
Mod4j:

A qualitative case study of industrially applied
model-driven software development

V.Q.J. Lussenburg

v.q.j.lussenburg@student.uva.nl

October 27th, 2009

Master Software Engineering 2007-2009

Institution supervisor: dr. J.J. Vinju

Company supervisor: drs. J. Warmer

Availability: public domain

Institution:
University of Amsterdam
Faculty of Science
www.science.uva.nl

Company:
Ordina ICT

J-Technologies
www.j-technologies.nl

ii

Abstract

Model-driven development has been on the rise over the past few years and is becoming more and more mature. This study
o�ers insights into the applicability of the state-of-the-art model-driven software development (MDSD) tooling in real-life
industrial context. This is done by means of an evaluation of the model-driven environment mod4j, a suite of DSLs focused
on supporting the development of applications that fall within the domain of a reference architecture, featuring rich textual
model editors integrated in the Eclipse IDE based on the latest MDSD best-practices and tooling.

First, the criteria that are critical to the success of mod4j are elicited in a structured way by consulting mod4j experts
and literature. It is concluded that the model-driven tool should at least be able to satisfy the functional requirements
of applications in the reference architecture domain. Also, basic non-functional requirements laid down in the reference
architecture will have to be ful�lled. Finally, the amount of hand-written code is selected as criterion because it is a low-level
criterion that enables high-level MDSD goals such as development velocity: if the amount of hand-written has not decreased
compared to a completely hand-written application, it is unlikely the higher level goals can be satis�ed.

The evaluation is carried out by means of a case study: an industrially representative application is carefully selected
and partially rebuilt using mod4j. This implementation serves as case in this study. First, the artifact is thoroughly validated
by means of an automated test suite and a walkthrough session with mod4j experts. It is analyzed to what extent the
implementation meets the evaluation criteria and for each criterion, several issues are identi�ed. For these issues, detailed
recommendations are done to resolve them.

It is concluded that when these recommendations are followed, mod4j is suitable to be used to build applications that
fall within the domain of the Ordina J-Technologies reference architecture. Because measurements showed that up to 71%
of the code can be generated, it is considered probable that applications will be built in less time and with less e�ort.

iii

Preface

First, I want to thank Jos: it has been a pleasure to have worked with you. It's amazing much knowledge on
MDSD you have, I could have had no better mentor during this project. Also, I extend my gratitude to the rest
of the mod4j team, Eric Jan and Johan, for investing their scarce time into contributing to this study.

Next, I want to thank Jurgen for all the help in designing and structuring my research over the past few months.
Your experience in the research area and con�dence in me have helped me a great deal.

Hans, thanks for all the work in the past two years coordinating the master programme and thanks a lot for
standing in for Jurgen during his holiday and helping to get my research project on the rails.

I want to thank Katinka, my girlfriend. Your help, support and patience have really been invaluable to me. I am
really lucky to have a girlfriend that is already a master of science and more than often our dinnertime conversations
have been dominated by discussions on how to approach certain research problem.

Of course, I want to thank my brother, parents and friends for coping with me being a hermit for almost six
months, listening to me and providing me with sorely needed distractions.

Last, I want to thank Ordina J-Technologies and Edwin in particular both for the support during my project and
for giving me the opportunity to obtain my master's degree part-time.

iv

Contents

1 Introduction . 1
2 On Mod4j . 3
3 Evaluation criteria . 7
4 Research method . 11
5 Research results . 16
6 Recommendations . 28
7 Threats to validity . 32
8 Related work . 32
9 Conclusion . 33
References . 33
A Architectural requirements . 36
B Functional implementation issues . 41
C Hand-written code statistics . 43

1 Introduction 1

1 Introduction

1.1 Motivation

Model-Driven Software Development (MDSD) is gain-
ing popularity as literature on how to employ it and
tooling to support it is become more and more mature.
However, not much research has been published that
directly evaluates the application of MDSD in an indus-
trial setting. We will contribute data by evaluating the
applicability of a state-of-the-art Model-Driven environ-
ment by doing a case study in the context of a software
factory.

1.2 Project context

This research project has been conducted at J-
Technologies, a division of Ordina ICT employing per-
sonnel specialized in the Java programming language.
The services o�ered by J-Technologies range from hiring
out Java professionals to building and designing software
in the in-house development infrastructure called Smart-
Java. Smart-Java supports application development by
o�ering the necessary infrastructure tools and services,
such as version control, build servers, issue trackers, cus-
tomized Integrated Developer Environments (IDE) and
software artifact distribution. The majority of the appli-
cations built in the Smart-Java development infrastruc-
ture are web- or service oriented administrative business
applications.

It is observed that the developed applications are
of very di�erent overall quality and development veloc-
ity, although they are technically very similar to each
other. Even the skeletons of basic Create, Read, Up-
date, Delete (CRUD) applications take a long time to
be set up. Because Smart-Java is mainly focused on
infrastructural services, it has proved to be hard to ad-
dress these issues. Therefore, the decision was made to
investigate the possibility of expanding the Smart-Java
development infrastructure to a product line or software
factory, in other words, moving from supporting only
infrastructural concerns to being more actively be in-
volved in individual project processes. As a �rst step,
a multi tier reference architecture was designed based
on the experiences of the leading architects over the
last few years. A common reference architecture enables
reuse among projects and addresses important choices

regarding non-functional requirements valid for all de-
veloped applications. Other objectives and advantages
were identi�ed, such as a lower learning curve for devel-
opers, as they do not have to learn a new architecture for
each project, and improved maintainability. Next, mod4j
- Model-Driven Development for Java - was founded to
design and implement a MDSD environment that can
support the developers in writing applications within the
domain of this reference architecture. Together, these
initiatives are believed to have the potential to take the
Smart-Java development infrastructure to the next level
of industrialized software development.

1.3 Project purpose

This research project commenced just as mod4j deliv-
ered a �rst, stable version suitable for production use.
In this version, there is modeling support for three out of
four logical application layers and work is being done to
support modeling of the presentation layer. The current
version does fully support the modeling and generation
of the data, business and service layers (see section 2.1).

As it is one of the major goals of mod4j to be
used in the Smart-Java development infrastructure, J-
Technologies is interested how suitable the current ver-
sion of mod4j is. While it is hard to establish the suit-
ability of a product that has not been used in real-life
yet, the rationale for this that the earlier problems are
discovered, the less e�ort it will be to correct them (Fa-
gan, 2002). This can also in�uence the current develop-
ment of the Presentation DSL which uses the currently
existing functionality as foundation.

The objective of this research project is to reach con-
clusions and recommendations regarding the suitability
of mod4j within the context of the Smart-Java develop-
ment infrastructure. We will conduct an evaluation in
order to accomplish this objective and will answer the
follow central question in this thesis:

• What conclusions and recommendations can be
reached regarding the suitability of mod4j for use
in the Smart-Java software factory?

� What criteria will be used to evaluate the
suitability of mod4j?

� What conclusions can be drawn regarding
the suitability of mod4j in light of these cri-
teria?

1 Introduction 2

� What recommendations follow from the con-
clusions regarding the suitability of mod4j?

Scope Due to the fact there is no longitudinal data
on the use of mod4j, the evolution aspect of MDSD is
placed out-of-scope.

1.4 Theoretical framework

Based on the project context, we identify that Prod-
uct lines, Software factories and Model-Driven Software
Development form the theoretical framework used to
approach this evaluation. In the next sections, we will
discuss and ground these claims.

1.4.1 Product lines and software factories

This research is conducted in the context of the devel-
opment infrastructure of J-Technologies of which the
evolution into a software product line or software fac-
tory is envisioned. A software product line is de�ned by
Green�eld and Short (2003); (2004) as

A software product line is a production ca-
pacity for a family of software products.

A software factory is de�ned by Green�eld and Short
(2003); (2004) as:

A software factory is a software product line
that con�gures extensible tools, processes
and content using a software factory tem-
plate based on a software factory schema
to automate the development and mainte-
nance of variants of an archetypical prod-
uct by adapting, assembling and con�guring
framework-based components

Green�eld and Short (2003); (2004) underline the role of
MDSD in a software factory. Another important product
asset of a software factory is a product line architecture:

A product line architecture describes the
common high-level design features of
the products, distinguishing between com-
mon and variable design features (Green-
�eld et al., 2004)

We have mentioned the term reference architecture,
which is de�ned by (Bass, Clements and Kazman
(2003), chapter 2) as follows:

A reference architecture is a reference model
mapped onto software elements (that co-
operatively implement the functionality de-
�ned in the reference model) and the data
�ows between them.

A reference model is a division of function-
ality together with data �ow between the
pieces.

The reference architecture is an intermediate stage in
architecture design where the architectural pattern has
been determined and some high level design decisions
have been made, but it is not yet detailed enough to
serve as an architecture to implement a product.

How does one interpret the J-Technologies reference
architecture in light of these two de�nitions?

First, the reference architecture is indeed a reference
architecture in terms of Bass, Clements and Kazman
(2003): it is an intermediate stage in architecture de-
sign particular to the J-Technologies domain and can
be reused to create architectures for new products. By
setting a context and scoping the domain, it is much
more detailed then the de�nition by Bass, Clements and
Kazman (2003) suggests.

Second, the reference architecture can be used to
serve as product line architecture: it de�nes rules and
guidelines that must be followed for each product (com-
mon design features) but also prescribes how to imple-
ment features that may not be required for every product
(variable design features).

We conclude that the reference architecture can also
be seen as product line architecture.

1.4.2 Model-Driven Software Development

Model-Driven Software Development (MDSD) is a soft-
ware methodology that aims at using models as primary
artifact. It is synonymous with Model-Driven Engineer-
ing (MDE) and Model-Driven Development (MDD). A
model is de�ned by Hailpern and Tarr (2006) as:

A model M is an abstraction over some
(part of a) software product (e.g., require-
ments speci�cation, design, code, test, call-
�ow graph).

2 On Mod4j 3

Bézivin (2005) states that everything is (or can be seen
as) a model, just as every is an object in the object-
oriented paradigm. In line with this, Kleppe (2008) coins
the termmogram for a product written in any - graphical
or textual - software language: a classical Java applica-
tion is also a model.

Hailpern and Tarr (2006) state that the primary goal
is to raise the level of abstraction at which developers
operate and, in doing so, reduce both the amount of
developer e�ort and the complexity of the software arti-
facts that the developers use.

MDSD most associated with, but not limited to, de-
sign of domain-speci�c languages (DSL) and using these
to generate code (Stahl, Voelter and Czarnecki, 2006).

DSL A domain-speci�c language (DSL) is a program-
ming language or executable speci�cation lan-
guage that o�ers, through appropriate notations
and abstractions, expressive power focused on,
and usually restricted to, a particular problem do-
main (van Deursen et al., 2000).

Through these techniques, development at a suitable
level of abstraction is attempted to be accomplished.

1.5 Thesis structure

The remainder of this thesis is structured as follows:

• Section 2 provides in-depth information on mod4j.

• Section 3 elicits evaluation criteria and selects
which will be used for this evaluation.

• Section 4 elaborates on how the evaluation will be
done.

• Section 5 presents and analyzes the research re-
sults.

• Section 6 does recommendations regarding the
identi�ed severe issues.

• Section 7 re�ects on the research method and
points out threats to validity.

• Section 9 draws conclusions based on the research
results and recommendations.

2 On Mod4j

In this section, we provide an in-depth outline of what
mod4j is. The level of detail is required to understand
the more technical issues we will discuss later in the
study.

• We will �rst provide an outline of mod4j.

• Next, we will elaborate shortly on how mod4j is
implemented

• Then, we will discuss the architecture of the ap-
plications generated by mod4j

• Also, we will discuss the domain and purpose of
each of the three DSLs in mod4j

• Finally, we will explain how the generated code is
integrated

2.1 Outline

In order to provide an outline of mod4j, we cite the
website1:

Mod4j (Modeling for Java) is an open
source DSL-based environment for develop-
ing administrative enterprise applications. It
uses a collection of DSLs to model di�er-
ent parts of the architecture, combined with
manually written code. Currently Mod4j
consists of four DSLs: the Business Do-
main DSL, Service DSL, Data Contract DSL
and Presentation DSL2. The modeling en-
vironment is seamlessly integrated into the
Eclipse IDE which gives the developers one
environment where they can easily switch
back- and forth between models and code.
The di�erent DSLs used in Mod4j can be
used independently, but if they are used
in collaboration they will be fully validated
with each other. Apart from integration in
the Eclipse IDE, the complete code genera-
tion process can be run automatically on a
build server without the need for Eclipse.

1 www.mod4j.org
2 The Presentation DSL is still under development at this time.

www.mod4j.org

2 On Mod4j 4

2.2 Implementation

Mod4j is implemented using openArchitectureWare3, a
language workbench (Fowler, 2005) supporting activities
ranging from the design of DSLs to code generation.

The meta-models of the designed DSLs are used to
generate rich text editors (XText module) for use in the
Eclipse IDE: they o�er code completion, syntax high-
lighting and as-you-type validation. The XText module
also allows validation rules to be speci�ed for each DSL
in both the (OCL-like) Checks language and plain Java.

For the generation of the application code and con-
�guration, mod4j employs a Model to text (M2T) ap-
proach (Kleppe, 2008; Stahl, Voelter and Czarnecki,
2006) using the XPand component: the DSL is parsed
into an abstract syntax tree (AST) and is expanded into
the concrete syntax of the target languages using XPand
templates.

Finally, oAW is used to de�ne a work-�ow that will
be executed when the project with the DSLs is built.
This work-�ow allows the execution of tasks to be cus-
tomized and ordered. Examples of these tasks are the
actual generation of code but also formatting code and
XML.

The oAW suite is discussed by Kleppe (2008); Stahl,
Voelter and Czarnecki (2006); Breslav (2008) more ex-
tensively.

2.3 Architecture

The DSLs designed by mod4j are horizontal which means
they apply to a technical domain instead of a busi-
ness domain (Kleppe, 2008; Czarnecki and Eisenecker,
2000; Stahl, Voelter and Czarnecki, 2006). The ratio-
nale of this design decision is that applications built by
J-Technologies do not have a common business domain
but do have a common technical domain. As is visible
in �gure 1, each DSL is responsible for generating code
of speci�c layers of the application as well as the con�g-
uration to integrate these layers. This way, a brand new
project is quickly runnable without requiring any manual
code or con�guration.

Each of the three DSLs is designed to be highly co-
hesive and loosely coupled. The high cohesion results in
a DSL to be focused on a single aspect of the technical

domain. The low coupling prevents the DSLs from de-
pending directly on the implementation of other DSLs,
instead, an interface is exchanged. This allows referenc-
ing elements from one DSL in another DSL, enabling
functionality like code completion and validation: this
is what was meant by the statement that the models
are fully validated with each other. Both separation of
concerns and interface sharing are DSL design patterns
described by Spinellis (2001).

2.4 BusinessDomain DSL

The BusinessDomain DSL allows the developer to model
the domain of the application. This consists of speci-
fying the classes, properties, associations and business
rules of the domain. An example:

c l a s s Car [
s t r i n g brand ;
s t r i n g model maxlength 20 ;

r u l e s [
unique [brand model] ;
T i r eV a l i d a t i o nRu l e ;

]
]

c l a s s T i r e s [
i n t e g e r s i z e ;

]

a s s o c i a t i o n

Car ca r one <−> many Ti r e t i r e s ;

The business domain model generates code in the
data and domain implementation layers. An example
is provided in �gure 2, the operations in the extension
points (drive, in�ate, de�ate) are provided as examples
of hand-written functionality. Note that the data access
logic component for the Tire object has been omitted
for brevity. The technique used to separate the gener-
ated from the hand-written code is called the Generation
Gap pattern (Vlissides, 1996).

