
Rminer: An integrated model for repository mining using Rascal

A feasibility study

Waruzjan Shahbazian

August 31, 2010

Master Software Engineering

Thesis Supervisor : Jurgen Vinju

Internship Supervisor: Jurgen Vinju

Institute: Centrum voor Wiskunde en Informatica

Availability: Public Domain

University of Amsterdam

1

Abstract

In this thesis the feasibility of an integrated model for
repository mining using Rascal is examined. To this
end the SCM data sources CVS, SVN and Git are in-
tegrated into one integrated repository model named
Rminer, which can be used in the data extraction
and analysis phases of MSR research.

First the requirements for Rminer are analysed by
examining the various MSR research being done and
analysing the commonalities and differences between
the three SCM systems to be supported. After the
design and implementation of the tool, a case study is
performed to evaluate the feasibility of an integrated
model for repository mining in Rascal.

We found out that while it is possible to create an in-
tegrated repository model, by unifying the common-
alities and making the differences between the SCM
systems explicit, MSR research still needs to be care-
ful when using the unified data in the model, due to
the possible differences in the semantics of the SCM
systems.

1 Introduction

Mining software repositories (MSR) is the process
of analysing the data stored in software reposito-
ries, about a software system, usually to improve
the future evolution of the software system. This
data describes the evolution of a software system
and can be mined for different purposes: from mod-
elling the software development process [11] to pre-
dicting bugs in the software parts yet to be written
[7]. Data sources used in this process include among
others: software configuration management (SCM)
systems, bug-tracking systems and various communi-
cation archives (e.g. mailing lists).

In this thesis the feasibility of an integrated model
for repository mining using Rascal, is examined. To
this end Rminer is designed and implemented, which
facilitates the data extraction and analysis phases of
MSR research.

Rminer is a tool, written in Rascal [8] and Java, that
facilitates repository mining research by abstracting
the various repository data models to an integrated
model. This integrated model supports the following
SCM systems: CVS1, SVN2 and Git3. The reasons
for the choice of this SCM systems are:

• CVS was one of the most popular SCM systems,
thus there are a lot of software projects archived
in CVS repositories which can be subject for
MSR research.

• SVN has taken over the CVS user base and is
the most popular SCM system used.

• Git is the new kid in town and is getting more
popular over time.

• By supporting both distributed (Git) and cen-
tralized (CVS/SVN) SCM systems, we can ad-
dress the differences between the two models.

1.1 Motivation

Many MSR projects start their research with the ex-
traction of the needed facts from software repositories
between a range of dates or revisions. Depending on
the needs of the analysis, the facts extracted in this
preprocessing phase differ, from meta-data (e.g. au-
thor, commit date) to fine-grained entity information
about the source code (e.g. classes, methods, fields).
The extracted facts are often stored and used in fur-
ther analysis.

This, non-trivial, task of extracting and storing of the
necessary facts, is often reimplemented for each soft-
ware evolution research performed. Reimplementing
the fact extraction tools costs a lot of time and there-
fore often a single source of data (e.g. SCM system)
is supported. For example, often CVS is supported,
since many open source projects use that SCM. This
means that the research systems cannot use the evo-
lution data of the software projects archived in other

1http://www.nongnu.org/cvs/
2http://subversion.apache.org/
3http://git-SCM.com/

3

http://www.nongnu.org/cvs/
http://subversion.apache.org/
http://git-SCM.com/

SCM systems which is a possible threat to the validity
of the research results. There might, for example, be
some similarities in the evolution of the open source
projects archived in CVS, while commercial projects
archived on other SCM systems might result in other
evaluation results.

Since each research uses its own ad-hoc fact extractor
tool and data format, it is difficult to share the re-
search results or even (re)use the raw facts extracted
from the software repositories.

To conclude, below are the main motivations for the
creation of Rminer:

• Researchers spend a lot of time in the creation
of the tools needed for MSR research. Thus not
having to create the MSR tools every time, can
reduce the startup time of a MSR research a lot.

• Creating ad-hoc MSR tools for every research
often means that the data produced or consumed
by those tools are not easily interchangeable. So
the results of one MSR research can not easily
be compared with the results of another or be
used for future research.

• Often, due to time constraints, a single source of
data (e.g. SCM system) is supported by the ad-
hoc MSR tools, which means that the researchers
cannot analyse the evolution data from other
data sources. This can be a threat to the validity
of the research results, since there is a possibil-
ity that a particular data source is often used in
a particular way. For example, it is not incon-
ceivable that there are some similarities in the
evolution of the projects archived in CVS, while
other projects archived in other SCM systems
might have a very different evolution history.

1.2 Research question

The main question of this research is:

RQ1 Can we design and implement an integrated
repository model using Rascal, that facilitates repos-
itory independent MSR research? (Section 7)

To determine the feasibility of such an integrated
model, the following sub-questions need to be an-
swered:

RQ1.1 What kind of MSR research is being done?
(Section 2.1.5)

RQ1.2 What are the commonalities and differences
between the repository models of various SCM sys-
tems? (Section 3.3)

RQ1.3 How can the various repository models be
integrated into one model, where the commonalities
between the individual models are shared and the dif-
ferences are preserved (Section 4).

In order to support as much MSR research as possi-
ble, we need to preserve as much data from the indi-
vidual models as possible. Therefore, when unifying
the commonalities between (some of) the individual
models, no data may get lost.

RQ1.4 Is the integrated repository model for Ras-
cal a good solution for repository independent MSR
research? (Section 7)

Once Rminer is designed and implemented, we have
to determine to what extent it is the solution to the
problem we are trying to solve (section 1.1).

1.3 Research method

The research is divided into three phases: require-
ments analysis, design & implementation and testing.

1.3.1 Requirements analysis

The goal of the first phase of the research is to de-
termine the requirements of Rminer. To this end
we will first analyse the MSR domain (section 2.1),
then examine the related work (section 2.2) and fi-
nally compare the different SCM systems (section 3)
to find out the differences and commonalities between
the repository models.

4

Using a literary survey on MSR research and MSR
tools that facilitate the research, we can determine
what uses cases Rminer should support and if/how
the MSR tools facilitate MSR research. RQ1.1 will be
answered by categorizing the different MSR projects
based on task they are meant to fulfill.

Then, since Rminer is aimed to support different
SCM systems, the commonalities and differences of
the various repository models will be examined. Since
each SCM system uses it’s own terminology, a com-
mon set of terms will be defined (section 1.4). RQ1.2
will be answered by modelling the commonalities and
the differences between the meta-data provided by
the SCM systems in a Venn diagram4 (figuur 4 in
Section 3.3).

Having answers to the questions above, the require-
ments of Rminer can be determined (section 4.1).

1.3.2 Design & Implementation

The third phase of the research is designing and im-
plementing Rminer, according to the requirements
(section 4). The datamodel of Rminer will be de-
signed in Rascal, while the underlying communica-
tion with the various SCM systems may be imple-
mented in Java. RQ1.3 can be answered with the
design of the tool in Rascal (listings 2, 3, 4, 1)

1.3.3 Testing

The last phase of the research is aimed to answer
RQ1.4: Is the integrated repository model for Rascal
a good solution for repository independent MSR re-
search?. To this end, a case study will be performed
to (partially) validate Rminer with the requirements
(section 4.1) and evaluate the feasibility of an inte-
grated repository model in Rascal as the solution to
the problems formed in Section 1.1. More detailed
description of the study can be found in Section 5.
The results of the study will be discussed in Section 6
and conclusions will be drawn in Section 7.

4http://www.combinatorics.org/Surveys/ds5/
VennEJC.html

1.4 Definitions

Atomic commit An atomic commit is the oper-
ation in which a set of changes are committed to
the SCM system, as a single operation. Furthermore,
when during the operation something goes wrong, the
system will roll-back an none of the changes will be
committed to the SCM system. This way, the SCM
system is always left in a consistent state.

Branch Branches are alternative development lines
stored on the SCM, used when the development team
needs to work on two different copies of a project at
the same time.

CVCS Centralized Version Control System is an
SCM System that uses the client-server architecture
pattern, where all the history of software changes is
stored on the server and the clients have to commu-
nicate with the server to get the changes.

Changeset A changeset is a group of changes,
made to the software stored on a SCM system, that
may or may not be committed together in an atomic
way.

Checking out Checking out is the process of get-
ting the software stored on the SCM system, as it
was at a given time (revision).

