that the size of a system
correlates with the time and effort required to un-
derstand such system.

5.4.2 Internal validity

Internal validity concerns issues with the inference
of cause and effect in the study’s analysis.
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Revision selection In Section 3.3.1, the limita-
tion of this study to every 100th revision was pre-
sented. Such a limitation could negatively affect
the correctness of this study. Every 100th revi-
sion was selected to reduce the number of tempo-
rary anomalies, effectively increasing the range of
revisions which can be considered within a given
time duration. Decreasing the interval would re-
sult in a decrease in the range of observable re-
visions, i.e. instead of {R200, R300, Rn, . . . , R31000}
one could consider {R9000, R9020, Rn, . . . , R15200}.
If this study were performed on such a limited sub-
set, then despite the smaller interval the inference
of this study would be incorrect, because the per-
centage of TScript would seem to grow as the num-
ber of small tools increases (as displayed in Fig-
ure 10). The downside of restricting research to
every 100th revision is not that it decreases the
validity of claims, but that these claims possibly
could be further strengthened by examples which
are located in unobserved revisions.

Message type inference Time decoupling of
processes and tools was manually observed for a
number of cases. The method of manually observ-
ing and tracing communication across processes in-
creases the risk of not observing a single commu-
nication path which introduces time coupling be-
tween two system elements. Similarly, manual ob-
servation of TScript structure does not reveal all
cases which are not well structured, increasing the
risk that the whole TScript is deemed to be well
structured, whilst in fact only parts are well struc-
tured.

A message type inference technique, which can
be used to create dependency graphs (as suggested
in Section 5.2.1), can increase result reliability. Al-
though the ToolBus uses such an inference tech-
nique at runtime, it was not used for purposes of
this study, because the deployment of every revi-
sion in the set of studied revisions was deemed dif-
ficult, due to continuous changes to the system’s
deployment configuration and C compiler.

Language expressiveness In calculating the
percentage of TScript there has been made no at-
tempt to differentiate between C code and Java
code, even though McConnell, when combining re-
sults of various studies, found the expressiveness of

Java to be 2.5 times higher than C [29]. But not
every study provides equal results, as a study by
Prechelt found that programmers who are assigned
a programming task in C and Java produced pro-
grams with similar NLOC [31].

No differentiation is applied, because it is likely
that the expressiveness of a language differs de-
pending on the domain to which it is applied, to
such an extend that the same language has different
factors of expressiveness within the same system.
This would require further qualitative analysis of all
functionality found within the Meta-Environment,
to come up with some factor whos reliability can
be disputed as well.

Combined result synthesis Even though this
study had no intention of synthesising the subject
of time decoupling and complexity, it is useful to
briefly determine the internal validity of the possi-
ble relation between them. Given the results and
earlier discussion it is not possible to state that the
application of time decoupling has an effect (posi-
tive or negative) on the complexity cost. The effect
of TScript structuring as discussed in Section 5.2
cannot be separated from the effect of time decou-
pling, because the action of time decoupling and
restructuring were not separated in the system’s
evolution, causing temporal precedence to be un-
observable.

5.4.3 External validity

External validity concerns issues with the gener-
alisation inferences of this study. Conclusions for
which external validity is discussed include Conclu-
sion 1 and Conclusion 2.

Distributed systems The non-distributed na-
ture of the Meta-Environment could negatively af-
fect this study’s generalisation to distributed sys-
tems. The ToolBus library contains all functional-
ity needed to work with remote tools. The locality
of any tool is abstracted away from the processes
that represent their interface. This makes it possi-
ble to deploy parts of the Meta-Environment onto
multiple systems, without affecting the ToolBus or
the Meta-Environment’s functionality. Therefore,
this study is representative for distributed systems.
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Time decoupling The ToolBus is a software
bus which (1) contains an intermediary component
which takes part in the communication process, and
(2) contains message queueing capabilities. These
characteristics were found crucial for achievement
of time decoupling. Therefore, the time decoupling
claim of this study is only representative for archi-
tectures which contain a software bus that share
these characteristics.

Within the WS-Notification specification family,
the WS-BrokeredNotification specification defines
an intermediary component called the Notification-
Broker [8]. If the implementation of such a Noti-
ficationBroker includes a message queue, then the
time decoupling claim of this study can also be ap-
plied to it.

Part of the use of time decoupling is for reliabil-
ity purposes, because it enables components to be
unavailable for a period of time. Using time decou-
pling for reliability purposes requires that (1) the
software bus does not require components (tools)
to be available for their message subscriptions to
remain active, and (2) the software bus does pro-
vide a reliable message queue, such that messages
are not lost after a period of time or a software bus
restart. The first requirement is achieved within
the ToolBus, but the second is not. Also, the Meta-
Environment was not developed with reliability in
mind, because it is not a distributed system. There-
fore, this study is not representative for the use of
time decoupling for reliability purposes.