We see that for all modeled classes, a domain class
and an extension point is generated, where manual code
can be placed to extend the domain object, for example,
behavioral business code. In the data layer, the object-
relational mapping4 con�guration and data access logic

3 http://www.eclipse.org/workinggroups/oaw/
4 Object-relational mapping technique for adapting data between relational databases and object-oriented programming languages.

http://www.eclipse.org/workinggroups/oaw/

2 On Mod4j 5

service

Service Interfaces DTOs

business

Domain Services Domain
Model

data

Data access logic components

Generated using
BusinessDomain DSL

Generated using
Service DSL

Generated using
Datacontract DSL

Fig. 1: Logical view mod4j architecture

component are generated for this domain class. Finally,
a stub validation rule is generated in the business layer
for each business rule that is speci�ed in the model: this
rule must be implemented by that. All extension points
are generated by mod4j one �rst time if they do not yet
exist: manual code in these �les is never overwritten.

2.5 Service DSL

We will �rst discuss the de�nition and responsibilities
the service layer. Fowler (2002) de�nes the role of ser-
vice layer as follows:

A service layer de�nes an application's
boundary (Cockburn, 1996) and encapsu-
lates the application's business logic, con-
trols transactions and coordinates responses

He also underlines that the service might have to sup-
port remoting but recommends not doing this if it can
be avoided as per the First Law of Distributed Object
Design: Don't Distribute Your Objects.

In his Domain-Driven Design book Evans (2003) de-
�nes a domain service as follows:

A domain service is a standalone, stateless
interface that houses operations that are not
a natural responsibility of an Entity or Val-
ueObject. The domain service name as well

as the operations should be part of the Ubiq-
uitous Language.

As the name suggests, the domain service is part of the
logical business layer. Any concerns regarding remoting
and messaging are separated from the domain service:
are classical example of separation of concerns (Dijkstra,
1982).

The mod4j architecture follows this: the domain ser-
vice is part of the logical business layer and addresses
the business logic concerns. The mapping between the
external and the internal representation is addressed by
the Datacontract DSL (see the next section). Mod4j
currently exposes the functionality using a local service
implementation: as we will use the term 'local service'
often in the study, we will de�ne it here explicitly:

A local service is a service that uses a lo-
cal (ie. non-remote) protocol to expose the
business functionality in the domain service.

In summary, the domain service addresses business con-
cerns, where the local service addresses technical format
and transport concerns.

The Service DSL models the local service and not
the domain service and can only reference DTOs. It
may be contrary to expectation that the domain service
is also generated: mod4j supports prede�ned common
methods such as create, read, update and delete and

2 On Mod4j 6

d
o

m
a

in

-I
D

 :
 I
n
te

g
e
r

-b
ra

n
d
 :
 S

tr
in

g
-m

o
d
e
l
:
S

tr
in

g
-t

ir
e
s
 :
 C

o
lle

c
ti
o
n

+
g
e
tI
d
()

 :
 I
n
te

g
e
r

+
g
e
tB

ra
n
d
()

 :
 S

tr
in

g
+

g
e
tM

o
d
e
l(
)

:
S

tr
in

g
+

s
e
tB

ra
n
d
(

b
ra

n
d
 :
 S

tr
in

g
)

+
s
e
tM

o
d
e
l(
 m

o
d
e
l
:
S

tr
in

g
)

+
a
d
d
T

o
T

ir
e
s
(

ti
re

 :
 T

ir
e
Im

p
l
)

+
re

m
o
v
e
F

ro
m

T
ir
e
s
(

ti
re

 :
 T

ir
e
Im

p
l
)

+
g
e
tT

ir
e
s
()

 :
 C

o
lle

c
ti
o
n

C
a
rI

m
p

lB
a
s
e

-I
D

 :
 i
n
te

g
e
r

-s
iz

e
 :
 I
n
te

g
e
r

-c
a
r

:
C

a
rI

m
p
l

+
g
e
tI
d
()

 :
 I
n
te

g
e
r

+
g
e
tS

iz
e
()

 :
 I
n
te

g
e
r

+
s
e
tS

iz
e
(

s
iz

e
 :
 I
n
te

g
e
r

)
+

g
e
tC

a
r(

)
:
C

a
rI

m
p
l

+
s
e
tC

a
t(

 c
a
r

:
C

a
rI

m
p
l
)

T
ir

e
Im

p
lB

a
s
e

+
in

fl
a
te

()
+

d
e
fl
a
te

()

T
ir

e
Im

p
l

+
d
ri
v
e
()C

a
rI

m
p

l

+
v
a
lid

a
te

(
o
b
je

c
t
)

T
ir

e
V

a
li
d

a
ti

o
n

R
u

le

d
a

ta

+
c
re

a
te

()
+

d
e
le

te
()

+
u
p
d
a
te

()
+

re
a
d
()

+
lis

t(
)

+
fi
n
d
()

C
a
rD

a
o

Im
p

lB
a
s
e

+
c
u
s
to

m
()

C
a
rD

a
o

Im
p

l

+
c
re

a
te

()
+

d
e
le

te
()

+
u
p
d
a
te

()
+

re
a
d
()

+
lis

t(
)

+
fi
n
d
()

C
a
rD

a
o

B
a
s
e

+
c
u
s
to

m
()

C
a
rD

a
o

C
a
r.

h
b
m

.x
m

l
-

O
R

M
 c

o
n
fi
g
u
ra

ti
o
n

<
h
ib

e
rn

a
te

-m
a
p
p
in

g

 d

e
fa

u
lt
-a

c
c
e
s
s
=

"f
ie

ld
"

 p

a
c
k
a
g
e
=

"n
l.
a
p
p
.d

o
m

a
in

">

 <

c
la

s
s
 n

a
m

e
=

"C
a
r"

>
..
<

/c
la

s
s
>

<
/h

ib
e
rn

a
te

-m
a
p
p
in

g
>

T
h
e
 T

ir
e
D

a
o
 c

o
d
e
 a

ls
o
 f
o
llo

w
s
 t
h
e

g
e
n
e
ra

ti
o
n
 g

a
p
 p

a
tt
e
rn

 b
u
t
is

 o
m

it
te

d

h
e
re

 f
o
r

b
re

v
it
y

E
x
te

n
s
io

n
 p

o
in

ts

0
..
*

1

<
<

u
s
e
>

>

Fig. 2: Code generated from the BusinessDomain DSL (UML2 class diagram)

3 Evaluation criteria 7

for these methods, the full implementation is generated
from service layer to data layer, this requires that the do-
main service is also generated. This coupling between
local and business service is also addressed in this study.

An example of the concrete syntax is provided in the
program listing below, �gure 3 depicts the code mod4j
generates from this model.

"Read op e r a t i o n f o r CarWithTi resDto . "
read r eadCarWithTi re sDto f o r

CarWithTiresDto ;

" L i s t s a l l CarDto o b j e c t s . "
l i s t a l l g e tC a r L i s t f o r CarDto ;

"Get number o f t i r e s on the ca r "
method getNumberOfTires i n

[CarDto carDto ;]
out NumberOfTiresDto ;

2.6 Datacontract DSL

The Datacontract DSL allows Data Transfer Objects
(DTOs) to be de�ned based on the domain objects. The
de�nition of DTO we will employ in this study:

A Data Transfer Object is an object that
carries data between processes in order to
reduce the number of method calls (Fowler,
2002).

An elaborate explanation of the DTO pattern can be
found in chapter 15, Fowler (2002). In short, the DTO is
used to provide a course-grained, serializable, behavior-
less object tailored towards to need of the client.

Mod4j allows to de�ne DTOs that directly represent
a domain object. It can be con�gured which properties
and associations are to be included in the DTO. The
DTO Translators that map between domain objects and
DTOs are also generated. There is also the possibility to
de�ne a custom DTO that does not represent a domain
object directly (see NumberOfTiresDto below). We will
evaluate the role of the custom DTO in-depth in this
study.

As an example of a datacontract model, we prevent
the following program listing and �gure 3 depicts what
mod4j generates from this model.

"CarDto , on l y e xpo s e s the model p r o p e r t y "
c l a s s CarDto r e p r e s e n t s Car [

model ;
]

"Dto expo s i ng a l l p r o p e r t i e s and
no a s s o c i a t i o n s . "

c l a s s TireDto r e p r e s e n t s Ti r e

"A l i s t o f CarDto o b j e c t s . "
l i s t T i r eD t oL i s t con t a i n s TireDto

"CarDto , w i th t i r e s a s s o c i a t i o n . "
c l a s s CarWithTiresDto r e p r e s e n t s Car [

model ;
r e f e r e n c e s [

t i r e s as T i r eD t oL i s t ;
]

]

"Custom DTO used to r e t u r n the number o f
t i r e s . "

custom NumberOfTiresDto [
i n t e g e r numberOfTires ;

]

2.7 Integration of layers

The various layers are integrated by generating the con-
�guration for the Inversion-of-Control (IoC) framework
Spring5. IoC injects dependencies into components in-
stead of letting the components resolve their dependen-
cies themselves. IoC and Spring in particular is very pop-
ular in JEE community. For further reading, see (Fowler,
2004).

3 Evaluation criteria

In this section we will answer the question what criteria
will be used to evaluate the suitability of mod4j.

First, we have studied literature on all sections of
the theoretical framework (section 1.4). Also, we have
undertaken both an interview with the project lead,
Warmer, and a workshop with the entire mod4j team
in order to elucidate all the goals of mod4j and all prob-
lems it is envisioned to solve. We will elaborate on these

5 http://www.springsource.org/

http://www.springsource.org/

3 Evaluation criteria 8

s
e
rv

ic
e

+
re

a
d

C
a

rW
it
h

T
ir
e

s
D

to
(

id
 :

 I
n

te
g

e
r

)
+

g
e

tC
a

rL
is

t(
)

:
C

o
lle

c
ti
o

n
+

g
e

tN
u

m
b

e
rO

fT
ir
e

s
()

 :
 N

u
m

b
e

rO
fT

ir
e

s
D

to

L
o

c
a

lS
e

rv
ic

e
B

a
s

e

+
g

e
tN

u
m

b
e

rO
fT

ir
e

s
()

 :
 N

u
m

b
e

rO
fT

ir
e

s
D

to

L
o

c
a

lS
e

rv
ic

e
Im

p
l

+
re

a
d

C
a

rW
it
h

T
ir
e

s
D

to
(

id
 :

 I
n

te
g

e
r

)
+

g
e

tC
a

rL
is

t(
)

:
C

o
lle

c
ti
o

n

L
o

c
a

lS
e

rv
ic

e
B

a
s

e
Im

p
l

L
o

c
a

lS
e

rv
ic

e

b
u

s
in

e
s
s

+
re

a
d

C
a

rW
it
h

T
ir
e

s
D

to
(

id
 :

 I
n

te
g

e
r

)
+

g
e

tC
a

rL
is

t(
)

:
C

o
lle

c
ti
o

n

D
o

m
a

in
S

e
rv

ic
e

B
a

s
e

+
g

e
tC

a
rL

is
t(

)
:

C
o

lle
c
ti
o

n
+

re
a

d
C

a
rW

it
h

T
ir
e

s
D

to
(

id
 :

 I
n

te
g

e
r

)

D
o

m
a

in
S

e
rv

ic
e

B
a

s
e

Im
p

l

+
g

e
tN

u
m

b
e

rO
fT

ir
e

s
()

 :
 I

n
te

g
e

r

D
o

m
a

in
S

e
rv

ic
e

+
g

e
tN

u
m

b
e

rO
fT

ir
e

s
()

 :
 I

n
te

g
e

r

D
o

m
a

in
S

e
rv

ic
e

Im
p

l

s
e
rv

ic
e
.d

to

+
g

e
tM

o
d

e
l(
)

:
S

tr
in

g
+

s
e

tM
o

d
e

l(
 m

o
d

e
l
:

S
tr

in
g

)
+

g
e

tT
ir
e

s
()

 :
 C

o
lle

c
ti
o

n
+

a
d

d
T

o
T

ir
e

s
(

ti
re

 :
 T

ir
e

D
to

)
+

re
m

o
v
e

F
ro

m
T

ir
e

s
(

ti
re

 :
 T

ir
e

D
to

)

C
a

rW
it

h
T

ir
e

s
D

to

+
g

e
tN

u
m

b
e

rs
O

fT
ir
e

s
()

 :
 I

n
te

g
e

r

N
u

m
b

e
rO

fT
ir

e
s

D
to

+
g

e
tM

o
d

e
l(
)

+
s
e

tM
o

d
e

l(
 m

o
d

e
l
:

S
tr

in
g

)

C
a

rD
to

+
g

e
tS

iz
e

()
 :

 I
n

te
g

e
r

+
s
e

tS
iz

e
(

s
iz

e
 :

 I
n

te
g

e
r

)

T
ir

e
D

to

s
e
rv

ic
e
.d

to
.t

ra
n

s
la

to
rs

+
fr

o
m

D
to

(
..

.
)

+
to

D
to

(
..

.
)

C
a

rW
it

h
T

ir
e

s
D

to
T

ra
n

s
la

to
r

+
fr

o
m

D
to

(
..

.
)

+
to

D
to

(
..

.
)

T
ir

e
D

to
T

ra
n

s
la

to
r

+
fr

o
m

D
to

(
..

.
)

+
to

D
to

(
..

.
)

C
a

rD
to

T
ra

n
s

la
to

r

d
o

m
a
in

G
e

n
e

ra
te

d
 f

ro
m

 t
h

e

D
a

ta
c
o

n
tr

a
c
t

D
S

L

G
e

n
e

ra
te

d
 f

ro
m

 t
h

e

B
u

s
in

e
s
s
D

o
m

a
in

 D
S

L

G
e

n
e

ra
te

d
 f

ro
m

th

e
 S

e
rv

ic
e

 D
S

L

0
..

*
1

<
<

u
s
e

>
>

<
<

u
s
e

>
>

<
<

u
s
e

>
>

<
<

u
s
e

>
>

<
<

u
s
e

>
>

<
<

u
s
e

>
>

Fig. 3: Code generated from the Datacontract and Service DSLs (UML2 class diagram)

3 Evaluation criteria 9

sessions �rst, after which we will present and ground the
selected criteria and in the following order:

• Conformance to the reference architecture

• Functional requirement satisfaction

• Reduction of hand-written code

3.1 Criteria elicitation

3.1.1 Interview project lead

An interview with the project lead, Warmer, was setup
early in the project to serve as a source of both con-
textual and in-depth information for the researcher and
to elicit criteria for the evaluation. As an expert on
both MDSD and mod4j Warmer was expected to have
valuable input for an initial focus. The interview was
structured around the following central topics:

• Mod4j: background, history, design, implementa-
tion

• In�uences from previous MDSD experiences

• Re�ection and vision on mod4j

• Suitable applications to build with mod4j

Especially during the �rst interview question Warmer
elaborated on the problems that mod4j is envisioned
to solve. Also, previous experiences of Warmer re-
garding a horizontal DSL suite to build administrative
business applications (Warmer, 2007) yielded important
data about how developers worked with the DSLs: what
they liked but also what problems they encountered.
These strong points and problems form a valuable view-
point on mod4j.