Committing Committing is the process of storing
changes to the software from the working copy to the
SCM system.

DVCS Distributed Version Control System or a
Decentralized Version Control System is an SCM Sys-
tem. that uses a peer-to-peer approach, where all the
clients contain all the history of the software and can
push and pull changes to each others repositories.

5

http://www.combinatorics.org/Surveys/ds5/VennEJC.html
http://www.combinatorics.org/Surveys/ds5/VennEJC.html

Merging Merging is the process of integrating the
changes from one branch into another.

MSR Mining Software Repositories is the process
of analysing the data from software repositories.

MSR script MSR script is software that can be
used to mine a repository.

Pulling changeset Pulling changesets is the pro-
cess of getting the changes from a remote repository
into the local repository.

Pushing changeset Pushing changesets is the
process of committing the changes from the local
repository into a remote repository.

Revision Revision identifies a version of a data
stored on a SCM system.

SCM Software Configuration Management is the
process of controlling changes to software.

SCM System SCM System, Software Repository
or a Version Control System, is a tool/system that
controls changes to software.

Tag Tags are short-cuts to a state in the repository.

Working copy contains a local copy of the soft-
ware stored on the SCM system, at a given time.

2 Mining Software Reposito-
ries

MSR research analyses the data available in software
repositories to uncover interesting information about

the (evolution of the) software systems archived on
the repositories. This information is usually used to
improve the future evolution of the software.

As mentioned in the introduction, MSR research can
have many different purposes. The first step in the
requirements analysis of Rminer is to find out what
kind of MSR research is being done and with what
purpose. Once we know this, we can look at the tools
that facilitate MSR research. By analysing the strong
points and shortcomings of those tools, the kind of
MSR research being done and the purposes of those
MSR research, we can determine the requirements of
Rminer.

2.1 Taxonomy

Figure 1: Four-layer taxonomy of MSR approaches [6]

Kagdi [6] has devised a four-layer taxonomy (figure 1)
based on literature survey on approaches for mining
software repositories. The MSR approaches study-
ing high-level properties of a system are separated
from the approaches studying more detailed changes

6

in the actual artefacts. Furthermore, the approaches
can have different purposes, consider different repre-
sentations of the information and use different infor-
mation sources.

In the taxonomy, approaches studying “Software
Changes” are aimed at the more fine-grained changes
in the artefacts, while the approaches studying “Soft-
ware Properties” are aimed at the properties of the
software stored on the SCM systems. The survey
has found 11 MSR approaches studying the artefacts,
14 MSR approaches studying the properties and 23
MSR approaches studying both aspects of software
projects.

MSR Tools (related work, Section 2.2) is compared
and the requirements of Rminer (section 4.1) are
defined according to the taxonomy described above.

2.1.1 Software Evolution

The goal of MSR is to learn more about the evolution
of a software project. Thus a MSR research can be
interested in the change characteristics of the high-
level software properties of the software system:

“For example, metrics for software com-
plexity, defect density, or maintainability
can be computed for two versions of a sys-
tem taken from CVS and the quality of the
evolved system assessed. In this approach
the interest is in the changes of high-level
or global properties of a software system
under evolution. We refer to this group of
MSR investigations as interested in changes
to properties.” [6, page 84]

An MSR research can also be aimed at the more de-
tailed changes in the actual artefacts of the software
system:

“The second perspective represents in-
vestigations that study the actual mecha-
nisms or facts that take a software system
from one version to the next. Here the focus

is on the specific differences between ver-
sions. These types of approaches use the
difference data supplied by CVS or other
tools. We refer to this group of MSR investi-
gations as interested in changes to artefacts.
There can be a significant level of variation
with respect to the granularity and type of
source code change. Types of source code
entities include physical, syntactic, docu-
mentary, etc. Likewise, one can examine
changes to a file, class, or function. These
differences are reflected in how sophisti-
cated the tools used in the investigation are
with respect to such things as programming-
language knowledge.” [6, page 84]

2.1.2 Purpose

Changes in the properties or artefacts of a software
system can provide answers to different types of ques-
tions. The taxonomy divides those questions into two
classes: “market basket questions” and “prevalence
type questions”. Explanation of the two classes by
Kagdi:

“The first is the market-basket question
(MBQ) formulated as: if A occurs then
what else occurs on a regular basis? The
answer is a set of rules or guidelines describ-
ing situations of trends or relationships. For
example, if A occurs then B and C happen
X amount of the time.

The term market-basket analysis is
widely used in describing data-mining prob-
lems. The famous example about the analy-
sis of grocery store data is that ’people who
bought diapers often-times bought beer’.”
[6, page 82]

“The second type of MSR purpose re-
lates to prevalence questions (PQ). In-
stances include metric and boolean queries.
For example, was a particular function
added/deleted/modified? Or how many and

7

which of the functions are reused? The
questions asked indicate the purpose of the
mining approach.” [6, page 82]

2.1.3 Representation

The data mines by the MSR research can be of dif-
ferent types and granularity. The third layer of the
taxonomy deals with the representation of the data
mined by the MSR research.

“Layer 3 (representation) refers to the
type (e.g., physical), granularity (e.g., sys-
tem, files, classes), and expression of the
artefacts and their differences. Source code
repositories are typically limited to the
physical-level representation of source code
(i.e., file and line numbers). As such, the
answers to MSR questions can be further
extended to more fine-grain representations
of artefacts and differences. Therefore, the
representation of the information in the
repositories can be refined based on the syn-
tax and semantics of the underlying pro-
gramming language(s).” [6, page 85]

2.1.4 Information Sources

The main information sources used by MSR research
can be found in the fourth level of the taxonomy. Ex-
planation about the choice of the information sources
to include in the taxonomy, by Kagdi:

“However, information sources depicting
high-level abstractions such as design mod-
els and architecture models are typically not
directly available in the software reposito-
ries. They may need to be reverse engi-
neered or computed to support the corre-
sponding MSR questions. Therefore, layer 4
represents the information sources that are
readily available in the software repositories
and those that need to be made available to

support the MSR investigation.” [6, page
85]

2.1.5 Research Question

RQ1.1 What kind of MSR research is being done?

Kagdi[6] has devised a four-layer taxonomy (figure 1
in Section 2.1) based on literature survey on ap-
proaches for mining software repositories.

48 MSR projects are studied, and divided into cate-
gories based on the evolution task being accomplished
[6, table IV, page 91]:

• Evolution coupling/patterns

• Change classification/representation

• Change comprehension

• Defect classification and analysis

• Source code differencing

• Origin analysis and refactoring

• Software reuse

• Development process and communication

• Contribution analysis

• Evolution metrics

2.2 Tools

In this section we will look at the tools that facili-
tate MSR research. While we are more interested in
the tools that can be used for different kinds of MSR
research, we will also discuss some of the tools that
have a specific goal or are made for a specific MSR
research. The tools described in this section are re-
lated to Rminer, so we will compare the tools with
Rminer, to determine what the differences are and
why we need Rminer to solve the problem described
in Section 1.1.

8

While there are many ad-hoc5 implementations of
repository mining tools, only a few are generic enough
to be used by different researchers with different in-
terests. SoftChange [5], HipiCat [3], APFEL [13],
Minero [10] and Bloof [4] are all MSR research tools
with only SCM support of CVS, while the first two
tools also support non-SCM (e.g. bug-tracker) re-
sources for their analysis.

Kenyon is [1] is a tool that facilitates software evolu-
tion research by providing access to various SCM sys-
tems through one interface. Also, the data extracted
from the SCM systems can be saved and reused for
analysis purposes. None of the other tools mentioned
above gives the user access to the extracted raw facts
so that different kinds of analysis can be performed.

One commonality between the tools mentioned above
is the fact that all of them use a database as a back-
end. Also, most of the tools are aimed at the content
of the revisions of the files stored on the SCM. It is
often not possible to gather the meta-information of
the revisions and only request the actual content of
the files if necessary.

2.3 Kenyon

Kenyon is a tool that does a similar job as Rminer.
The main differences between Kenyon and Rminer
are described bellow.

2.3.1 No option for only meta-information

Kenyon is aimed at the fact extraction from the files
checked out from SCM systems and provides some
of the meta information about the revisions checked
out. Kenyon has no option to retrieve only the meta
information and do the checkout later on if necessary.
This means that even if the evolution research does
not need the actual contents of the files, they will
have to be checked out, which can unnecessary take
lots of time on large projects with many revisions,
especially if the SCM is not locally available.