Triple Space is comparable to the combination
of a software bus and module-manager. Therefore,
it can be used to provide time decoupling. Given
that Triple Space does not require components to
be available for subscriptions to remain active2, it
can also be used for reliable time decoupling.

Complexity cost TScript is a centralised script-
ing language, which defines coordination based
upon message content (called content-based rout-
ing) using process-oriented constructs.

Not all software bus coordination scripting lan-
guages are centralised. Some software buses are
no more than data transmission and subscription
holding facilities, which allow components to sub-

2As indicated in the WSMX Triple-Space Computing
specification, retrieved on the 19th of August, 2010 and lo-
cated at http://www.wsmo.org/TR/d21/v0.1/.

scribe to messages by their topic, content or type
[14]. Their complexity characteristics are different,
because these type of software buses scatter the
messaging and subscription logic across the com-
ponents which are connected to it. Such scat-
tering also occurs when the coordination script-
ing language does not feature process-oriented con-
structs, because such process-oriented constructs
are meant to replace part of the component com-
plexity, thereby separating coordination and com-
putation.

The knowledge and experience of developers af-
fects the cost complexity of the system. Developer
working on the Meta-Environment are academics
which have at least a masters degree in a computer
science related field. Most developers are either
working towards or have obtained a Ph.D.

Given the above paragraphs, the generalisabil-
ity of the complexity cost claim is limited to sys-
tems which share characteristics with the Meta-
Environment and the ToolBus. This specifically
includes systems which feature a software bus that
applies content-based routing and provides process-
oriented constructs, and systems that are developed
by developers with a high level of knowledge and
experience.

Within the WS-Notification specification fam-
ily, the WS-BaseNotification specification defines
content-based filters [7]. Using these filters, sub-
scribing components can limit the events for which
they receive notifications, based upon the content
of such events. Another specification which deals
which such filtering is the WS-Topics specification,
which includes topic-based filtering [9] compara-
ble to ATerm identifiers (Section 2.1.1). When
combined both specifications provide content-based
routing characteristics similar to that of TScript.
They do not, however, provide any process-oriented
constructs. Therefore, the complexity cost claim
cannot be generalised to these two specifications.

The tooling support for the development of a
coordination language might affect its complexity.
Such tooling support, which was discussed in Sec-
tion 5.2.1, could increase the understanding of the
coordination of interaction. Tooling support for
TScript is limited. It is only provided in the form
of an application which shows messaging as it oc-
curs, but it cannot generate a dependency graph.
One can speculate that by providing better tooling
developers with more limited knowledge and expe-
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rience can achieve similar complexity cost.

6 Conclusion

A case study was performed on the Meta-
Environment, which features a bus-oriented archi-
tecture based upon a content-based message rout-
ing software bus. The achievement of time decou-
pling and the complexity cost of coordination were
observed. Time decoupling enables two compo-
nents to participate in an interaction without both
being available at the same time.

Results indicate that time decoupling is achiev-
able within bus-oriented architectures and service-
oriented architectures, but that it is difficult to time
decouple a single component. Within the Meta-
Environment, time decoupling only occurs between
groups of components. A factor in such grouping is
found to be the component design, which contains
many fine-grained operations that share a lot of
data dependencies, which in turn makes time de-
coupling of individual component more complex.
Successful and less complex time decoupling of
components requires that (1) more coarse-grained
operations are specified, such that data dependen-
cies are located within tools themselves, and (2) a
transaction facility is provided for cases in which
such data dependencies cannot be moved within
components.

The primary complexity cost of a bus-oriented
architecture is assumed to be located in the script-
ing that defines the coordination amongst its con-
nected components. Results indicate that, in sys-
tems that share characteristics with the Meta-
Environment, the complexity cost of coordination
scripting shows a close to linear growth relative to
the growth of components which are coordinated.
The result is attributable to the structure which
developers created in the coordination script. The
structure is set up such that the number of pos-
sible paths of interaction between components are
reduced, which in effect reduces the possible com-
plexity.

6.1 Future work

This case study only examined a single system,
reducing the external validity of conclusions and
leaving many questions open for future research.

As future work, other bus-oriented architectures
and service-oriented architectures can be examined.
This can also provide more information on the pos-
sible connection between granularity of operations
and system heterogeneity.

The development of an application which pro-
vides a dependency graph depicting the communi-
cation amongst processes and tools could greatly
strengthen the claims on time decoupling and com-
plexity cost. It would also ease further develop-
ment of systems that utilise the ToolBus, because
it would provide better insight into the coupling of
such systems.
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