The following items have been distilled from the in-
terview transcript:

Conformance to reference architecture A corner
stone of mod4j is that, out of the box, it generates an ap-
plication that conforms to the architecture as laid down
by the J-Technologies architects. In classical software
development it often occurs that the reference architec-
ture is violated, for example, because an architecture
layer is illegally skipped. During the development of

mod4j, the reference architecture has always been lead-
ing. This means that the architectural concerns are sep-
arated from mod4j: if the functional and non-functional
requirements on applications can be implemented us-
ing the reference architecture, they can be implemented
with mod4j too.

A result of the conformance of the architecture is a
consistency in the codebase: One reason that project
results are not predictable is that the choices made are
di�erent for each project.

Reduction of complexity The primary goal of MDSD
is to raise the level of abstraction at which developers
operate and, in doing so, reducing both the amount of
developer e�ort and the complexity of the software arti-
facts that the developers use (Hailpern and Tarr, 2006).
This goal applies to mod4j as well: the mod4j environ-
ment allows the developer to develop at a higher level
of abstraction and be more productive.

Educational code The code generated by mod4j com-
municates the reference architecture and serves as a
tool to teach new developers about the architecture.
In Warmer's experiences, developers gain a lot of in-
sights by creating a new toy application, working with
the DSLs and watching the code that is generated. The
code that is generated by mod4j is well-readable and
rich in documentation to optimize this learning e�ect.

Textual editors In Warmer's previous experiences
with model-driven development of administrative busi-
ness applications, he has noticed that graphical DSLs do
not match the developer's style of work: they are more
accustomed to and comfortable with textual DSLs. It is
expected that textual editors increase both the produc-
tivity and chance of adoption.

Suitable for the entire reference architecture
Mod4j is suitable for all applications that fall under the
domain of the reference architecture. For some applica-
tions the advantage of using mod4j will be greater then
others, but all applications will bene�t from it.

Velocity One of the most important goals of mod4j is
to increase the average developer's velocity. This envi-
sioned increase velocity should be accomplished through

3 Evaluation criteria 10

mod4j's various other characteristics such as consistency
and operating at a higher level of abstraction. While this
is aggregate of already mentioned criteria, is it a very
important metric to determine the success of mod4j.

3.1.2 Workshop

Introduction After the interview we conducted a
workshop that was attended by the entire mod4j devel-
opment team. The workshop was structured as follows:

• Research project outline

• Problems solved by mod4j

• Selected case outline

• Evaluation criteria elicitation

Problems solved by mod4j In order to get a good
overview of all problems that mod4j tries to address, we
asked the participants to write down the most important
problems that mod4j will solve on a post-it note and
them stick them all together on a �ip-over. Next, we
grouped similar problems and discussed all problems in
order to provide context for them. This part of the work-
shop gave valuable insights into mod4j and the problems
that are envisioned to be resolved.

• Consistency and quality: It is envisioned that
mod4j will cause the overall quality of the source
code to increase and let this increase be consistent
over the entire codebase.

• Decrease required detailed knowledge: when
working with mod4j, developers will need less de-
tailed knowledge of the underlying frameworks and
tools. This makes developers more productive.

• Velocity: mod4j means quicker development. This
means the feedback loop is short and the project
can be agile.

• Bring the IT and the business closer together: By
increasing the velocity it can more quickly be ver-
i�ed if the customer is well understood by demon-
strating a crude prototype. This prototype can
both be made very quickly from scratch by mod4j
and easily be expanded to a production-quality im-
plementation.

• Maintainability: because the developer work at a
higher level of abstract, the maintainability is en-
visioned to be higher.

• Architectural guarantee: Mod4j makes sure that
the generated application matches the architec-
ture. This means misinterpretations will no longer
cause the architecture to be violated.

Evaluation criteria elicitation After the selected case
had been outlined, the participants were asked once
again to write down their thoughts but now on crite-
ria that would be particularly interesting for the case
to be studied. Again, the thoughts were grouped and
discussed in depth.

• Flexibility: is mod4j �exible enough to work with
existing designs? Does it integrate with an exist-
ing database schema, service model, et cetera?

• Best-practices: can the best practices of software
development be followed? Or is another working
style required?

• Maintainability (again).

• Broad applicability: can all applications within
the reference architecture domain be implemented
with mod4j?

• No impact on existing production environment:
the created application should be just another JEE
application.

• Easily usable (low learning curve).

3.2 Criteria

By weighing the input of the interview, the workshop
and the literature on the various subjects of the theo-
retical framework (section 1.4) we have selected three
criteria we will use to conduct the evaluation. These
are:

1. Conformance to the reference architecture

2. Real-life functional requirement satisfaction

3. Reduction of hand-written code

We will discuss these criteria and explain why they have
been selected for this evaluation.

4 Research method 11

3.2.1 Conformance to the reference architecture

The goal of evaluating this criterion is to determine if
mod4j is suitable to be used to develop all products
in the Smart-Java product family. This was mentioned
both the in the interview with Warmer and in the work-
shop with the mod4j development team. Literature also
underlines the importance of a product line architecture
for model-driven software development (Green�eld et al.,
2004; Stahl, Voelter and Czarnecki, 2006).

As we identi�ed in section 1.4, Smart-Java is a de-
velopment infrastructure aspiring to grow into a soft-
ware factory. In this context, the reference architecture
(described in Boxtel, Malotaux and Tjon-a Hen, 2008)
can be seen as the product line architecture used for all
products in the product family (Green�eld et al., 2004).
As it is one of major goals of mod4j is to be used in a
software factory, it must be able to support the devel-
opment of all these products. This means mod4j must
support all common and variable features de�ned in the
reference architecture.

The initial goal of mod4j has been to deliver added
value by supporting the most common tasks and not
addressing all variable features. This is not an uncom-
mon approach in code generation: for example Stahl,
Voelter and Czarnecki (2006); Czarnecki and Eisenecker
(2000) recommend not insisting on generating 100% of
the code and rather focusing on where code generation
delivers its most added value and making sure this gen-
erated code can be well integrated with the hand-written
code. Even if a variable feature cannot be modeled in
mod4j, it must be possible to hand-code this feature
without having to change generated code or violate the
reference architecture.

Based on these facts, we consider conformance to
the reference architecture to be critical success factor
for adoption in the Smart-Java development infrastruc-
ture and will therefore employ it as evaluation criterion.

3.2.2 Real-life functional requirement
satisfaction

The goal of evaluating this criterion is the same as the
previous: to determine if mod4j is suitable to be used
to develop all products in the Smart-Java product fam-
ily. However, this criterion approaches suitability from a
di�erent viewpoint. This has been mentioned neither in
the interview nor in the workshop, because it is very im-

plicit: it is evident that mod4j has to be able to statisfy
real-life functional requirements for it to be practically
usable for J-Technologies. Mod4j raises the abstraction
to a higher level but also limits expressiveness which can
threaten the satisfaction of the more low-level functional
requirements (section 8.1, Stahl, Voelter and Czarnecki,
2006).

In the previous section we already identi�ed that it
is neither expected nor required to be able to model ev-
ery facet of the the required functionality as long as it
is possible to place hand-written code at suitable places
within the architecture (Stahl, Voelter and Czarnecki,
2006). Even when this is made plausible, skepticists will
insist on having success stories of the implementation
of real-life requirements. By evaluating this criterion set
the �rst step towards achieving this.

3.2.3 Reduction of hand-written code

The goal of evaluating this criterion is to determine if
it is plausible that mod4j can reduce the amount of de-
veloper e�ort. This criterion was indirectly mentioned
in both the interview and the workshop. The amount
of hand-written code is an easy collectable metric and
if the amount of hand-written code is not reduced, it is
also unlikely that velocity of development is increased.

Also, by analyzing the hand-written code opportu-
nities can be spotted to decrease the amount of hand-
written code by adding or improving DSLs and/or gen-
erators.

4 Research method

In this section, we will determine which research method
we will employ to evaluate mod4j. We have decided to
do a case study because:

• The research is focused on a scoped domain.

• The nature of our study is more in-depth than
broad.

• We have to do much work to rebuild a case: there
is overhead in selecting multiple cases (�nding
suitable cases, familiarizing ourselves with the ap-
plication, et cetera).

• We will collect qualitative rather than quantitative
data.

4 Research method 12

Fig. 4: Research method work-�ow (Business Process Diagram)

The four steps of the research method are displayed in
�gure 4. We will �rst discuss them brie�y.

1. Case selection: �rst, we will determine which case
we will study.

2. Case rebuilding: here we will decide how to re-
build the case, including the selection of parts to
rebuild.

3. Validation: here, we will address the concern that
the created implementation is neither tested nor
accepted by any customer and, as a result, might
contain undiscovered bugs and missing or misin-
terpreted functions.

4. Criterion evaluation: here, we will determine how
the data will be analyzed in order to reach conclu-
sions and recommendations for each criterion.

4.1 Case selection

Mod4j is has not been industrially applied yet and there-
fore no real-life project data is yet available. The �rst
step in our research method (�gure 4) is to select a
real-life, representative application which we can rebuild
ourselves to acquire research data. We will select an ap-
plication to rebuild with mod4j by �rst determining the
criteria of a representative application and then selecting
a suitable case based on these criteria.

4.1.1 Criteria

As de�ned in the previous section, the application
needs to be representative within the context of J-
Technologies. As this a broad de�nition, we reverse it
and ask the question: what application would not be
suitable for this study?

Conforming to reference architecture Any applica-
tion that has little to no similarities with the reference
architecture, either caused by the domain of the applica-
tion (e.g. real-time, embedded) or design choices (e.g.
no separated domain model or data layer), will result in
work into adapting the design to match the reference
architecture. This work does not directly contribute to
the project goals and will introduce an uncertain factor.

No toy application A toy application is created to
prove a concept or set an example but does not sat-
isfy any real user requirements. Because no real user
requirements are satis�ed, these applications have a low
complexity and contain undiscovered bugs. Although a
good design aims at building �the simplest thing that
could possibly work� (Beck and Andres, 2004), mod4j
must be able to cope with situations where the simplest
thing is not dead simple. We conclude that any obser-
vation done rebuilding a toy application is unlikely to be
representative and will threaten the validity of the study.

In production use (mature) During production use,
bugs are found and new insights are obtained regard-
ing application features (Bennett and Rajlich, 2001).
Hence, an application that has undergone some mainte-
nance is more suitable than an application that is very
new.

Not small The selected application should not be
small as interesting complexity often emerges with size.
Also, the more data there is to choose from, the more
cherry picking is possible.

Decomposable in units of work As we will set the
objective to only rebuild parts of the application, it has
to be able to be decomposed in bite-sized units of work.

4 Research method 13

4.1.2 Selected case

The application that was selected to be the case in the
case study is the Ordina Jobportal (2006), built on the
Smart-Java development infrastructure. The primary
function of this application is to support employees of a
recruitment division in their work-�ow. Types of activ-
ities include assigning an applicant to a recruiter, plan-
ning a meeting with the applicant, assigning the applica-
tion to a reviewer for a review of the CV, maintaining the
vacancies, et cetera. Also, people looking for work can
search through the vacancies and send in an application.
Jobportal is implemented as a three-tier JEE application
consisting of a data layer, a domain and service layer and
two web applications.

Conforming to reference architecture The Jobpor-
tal is one of the applications whose architecture has
contributed to the reference architecture as it is now.
Of course, there are some di�erences in implementation
choices but the Jobportal architecture does fall within
the domain of the reference architecture.

No toy application The Jobportal satis�es real user
requirements: it is speci�cally designed to support the
Recruitment personnel in their daily work and is actively
used.

In production use (maturity) The application has
been running in production since 2006, has undergone
various maintenance steps and is still in evolution.

Not small The Jobportal has a total size 14.5k Non
Commenting Source Statements (NCSS) and has a total
23 implemented use cases. We asses that this is more
than enough to allow cherry picking for this study.

Decomposable in units of work The Jobportal fol-
lowed the �RUP op maat� implementation of Rational
Uni�ed Process (Collaris and Dekker, 2008) and was,
as RUP recommends, functionally decomposed into use
cases. Use cases are described by Cockburn (2000) as
follows:

A use case is a description of the possible se-
quences of interactions between the system

under discussion and its external actors, re-
lated to a particular goal.

The use cases have no interrelations and are considered
to be well scoped units of work.

4.2 Case rebuilding

In this section, we carry out the second step in our re-
search method (�gure 4) and will discuss how we will
rebuild the functionality of the Jobportal.

• First, we will lay down the rebuild goals and rules.

• As the Jobportal is a quite large application, we
assess that it is not feasible to rebuild the en-
tire application within the time constraint of this
study. Yet, we want to do as much observations
as possible in the time we have and will discuss
how we selected the parts to rebuilt in order to
maximize the observations done.

4.2.1 Rules for rebuilding

The primary goal is to use mod4j to completely clone
the functionality within the scope of an use case and
take record of any issues encountered in this process.

During implementation we have encountered situa-
tions where completing the functionality would no longer
yield observations on working with mod4j. A very
straightforward example is that mod4j currently does
not support modeling the user interface: it does not
contribute to the rebuild goal to clone the user interface
as it is not supported by mod4j. For these situations,
where mod4j does not in�uence the implementation at
all, we will develop a proof of concept to verify the func-
tionality can indeed be invoked and placed within an
appropriate extension point, but will not invest the time
to implement it fully. This does impact the validity of
the research, as we did not ascertain that the proof of
concept can be indeed implemented, however, we will
address this in section 4.3.

4.2.2 Use case selection

Sampling technique The goal of the use case sam-
pling is to maximize the number of insights on working
with mod4j. The sampling technique we will use to ac-
complish this is called snowball sampling.

4 Research method 14

Snowball sampling is a method for select-
ing cases in a case study where the cases
are picked one by one. The �rst case is ex-
amined and based on the �ndings of this
examination the next is selected, and so on.
This method can be used if the researcher
is unfamiliar in the research terrain and / or
if the researcher cannot reliably predict the
�ndings of a case examination (Verschuren
and Doorewaard, 2005).

In our case, snowball sampling can be used to select use
cases one by one allowing new insights during the im-
plementation to dictate the choice for a next use case.
This approach is especially useful since there is much
data to choose from and initially, the researcher will not
be familiar with both the Jobportal and mod4j.

Selected use cases The �rst selected use case is a
read-only use case of a user searching for a vacancy.
The use case involves various custom search queries and
works with a part of the domain model that is often used
in the application. For this �rst use case, a portion of
the domain model had to be modeled, which could be
reused in subsequent use cases.

Next, we chose to rebuild a use case of a recruiter
maintaining his own vacancies, using a part of the do-
main model that was already built in the previous use
case. As this use case creates, reads, updates and
deletes data, it was expected to o�er new insights into
modeling data modi�cations using mod4j.

Finally, we chose a use case that maintained refer-
ence data in the Jobportal. This use case was chosen
because we wanted to work with a new part of the do-
main model that still had some references to the already
implemented domain model. The rationale for this was
that it would yield information on how domain model
partitions could be integrated.

4.3 Validation

The third step in our research method (�gure 4) is the
validation of the produced data by means of testing the
correctness, completeness and discussing the implemen-
tation with mod4j experts.