5Ad-hoc repository mining tools are designed for, and used
by, one specific MSR research

2.3.2 Too few meta-information

Kenyon provides too few of the meta information
stored on the SCM, which makes it impossible to per-
form evolution research that use the information not
accessible through Kenyon. The following is a list
of meta information that is not accessible through
Kenyon:

• A list of affected resources and their status
(modified/added/removed/copied/renamed) per
changeset

• Origin (file name + revision) of the resources
that are renamed or copied

• Tags information

• Merging information

• Number of lines added/removed

• Access to the history (meta-information of pre-
vious revisions) of a particular resource

Some of the items above are not (easily) accessible
from some of the SCM systems investigated in this
thesis, but most of them are. Although Kenyon is an
uniform tool that supports multiple SCM systems,
the SCM specific meta information should also be
accessible when that specific SCM is used.

2.3.3 Fixed transaction recovery algorithm

Kenyon uses the sliding-window transaction recovery
algorithm to regroup the files on CVS into a change-
set to checkout. The variables used in this process
of transaction recovery (e.g. maximum time between
start and end of a transaction) cannot be changed by
the user and therefore can be wrong for some kind
of projects (where for example the latency is very
high and many files are committed together). Since
the user cannot directly call the checkout process, he
cannot create his own changesets, with another algo-
rithm, and perform a checkout.

9

2.3.4 Library dependencies

Although there is a “nodb” configuration mode in
Kenyon which is used when no database back-end is
needed, Kenyon requires all the library dependencies
required by the ORM library (Hibernate) used. This
means that even if the user does not want to store the
data on a database, more than fifteen dependencies
have to be kept up-to-date. The last version of the
project has been released on 2005-04-18 and the web-
site is taken off-line in 2007. Kenyon does not work
with the new versions of Hibernate and RDBMS sys-
tems.

2.3.5 GraphSchema

Often research results (facts) need to be saved and
reused later on. Kenyon facilitates fine-grained facts
persistence by providing a mechanism of Graph-
Schema and ConfigGraph that holds to the Graph-
Schema. This mechanism makes it possible to store,
reuse and compare fine-grained analysis results inbe-
tween revisions and resources. For example, a “C”
GraphSchema could describe the structure of a “C”
program, while an instance of a ConfigGraph could
hold the actual nodes and edges parsed from a given
“C” program. By storing the ConfigGraph instances
in a database, one can compare the edges and the
nodes of a “C” program at various revisions.

2.4 APFEL

APFEL is an eclipse plugin that collects fine-grained
changes (Java) from version archives (CVS) in a
database. By using the Eclipse infrastructure (CVS
plugin and JDT parser), APFEL parses the various
versions of the Java software projects, archived in
CVS, and stores the extracted fine-grained changes
in an database. Using a relational databse makes it
easy for the user to find and use the necessary facts
from the database and perform evolution research.

2.5 Gitdm

Gitdm is an ad-hoc repository mining tool used in
the research on the Linux Kernel Development [9].
Gitdm is aimed at the mining of Git repositories and
makes heavy use of unix command line tools. The
fact extraction and analysis code are not always sep-
arated, which makes it hard to reuse Gitdm for differ-
ent purposes, without having to rewrite it altogether.

The ad-hocness of Gitdm has however its advantages.
Since the various processes are integrated with each
other, Gitdm can be very efficient. It can for example
determine which facts have to be extracted to meet
the requirements of the analysis, so that no unnece-
sessary data has to be handled.

2.6 Conclusion

The related work is compared (table 1) with Rminer
according to the information sources of the taxonomy
from the introduction (figure 1) and multi SCM sup-
port.

The results show that all the tools provide the user
with the Artifacts stored on the SCM systems. The
meta-data provided by Kenyon is however limited
and one can get more meta-data with Gitdm by
scripting the parser, while Rminer provides much
more meta-data out of the box.

File differences are only supported by Gitdm, since
Gitdm is the only tool that communicates directly
with the repository. That makes it possible to fetch
file differences, while Kenyon and Rminer do not
have this feature. In order to achief that in those
tools, one has to checkout both the versions of a file
and do a diff comparison manually.

Regarding “Multi SCM Support”, both Kenyon and
Rminer support multiple SCM systems. Please do
note that all the SCM systems supported by Kenyon
have a“Client-server” model (CVCS), while Rminer
also has support for a “Distributed” (DVCS) SCM
system: Git.

10

Kagni Information Sources Multi SCM Support

Artifacts Differences Metadata SCM support

Kenyon OTB NA OTB CVS,SVN & ClearCase

Gitdm S S S Git

Rminer OTB NA OTB+ CVS, SVN & Git

Table 1: Related work comparison: OTB = Out of the box, S = Scriptable, NA = Not Available

3 SCM Systems

The second part of the requirements analysis is aimed
at the commonalities and differences between the var-
ious SCM systems and their datamodels. This way
we can determine which data the integrated reposi-
tory model has to support.

Software configuration management systems track
and control changes to the documents, software
source code and other data stored on the system.
Besides the actual content of the files, SCM systems
keep track of various kinds of meta-information. This
information can vary from the author name to the
sha1 hash6 of the content of a particular version of a
file or the origin of a copy operation.

In order to design a common meta model that sup-
ports multiple SCM systems, the similarities and dif-
ferences between the SCM systems are examined.
Please note that only the SCM concepts important
for MSR research are presented in this chapter.

3.1 Similarities

Most of the SCM systems share some common con-
cepts, which are presented in Figure 2. In an UML
class diagram the components mostly involved in the
process of MSR research are presented.

6http://http://book.git-SCM.com/1_the_git_
object_model.html

3.1.1 Revision

Each resource stored on the SCM system is being
version controlled. This means that each version of
a resource can be identified and requested, the iden-
tification of a version of a resource is done with a
revision.

Please note that a revision can be used as an identifier
of a changeset as well as of a single resource in a
changeset (more on revision identifiers in the section
Differences).

Revisions can also have references to one or more
parents. The definition of a parent differs when used
on a changeset or a resource:

• changeset revision parents are the revisions of
the changesets, this changeset is based on. In
case of a merge operation, a changeset can have
multiple parents.

• resource revision parents refer to the revision of
the previous version of the resource. In case of a
move/copy operation, the parent refers to the re-
vision of the origin this resource is moved/copied
from. In case of modification, the parent refers
to the revision of the previous version of the re-
source. In case of a new file (add operation) or
a removal of a file (delete operation) no parent
revision exist.

3.1.2 Info

Info contains information provided by the author dur-
ing a commit. Commit is the process of submit-
ting the changes of the resources to the SCM system.

11

http://http://book.git-SCM.com/1_the_git_object_model.html
http://http://book.git-SCM.com/1_the_git_object_model.html

Figure 2: UML2 class diagram of common concepts in SCM systems

Most of the SCM systems keep track of the date of
the commit, the name of the committer and a commit
message describing the commit.

3.1.3 Changeset

Changeset identifies the set of changes made in a sin-
gle commit operation. As described earlier, a change-
set uses a revision as identifier. Please do note that
not all the SCM systems investigated support change-
sets (see Section 3.2.1), but those that do, have a
similar concept of changesets.

3.1.4 RevisionChange

RevisionChange represents the kind of the change
performed in a particular revision to a single resource.
Mostly the following kinds of changes are stored:

• “added” when this is the first revision of a re-
source

• “removed” when this is the last revision of a re-
source

• “renamed” when the resource is renamed
(moved) from an old location. In this case the
old location is stored in the “origin” field

• “copied” when the resource is copied from an old
location. In this case the old location is stored
in the “origin” field

• “replaced” when a new resource is added in place
of the old resource within the same changeset. In
that case it’s not a modification because the new
file on the same location has no relation with the
old file (except the filename)

• “modified” when the content of the resource is
modified

3.1.5 Resource

A resource is a file or a folder that is under version
control on the SCM system. Some SCM systems (e.g.

12

CVS, Git) only keep track of the revisions of files,
while others (e.g. SVN) also store the revisions of
folders.

3.2 Differences

There are also many differences in the semantics and
the kind of meta-information that can be tracked
with the various SCM systems. This makes it hard for
researchers to do a SCM system independent evolu-
tion research. In this section the differences between
the three SCM systems, related to MSR research, will
be described.

3.2.1 Atomic operations

A system supports atomic operations if it is left
in a consistent state, even if an operation is inter-
rupted. The commit operation of an SCM system is
atomic when no single change, from the set of changes
(changeset) of the commit, makes to the system, un-
less all of the changes are committed succesfully.