4.3.1 Correctness

In order to make it plausible that the mod4j implemen-
tation can satisfy the exact same requirements we have
used the original implementation as speci�cation. This
means we have tried to use the original Jobportal data-
model as-is and let the mod4j service layer expose exact
the same methods as the original. We will further deter-
mine the equality of by comparing the run-time results
of invoking each operation in the service de�nition of
the original and the mod4j implementation using an au-
tomated integration test suite and extensive test data.
These tests will compare characteristics like the number
of results and the contents of the properties and associ-
ations of the returned objects. By validating that each
exposed piece of business functionality yields the exact
same results, it is made plausible that the mod4j imple-
mentation has satis�ed the functional requirements.

4.3.2 Completeness

The implementation might not be complete due to is-
sues with the test data, accidental omissions or errors.
To this end a coverage tool will be used to verify that
indeed all code in the current implementation has been
covered. If this is the case, we have made it plausible
that all functionality of the original implementation has
been duplicated. Note that this validation also makes it
plausible that the used test data is extensive enough.

4.3.3 Walkthrough

Another threat to the validity of the data is that mod4j
can be used in many ways and we want to validate that
we have used mod4j optimally. Any suboptimal usage
can cause lost time, and, if not discovered at all, cause
invalid conclusions and recommendations.

We have addressed this threat by sharing the source
code of the developed implementation with the mod4j
team and organizing a walkthrough to discuss it. A
walkthrough is similar to a code inspection:

In a walkthrough, a group of develop-
ers�with three or four being an optimal
number�performs the review. Only one of
the participants is the author of the pro-
gram. Therefore, the majority of program
testing is conducted by people other than

4 Research method 15

the author, which follows the testing princi-
ple stating that an individual is usually in-
e�ective in testing his or her own program
(page 23, Myers, 2004).

In code inspections, there is usually no discussion on
how errors could be �xed in order to use time most ef-
�ciently. For this walkthrough, this principle was not
employed as �nding errors is already addressed by the
aforementioned tests. Instead, the focus of this meeting
was to discuss the use of the mod4j models and the ex-
tension points. Also, the proof of concepts mentioned
in the previous section were discussed extensively to de-
termine their suitability.

The identi�ed issues during the walkthrough were
�xed in the implementation but also kept record of for
further analysis. It is an opportunity to analyze these
issues and recommend how they might be prevented in
future use.

4.4 Criterion evaluation

Now that we have rebuilt several use cases of the Jobpor-
tal, we can discuss the �nal step in the research method
(�gure 4): we will lay down how we will analyze the
research data in order to reach a verdict regarding the
ful�llment of each criterion (section 3).

4.4.1 Conformance to the reference architecture

In order to determine if an application built with mod4j
conforms to the reference architecture, the following ar-
tifacts will be analyzed:

1. The source code of implemented application.

2. The list of encountered issues during implementa-
tion and walkthrough.

The conformance to the reference architecture will be
determined by �rst extracting requirements from the
reference architecture documentation (Boxtel, Malotaux
and Tjon-a Hen, 2008). In this document, the require-
ments have been laid down in an itemized, concise man-
ner and therefore the conformance to them can be de-
termined well. We present an example:

• Domain objects must keep their internal state con-
sistent.

We consider this requirement to be completely ful�lled:
mod4j allows validation rules to be speci�ed for at-
tributes, such as maximum length, allowed to be empty,
et cetera. Each of these rules is �red each time an at-
tribute is changed, keeping the internal state of the do-
main object consistent. If required, developers can add
their own custom business rules, adding hand-written
code to the generated business rule stub6.

We introduce the following labels to assess to what
extent the requirement is ful�lled:

Violated The architectural requirement is violated in
the generated code. This label is given even when it is
possible to correct or circumvent this violation by manu-
ally changing con�guration or implementing code in the
extension points.

Not at all The architectural requirement is not ad-
dressed at all in the generated code, but developers are
able add hand-written code at a suitable extension point
to ful�ll this requirement. A boundary condition is that
manually implementing the requirement is feasible, else
the requirement is considered violated. For example, it
is not feasible when large parts of the generated code or
con�guration need to be manually duplicated in order
to ful�ll the requirement.

Partial ful�llment The architectural requirement is
not completely ful�lled: the rationale of the require-
ment is present but something is missing. This may
occur when a single requirement de�nes several related
rules of which some are ful�lled but others are not. The
rationale of separating these requirements from the not
ful�lled requirements is that it is typically less e�ort to
change mod4j to ful�ll the partially ful�lled requirement.

Complete ful�llment The architectural requirement
is completely ful�lled by the code generated by mod4j.
Note that this label is not a guarantee that an applica-
tion using mod4j will always ful�ll this: any hand-written
code or con�guration can still violate the requirement.

6 A stub contains a temporary substitute for yet-to-be-developed code.

5 Research results 16

4.4.2 Real-life functional requirement
satisfaction

Observations regarding the ful�llment of functional re-
quirements are also elicited from the mod4j implemen-
tation itself and the list of issues encountered during
implementation. The goal of the analysis will be to iden-
tify the cause or causes that certain functionality could
not at all, not easily or not completely be implemented.
This will be accomplished by selecting the functional,
high priority issues from the list of issues and determin-
ing the root cause of each issue.

4.4.3 Reduction of hand-written code

The goal of the analysis of the amount of hand-written
code is two-fold: �rst, to determine if in fact the amount
of hand-written code has decreased compared to the
original implementation and second, to identify if there
is any manual code that is could be generated by the
current DSLs. In order to do a valid comparison, we
have focused only on functionality that has been com-
pletely duplicated using mod4j: that what is invoked in
the correctness and completeness tests.

We will use the covered byte code statistics as met-
ric to determine the amount of hand-written code. The
statistics are created by the free Eclipe plugin EclEmma,
a coverage tool that instruments byte code to show
which code has been actually invoked by a certain exe-
cution. Code coverage statistics are often used during
unit testing to determine if all code is tested (Zhu, Hall
and May, 1997). In our case, we use the coverage data
to learn which byte code is executed for each individual
correctness and completeness test, invoking both the
mod4j implementation and the original implementation.
The resulting statistics are detailed enough to distin-
guish between the original implementation, the manual
code and generated mod4j code.

5 Research results

In this section, we will answer the question to what de-
gree mod4j meets the established criteria (section 1.3,
second research question). For each criterion, we will:

• Present, outline and discuss the research data.

• Present the observations done:

� Outline the observation.

� Determine the cause of the observation,
grounded by the research data.

� Assess the severity or priority of the observa-
tion. The severity or priority is grounded by
the research data and is used to determine
if the cause of the observation threatens the
suitability of mod4j on the speci�c criterion.

5.1 Conformance to the reference
architecture

5.1.1 Research data

The complete list of requirements research data is quite
long (72 requirements) and therefore has not been in-
lined here and can instead be found in Appendix A. In
these tables we provide a complete list of the require-
ments harvested from the architecture document (Box-
tel, Malotaux and Tjon-a Hen, 2008). Next, we set out
to select the important requirements by categorizing the
data based on whether the requirement states if a fact
must, should ormay be true. We present three examples
of requirements found in the architecture document:

• Domain objectsmust keep their internal state con-
sitent (must or mandatory requirement)

• Data Service agents should encapsulate access to
just one service (should-requirement)

• Domain objects may broadcast events about
change in state (may or optional requirement)

For each requirement, we determined which type it is, to
what extent mod4j ful�lls the requirement and a short
rationale on how we reached this verdict. Next, we en-
riched the table in Appendix A with this information.
The diagram in �gure 5 provides a graphical view of
this. Note that in this view, the requirements have not
been weighted or prioritized and is therefore not suitable
to use to draw quantitative conclusions from. However,
it does show that interesting observations can be ex-
pected, since mod4j does not ful�ll all architectural re-
quirements.

We argue that completely ful�lled architectural re-
quirements and optional (may) requirements will yield
no observations, as long as they can be hand-written

http://www.eclemma.org/

5 Research results 17

when required (e.g, not violated). To �lter out these
requirements, we apply the �lter in table 1.

Fig. 5: Requirement ful�llment statistics

Violated Not at

all

Partial Complete

Must » » » x

Should » » » x

May » x x x

Tab. 1: Requirements �lter

The » symbol indicates that the requirement is rel-
evant for further analysis, the x character indicates the
requirement is �ltered out.

Applying this �lter has resulted in the following list
of observations:

1. The business processes follow a di�erent nomen-
clature (Appendix A, requirements 16, 27, 20-22)

2. There is no modeling support for business work-
�ows (Appendix A, requirements 23-26)

3. There is no modeling support for service agents
(Appendix A, requirements 27-33)

4. A data access logic component is generated for
every domain object instead of only for high-level
domain objects (Appendix A, requirement 61)

5. There is no modeling support for data service
agents (Appendix A, requirements 42, 44-48)

6. Local services have no notion of security (Ap-
pendix A, requirements 2, 63-68, 70, 71)

7. Data access logic components do not support pag-
ing facilities for large amounts of data (Appendix
A, requirement 39)

8. Hand-written code and con�guration in exten-
sion points can violate architectural requirements.
(Appendix A, all requirements)

In the following eight sections, we will discuss each ob-
servation in detail.

5.1.2 Observation 1: business processes
nomenclature

Outline Business processes are de�ned by the refer-
ence architecture as short-lived, synchronous business
functionality initiated by a single actor. Each operation
is an atomic action: it either succeeds or it does not
and no intermediary state is persisted. Mod4j does not
generate anything by the name business process.

Although the nomenclature is not followed, business
processes are supported. Mod4j follows the Domain-
Driven Design nomenclature for this component and
names these domain services (Evans, 2003). These do-
main services are partially generated by mod4j using the
service de�nition laid down in the Service DSL (see �g-
ure 3) and can be extended with hand-written function-
ality. The generated methods follow the architectural
guidelines on business processes: they are invoked by a
direct call from one actor, they only invoke methods on
data access logic components or domain objects, exe-
cute synchronously and in a single transaction.

Cause We cannot determine a cause for the di�erence
in nomenclature based on the research data we have.

Severity As the studied case indicates that the re-
quirement business logic functionality can be placed in
the business process, the architectural guidelines are fol-
lowed and only the name is di�erent, we consider this
to be not an issue.

5 Research results 18

5.1.3 Observation 2: no modeling support for
business work-�ows

Outline Business work-�ows are de�ned as a series of
possibly asynchronous invocations of business processes,
service agents or other business work-�ows. The busi-
ness work-�ows cannot be modeled in mod4j.

Cause The reference architecture mentions that there
is insu�cient experience on how business work-�ows
should be implemented. The lack of experience indicates
it is not a common concern of projects in Smart-Java
and although it is mentioned in the reference architec-
ture it cannot be that important to the success of mod4j.
Therefore, in the study we will place the implementation
of business work-�ows out of scope.

Business work�ows can be implemented using hand-
written code and manually integrated with the service
layer, but mod4j will o�er no support whatsoever for
this.

Severity If an application that does require business
work-�ows and service agents this will mean that mod4j
and possibly the entire reference architecture may not
(yet) be suitable to implement this. While implement-
ing the studied case, we did not encounter any problems
related to the lack of business work�ow support (Ap-
pendix B). It is important to bare in mind for the future,
but for now, the experiences with the studied case do
not indicate it imposes a limitation on the suitability of
mod4j.

5.1.4 Observation 3: no modeling support for
service agents

Outline Service agents execute external business logic
(ie. an external credit card authorization service) and
can be invoked only by business work-�ows. However,
there is no support for this in mod4j.

Cause It is described in detail how service agents
should be implemented, however, they are only allowed
be invoked by business work-�ows. As these business
processes are not supported (see previous section), it is
to be expected that the service agents are not as well.
Service agents can be hand-coded and integrated with -
also hand-written - business work�ows.

Severity Due to the nature of these service agents, we
regard it is unlikely that more then a few of these service
agents are present per system and that their technical
implementation may vary since they might have to in-
tegrate with all sorts of systems via various protocols.
Apart from the fact the rebuilt case did not require ser-
vice agents (Appendix B), we do not have any further
data to ground this claim. Yet, based on our own ex-
periences with the Jobportal, we do not consider this
omission to be a threat for the suitability of mod4j.

5.1.5 Observation 4: data logic access
components for high-level domain objects
only

Outline Mod4j generates a data access logic compo-
nent for every modeled domain object. This directly
violates the requirement that only high-level domain ob-
jects should have a data access logic component. We
will �rst discuss the technical context of the issue and
then determine the cause mod4j behaves in this manner.

Context The reason the reference architecture recom-
mends distinguishing between high-level and regular do-
main objects is to split the domain model up in highly
cohesive partitions that have low coupling to the rest
of the domain model. The aggregate is introduced as
a pattern in Domain-Driven Design (DDD) (Chapter 6,
Evans, 2003) and is discussed in the context of the do-
main model, but in essence it follows the guidelines of
Parnas (1972) for system modularization. An example
is given in �gure 6, the OrderLine and OrderHistory can
only be retrieved through the aggregate root - the Order.
Also, the associations that cross the aggregate bound-
ary are uni-directional: the OrderLine can retrieve this
Item, but the Item is not allowed to reference back to
the OrderLine. The aggregate root can be retrieved
through a data logic access component (called Reposi-
tory in DDD). The objects within the aggregate bound-
ary can only be retrieved through their parent and are
not allowed to have an own Repository.

5 Research results 19

Aggregate boundary

OrderHistory

OrderLineCustomer Order Item

Aggregate root

Fig. 6: Aggregate root (UML2 class diagram)

Cause Because the BusinessDomain DSL does not al-
low to de�ne an aggregate and its root, mod4j cannot
make the distinction between a high-level and normal do-
main object. Because this distinction cannot be made,
mod4j treats every domain object as a high level ob-
ject. This prevents modularization of the domain model,
which, according to Evans, complicates maintenance. In
mod4j, this causes super�uous data access logic compo-
nents which cannot be removed by any means; they will
always be generated even if they are never (allowed to
be) used. Other disadvantages include the inability to
automatically delete all objects in the aggregate when
the root is deleted: this has to be hand-coded.

Severity As we can only assess the severity based
on the experiences rebuilding the Jobportal, we feed-
forward to the next section (5.2), where we will elab-
orate on an issue (number 18) that could be resolved
by means of an aggregate. Based on this, we conclude
that the omission of the aggregate is indeed a problem
in real-life projects and therefore regard this observation
to be severe.

5.1.6 Observation 5: no modeling support for
data service agents

Outline There is no modeling support for Data Ser-
vice agents in mod4j. Data Service agents are described
by the reference architecture to be used for retrieving
and persisting domain objects managed by another sys-
tems. A typical application of a Data service agent is
to retrieve a Customer domain object from a service ex-
posed by a Customer Relationship Management (CRM)

system. The Data Service agent shields the data access
logic component of the technical details of the service
implementation.

Cause Data Service agents are components that allow
the integration of a system with other subsystems, just
like the Service agents (observation 3). The reference
architecture assumes that must domain objects are per-
sisted through ORM and that the Data Service agents
are not used very often (Chapter 3, Boxtel, Malotaux
and Tjon-a Hen, 2008). The added value of generation
these components will therefore probably be low. De-
pending on the environment of the application, the im-
plementation of Data Service agent can also vary greatly,
making it even harder to generate them.

The Data service agents can be manually imple-
mented by overriding the generated data access logic
component to invoke a hand-written Data service agent.
Yet, it would be preferable if mod4j does either not gen-
erate the component and con�guration at all or gener-
ates a stub that has to be manually implemented. This
prevents dead code and con�guration in the application.

Severity As Data service agents are not considered to
be used more than occasionally within a system and they
can be manually implemented. As no issues regarding
Data service agents occurred during the rebuilding of
the Jobportal (Appendix B), we do not foresee this is-
sue limiting the suitability of mod4j for use in a product
line.