Git and SVN support atomic operations, while CVS
does not. Since most of the MSR research analyse
the various versions of the system, instead of individ-
ual files, support for atomic operation is important.
To overcome this shortcoming of CVS, several algo-
rithms [12] (e.g. sliding-window “transaction recov-
ery”) are invented to recover the transaction infor-
mation not recorded by CVS.

3.2.2 Revision identification

All the three SCM systems use different kinds of re-
vision identifiers.

CVS does not have any changesets, since no atomic
operations are supported.

“Each version of a file has a unique re-
vision number. Revision numbers look like
‘1.1’, ‘1.2’, ‘1.3.2.2’ or even ‘1.3.2.2.4.5’. A

revision number always has an even number
of period-separated decimal integers. By de-
fault revision 1.1 is the first revision of a file.
Each successive revision is given a new num-
ber by increasing the rightmost number by
one. It is also possible to end up with num-
bers containing more than one period, for
example ‘1.3.2.2’. Such revisions represent
revisions on branches.” 7

Since each file has it’s own unique set of revision num-
bers and no changesets are tracked, it’s not possible
to compare revision numbers and for example deter-
mine if a file “A.txt” with revision number “1.4” is
older then the file “B.txt” with revision number 1.3.

SVN has the “easiest” revision identification sys-
tem of the three SCM systems investigated. Each
changeset is identified with an unique natural num-
ber, one greater then the number of the previous revi-
sion, started with 0. Each revision number represents
the state at which the filesystem was at the moment
that the changeset was committed. Due to the incre-
mental numbers of the revisions, its easy to see which
revision comes next and how many revision are in to-
tal. Please note that since the revision numbers are
global in the whole repository, they also get incre-
mented when a commit in a branch occures. This
means that the last revision number, does not rep-
resent the amount of changesets in a specific branch,
but the whole repository.

“When a Subversion user talks about re-
vision 5 of foo.c, they really mean foo.c as
it appears in revision 5.” 2

GIT uses sha1 hashcodes as identifiers for the revi-
sions of changesets and individual files. Each change-
set in Git has, similar to SVN, an unique identifier.

7http://www.thathost.com/wincvs-howto/cvsdoc/
cvs_4.html

2http://svnbook.red-bean.com/en/1.0/ch02s03.
html#svn-ch-2-dia-7

13

http://www.thathost.com/wincvs-howto/cvsdoc/cvs_4.html
http://www.thathost.com/wincvs-howto/cvsdoc/cvs_4.html
http://svnbook.red-bean.com/en/1.0/ch02s03.html#svn-ch-2-dia-7
http://svnbook.red-bean.com/en/1.0/ch02s03.html#svn-ch-2-dia-7

The difference is that Git uses hashcodes that de-
scribe a particular commit, which makes it impossi-
ble to determine if some revision is older then another
one.

The individual resources in a changeset have their
own sha1 hashcodes, which, in contrast to SVN, have
no relation to the revision number of the changeset
they are in to. Git computes the sha1 hashcode of
the content (blob) of a file and uses it as the revision
identifier of that version of the file.

“A blob generally stores the contents of
a file.

The “commit” object links a physical
state of a tree with a description of how we
got there and why.

” Git Book 2

3.2.3 Tags, Branches and Merges

All the three SCM systems have support for tags,
branches and merging between the branches. There
are however some differences between the SCM sys-
tems, in the way tags/branches are represented and
the amount of information kept about the merges.

2http://book.git-SCM.com/1_the_git_object_
model.html

CVS has two kinds of tags: branches and “release
tags”. Each revision of a file is associated with zero or
more tags and multiple files with different revisions
can have the same tags associated to them. This
makes it possible to “save” the state of the repository,
current versions of all the current files, and refer to
it with the tag.

With a branch tag its possible to commit changes,
while this commits will still be “tagged” with the
name of the branch. This makes it possible to have
multiple versions of a file, in the same branch.

While it is possible to get branching information per
file in the history of a project, CVS does not keep
track of the merges between the branches.

SVN has an unique view on branches and tags, dif-
ferent from both CVS and GIT. To create a new
branch or a tag (in SVN there is no difference be-
tween those two concepts), one has to perform a copy
operation. Since SVN tracks the copy and move ac-
tions, the copied branch or tag can be compared and
merged with the other branch, on the original loca-
tion. It is also very easy to determine which branch a
commit has affected, since the pathname of the files
changed contain the branchname.

Since SVN 1.5, it is possible to track the merges per-
formed on the repository. This means that MSR
tools can, unlike in CVS and like Git, know when
and which revisions where merged.

Git has a very similar, to CVS, notion of tags
and branches. There are however some differences,
mainly due to the implementation of branches, that
are important to know when it comes to reposi-
tory mining. Figure 3 shows a scenario where two
branches are used in parallel and are merged two
times. Each command executed on the git repository
is shown in Table 2, in the reverse order. The first two
columns show which commands are executed, while
the rest of the columns show the state of the reposi-
tory after the command is executed. Since Git does
not keep track of branches a commit was made one,
it’s not always possible to determine on which branch

14

http://book.git-SCM.com/1_the_git_object_model.html
http://book.git-SCM.com/1_the_git_object_model.html

Time Action Commit Parent 1 Parent 2 Branch

9 checkout master, merge feature: Fast-forward h g master
8 commit h h g feature

7 checkout feature, commit (merge): g g e f h → feature
h → master

6 checkout master, commit f f d g → master
5 checkout feature, commit e e b g → feature
4 commit (merge): d d c b f → master

3 checkout master, commit c c a d → master
2 checkout feature, commit b b a e → feature
1 checkout master, commit a a c → master

b → feature

Table 2: Git commits separated after the merges. Branch detection based on the parent relation (→)

Changeset revision Resource revision Tags Branches Merges

CVS NA Numbers (e.g. 1.4) Revision based Revision based Not traceable

SVN Natural numbers (e.g. 13) Same as the Changeset Path based Path based Traceable

Git Sha1 hash of the changeset Sha1 hash of the content Revision based Revision based Good traceable

Table 3: Differences between the implementation of the common concepts by the SCM systems

Figure 3: Git commits [2]

a commit was made on [2]. More on this in the fol-
lowing subsections.

Merges in Git are represented as commits with two
or more parents. This makes it very easy to track
which commits (the parents) and what resources
(conflict resolutions) are merged.

Branch line detection in Git is much harder then
in CVS. Git, unlike CVS, does not store the branch
information as part of the history of a file and it’s
not always possible to tell which branch a commit
was made on. For example, a merge of two com-
mits will be described by the “git log” as an “com-
mit sha” with two “parent sha”’s. The order of this
parent sha’s depend on the order of the arguments
provided to the “git merge” command. This makes
it hard to follow the history of a branch back (from
the HEAD) to the ancestor commits to know which
commit is made on which branch. Information about
the order of the parents is not necessary lost, since
Git does keep a private “log” file of the interactions

15

with the repository. However, this file can (acciden-
tally) be cleaned by running the “gc –aggresive” com-
mand. Also, when initializing a git repository, often
by cloning from some other repository, the content of
this (private log) file will not get copied.

Fast-forward merges (t9 in Table 2) can hap-
pen when only the second branch (with which the
merge will happen) contains changes (and the cur-
rent branch has none). In that case, Git redirects the
HEAD tag of the current branch, to the HEAD of the
second branch. In the example git makes look like the
commit “h” (and it’s parent “g”) where directly made
on the master branch commit “f”, while before the
merge the HEAD of the master branch was “f” and
“g” was never committed on the master branch. It
is therefore important to keep in mind that this kind
of merges don’t create a “merge” commit and can be
a threat to the validity of a research which uses that
information.

Pulling commits from remote repositories can be
very hard to track. It is for example hard to tell if a
branch pulled from repository A is originated in A or
is itself pulled from a repository B. Analysis that use
information about pulls between repositories should
be performed very carefully, because of this issue.

3.3 Conclusion

In conclusion, to answer RQ1.2, the three SCM sys-
tems investigated have the following similarities:

• Revision identifiers are used to identify the
unique resources stored on the SCM system

• Tags and Branches are supported

• Committer information (e.g. name, date) per
revision is saved

• Changesets, if available, contain the set of
changes in a commit

• RevisionChange represents the kind of a change
performed in a particular revision to a single re-
source

• Resources are physycal files (section 2.1.3) or
folders archived on the SCM system. Please note
that SVN is the only SCM system, from the three
examined, that handles folders as a resource.