5.1.7 Observation 6: the service interface has no
notion of security

Outline The mod4j Service DSL has no notion of se-
curity at all. However, the reference architecture lays
down detailed guidelines on concerns in the service in-
terface. The reason is applications in a SOA environ-
ment fall within its domain. The primary function of
the service layer is described to be to isolate the logi-
cal business layer from any implications of the protocol
used to remotely be invoked. Example of such protocols
are SOAP over HTTP and MQ, RESTful Web Services,
Enterprise Java Beans (EJB) and Remote Method Invo-
cation (RMI) (Hohpe and Woolf, 2003). In the case of
remote invocations a trust boundary is crossed when the

5 Research results 20

service layer is entered and therefore, it is a concern of
the service layer to do authorization and authentication.

Cause The fact that the Service DSL does not address
any security concerns is caused by the fact that currently,
only local services are generated: the methods can only
be invoked from within the same Java Virtual Machine
(JVM) and no trust boundary is passed. If the calling
party, often the presentation layer, has already authen-
ticated and authorized the user, the local service layer
does not need to re-verify this. We conclude that for
centralized deployment, the missing notion of security
does not impose any limitations.

Suppose mod4j is used to implement a SOAP Web
Service: only the local service de�nition would not suf-
�ce now. This concern can then be addressed by another
component that makes the service remotely invoke-able
(see �gure 7) and is integrated with the local service
de�nition. Another option is to address the security con-
cern by means of Aspect Oriented Programming (Visser,
2007). We conclude that when a mod4j application is
deployed distributed, the security concern can be ad-
dressed by other components that integrate with the
mod4j local service.

Trust boundary

business

DomainService

service

HttpSoapService LocalService

Client

Hand-written

<<use>>

<<use>>

<<use>>

Fig. 7: Using mod4j for a SOAP Web Service (UML2
class diagram)

Severity Mod4j applications can be used both central-
ized and distributed by hand-coding a component that
integrates with mod4j. Because the rebuilt case is not

deployed distributed and all security concerns are ad-
dressed by the presentation layer, we do not consider
this issue to be severe. We do underline that if the
rebuilt case would have been deployed distributed, this
might have caused a lot of hand-written code.

5.1.8 Observation 7: paging facilities not
supported

Outline The out-of-the-box methods that return list
of results, list-all and �nd, could possible return a very
large data set. The reference architecture therefore pre-
scribes that it must be possible to page through these
results instead of returning the entire data set at once.

Cause The functional requirements of paging facilities
are not always clear. For example, sorting results is a
concern most placed at the client. What if a user sorts
page of data? Should the query be re�red with the sort
column as argument? Or should the current returned
value be sorted? This di�ers from application to appli-
cation. Therefore, the choice was made by the mod4j
team to not o�er any paging facilities, but allow the
developer to implement own methods that do support
paging in the data access logic components.

Also, it is not likely that all the data access logic
components will require paging functionality. The re-
built case con�rms this: there is no pagination support
in the Jobportal.

Severity Since the functional requirements of paging
are unclear and the rebuilt case indicates this function-
ality is indeed not commonly needed and it can be hand-
written if required, we do not consider this issue to
be a threat to the suitability of mod4j for Smart-Java
projects.

5.1.9 Observation 8: hand-written code and
con�guration

Outline So far, it has been analyzed to what extent
the generated code conforms to the reference architec-
ture. However, code and con�guration added manually
in extension points is neither limited nor checked, which
makes it possible to introduce code and con�guration
that violates architectural requirements. For example,

5 Research results 21

business logic can be entered in the local service exten-
sion point without triggering any warnings.

Cause If the code and con�guration are limited by
mod4j, a lot of �exibility will be lost. As we already
identi�ed, some variable features in the architecture are
not addressed by mod4j (for example, service agents).
Extension points allow these features to be hand-written.
Only when all variable features can be addressed in mod-
els and practice has indicated that in fact extension
points are no longer used can these be removed. Until
then, extension points are a necessary evil.

Severity Imposing limitations on the manual code and
con�guration is not desirable, therefore, we consider this
not to be an issue at all.

5.1.10 Conclusion

First, we provide an overview of the determined severi-
ties in table 2.

We have seen that mod4j follows the major parts
of the reference architecture, but lacks modeling sup-
port for variable features (table 2, causes 2, 3, 5, 6
and 7). These variable features can be implemented by
hand. This is in line with the goal of mod4j to deliver
its added value in modeling parts that are used very of-
ten and allowing developers to extend functonality in
extension points.

However, for the issue we consider to be severe (ta-
ble 2, cause 4), we foresee di�culties in using mod4j to
build applications conforming to the reference architec-
ture.

5.2 Real-life functional requirement
satisfaction

5.2.1 Research data

We present the encountered functional issues in table
3. They have been selected from the full record of is-
sues encountered during implementation (Appendix B)
by the following criteria:

• The issue describes a functional limitation or in-
ability, marked in Appendix B by type functional.

• Severity is major or blocker. Major indicates a
functional limitation, requiring hand-written code
to circumvent or override generated code. Blocker
indicates that the issue prevents the satisfaction of
a functional requirement completely.

We have grouped closely related issues, resulting in
the following observations:

1. Domain object persistency cannot be customized
or disabled (issues 1, 2, 14, 15, 18)

2. Super�uous generated operations in the local ser-
vice de�nition (issue 17)

3. Binary data is not supported (issue 4)

We will discuss these observations in the aforementioned
order.

5.2.2 Observation 1: domain object persistency
cannot be customized or disabled

Outline We have seen that a various issues relate to
domain objects and their persistency (issues 1, 2, 14,
15, 18). It is deduced from the issues that mod4j does
not o�er a way to disable or overwrite the generated
persistency functionality. In order to explain the cause
of this, we will �rst provide some context on domain
object persistency.

Context In the more legacy environments, it is not
uncommon that a single data model is used by mul-
tiple applications. In these situations, the data model
can be quite di�erent from the domain model and the
data and domain model should be strictly separated to
prevent changes in the data model to ripple through to
the domain service and vice-versa (Evans, 2003; Fowler,
2002). The mapping logic can be so complex that it is
not feasible to use a object-relational mapper. Instead,
the Data Mapper pattern (Fowler, 2002) can be used to
write the complex mapping between the data and do-
main model by hand. This is a very time-intensive task
that most projects try to avoid (O'Neil, 2008).

Due to the upcoming of service-oriented architec-
tures, databases are shared with less peers and therefore
are designed in a more domain-driven manner (O'Neil,
2008). The reference architecture assumes the use of
object-relational mappers and in this case, the data

5 Research results 22

Observation cause Severity

1 The business processes follow a di�erent nomenclature -
2 The reference architecture is unclear on how to implement business work-�ows. -
3 Service agents can only invoked by business work�ows and therefore are not

supported as well. Also, implementation can vary greatly and should be
occasionally used in the system, making it unsuitable for generation.

-

4 BusinessDomain DSL does not allowing distinguishing between high-level and
low-level domain objects.

+

5 Data service agents implementations can vary greatly and should be occasionally
used in the system, making it unsuitable for generation.

-

6 Mod4j currently targets systems where the security concerns are addressed by the
presentation layer.

-

7 Functional requirements for paging facilities are not clear. -
8 Although a threat to conformance to the reference architecture, extension points

are a necessary evil.
-

Tab. 2: Conformance to the reference architecture summary

model is driven by the domain model (top-down) but
in�uenced by the data model. A typical example is a
version attribute in the domain object that enables opti-
mistic concurrency control in the database7 but has no
functional meaning.

Cause Mod4j uses structural domain information laid
down in the BusinessDomain DSL to generate both the
domain model classes and the ORM con�guration. Since
any structural changes are only updated through the
models, it is maintained on a single location. The do-
main and data model generation is split up to separate
concerns, although they are both based on the same
model. This way, the templates are more cohesive as
they focus on the domain model or the persistency con-
�guration but never both. However, the BusinessDo-
main DSL does not model concerns that are only related
to persistency and therefore the generated con�guration
only contains data that is either generated for each class
(static in the template) or relates only to the structure of
the domain model. Additionally, mod4j allows the con-
�guration of various properties in an application-wide
con�guration �le that can in�uence aspects of the gen-
eration: for example, setting the strategy that is used
to persist classes that inherit from other classes.

The encountered issues indicate that this does not

yet su�ce for production use.

Severity We consider this observation to be severe as
the studied case indicates that the applicability of mod4j
is limited: bene�ts of model-driven development are lost
if generated con�guration must duplicated, modi�ed and
maintained by hand. Also, mod4j will always keep gen-
erating the (possibly incorrect) con�guration as this can-
not be disabled.

5.2.3 Observation 2: super�uous generated local
service operations

Outline As it was an objective to create an exact clone
of the original implementation, the service de�nitions
should match up for one hundred percent. However,
comparing the service de�nitions of the mod4j and the
original implementation, it was observed that the service
de�nition generated by mod4j often o�ers more service
methods than the original implementation and that this
cannot be avoided.

Cause The Service DSL is used to de�ne the service
contract to the client. For every operation de�ned here,
an implementation is generated in both the local and
the domain service de�nes the operations top-down us-
ing DTOs. When a DTO is passed in the local service,

7 Optimistic locking prevents corruption when users attempt to update the same data at the same time (Johnson, 2002)

5 Research results 23

Issue Severity

1 Custom DAO implementation: cannot disable generation of code and
con�guration

Major

2 Cannot not override boolean persistency con�guration Blocker
4 Binary data types are not supported Blocker
14 Mod4j generates incorrect ORM mappings if a domain object has a

many-to-many association with itself. Workaround in place.
Major

15 It is not possible to have a non-persistable domain object. Example:
SearchResult. Persistency does not make sense here, yet mapping etc is
generated.

Major

17 As the original service is the contract, the amount of service methods
exposed in the mod4j and original implementation should match up. In
reality, the mod4j service de�nition exposes more functionality.

Major

18 Cascading delete has to be hand-written for composite associations,
introducing duplicate code (multiple domain services) or violating
architectural requirements (calling other DAO's in a DAO).

Major

Tab. 3: Excerpt from Appendix B: functional issues, severity major or blocker

it may be based on an existing domain object. As DTOs
may not be complete representations of domain objects
- some properties might be omitted in the DTO - the
local service needs to retrieve the domain object and
copy every �eld in the DTO over to the domain object.
This is the reason that the Service DSL demands that
the read operation is de�ned in the service model. The
side-e�ect is that the read operation is exposed in the
local service as well, while it is not required or maybe
not even functionally allowed.

We conclude that the super�uous operations are
caused by the fact that the Service DSL can not di�er-
entiate between an operation for the local service and an
operation for the domain service. When the local service
requires a read operation to adapt a DTOs correctly, it
can only demand that the operation is de�ned in the
Service DSL and therefore in both service de�nitions.

If certain functionality is not allowed to be executed
due to security considerations, the super�uous gener-
ated operation in the local service can be overridden
in the local service extension point preventing it to be
executed.

Severity This issue has been created because we
wanted to rebuild an exact clone, but mod4j o�ered ad-
ditional methods we neither needed nor could remove.
We conclude that this issue is actually not driven by real-

life functional requirements, but rather requirements we
created when creating a rebuild strategy. Based on the
research data, we cannot determine if the super�uous
method are in fact a violation of the functional require-
ments of the Jobportal.

As this issue did not prevent functional requirements
from being implemented in the studied case, we do not
regard this issue to be severe.

5.2.4 Observation 3: binary data

Outline In the studied case, some domain model ob-
jects contained binary attributes, for example, a cur-
riculum vitae (CV) object that is used to store the bi-
nary data of the document the applicant has provided.
This functionality could not be implemented at all us-
ing mod4j without doing substantial, completely hand-
written workaround.

Cause From the available research data, we cannot
determine why the BusinessDomain DSL does not in-
clude support for binary data types. As blocking as the
issue is for the studied case, as simple is it to solve this
in mod4j: the ORM tool does support binary data.

Severity As the issue was blocking for the studied
case, we regard this issue to be severe.

5 Research results 24

Observation cause Severity

1 Persistency con�guration is determined from the structural information
laid down in the BusinessDomain DSL and application-wide properties.
The o�ered �exibility does not su�ce.

+

2 The Service DSL is unable to distinguish between domain service and
local service.

-

3 The exact cause for the omission of binary data could not be
determined from the research data.

+

Tab. 4: Real-life function requirements satisfaction summary

5.2.5 Conclusion

First, we have summarized the drawn conclusions on the
severity of the identi�ed observations in table 4.

We have rebuilt use cases of the Jobportal in or-
der to ascertain if mod4j is in fact usable to implement
the functional requirements of real-life applications. We
found that for the rebuilt use cases mod4j does either
support or allow the majority of functionality to be im-
plemented.

However, we determined that two issues (table 4,
causes 1 and 3) currently block the satisfaction of cer-
tain functional requirements in the Jobportal.

5.3 Reduction of hand-written code

5.3.1 Research data

The metric data of the covered code is provided in ta-
bles 5a through 5d. This data has been normalized in
order to do a fair comparison: for both the current and
mod4j implementation the start-up executes quite some
instructions (constructors, initializers). The rationale for
normalizing this is that our implementation is only a par-
tial clone of the original Jobportal causes the Jobportal
to have more initialization code that is unrelated to the
use cases under test. The unre�ned metric data is listed
in Appendix C.

We will explain the context of the research data by
elaboration on the design di�erences between the mod4j
and original implementation �rst (�gure 8a). The ratio-
nale that we discuss design di�erences is that we com-
pare the original implementation with the mod4j imple-
mentation. In order to do valid comparison, we need to

know where the design di�ers: this will help the analysis
of observations.

Next, we will discuss how we interpreted the hand-
written code statistics (�gure 8b) in order to make the
observations plausible.

Design di�erences We will �rst discuss �gure 8a, a
graphical view of table 5d (excluding totals).

• We see that mod4j requires 2663 bytecode instruc-
tions where the Jobportal requires 2059 (table 5d).
Based on these numbers mod4j requires more byte
code to execute the same business functionality.
To determine what the cause of this is, we will
zoom in on the di�erences for each layer.

• The original implementation requires more in-
structions in the data layer for the same function-
ality (�gure 8a, data bar). The cause of the extra
code in the data layer of the original implementa-
tion is that it has to adapt between behaviorless
Transfer Objects used by the persistency frame-
work and business objects used throughout the
rest of the application.

• The original implementation has three times as
much instructions in the domain layer (�gure 8a,
domain bar). This is caused by the fact that
mod4j domain objects combine the original Busi-
nessObjects and TransferObjects8 resulting in a
decline of code in the mod4j domain layer com-
pared to the orginal implementation.

• The original implementation has no executed in-
structions in the business layer at all (�gure 8a,

8 That are erroneously called ValueObjects in the current code (Fowler, 2002)

5 Research results 25

original mod4j manual mod4j generated

data 346 115 93
business 0 141 31
domain 545 4 101
service 223 176 533
total 1114 436 758

(a) UC02 Select Vacancy

original mod4j manual mod4j generated

data 331 156 102
business 0 5 23
domain 458 29 119
service 42 72 420
total 831 262 664

(b) UC23 Maintain my vacancies

original mod4j manual mod4j generated

data 339 116 65
business 0 56 53
domain 373 0 156
service 70 92 627
total 782 264 901

(c) UC11 Maintain reference data

original mod4j manual mod4j generated

data 787 387 176
business 0 202 107
domain 942 29 268
service 330 340 1154
total 2059 958 1705

(d) All three in one run

Tab. 5: Byte code instructions executed (normalized)

(a) Original implementation vs mod4j (b) Hand-written vs generated code

Fig. 8: Hand-written code charts

5 Research results 26

business bar). This is caused by the fact that the
original implementation has no business layer: the
business process logic is coded in the service layer.