Differences between the SCM systems are shown in
Table 3, where the following concepts are compared:

• Changeset revision: how the changesets are iden-
tified

• Resource revision: how a version of a resource is
identified

• Tags: how the tags are supported

• Branches: how the branches are supported

• Merges: if the merges are traceable and how
much information is available (e.g. which
changesets or files are merged)

While in the discussion above all the important com-
monalities and differences between the repository
models are mentioned, Figure 4 shows only the kinds
of meta-data provided by the SCM systems (and not
the specific representation differences). For exam-
ple, while the three SCM system use different kind
of revision identifiers (e.g. numbers, sha1 hash), Fig-
ure 4 just shows “Revision” as a meta-data which
is provided by all the SCM systems. The same holds
true for the “branches” and “tags”: those information
can be obtained from all the three SCM systems, but
they all differ from each other in the way “branches”
and “tags” are supported (e.g. naming conventions
in SVN vs native support in CVS).

In addition to the differences mentioned in this sec-
tion, various differences in the semantics of the repos-
itory models might exist. See evaluation (section 5)
for more info.

16

Git

CVS

SVN

Folders

Resource�Hash

Legend

RevisionChange

Metadata

SCM�System
Name

Name

Kind

Committer
E-mail

Author
Name�&�E-mail�&�Date

Merge
Files

Branches

ChangeSets

Copied

Deleted

Modified

Added

Resource

Lines
Committer

Name

Commit
Message�&�Date

WC�Resource

Revision

Merge
Parents

Tags

Renamed

Replaced

Revision Files

Figure 4: Venn diagram of the kinds of meta-data
provided by the SCM systems

4 Rminer

“Rascal is a domain-specific language
that takes away most of this boilerplate by
integrating source code analysis and manip-
ulation at the conceptual, syntactic, seman-
tic and technical level.”[8]

As stated above, Rascal can be used to analyse source
code. Integrating the Rascal environment with SCM
systems would make it possible to perform source
code analysis on multiple versions of the source code
and analyse the differences.

The rich set of datastructures and collection manip-
ulation mechanisms (e.g. list comprehension, visi-
tors) in Rascal should make it possible to write com-
pact MSR scripts and perform fine-grained syntactic
source code analysis as well.

Rminer is designed in Rascal and is the main tool
this research is about. Before performing a feasibil-
ity study, we will discuss the design of the tool and
answer RQ1.3 mentioned in Section 1.2.

4.1 Requirements

Many software evolution research start with the ex-
traction of facts from the software repositories, be-
fore doing some kind of analysis. Once the facts are
extracted, various analysis (e.g. metrics) can be com-
puted, sometimes without the need to communicate
with the software repositories. In this section the re-
quirements are described that are aimed at this pro-
cess of MSR projects.

By studying the MSR tools (related work) (section
2.2) and various SCM systems (section 3), the follow-
ing set of requirements are determined that should be
met by the meta model and the tool supporting it.

4.1.1 Support for multiple SCM systems

The tool should support different Software Configu-
ration Management systems in a generic way. That
means that a MSR script can be written, that works
regardless of the SCM system being used.

Motivation for this requirement is the main moti-
vation of this project and is described in section 1.1.

4.1.2 Partially history

It is not always necessary to process the whole re-
vision history (e.g. we are only interested in the
changes performed since last year) of a software
project. It can also be the case that only some direc-
tories in the repository need to be mined. For those
cases, it should be possible to configure the tool and
specify history limitation.

17

4.1.3 Common Meta-data

The meta-data about the revisions of resources stored
on the SCM are an important source of data for “Soft-
ware Properties” [6, page 85] research projects. The
following meta-data must be supported:

• Committer information

• Commit date

• Commit message

• List of changed resources (changeset) and the
kind of the change (modified, added, removed,
etc)

Motivation for this requirement is the amount of
MSR projects using meta-data, listed in [6, table II]

4.1.4 SCM specific Meta-data

The meta-data that is not listed in the previous re-
quirement, but are available by the SCM system be-
ing used, must be accessible too. The following SCM
system specific meta-data should be available in the
integrated meta model.

• Tags/branches information per revision
(Git/CVS)

• Merging information (Git/SVN)

• Copy/move/rename origin filename + revision
(Git/SVN)

• Copy/move/rename origin percentage (Git) Git

• Author information (Git)

• File and changeset sha1 hashes (Git)

• Number of lines added/removed at each revision
(Git/CVS)

Motivation for this requirement is to support as
much MSR research as possible. Even though scripts
using this feature would not work when used on
repository data from SCM systems not providing the
used meta-data, it can still be useful to use it on the
SCM systems that do provide the meta-data. Also, it
is not inconceivable that the SCM systems can com-
pensate the lack of some meta-data with the presence
of one ore more other meta-data and get the same re-
sults.

4.1.5 File based history access

When performing an analysis on a particular file, it
should be possible to have access to the meta infor-
mation about the previous versions of the file.

Motivation for this requirement is to provide more
flexibility in the kinds of “Software Properties” [6,
table II] research projects that is supported.

4.1.6 Reuse

It should be possible to exchange the meta informa-
tion extracted and use it for further analysis without
having access to the SCM system used to extract the
data (assuming no file contents are needed).

Once the facts are extracted, it should be possi-
ble to exchange them with other research so they
don’t have to extract the facts themself. This can be
very handy when “closed source” software reposito-
ries aren’t publicly accessible, but the copyright own-
ers do want to provide (anonymized) facts extracted
from the software repositories for analysis purposes.

4.1.7 File management

Checkout It should be possible to checkout a state
of the repository based on the “Revision”, “Commit
date” or a “Tag” to the working copy.

18

List checkout files Support for listing of all the
files (and their revision information, if available 8) in
the current working copy;

4.2 Design

Rminer facilitates MSR research by providing an
API consisted of an integrated repository model and
a way to communicate with the SCM systems. By
writing Rascal scripts that utilize the Rminer API,
we can do MSR research.

MSR Script

Calc Metadata Metrics Calc AST Metrics Produce Reports

1

4

5

RMiner

Get Metadata Checkout To WC List WC Resources

SCM Repository Working Copy

2

3 7

6

9

8

11

10

Starting point

Legend

Flow
order

Description Method Description Rascal Module

Description Resource

Figure 5: High-level control flow architecture of a
MSR script using Rminer. The numbers on the ar-
rows indicate the processing order.

Figure 5 shows the high level control flow of a MSR
script using Rminer. First, metrics are calculated
(step 4) using the meta-data from the repository (step
3). Steps 5 to 10 are used to fetch the actual resources
from the repository and calculate metrics based on
the content of this resources.

Figure 6 shows the various components of Rminer
and their size in lines of code. Please note that the
Java component of Rminer doesn’t show all source
files, due to lack of space. Scm.rsc is the unified
repository model, while CVS.rsc, SVN.rsc and Git.rsc

8revision information of the files in the working copy is not
available in GIT

RMiner

Scm.rsc

Get Metadata Checkout To WC

List WC Resources

125 LOC

3615
LOC

SCM

CVS

CVS.rsc

SVN

SVN.rsc

Git

Git.rsc

Legend

Rascal Source Code

Java Source Code

Extends

Implements

Uses

Component

Algebraic
Data Types

Description Method Definition

Description Method
Implementation

Java Library

JavaGit

NetBeans CVS Client

295329
LOC

Java Libraries

SVNKit

Get Metadata Checkout To WC

List WC ResourcesScm.java

ScmTypes.java

Lines Of Code*LOC

Figure 6: Rminer components. *LOC is the amount
of lines (including empty and documentation) of the
files with the following extension: .rsc and .java

are extensions on the model and contain repository
specific meta-data. Algebraic Data Types (ADT) in
Rascal are used to define the repository data model
(see for more section 4.2.2).

4.2.1 Raw facts

By providing the raw evolution data extracted from
the SCM systems, Rminer tries to be as broad as
possible regarding the kinds of MSR research sup-
ported (section 4.1.4). This means that Rminer will
not modify or extend the evolution data, to unify the
repository model.

For example: since CVS does not support atomic
changesets, we could try to recover the changesets
and provide the extracted data as a changeset to the
user. However, in this process we might lose data
that is important to the MSR research (in the exam-

19

ple the datetimes of the individual commits will get
lost, since a changeset has one common datetime).
Instead, Rminer will just return the data from the
CVS repository in a structure that does not require
any modification to the original data.

4.2.2 Integrated model

Rminer tries to unify the commonalities between the
various repository models, so the same data should be
accessed the same way, regardless of the SCM system
being mined. For example:

SVN and Git both track the changesets that are
merged. While both SCM systems contain the re-
vision’s of the merged changesets (parents), Git ad-
ditionally keeps track of the resources being merged.
Below the implementation of this variation point with
Rascal ADT’s.:

1 data MergeDetail = mergeParent(Revision
parent);

SVN.rsc module defines the data type called
“MergeDetail”, which can be constructed with a con-
structor called “mergeParent”. This constructor re-
quires one field, “parent” of type “Revision”, thus a
MergeDetail object created with this constructor will
only contain the parent information.

1 data MergeDetail = mergeResources(Revision
parent, rel[Resource resource,
RevisionChange change] resources);

Git.rsc however, defines the same data type with a
constructor that has an extra field “resources”, in
addition to the “parent” field.

Defining the same data type multiple times, as we had
done above, results in a merge of the constructors, so
that the different constructors will actually construct
an object of the same type:

1 data MergeDetail = mergeParent(Revision
parent) | mergeResources(Revision parent,
rel[Resource resource, RevisionChange
change] resources);

Having variation points in the data model, allows us
to write MSR scripts that use the fixed field regard-
less of the existence of the variable fields. So, in our
example, the merge information provided by the two
SCM systems are not the same, but if a researcher
is only interested in the part of the merge informa-
tion that is supported by both system (the parent
field), then an “SVN/Git” independent script can be
written.

1 MergeDetail merge =;
2 print(merge.parent);

The “....” above can be replaced with a constructor
call “mergeParent(..)” or “mergeResources(.., ..)”.

4.2.3 Abstraction

Rminer abstracts the differences between the repos-
itory models at the levels that are common between
the models. This way, MSR research scripts, that
only deal with the data at a certain abstraction level,
can be more repository independent. For example:

Revision information is accessible through multiple
abstraction layers.

1 data Revision = revision(RevisionId id) |
revision(RevisionId id, Revision parent);

1 data RevisionId = number(str number); //CVS
2 data RevisionId = id(int id); //SVN
3 data RevisionId = hash(Sha sha); //Git

1 data Sha = blob(str sha) | commit(str sha);

Depending on the needs of the MSR research, scripts
can use the appropriate level of abstraction. When
the Revision data type is used, the script is repository
independent, while checking on the actual implemen-
tation of the RevisionId (e.g. number or hash) would
make the script less repository independent.

Please note that the three definitions of “RevisionId”
type above are actually divided into multiple Ras-
cal modules (listings 1, 2, 3 and 4). This way, each
module makes the differences with the unified model,

20

which defines the commonalities between the various
repository models, explicit.

4.2.4 Annotations

In addition to the ADT constructors, annotations can
be used to add more variation points to the data
types. Below an example of an annotation:

1 data Revision = revision(RevisionId id) |
revision(RevisionId id, Revision parent);

2 anno list[MergeDetail] Revision@mergeDetails;

The annotation called “mergeDetails” adds an extra
variation point to the Revision data structure. The
same behaviour could have been achieved by adding a
new constructor with an extra field “mergeDetails” of
type “list[MergeDetail]”. However, since we already
have two constructors this would mean that two ad-
ditional constructors are needed (each with the old
fields an the new “mergeDetails” field).

The advantage of an annotation is that it affects all
the constructors of the type being annotated. So,
regardless of the constructor used to create a Revision
object we can annotate it with mergedetails.

4.3 Recovery

As stated earlier, Rminer’s datamodel represents the
unmodified data from the various repositories. How-
ever, MSR research might require data that is not
directly provided by the SCM system used. So, in
order to do such MSR research we need to recover
the missing information.

Changeset recovery is a good example where various
algorithms[12] can be used to recover the changesets
in CVS.

4.4 Enhancements

Besides the data recovery, many enhancements can
be made on the raw data extracted from the repos-
itory. This enhancements can vary from data/noise

cleaning to more detailed data correction. Data en-
hancements are important part of MSR research, be-
cause omitting them can result in erroneous results.

Data correction can include the detection of “re-
names” from the “copies”. SVN tracks the copy op-
erations on files, but does not distinguish between
renames and actual copies where the old file is re-
moved. In order to do a correct MSR research where
rename operations are tracked, one has to enhance
the data and distinguish “renames” from “copies”.

Data/noise cleaning is another enhancement point
which can be used to detect and remove large transac-
tions, which often are result of infrastructure changes,
and merge changesets. Merge changesets are often ir-
relevant for MSR research, because the changes they
contain are already processed and counting those
changes twice can influence the research results.

SCM Repository Utility Scripts

Data Recovery

Data Enhancements

MSR Script

Figure 7: Data recovery and enhancement. Arrow
indicates the flow of the data while the blue boxes
are Rascal scripts.

4.5 Research question

RQ1.3 How can the various repository models be
integrated into one model, where the commonalities
between the individual models are shared and the
differences are preserved.

The answer to this question is provided by the
Rminer API in the code listings 1, 2, 3 and 4. Most
of the data types of the integrated model can di-
rectly be mapped back to the venn diagram (figure 4
in Section 3.3). Therefore, the model is an explicit
documentation of Rminer and the repository mod-
els unified: it documents which types of meta-data is
supported and what the differences are between the
SCM systems.

21

Listing 1: Rminer unified model (Scm.rsc)

1 module experiments::scm::Scm
2
3 data Project = project(Repository configuration, list[ChangeSet] changesets);
4
5 data Repository;
6 data Connection = fs(str url);
7 data LogOption = startUnit(CheckoutUnit unit) | endUnit(CheckoutUnit unit);
8
9 data ChangeSet;
10 data RevisionChange = added(Revision revision) | modified(Revision revision) | removed(Revision

revision);
11 data Revision = revision(RevisionId id) | revision(RevisionId id, Revision parent);
12 data RevisionId;
13 data Info = none(datetime date) | author(datetime date, str name) | message(datetime date, str

message) | message(datetime date, str name, str message);
14 data Resource = file(loc id) | folder(loc id) | folder(loc id, set[Resource] resources);
15 data WcResource;
16
17 data CheckoutUnit;
18 data Tag = label(str name) | branch(str name);
19
20 anno set[Tag] Revision@tags;
21
22 @javaClass{org.rascalmpl.library.experiments.scm.Scm}
23 public list[ChangeSet] java getChangesets(Repository repository);
24 @javaClass{org.rascalmpl.library.experiments.scm.Scm}
25 public void java getChangesets(Repository repository, ChangeSet (ChangeSet) callBack);
26 @javaClass{org.rascalmpl.library.experiments.scm.Scm}
27 public void java checkoutResources(CheckoutUnit unit, Repository repository);
28 @javaClass{org.rascalmpl.library.experiments.scm.Scm}
29 public set[WcResource] java getResources(Repository repository);
30 @javaClass{org.rascalmpl.library.experiments.scm.Scm}
31 public map[Resource, int] java linesCount(set[Resource] files);
32 @javaClass{org.rascalmpl.library.experiments.scm.Scm}
33 public set[Resource] java buildResourceTree(set[Resource] files);

Listing 2: Rminer CVS extension (Cvs.rsc)

1 module experiments::scm::cvs::Cvs
2 import experiments::scm::Scm;
3
4 data Repository = cvs(Connection conn, str mod, loc workspace, set[LogOption] options);
5 data Connection = pserver(str url, str repname, str host, str username, str password);
6
7 data ChangeSet = resource(Resource resource, rel[RevisionChange change, Info committer]

revisions, rel[Revision revision, Tag symname] revTags);
8 data RevisionId = number(str number);
9
10 data WcResource = wcResourceRevisionInfo(Resource resource, Revision revision, Info info);
11 data CheckoutUnit = cunit(datetime date);
12
13 anno loc Connection@logFile;
14 anno int RevisionChange@linesAdded;
15 anno int RevisionChange@linesRemoved;

22

Listing 3: Rminer SVN extension (Svn.rsc)