• The number of instructions required in the ser-
vice layer is a factor four higher compared to the
original implementation (�gure 8a, service bar). In
mod4j, domain object validation is done in the do-
main layer. In the original implementation, this is
scattered throughout the domain model and ser-
vice layer, resulting in a code shift from service
layer to domain layer.

• Also, mod4j adds local services, DTOs and DTO
translators in the service layer, resulting in a great
increase of code in the service layer. The original
implementation does not o�er a speci�c course-
grained interface and passes the business objects
directly to the presentation layer. This means
the presentation layer can directly execute busi-
ness logic by invoking operations on these busi-
ness objects, something that is not allowed in the
reference architecture as all business logic has to
be invoked through the service layer. Mod4j ad-
dresses a concern in the service layer that is not
addressed by the original implementation.

Based on this analysis we conclude that the DTOs in
service layer of mod4j are the cause of the fact that
mod4j requires more code for the same functionality.
Each DTO more or less duplicates the domain object and
there can be, and often are, multiple DTOs for each do-
main object. For each DTO except custom DTOs there
is a Translator that maps between the DTO and the do-
main object. The resulting amount of generated code is
huge, as can also be seen in �gure 8b (service bar).

Hand-written code vs generated code Figure 8bis
another view on table 5d, now focusing on the distribu-
tion of hand-written and generated code in the mod4j
implementation only. Based on this data, the developed
application was analyzed.

1. Mod4j requires 958 byte code instructions from
hand-written code, where the Jobportal code is
all hand-written, totalling 2059 byte code instruc-
tions (table 5d). Based on these number, we con-
clude that mod4j has succeeded in decreasing the

amount of hand-written code. Note that hand-
written code compared to the original implemen-
tation is reduced by more than 50% (2059 ->
958), but we also identi�ed in the previous sec-
tion that the service layer has no real equivalent
in the original implementation. The actual reduc-
tion is therefore even more: more then 50% of the
hand -written byte code instructions is located in
the service layer (542). The actual reduction of
hand-written code might therefore be as large as
75%. While the sample we have done is not by
any means large enough for this conclusion to be
statistically signi�cant, it is promising.

2. Of all the code in the analyzed sample, 64% is gen-
erated (table 5d). This excludes startup and intial-
izing code as these have been subtracted during
normalization. The unnormalized amounts, listed
in Appendix C, indicate that 71% (table 9d) of
the total code is generated.

3. The data layer has a large amount of hand-written
code (~68%, data bar, �gure 8b). Further analysis
on the code of the mod4j implementation shows
that this is caused by hand-written data access
logic methods. We have spotted several opportu-
nities of code that might also be generated, and
will discuss this in more detail (see observation 1
at the end of this section).

4. The domain layer is almost void of hand-written
code (~10%, domain bar, �gure 8b). This is
caused by the fact that the Jobportal function-
ality required little behavior and validation to be
de�ned. Most functionality was implemented in
the data layer, just like in the original implemen-
tation. An example is retrieving the Vacancies for
a certain User : it is more e�cient to determine
this by executing a query on the database then
by traversing the entire object structure. Most
validations in the domain model were quite sim-
ple (i.e., maximum length) and were automatically
generated by specifying the rules in the Business-
Domain DSL.

5. The business layer has a large amount of hand-
written code (~66%: business bar, �gure 8b).
Closer inspection of the implementation showed

5 Research results 27

that some parts of this code pertained to boiler-
plate code that could have been generated (see
observation 2 below). Also, the large amount
of hand-written code is to be expected, as only
the most simple business logic is generated. More
complex business logic was implemented by hand.

6. The service layer has a considerate amount of
hand-written code (~23%, service bar, �gure 8b).
Contrary to expectation, a lot of boilerplate code
to invoke the domain service had to be handcoded.
Since the concerns of the service layer could be
well covered by the generators, we decide to ana-
lyze this in detail (see observation 2 below).

We re-iterate the observations we have decided to ana-
lyze in-depth:

1. The currently supported service methods do not
not fully match what is required for the case un-
der study (see item 3).

2. Hand-written boilerplate code in the local and do-
main service (see item 6).

We will discuss these observations in this order.

5.3.2 Observation 1: supported service methods

Outline A slight variant of the �ndByExample search
method is implemented in four extension points, result-
ing in hand-written code that could be prevented if the
method would be more �exible. It is also observed that
counting the numbers of records returned for a certain
query is done very often, which could be generated as
well. These observations can be grouped: the currently
supported service methods do not fully match what is
required for the case under study.

Cause This is caused by the fact that the more speci�c
service methods that are required cannot be generated
by mod4j. This is speci�cally true where business pro-
cess and work-�ow logic is required as this can currently
not be modeled in mod4j. But it is an opportunity to
supporting application developers as much as possible by
o�ering generic functionality. This also prevents a lot of
boiler-plate code that is required to cross the various
application layers.

Priority The percentage of hand-written code could
be reduced by be up to 60% for the business layer and
up to 68% for the data layer (�gure 8b), depending on
how much support for service methods will be added.
We therefore consider this an important opportunity to
explore.

5.3.3 Observation 2: hand-written boilerplate
code

Outline It is observed that the service layer contains
a non-trivial amount of hand-written code. The local
service should by de�nition be a clone of the domain
service, only shielding it from implementation details re-
garding the (remote) exposure to clients. In the case of
the generated local service, this means it is only allowed
do to a translation of DTOs into domain objects and
vice-versa. Yet, we see that for every custom method
we de�ne in the Service DSL, hand-written code is re-
quired in the service layer.

Cause Mod4j recommends the use of custom DTOs,
de�ned in the Datacontract DSL, to de�ne arguments
that are not a representation of one or more domain
objects. An example of this is a getCustomerByName
service method: as input argument the simple data type
string su�ces. A custom DTO can contain an arbi-
trary number of simple data types (string, double, et
cetera) and enumerations, but domain objects are not
allowed. As a result, the exact format of invocation to
the next layer, the domain service, cannot be determined
by mod4j: the di�erent possibilities are listed in �gure
9. We will elaborate on each of these options in the
following items.

service

-service : DomainService

+do(CustomDTO : CustomDTO)

LocalService

-string : String
-integer : Integer
-datetime : date

CustomDTO

business

+do(string, integer, datetime)
+do(obj : DomainObject)

...

DomainService

domain

-ID : Integer

DomainObject

<<use>>

<<use>>

Fig. 9: Possible invocations in the domain service
(UML2 class diagram)

6 Recommendations 28

• The primitive values that compose the custom
DTO are used as arguments to invoke the domain
service. This is the �rst operation shown in �gure
9. This does not require the notion of a custom
DTO: if the simple data types could be directly en-
tered into the custom method declaration in the
Service DSL, the domain service could be invoked
with the same arguments: the local service can
then be completely generated. We conclude that
for this type of custom DTO usage, it is better
to allow primitives to be entered in the custom
method de�nition instead.

• The custom DTO might actually represent a single
domain object (second operation in �gure 9) but
the Datacontract DSL may not be able to express
this, as the DTOs in the datacontract that repre-
sent a domain object are not very �exible: only the
inclusion of properties and associations from the
domain object can be con�gured. It cannot, for
instance, use a di�erent name for a property. This
is, however, an indication that the service contract
exposed to the outside world and the internal do-
main model are not well compatible. Of course,
this can occur for a number of reasons, yet, it is
something that is best isolated from the rest of the
system, for example using an anti-corruption layer
(Evans, 2003). A well-known examples of this is
a XSL transformation of an incompatible service
message. We conclude that there are better alter-
natives for this type of custom DTO usage.

• The custom DTO might be used for bulk data op-
erations, such as for mass updates or report gen-
eration. Warmer (2007) calls these ViewDTOs
and Fowler (2002) RecordSets: a direct, data-
driven view of the underlying persistent storage.
For these kind of operations, usage of the do-
main model and ORM is typically not well suited.
Fowler (2002) recommends implementing a sepa-
rate data access logic component with plain SQL
directly populating the DTOs from this. The cus-
tom DTOs are not well suitable to this end: �rst,
they live in the service layer and cannot be used
in the data layer and second, they do not support
data types that one would typically use to trans-
fer bulk data: arrays, maps and lists. We conclude
that the custom DTO is not suitable for the trans-

fer of bulk data, but we do recognize that this is
an omission in mod4j.

In conclusion, we can not determine the cause of why
primitives are not allowed to be directly used in the
method de�nitions and also which problem exactly is
solved by the custom DTOs.

Priority Since it seems that the custom DTO is not
required and its existence causes a lot of hand-written
code (up 23% in the service layer, �gure 8b), we think
this is an important opportunity to explore.

5.3.4 Conclusion

First, we have summarized the severity of the identi�ed
observations in table 6.

We have seen that the amount of hand-written code,
for the functionality that could be fully rebuilt, has de-
creased compared to the original, hand-written appli-
cation. We conclude that mod4j is able to decrease
the amount of hand-written code and therefore expect
that high-level goals such as developer velocity might be
achieved.

However, we have identi�ed two opportunities (ta-
ble 6, causes 1 and 2) to decrease the amount of hand-
written code and will recommend on how to exploit these
opportunities.

6 Recommendations

In the previous section, we reached conclusions regard-
ing the suitability of mod4j. We will now analyze the
causes of the severe observations and determine if a suit-
able recommendations can be done to address the issues.
This will ful�ll the research goal to reach recommenda-
tions on improving the suitability of mod4j for use in a
Smart-Java software factory (section 1.3, third research
question).

First, we summarize the causes of the severe obser-
vations we identi�ed the previous sections.

1. The BusinessDomain DSL does not allow the
modeling of an aggregate and its root (section
5.1, observation 4) .

6 Recommendations 29

Observation cause Priority

1 Custom methods require a lot of boiler-plate code, causing a large
portion of the hand-written code. It may be an opportunity to support
more methods to reduce the amount of hand-written code.

+

2 When using custom DTOs in a service method, the invocation to the
domain service has to be hand-written due to the fact that the custom
DTO cannot be mapped onto a domain object. Since we argued that
custom DTOs are not required, removing them and allowing simple
types to be entered in the service method de�nition will result in less
hand-written code.

+

Tab. 6: Reduction of hand-written code results

2. Persistency code and con�guration is generated
based on the structure layed down in the Busi-
nessDomain DSL and cannot be in�uenced by the
developer (section 5.2, observation 1).

3. There is no apparent cause for the lack of support
for binary datatypes in the BusinessDomain DSL:
it can be added without serious e�ort (section 5.2,
observation 3).

4. Currently, mod4j de�nes only the most basic ser-
vice operations. It may be an opportunity to sup-
port more methods, preventing hand-written im-
plementations (section 5.3, observation 1).

5. When using custom DTOs in a service method,
the invocation to the domain service has to be
hand-written due to the fact that the custom DTO
cannot be mapped onto a domain object. Since
we argued that custom DTOs are not required,
removing them and allowing simple types to be
entered in the service method de�nition will result
in less hand-written code (section 5.3, observation
2).

We will discuss the recommendations to resolve
these issues in the following �ve subsections in the afore-
mentioned order.

6.1 Aggregate root

The fact that MDSD is practiced o�ers the opportu-
nity to include the aggregate root pattern explicitly in
the DSL, something that is not feasible in a general

purpose language (GPL). It may also possible to imple-
ment it implicitly by using lower-level concepts that are
currently lacking in the BusinessDomain DSL. We will
discuss both possibilities.

Note that this will also have implications in the Ser-
vice DSL: if not all domain objects are persistable, this
data must be exchanged between the Service and the
BusinessDomain DSL.

Aggregate boundary

OrderHistory

OrderLineCustomer Order Item

Aggregate root

Fig. 10: Aggregate root (UML2 class diagram)

Explicit aggregate With explicit we mean that the
BusinessDomain DSL itself will know the aggregate and
its root as a concept. In the model, explicit keywords
could indicate a class is an aggregate root and which
classes are part of the aggregate. If we consider the ex-
ample in �gure 10, we could add the notion of an aggre-
gate root to the DSL using the following concrete syn-
tax (the OrderHistory and Customer are omitted here
for brevity):

6 Recommendations 30

aggregate [
root Order [s t r i n g name ;]
c l a s s Orde rL ine [s t r i n g amount ;]

]

a s s o c i a t i o n Order o r d e r
one <−> many
Orde rL ine o r d e r L i n e s ;

a s s o c i a t i o n Orde rL ine o r d e r L i n e
// on l y uni−d i r e c t i o n a l a l l owed !

one −> one
I tem item ;

c l a s s I tem [s t r i n g d e s c r i p t i o n ;]

In this syntax, we expanded the language with an
aggregate and root keyword. The aggregate keyword is
used to model the aggregate boundary: it can have only
one root and the other classes de�ned within it cannot
be referenced from outside the boundary, for example,
the association from OrderLine to Item is not allowed
to be bidirectional.

Implicit aggregate With implicit we mean that the
concept of aggregate root will not be an explicit part
of the DSL but its building blocks will. This is sim-
ilar to modeling an aggregate root in UML: often a
stereotype (<�<AggregateRoot>�>) is used to model it
(Green�eld et al., 2004; Stahl, Voelter and Czarnecki,
2006; Evans, 2003).

A key ingredient of the aggregate is the composite
association which indicates that if the root is changed
(or deleted), the associated objects are changed (or
deleted) as well. Mod4j does not support the composite
association, but if added, it can be used to both refrain
from generating a data access logic component and con-
�gure a cascading delete for all aggregate children.

Part of the problem is now solved, however, a prob-
lem that remains is that not all objects within the aggre-
gate have composite relations. Figure 11 shows a simpli-
�ed example from the Domain Driven Design book (page
128, Evans, 2003). In this case, the Position object is
part of the aggregate, but no direct composite relations
reference it. In this case, all classes that reference a class
that is referenced by a composite relation must be part
of the aggregate boundary. This algorithm can become
complex as the structure grows and, moreover, it will be
less understandable for the developer using mod4j.

Fig. 11: Car aggregate root (UML2 Class diagram)

Conclusion As the implicit approach is more compli-
cated both for mod4j and the developer, we recommend
modifying mod4j to allow the modeling of the aggregate
and its root explicitly. The proposed concrete syntax
could be used as input to this.

6.2 Customized generated persistency
functionality

We identify two distinctions in customizing the gener-
ated persistency functionality:

• No persistency: volatile domain objects that are
never persisted.

• Tweaking persistency: customizing code or con-
�guration pertaining to persistency.

We will discuss these items the following two paragraphs.

No persistency An issue we encountered was that we
needed to model a list of SearchResults (issue 15, Ap-
pendix B). A SearchResult has one attribute and one
association: a score attribute which indicates how well
the result matches the search query and an association
to the found Vacancy domain object. While we could
model this, we could not prevent the persistency func-
tionality to be generated which is obviously undesirable
in this case.

This could be resolved by splitting up the domain
model in Entities and Value Objects. We will present
a de�nition of these terms and then elaborate on how
they can resolve the issue.

A Value Object is a small, shareable and
therefore immutable object, like money or a
date range. Its equality isn't based on an
identity (page 486, Fowler, 2002).