1 module experiments::scm::svn::Svn
2 import experiments::scm::Scm;
3
4 data Repository = svn(Connection conn, str mod, loc workspace, set[LogOption] options);
5 data Connection = ssh(str url, str username, str password) | ssh(str url, str username, str

password, loc privateKey);
6 data LogOption = mergeDetails() | fileDetails();
7
8 data ChangeSet = changeset(Revision revision, rel[Resource resource, RevisionChange change]

resources, Info committer);
9 data RevisionChange = added(Revision revision, Resource origin) | replaced(Revision revision) |

replaced(Revision revision, Resource origin);
10 data RevisionId = id(int id);
11
12 data MergeDetail = mergeParent(Revision parent);
13 data WcResource = wcResourceRevisionInfo(Resource resource, Revision revision, Info info);
14 data CheckoutUnit = cunit(datetime date) | cunit(Revision revision);
15
16 anno list[MergeDetail] Revision@mergeDetails;

Listing 4: Rminer Git extension (Git.rsc)

1 module experiments::scm::git::Git
2 import experiments::scm::Scm;
3
4 data Repository = git(Connection conn, str mod, set[LogOption] options);
5 data LogOption = mergeDetails() | fileDetails() | symdiff(CheckoutUnit from, CheckoutUnit to) |

onlyMerges() | noMerges() | reverse() | allBranches();
6
7 data ChangeSet = changeset(Revision revision, rel[Resource resource, RevisionChange change]

resources, Info committer);
8 data RevisionChange = renamed(Revision revision, Resource origin) | copied(Revision revision,

Resource origin);
9 data RevisionId = hash(Sha sha);
10 data Sha = blob(str sha) | commit(str sha);
11
12 data MergeDetail = mergeResources(Revision parent, rel[Resource resource, RevisionChange change

] resources);
13 data WcResource = wcResource(Resource resource);
14 data CheckoutUnit = cunit(Revision revision) | cunit(Tag symname);
15
16 anno loc Connection@logFile;
17 anno Info ChangeSet@author;
18 anno int RevisionChange@originPercent;
19 anno int RevisionChange@linesAdded;
20 anno int RevisionChange@linesRemoved;
21 anno list[MergeDetail] Revision@mergeDetails;

23

5 Case study

The goal of the case study is to evaluate the advan-
tages and disadvantages of Rminer. By performing a
MSR research, we can actually use Rminer to mine
repositories, discuss the results and answer RQ1.4:
Is the integrated repository model for Rascal a good
solution for repository independent MSR research?

Another purpose of the case study is to (par-
tially) validate the design and the implementation of
Rminer. By doing a case study, we can check if the
model is complete, at least for the particular MSR
research we are performing.

More important, with the case study we can check if
the semantics of the data modelled in the integrated
repository model are well understood. The various
SCM systems could contain data and functionality
that, at first sight, might seem similar and are there-
fore unified in Rminer. However, subtle differences
exist, even for data fields in the repository models
that are called the same and seem to contain the same
data according to the documentation.

5.1 Method

Figure 8 contains the method outline of the case
study. “Linux Kernel Development” [9] is a reposi-
tory mining research which calculates statistics about
the development of the Linux kernel. We will write
MSR scripts with Rminer to calculate those statis-
tics. Then we can compare the results of the re-
search and the implementations of the MSR scripts.
By comparing the results we can validate Rminer
as described earlier and the implementations of the
MSR scripts will be compared based on the criteria
described in Section 5.3.

5.2 Statistics

Four kinds of information will be mined from the
Linux kernel repository. Each category contains one
or more questions that result in statistics about the

SCM Repository

RMinerGitdm

Statistics Statistics

Comparison

Legend

Flow Description Output Data

Description ProcessDescription Input data

Figure 8: Case Study Method Outline

releases of the Linux kernel between versions 2.6.12
and 2.6.21. Below are those statistics:

1. Frequency of release

What are the time frames between the releases?
What is the average time between releases?

2. Rate of Change

What are the amount of changesets that have
resulted to the particular releases. What is the
average amount of changesets applied per hour?

3. Kernel Source Size

What is the total amount of files in a release and
how many lines of “code” is that? How many
new lines are added per hour per release? Note
that we count every line of every file in a release,
since thats what the original research has done
and as the author says “someone creates those
files, and are worthy of being mentioned”.

24

4. Where the Change is Happening

The Linux kernel source tree can be divided into
multiple categories: “core”, “drivers”, “archi-
tecture”,“network”, “filesystems” and “miscella-
neous”. For each of this categories, the following
questions have to be answerd:

• What is the amount of files and which per-
centage is that of the total amount of files?

• What is the amount of lines of code and
which percentage is that of the the total
lines of code?

Please note that in the original research[9] the
author answers these questions only for the re-
lease version 2.6.21, so only the results of that
release can be compared.

5. Who is Doing the Work and Who is Sponsoring
it?

Since many developers have contributed code to
the linux kernel, the following information will
be mined:

• Which individual Kernel developers are in
the top of contributors and how much have
they contributed? What percentage is this
amount of the total?

• Which companies are in the top of contrib-
utors and how much have they contributed?
What percentage is this amount of the to-
tal?

Many companies are supporting the Linux
kernel development, by having employees
working on it. It is therefore interesting to
know how many changesets a company has
contributed and which percentage that is of
the total amount of changesets.

Please do note that the original research had included
the merge commits in the calculation of all the statis-
tics except the “Who is doing the work” and “Who
is sponsoring it”. To be able to compare our results,
we will handle the merges the same way.

5.3 Evaluation

We will discuss the pros and cons of Rminer based on
the following In order to determine the feasibility of
Rminer, the following evaluations will be performed.

5.3.1 Script reusability

The main goal of Rminer is to provide an environ-
ment where MSR scripts can be written which take
as little as possible account with the repository that
will be mined. To determine if this goal has been
met, we will evaluate the reusability of the Rminer
scripts.

The reusability is determined by counting all the de-
cision points in the code (e.g. if statements) that
are used to distinguish between the repositories, the
input data is extracted from. In other words, if dif-
ferent code fragments are executed depending on the
repository used, then the reusability of the script is
lower then when the same code is executed all the
time.

5.3.2 Data reusability

Data reusability is determined by whether or not the
data extracted from the repositories and stored in the
Rminer model, can be reused for different purposes
(e.g. calculate different statistics).

5.3.3 Correctness

The statistics calculated with Rminer will be com-
pared with the original statistics. In case of different
statistics, the differences should be explained.

5.3.4 Speed

It is interesting to know how Rminer performs and
how it compares with the tool used by the original
research. Therefore, we will measure the amount
of time the scripts need to calculate the statistics.

25

Knowing the performance of Rminer will help to
answer the RQ1.4, where the question is being asked
of whether or not Rminer is a good solution to the
problem.

5.4 Results

Below the statistics calculated during the case study
are presented. Discussion of the results and the MSR
scripts can be found in Section 6.

For each statistic calculated the following information
will be provided:

• method call, showing the initialization data re-
quired (see section 5.4.1)

• line number of the method called, in the code
Listing 21 in Appendix B.

• calculated statistics in a table

• differences, if any, between the calculated statis-
tics and Gitdm’s results

5.4.1 Initialization

Before the actual statistics are calculated, Rminer
fetches the evolution history from the repository as
changesets. This changesets are used to initialize a
set of mappings, which can be re-used during the cal-
culation of multiple statistics.

1 public alias InitVars = tuple[list[Tag]
releases, Repository repo, rel[str cat,
str dir] catDirs, list[ChangeSet]
changesets];

2 public alias MappingVars = tuple[rel[
RevisionId child, RevisionId parent]
childParents,

3 map[Tag version, ChangeSet changeset]
tagChangeset,

4 map[RevisionId revId, ChangeSet cs]
revChangeset,

5 rel[Tag version, RevisionId revId]
versionRevisions,

6 rel[Tag version, ChangeSet cs]
versionNoMergesChangesets];

7 InitVars initVars =

8 MappingVars maps =

Listing 5: Global variables

Listing 5 shows the data that will be initialized, and
passed to the statistics calculation scripts. This way,
the data mappings that can be reused, will not to
be recalculated for each statistics. More on this in
Section 6.1.1.

5.4.2 Frequency of release

1 statsOne(maps.tagChangeset, initVars.releases
);

Listing 6: Calculating the frequency of release

The statistics calculated with Listing 6 are shown in
Table 4. Implementation of the “statsOne” method
can be found at line 52 of Listing 21.