6 Recommendations 31

An object de�ned primarily by its identity is
called an Entity (page 93, Evans, 2003).

Evans (2003) describes in great detail how to model a
domain by grouping Entities and Value Objects into ag-
gregates (see previous section). One of the implications
of a Value Object is that it is, on its own, not retrievable
from the persistent storage since it has no identity. If
Value Objects are persisted, it is always as part of an
Entity. Hence, it is the concern of the Repository of
the Entity to persist it. Fowler (2002) describes embed-
ding the Value Object in the record of the Entity that
references it (page 268).

The aforementioned SearchResult is an example of
a Value Object: it has no identity and can be both im-
mutable and shareable. Since the SearchResult only has
an uni-directional association to the Vacancy Entity it
is unambiguously not persistable. This is exactly what
is required in the case of the SearchResult.

We propose the following concrete syntax for the
BusinessDomain DSL:

va lueob jec t Sea r chRe su l t [i n t ege r s c o r e ;]

a s s o c i a t i o n Sea r chRe su l t s e a r c hR e s u l t
one −> one
Vacancy foundVacancy ;

en t i t y Vacancy [. . .]

Here, the current keyword class of mod4j has been
substitued with entity, as the class keyword is too
generic: both an Entity and a Value Object are classes.
Besides ful�lling the goal of having unpersistable domain
classes, the split into Entities and Value Objects o�ers
additional bene�ts: it prevents carrying around excess
identity luggage when it is not required, allowing object
sharing. The Fly-Weight Pattern (Gamma et al., 1995)
elaborates on how small, sharable objects can be invalu-
able to performance.

Note that this will also have implications in the Ser-
vice DSL: if some domain objects are no longer per-
sistable, this data must be exchanged in the interface
between the Service DSL and the BusinessDomain DSL.

Tweaking persistency con�guration The persis-
tency con�guration is generated based on the struc-
tural data laid down in the BusinessDomain DSL and

application-wide settings in a con�guration �le. The de-
fault strategy of persisting Java data types, for example
a Java boolean as bit in the database, was not compat-
ible with the Jobportal data model. This could not be
resolved without duplicating the con�guration and main-
taining it by hand. Since this mapping con�guration
was consistent for the entire datamodel, the application-
wide mod4j con�guration should be extended to be able
to customize the mapping of Java attribute types to
database �eld types. Ideally, this should be done for
each attribute type supported by both the ORM tool
and mod4j9.

6.3 Binary data types

As we did not identify any speci�c reason for excluding
binary types in the BusinessDomain DSL, we recom-
mend adding support for these datatypes in the Busi-
nessDomain DSL and the artifacts it generates.

6.4 Supported service methods

We currently lack the research data (section 5.3, obser-
vation 1) to ground any recommendation on which ser-
vice methods should be supported out-of-the-box. When
analyzing the code of our studied case we see variance
in required data access logic methods. The same applies
for the issue we encountered regarding the �exibility of
the �nd method (issue 3, Appendix B) : for one use case
it needed to be more �exible but for other it didn't.

Also, we see that expanding mod4j with additional
methods will create a scalability problem: the supported
methods are currently hardcoded in the Service DSL and
are always generated in the data layer. When expand-
ing the supported methods, more �exibility is probably
wanted here. To address the increasing complexity and
footprint, we would like to point out the opportunity to
add a new DataAccessLogic DSL that can be used to de-
�ne the data access logic methods for a certain domain
object. Since the Service DSL and the DataAccessLogic
DSL could exchange an interface, the custom methods
de�ned in the DataAccessLogic DSL can be referenced
to from the Service DSL. This will prevent hand-written
code that is currently required to invoke custom data
access logic methods.

9 See http://www.java2s.com/Code/Java/Hibernate/JavaTypeVSHibernateType.htm.

http://www.java2s.com/Code/Java/Hibernate/JavaTypeVSHibernateType.htm

7 Threats to validity 32

Because we cannot determine which methods should
be added or removed based on our research data, we do
not recommend to add or remove any from the currently
supported functionality.

6.5 Custom DTOs

We argued that the custom DTO is currently not re-
quired if it is allowed to use simple data types (string,
integer) directly in the service de�nition (section 5.3, ob-
servation 2). Therefore, we recommend that the notion
of the custom DTO is removed from the Datacontract
DSL and the Service DSL is modi�ed to allow simple
datatypes to be directly entered in the service method
de�nitions, allowing the boilerplate code to invoke the
domain service to be generated.

7 Threats to validity

In this section, we will discuss various threats to the va-
lidity of this research and how we have tried to minimize
these threats.

Uncovered issues Because we have only rebuilt parts
of the case under study due to time constraints, we can
not know for certain that we have uncovered all impor-
tant issues regarding functional and non-functional use.
We have tried to address this threat by carefully select-
ing the case and by employing the snowball sampling
technique to select the use cases the rebuild.

Selected criteria Of course, the selected criteria also
a�ect the research validity as there are might be blind
spots in our research method. Our focus has been on
base criteria that make it possible to implement applica-
tion using mod4j, but have had not much focus on the
actual bene�ts. We did identify that mod4j succeeds
in reducing the amount of hand-written code for the
rebuilt functionality, but could not elaborate on the ac-
tual savings in terms of time and money. We have tried
to address this threat in our criteria selection process:
by using an exploratory interview and a more in-depth
workshop to collect expert advice and allowing multi-
ple iterations before solidifying the criteria we expect to
have found the criteria that allow us to evaluate mod4j
optimally.

Recommendation validity We cannot know for cer-
tain that the recommendations done will indeed resolve
the problems. For example, when the concept of the ag-
gregate is introduced in the BusinessDomain DSL we do
not know for sure if this will in fact allow the modeling
of all domain model aspects in our studied case. Our
conclusion that mod4j is suitable for the development of
Smart-Java projects when certain recommendations are
followed might then be invalid. We have tried to address
this threat by discussing our intermediary results and the
reached recommendations with the mod4j experts.

Evolution As we identi�ed early in the study, the lack
of existing project data and time have made it infea-
sible to address the evolution concerns of mod4j, for
example, how well the models can cope with changing
requirements. We were unable to address this threat
and consider the evolution aspect a blind spot in this
study. Once there is real-life project data available, this
is one of the areas that could be researched in future
work.

8 Related work

Smart-Microsoft Warmer, the project leader of
mod4j, has designed a model-driven software factory be-
fore: the Smart-Microsoft software factory. His experi-
ences are described in (Warmer, 2007). In this paper,
the chosen DSLs and architecture are explained in de-
tail. Of course, Warmer's experiences have had a great
impact on mod4j and the DSLs are very similar to those
in Smart-Microsoft. It would be interesting to compare
theresults from this study with the projects done in the
Smart-Microsoft software factory. However, as the re-
search assignment was primarily scoped on mod4j we
did not have the time to gather the project data as this
was not readily available in the organization.

We can compare the percentage of generated code,
as Warmer writes that the �rst project was delivered
within time and budget. The amount of generated code
was 73%, we have seen similar amounts of generated
code in our measurements (71%, table 5d).

WebDSL Visser (2007) presents a case study in
domain-speci�c language engineering. He designs and
implements a number of DSLs which generate a web

9 Conclusion 33

application for the full one hundred percent. Visser uses
the SDF2 formalism to de�ne a concrete syntax for the
DSLs and term rewriting to generate code. While the
case study in conducted in the same area mod4j focuses
on, the focus of the paper is quite di�erent. Visser ex-
plains that his paper is the �rst place intended as a case
study in the development of DSLs.

Although the approach of generation web applica-
tions that Visser employs is comparable with the ap-
proach that mod4j follows, Visser's conclusions do not
directly overlap or contradict our own.

Changeability in model driven web development In
his Master's Thesis, van Dijk (2009) carries out an ex-
periment to assess the changeability of model driven de-
velopment of small to medium size web applications and
compares it to the changeability of classically developed
projects. He concludes that the changeability of web ap-
plications developed in model-driven approach is com-
petitive with classical approaches. The experiments are
not carried out on real-life projects but rather on a toy
application developed by the researcher. Like mod4j,
he uses the openArchitectureWare tooling to design the
metamodels of the DSLs and the templates used for
code generation.

Because our study did not focus on changeability,
van Dijk's conclusions do neither contradict nor con�rm
our own conclusions.

9 Conclusion

We have done an extensive evaluation of the suitabil-
ity of mod4j for building applications within the refer-
ence architecture domain. By eliciting the criteria in a
structured way, consulting both literature and experts,
we have selected optimal criteria for evaluating mod4j.
Next, we have set up a research method with a strong
focus on data validity to evaluate these criteria. For
the issues that were identi�ed to threaten the suitabil-
ity of mod4j, we have determined and outlined in detail
how they could be resolved using well-known, proven
design patterns. We conclude that when these recom-
mendations are followed, mod4j is suitable to be used to
build applications that fall within the domain of the Or-
dina J-Technologies reference architecture. Because our
measurements showed that up to 71% of the code can

be generated, we consider it probable that applications
will be built in less time and with less e�ort.

In a scienti�c context, this study has contributed
real-life evaluation data of model-driven software devel-
opment applied in an industrial context. Also, we expect
that the structured approach, the research method and
the criteria we have outlined will help future evaluations
of model-driven tooling.

References

Bass, Len, Clements, Paul and Kazman, Rick,
Software Architecture in Practice, Second
Edition. Addison-Wesley Professional, April
2003 〈URL: http://www.amazon.com/exec/

obidos/redirect?tag=citeulike07-20\

&path=ASIN/0321154959〉, ISBN 0321154959. 2

Beck, Kent and Andres, Cynthia, Extreme Pro-
gramming Explained: Embrace Change (2nd Edi-
tion). Addison-Wesley Professional, 2004, ISBN
0321278658. 12

Bennett, K. and Rajlich, V., Software Evolution: A
Road Map. Software Maintenance, IEEE Interna-
tional Conference on, 0 2001, p. 4, ISSN 1063�
6773. 12

Bézivin, Jean, On the uni�cation power of mod-
els. Software and System Modeling, 4 2005:2,
pp. 171�188. 3

Boxtel, Pieter van, Malotaux, Eric Jan and Hen,
Philippe Tjon-a, Ordina Java Referentie Ar-
chitectuur. Ordina J-Technologies, 2008, Versie
1.1. 11, 15, 16, 19

Breslav, Andrey, DSL development based on tar-
get meta-models. Using AST transformations for
automating semantic analysis in a textual DSL
framework. CoRR abs/0801.1219 2008. 4

Cockburn, Alistair, Prioritizing forces in software de-
sign. 1996, pp. 319�333, ISBN 0�201�895277. 5

Cockburn, Alistair, Writing E�ective Use Cases.
Addison-Wesley Professional, January 2000 〈URL:
http://www.amazon.com/exec/obidos/

redirect?tag=citeulike07-20\&path=ASIN/

0201702258〉, ISBN 0201702258. 13

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0321154959
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0321154959
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0321154959
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0201702258
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0201702258
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0201702258

9 Conclusion 34

Collaris, R.A. and Dekker, E., RUP op maat. 2008. 13

Czarnecki, Krzysztof and Eisenecker, Ulrich, Gener-
ative Programming: Methods, Tools, and Appli-
cations. Addison-Wesley Professional, June 2000
〈URL: http://www.amazon.ca/exec/obidos/

redirect?tag=citeulike09-20\&path=

ASIN/0201309777〉, ISBN 0201309777. 4, 11

Deursen, Arie van et al., Domain-Speci�c Languages.
DRAFT DRAFT Annotated Bibliography. DRAFT
ACM SIGPLAN Notices. DRAFT, 2000 � Techni-
cal report. 3

Dijk, David van, Changeability in model driven web
development. Master's thesis, University of Ams-
terdam, 2009. 33

Dijkstra, E. W., EWD 447: On the role of scienti�c
thought. Selected Writings on Computing: A
Personal Perspective, 1982, pp. 60�66 〈URL:
http://www.cs.utexas.edu/users/EWD/

transcriptions/EWD04xx/EWD447.html〉. 5

Evans, Eric, Domain-Driven Design: Tacking Com-
plexity In the Heart of Software. Boston, MA,
USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003, ISBN 0321125215. 5, 17, 18, 19, 21,
28, 30, 31

Fagan, Michael, Design and code inspections to reduce
errors in program development. 2002, pp. 575�
607, ISBN 3�540�43081�4. 1

Fowler, Martin, Patterns of Enterprise Application Ar-
chitecture. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002, ISBN
0321127420. 5, 7, 21, 24, 28, 30, 31

Fowler, Martin, Inversion of Control Contain-
ers and the Dependency Injection pattern.
January 2004 〈URL: http://www.itu.dk/

courses/VOP/E2005/VOP2005E/8\protect\

T1\textunderscoreinjection.pdf〉. 7

Fowler, Martin, Language Workbenches: The Killer-
App for Domain Speci�c Languages? May
2005 〈URL: http://www.martinfowler.com/

articles/languageWorkbench.html〉. 4

Gamma, Erich et al., Design Patterns. Boston,
MA: Addison-Wesley, January 1995 〈URL:
http://www.amazon.co.uk/exec/obidos/

ASIN/0201633612/citeulike-21〉, ISBN
0201633612. 31

Green�eld, Jack and Short, Keith, Software facto-
ries: assembling applications with patterns, mod-
els, frameworks and tools. in: OOPSLA '03: Com-
panion of the 18th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems,
languages, and applications. New York, NY,
USA: ACM, 2003 〈URL: http://dx.doi.org/
10.1145/949344.949348〉, ISBN 1�58113�751�
6, pp. 16�27. 2

Green�eld, Jack et al., Software Factories: Assem-
bling Applications with Patterns, Models, Frame-
works, and Tools. Wiley, August 2004 〈URL:
http://www.amazon.com/exec/obidos/

redirect?tag=citeulike07-20\&path=ASIN/

0471202843〉, ISBN 0471202843. 2, 11, 30

Hailpern, B. and Tarr, P., Model-driven development:
the good, the bad, and the ugly. IBM Syst. J. 45
2006:3, pp. 451�461, ISSN 0018�8670. 2, 3, 9

Hohpe, Gregor and Woolf, Bobby, Enterprise
Integration Patterns : Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley
Professional, October 2003 〈URL: http://www.
amazon.com/exec/obidos/redirect?tag=

citeulike07-20\&path=ASIN/0321200683〉,
ISBN 0321200683. 19

Johnson, Rod, Expert One-on-One J2EE Design &
Development. Birmingham, UK, UK: Wrox Press
Ltd., 2002, ISBN 1861007841. 22

Kleppe, Anneke, Software Language Engineering: Cre-
ating Domain-Speci�c Languages Using Meta-
models. Addison-Wesley Professional, 2008, ISBN
0321553454, 9780321553454. 3, 4

Myers, Glenford J., The Art of Software Testing, Sec-
ond Edition. 2nd edition. Wiley, June 2004 〈URL:
http://www.amazon.com/exec/obidos/

redirect?tag=citeulike07-20\&path=ASIN/

0471469122〉, ISBN 0471469122. 15

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0201309777
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0201309777
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0201309777
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www.itu.dk/courses/VOP/E2005/VOP2005E/8\protect \T1\textunderscore injection.pdf
http://www.itu.dk/courses/VOP/E2005/VOP2005E/8\protect \T1\textunderscore injection.pdf
http://www.itu.dk/courses/VOP/E2005/VOP2005E/8\protect \T1\textunderscore injection.pdf
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21
http://dx.doi.org/10.1145/949344.949348
http://dx.doi.org/10.1145/949344.949348
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471202843
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471202843
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471202843
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0321200683
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0321200683
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0321200683
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471469122
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471469122
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471469122

9 Conclusion 35

O'Neil, Elizabeth J., Object/relational mapping 2008:
hibernate and the entity data model (edm). in:
SIGMOD '08: Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data. New York, NY, USA: ACM, 2008, ISBN
978�1�60558�102�6, pp. 1351�1356. 21

Parnas, D. L., On the Criteria to Be Used in Decompos-
ing Systems into Modules. Communications of the
ACM, 15 December 1972:12, pp. 1053�1058. 18

Spinellis, Diomidis, Notable design patterns for
domain-speci�c languages. J. Syst. Softw. 56
February 2001:1, pp. 91�99 〈URL: http://dx.

doi.org/10.1016/S0164-1212(00)00089-3〉,
ISSN 0164�1212. 4

Stahl, Thomas, Voelter, Markus and Czarnecki,
Krzysztof, Model-Driven Software Development:
Technology, Engineering, Management. John Wi-

ley & Sons, 2006, ISBN 0470025700. 3, 4, 11,
30

Verschuren, P. and Doorewaard, H., Het ontwerpen
van een onderzoek. Boom/Lemma, 2005. 14

Visser, Eelco, WebDSL: A Case Study in Domain-
Speci�c Language Engineering. in: GTTSE. 2007,
pp. 291�373. 20, 32

Vlissides, J., Generation Gap [software design pattern].
C++ Report, 8 November -December 1996:10,
pp. 12, 14�18, ISSN 1040�6042. 4

Warmer, Jos, A Model Driven Software Factory Us-
ing Domain Speci�c Languages. in: ECMDA-FA.
2007, pp. 194�203. 9, 28, 32

Zhu, Hong, Hall, Patrick A. V. and May, John
H. R., Software unit test coverage and ade-
quacy. ACM Comput. Surv. 29 1997:4, pp. 366�
427, ISSN 0360�0300. 16

http://dx.doi.org/10.1016/S0164-1212(00)00089-3
http://dx.doi.org/10.1016/S0164-1212(00)00089-3

A Architectural requirements 36

A Architectural requirements

Tab. 7: Architectural requirements

Architectural requirement Type Ful�llment Rationale

1 Service interfaces must do security checks Must Violated Security concerns are not
addressed

2 Service interfaces must expose "course
grained" operations

Must Complete DTOs provide course
grained arguments

3 Service interfaces may not contain business
logic

Must Complete Generated code does not
contain business logic.

4 Service interfaces may only call a domain
service

Must Complete See previous requirement.

5 Service interfaces should shield the domain
service of technical implications of the
implementation (e.g. SOAP, RMI)

Should Complete Course-grained DTOs are
shielded from domain
model.

6 Service messages should not expose business
logic to the outside world

Should Complete Messages are based on
DTOs, which are adapted in
business objects

7 Service messages should contain partial or
complete representations of domain object(s)

Should Partial Normal DTOs do this,
custom DTOs not!

8 Domain objects must keep their internal state
consistent

Must Complete Done by business rules.

9 Domain objects expose operations to execute
actions and calculations

Must Partial No behaviour in model

10 Domain objects must be are unaware of if and
how they are persisted

Must Complete All persistency concerns
generated into data layer

11 Domain objects may call Data Access Logic
components (implicitly and explicitly)

May Complete Through lazy-loading of the
ORM tool

12 Domain objects may delegate the validation of
a business rule to a lower layer (such as the
database)

May Complete i.e. unique-rules are
delegated to the data model

13 Domain objects may broadcast events about
change in state

May Not at all Not supported nor
prevented

14 Business rules should throw exceptions when
the state of a domain object is inconsistent

Should Complete Business rules throw
exceptions

15 Business rules should return an error object
(Special case pattern (Fowler, 2002)) when the
error is speci�c to a certain invocation

Should Violated Does not �t in current
business rule model

16 Business processes should implement logic
speci�c to a single business process

Should Not at all Business process
nomenclature

17 Business processes may call domain objects May Not at all Business process
nomenclature

18 Business processes take care of persisting
changes by calling data access logic
components

Must Complete Generated code does this.

A Architectural requirements 37

Tab. 7: Architectural requirements

Architectural requirement Type Ful�llment Rationale
19 Business processes may call data access logic

components to retrieve domain objects from
persistent storage

May Complete Generated code does this.

20 Business processes may implement custom
transactions if technical transactions do not
su�ce

May Not at all Business process
nomenclature

21 Business processes may send business process
events (asynchronously) to external actors

May Not at all Business process
nomenclature

22 Business processes may implement re-try
behaviour for technical errors

May Not at all Business process
nomenclature

23 Business work�ows may invoke other work�ows
and processes

May Not at all Not supported nor
prevented

24 Business work�ows may invoke external
services using service agents

May Not at all Work�ows neither
supported nor prevented

25 Business work�ows should validate input before
invoking the next process

Should Not at all Work�ows neither
supported nor prevented

26 Business work�ows should not do direct
invocations on domain objects or data logic
components

Should Not at all Work�ows neither
supported nor prevented

27 Service agents execute business logic and do
not facilitate data access (ie. credit card
authorization service)

Must Not at all Service agents neither
supported nor prevented

28 Service agents are usually not included in the
scope of distributed transactions

Could Not at all Service agents neither
supported nor prevented

29 Service agents shield business work�ows from
technical implications of the service
implementation

Must Not at all Service agents neither
supported nor prevented

30 Service agents should encapsulate access to
just one service.

Should Not at all Service agents neither
supported nor prevented

31 Service agents must provide input and output
data formats that are compatible with the
business components calling the service. In
doing so, it isolates the business layer from the
service implementation in terms of data format
or schema changes. This rule implies that
mapping between these formats is also a
responsibility of a service agent.

Must Not at all Service agents neither
supported nor prevented

32 Service agents must set the right security
context or provide the right credentials to the
service for authentication.

Must Not at all Service agents neither
supported nor prevented

33 Service agents may cache results from service
calls.

May Not at all Service agents neither
supported nor prevented

A Architectural requirements 38

Tab. 7: Architectural requirements

Architectural requirement Type Ful�llment Rationale
34 Data access logic components must expose the

so-called CRUD methods for inserting,
deleting, updating and retrieving data

Must Complete Out-of-the-box generated
for each DAO

35 Data access logic components may expose
methods to do queries and return either a list
of objects, an object graph, a list of object
graphs or a view on persistent data

May Complete List and �nd are generated
example, more methods can
be added by hand

36 Data access logic components adapt the
domain object to the format that is used to
store the object

Must Complete Taken care of by the ORM
tool

37 Data access logic components should support
di�erent data stores transparently

Should Complete Taken care of by the ORM
tool

38 Data access logic components may implement
a caching strategy

May Complete Taken care of by the ORM
tool

39 Data access logic components have to support
paging facilities for large amounts of data

Must Not at all Paging neither supported
nor prevented

40 Data access logic components may
decrypt/encrypt data

May Not at all Encrypt/decrypt neither
supported nor prevented

41 Data access logic components should not
invoke other data access logic components

Should Complete

42 Data access logic components may invoke data
service agents

May Not at all Data service agents neither
supported nor prevented

43 Data access logic components must be
stateless

Must Complete

44 Data Service agents must isolate the data
access logic components from the intricacies of
the communication / transport protocol.

Must Not at all Data service agents neither
supported nor prevented

45 Data Service agents should encapsulate access
to just one service

Should Not at all Data service agents neither
supported nor prevented

46 Data Service agents must provide input and
output data formats that are compatible with
the data access logic component calling the
service. In doing so, it isolates the data layer
from the service implementation in terms of
data format or schema changes. This rule
implies that mapping between these formats is
also a responsibility of a service agent.

Must Not at all Data service agents neither
supported nor prevented

47 Data Service agents must set the right security
context or provide the right credentials to the
service for authentication

Must Not at all Data service agents neither
supported nor prevented

48 Data Service agents may cache results from
service calls

May Not at all Data service agents neither
supported nor prevented

A Architectural requirements 39

Tab. 7: Architectural requirements

Architectural requirement Type Ful�llment Rationale
49 The service layer may only reference other

layers as speci�ed in Figure 12
May Complete Generated code honors this.

50 The service layer must be implemented using
an unique package pre�x (e.g, nl.refapp.service)

Must Complete Generated code honors this.

51 The business layer should be implemented as
Plain Old Java Objects (POJOs)

Should Complete Generated code honors this.

52 The business layer may only reference other
layers as speci�ed in Figure 12

Must Complete Generated code honors this.

53 The business layer must be implemented using
an unique package pre�x (e.g,
nl.refapp.business)

Must Complete Generated code honors this.

54 The domain layer must be implemented using
an unique package pre�x (e.g,
nl.refapp.domain)

Must Complete Generated code honors this.

55 The domain layer may only reference other
layers as speci�ed in Figure 12

Must Complete Generated code honors this.

56 The domain layer are implemented as POJOs Must Complete Domain objects are POJOs
(no extends / implements)

57 The domain layer must use the Spring
Inversion of Control container for dependency
management

Must Complete Con�guration for Spring is
generated

58 The data layer must be implemented using an
unique package pre�x (e.g, nl.refapp.data)

Must Complete Generated code honors this.

59 The data layer may only reference other layers
as speci�ed in Figure 12

Must Complete Generated code honors this.

60 It is recommended to use the Java Persistency
API (JPA) for object/relational mapping

Should Violated Hibernate used instead

61 The data layer must provide a data access logic
component for each high level domain object
(aggregate root (Evans, 2003)).

Must Violated DAO generated for each
domain object

62 Use LDAP-based JavaEE authentication
wherever possible, only reverting to other ways
of authentication when necessary

Should Not at all Security concerns are not
addressed

63 The service interfaces must authenticate as
well (...)

Must Violated Security concerns are not
addressed

64 The other components in the business and data
layer normally execute in the same context as
the services interface and thus may rely on the
services interface to have done the
authentication.

May Complete Other components have no
notion of security

A Architectural requirements 40

Tab. 7: Architectural requirements

Architectural requirement Type Ful�llment Rationale
65 Data stores should preferably authenticate the

calling process, not the end-user. However,
authorization or auditing rules may imply that
impersonation be used.

Should Partial Security concerns are not
addressed

66 Use role based authorization. This is more
manageable then directly coupling rights to
identities.

Must Not at all Security concerns are not
addressed

67 Use declarative authorization where possible.
Checking an identity in the code should be
done seldomly.

Should Not at all Security concerns are not
addressed

68 Service interfaces must authorize requests as
well (...)

Must Violated Security concerns are not
addressed

69 Other components in the business and data
layer may rely on the authorization of the
service interface.

May Complete Other components have no
notion of security

70 In addition to the role based authorization of
the service interfaces, business work�ows,
business processes, or business classes may,
where applicable, execute complex business
logic dependent authorization rules. An
example is the business rule that �an account
manager may only see orders of his own
accounts�.

May Not at all Security concerns are not
addressed

71 Use of standard JavaEE capabilities for
determining authorization of users is preferable
over custom implementations

Must Not at all Security concerns are not
addressed

B Functional implementation issues 41

Fig. 12: Implementation view

B Functional implementation issues

Tab. 8: Functional issues

Issue Type Severity Observation

1 Custom DAO implementation: cannot
disable generation of code and con�guration

Functional Major Domain object persistency cannot
be customized or disabled

2 Cannot not override boolean persistency
con�guration

Functional Blocker Domain object persistency cannot
be customized or disabled

3 The prede�ned methods �nd method is not
�exible enough

Hand-
written

Minor Relates to hand-written code.

4 Binary data types are not supported Functional Blocker No binary data type can be speci�ed
in the BusinessDomain DSL

5 Extending con�guration can not be done in
the same style (explicit vs implicit spring
con�g)

Hand-
written

Minor Spring con�g

6 It's hard to extend spring con�guration Hand-
written

Minor Spring con�g

B Functional implementation issues 42

Tab. 8: Functional issues

Issue Type Severity Observation
7 The DTO translators do not allow multiple

DTOs to be translated at once, resulting in
more manual code

Hand-
written

Minor Relates to hand-written code.

8 There is no easy way to test the models,
especially the domain model. The only way
is to manually bootstrap a domain model
instance in Java. The DSLs should be more
easily testable, by using a concrete syntax to
concrete a model instance.

Hand-
written

Wish

9 When adapting a list of DTOs, a read
operation is done for each separate DTO
which is very performance intensive.

Performance Minor Adapting a list of DTOs

10 The local service contains hand-written
business logic. This is a mistake of the
developer.

DocumentationMinor Extension point documentation

11 Documentation entered in the Service model
is not applied to the generated Java code

Fixed Minor Fixed in next mod4j version

12 Unique constraints de�ned in mod4j have no
e�ect if the data model is not generated by
mod4j.

Functional Minor Should be made clear in
documentation, but imposes no
functional limitations as this
concern can be addressed in the
data model.

13 Associations in DTOs are not translated
back to domain objects. This results in a
more �ne-grained service interface (add this,
remove that, etc). A more coarse-grained
service interface is preferable.

Fixed Major Fixed in next mod4j version

14 Mod4j generates incorrect ORM mappings if
a domain object has a many-to-many
association with itself. Workaround in place.

Functional Major This is a bug in mod4j which is
being resolved. It is not blocking
because a workaround is possible.

15 It is not possible to have a non-persistable
domain object. Example: SearchResult.
Persistency does not make sense here, yet
mapping etc is generated.

Functional Major Domain object persistency cannot
be customized or disabled

16 The local service could be Complete
generated without extension points. By
de�nition, it must duplicate the domain
service. Now it causes a lot of hand-written
code.

Hand-
written

Major Relates to hand-written code.

17 As the original service is the contract, the
amount of service methods exposed in the
mod4j and original implementation should
match up. In reality, the mod4j service
de�nition exposes more functionality.

Functional Major Super�uous operations in the local
service de�nition

C Hand-written code statistics 43

Tab. 8: Functional issues

Issue Type Severity Observation
18 Cascading delete has to be hand-written for

composite associations, introducing duplicate
code (multiple domain services) or violating
architectural requirements (calling other
DAO's in a DAO).

Functional Major Domain object persistency cannot
be customized or disabled

19 Referencing from business model to business
model is broken.

Functional Minor Known defect, is being �xed.

C Hand-written code statistics

original mod4j manual mod4j generated

data 410 259 213
business 0 158 120
domain 2406 46 874
service 296 189 745
total 3112 652 1952

(a) UC02 Select Vacancy

original mod4j manual mod4j generated

data 395 300 222
business 0 22 112
domain 2319 71 892
service 115 85 632
total 2829 478 1858

(b) UC23 Maintain my vacancies

original mod4j manual mod4j generated

data 403 260 185
business 0 73 142
domain 2234 42 929
service 143 105 839
total 2780 480 2095

(c) UC11 Maintain reference data

original mod4j manual mod4j generated

data 851 531 296
business 0 219 196
domain 2803 71 1041
service 403 353 1366
total 4057 1174 2899

(d) All three in one run

Tab. 9: Byte code instructions executed (not normalized)

	1 Introduction
	2 On Mod4j
	3 Evaluation criteria
	4 Research method
	5 Research results
	6 Recommendations
	7 Threats to validity
	8 Related work
	9 Conclusion
	References
	A Architectural requirements
	B Functional implementation issues
	C Hand-written code statistics