Please note that the development days of all versions
are higher, with one day, in the original research then
presented in this thesis. Since we don’t have the exact
script used to calculate those numbers, we can only
speculate that the difference lies in the calculation of
differences between the start and end dates (inclusion
of the end date or not). Furthermore, the amount of
days of development of v2.6.19 and v2.6.20 calculated
by Gitdm are 72 and 68 respectivaly. This means
that, in addition to the normale one day offset, our
statistics miss one day. The reason for this is that
the original research does not count the hours of the
release dates and the Rminer does. Therefore, those
two versions miss a couple of hours and the amount
of days are round down by the Rminer script.

5.4.3 Rate of Change

1 statsTwo(versionRevisions, releases);

Listing 7: Calculating the Rate of Change

The statistics calculated with Listing 7 are shown
in Table 5. “statsTwo” can be found at line 65 of
Listing 21 .

26

Kernel Version Days of Development
v2.6.13 72
v2.6.14 60
v2.6.15 67
v2.6.16 76
v2.6.17 89
v2.6.18 94
v2.6.19 70
v2.6.20 66
v2.6.21 80

Table 4: Frequency of release with an average of 2
months and 2 weeks. Minor differences with the orig-
inal results.

Kernel Version Changes per Release
v2.6.13 4174
v2.6.14 3931
v2.6.15 5410
v2.6.16 5734
v2.6.17 6113
v2.6.18 6791
v2.6.19 7073
v2.6.20 4983
v2.6.21 5349

Table 5: Amount of changesets per release with an
average of 3 changesets per hour. Reproducing the
original results.

5.4.4 Kernel Source Size

1 statsThree(repo, releases);

Listing 8: Calculating the Kernel Source Size

The statistics calculated with Listing 8 are shown in
Table 6. “statsThree” can be found at line 73 of
Listing 21 .

Please note that very minor differences in the amount
of files and lines are encountered during the compar-
ison of the results with the original research. For
example: in the original paper v2.6.12 has 17361 files
and 6777860 lines, while we have encountered 17360
files and 6777945 lines. Different tools are used to

Kernel Version Files Lines
v2.6.12 17360 6777945
v2.6.13 18090 6988886
v2.6.14 18433 7143289
v2.6.15 18810 7290126
v2.6.16 19250 7480116
v2.6.17 19552 7588067
v2.6.18 20207 7752891
v2.6.19 20935 7976266
v2.6.20 21279 8102576
v2.6.21 21612 8246463

Table 6: Kernel source size with an average of 91 lines
added per hour. Minor differences with the original
results.

calculate the amount of files and lines (of eventually
binary files), which explains the differences.

5.4.5 Where the Change is Happening

1 statsFour(repo,getResources(repo).resources);

Listing 9: Calculating Where the Change is
Happening

The statistics calculated with Listing 9 are shown in
Table 7 and 8 . “statsFour” can be found at line 100
of Listing 21.

The only difference of Table 7 with the original re-
search is the amount of files in the category “driver”.
The original research has counted 6537 files, while
Rminer script counts 6536 files.

Category Files % of kernel
core 1371 6%
drivers 6536 30%
architecture 10235 47%
network 1095 5%
filesystems 1299 6%
miscellaneous 1068 4%

Table 7: Amount of files at each category of v2.6.21

27

Category Lines of Code % of kernel
core 330637 4%
drivers 4304860 52%
architecture 2127155 25%
network 506966 6%
filesystems 702914 8%
miscellaneous 263936 3%

Table 8: Amount of lines at each category of v2.6.21
with very minor differences with the original results

5.4.6 Who is doing the work and Who is
sponsoring it

1 statsFive(versionNoMergesChangesets);

Listing 10: Calculating who is doing the work and
Who is sponsoring it

The statistics calculated with Listing 10 are shown
in Table 9 and 10. “statsFive” can be found at line
160 of Listing 21.

Name Number of Changes %
Ralf Baechle 134 2%
Eric W. Biederman 111 2%
Adrian Bunk 83 1%
Al Viro 79 1%
Andrew Morton 72 1%
Takashi Iwai 67 1%
Bob Moore 66 1%
Jeff Dike 64 1%
David Brownell 59 1%
David S. Miller 59 1%
Robert P. J. Day 58 1%

Table 9: Who is doing the work in v2.6.21, reproduc-
ing the original results

6 Discussion

In order to calculate the statistics presented in previ-
ous section, the meta-data stored on the repositories

Company Number of Changes %
Unknown 2761 55%
Novell 275 5%
IBM 271 5%
Intel 237 4%
LinuxFoundation 155 3%
RedHat 141 2%
Oracle 106 2%
SGI 69 1%
MontaVista 59 1%
linutronix 59 1%
Toshiba 39 0%

Table 10: Who is sponsoring the work in v2.6.21,
with very minor differences with the original results

are needed. This meta-data can be obtained from the
repository in a ”textual” format and has to bo parsed
to be meaningful for any analysis. The parsing and
analysing processes of a MSR tool can be scheduled
with different approaches:

1. Parse the whole data beforehand in changesets
and then call the analysis script;

2. Parse the data as changesets and call back to the
analysis script after a changeset is parsed;

3. Parse the data the way that the analysis script
needs it. In this approach the analysis script
interferes with the parsing process and thus can
be more specific about how (and which) data has
to be parsed;

Each of the appraches described above has it’s pros
and cons on various aspects of the analysis scripts
and data extracted from the repositories. In the rest
of this section, Rminer will be compared with Gitdm
and Kenyon framework on the following aspects:

Script Reusability describes the reusability of the
scripts and the reusability of the data extracted from
the repositories. The reusability of the scripts are
determined by the fact that the scripts can be used
with different data (e.g. data from Git instead SVN).

28

Please do note that most of the statistics make use of
the ChangeSet as defined in Section 3.1. ChangeSets
extracted from CVS are a little different, since they
contain all the changes of a single resource, instead
of all the changes of a commit. So in order to use
the data from CVS, one has first to transform it into
“SVN/Git” ChangeSets, before actually trying to call
the scripts (see also Section 4.3). So, the reusability
of the script will not be affected by this point.

Data Reusability is evaluated by the extent to
which the data, created/used by the scripts, can (and
is) reused for different purposes (e.g. to calculate
different statistics).

Correctness of the Rminer script is very high,
since it results in mostly the same statistics as the
Gitdm tool, used by the original research. There are
however some differences in the way the two tools
calculate some of the statistics. For example, there
are some differences in the ”Frequence of releases”
statistics, where the original research does not count
the hours of the release dates and the Rascal script
does. The result is that some releases have one day
offset, because they miss a couple of hours and round
down the day count. But overall the statistics are the
same, thus we can conclude that the script does work
correctly.

Speed describes the execution time of the scripts.
While a fair speed comparison between the tools can-
not be done, it is interesting to know if Rminer is at
least usable. To that end we will measure the time
needed to calculate each statistic, by calculating the
difference between timestamps taken before and after
the execution of parts of the scripts.

6.1 Global design

Some of the tools examined have an initialization
phase, before the actual statistics are calculated. In
this section this first phase of the tools will be dis-
cussed. Furthermore, the global design of the tools

will be compared on the aspects described in the pre-
vious section, before the actual statistics calculation
codes are evaluated.

6.1.1 Rminer

Rminer script fetches, conform to the first schedul-
ing approach, all the changesets from the repository
(figure 9), between the release versions provided, be-
fore doing any kind of analysis. Below the pros and
cons of the Rminer script:

• Fetching a large amount of changesets can take
a lot of time, depending on the configuration
of Rminer and the amount of changesets and
resource changes. There are some configura-
tion points in Rminer, for example to exclude
“merge changesets” or include “detailed infor-
mation about the resources”, which can influence
the process of fetching the changesets.

• Since the changesets are parsed in a predefined
data structure, before any specific analysis is
done, it is possible to cache and reuse them at
a later time. This eliminates the need of com-
municating with (and parsing the output of) the
repository again.

Please do note that Rminer also supports the sec-
ond scheduling approach, where the script gets called
back when a changeset is processed, but since most of
the analysis in the case study require all the change-
sets to be present, there is no reason to be notified
before all the changesets are processed.

The initialization phase of the Rminer script can be
divided into two procedures, shown in Figure 9.

1 public void initChangesets() {
2 releases = [label("v2.6.<i>") | i <-

[12..21]];
3 repo = git(fs("/tmp/linux-2.6"), "", {

startUnit(cunit(releases[0])), endUnit(
cunit(releases[size(releases)-1]))});

4 changesets = getChangesets(repo);
5 }

Listing 11: Fetching the changesets in Rascal

29

Init Changeset fetches all the changesets, be-
tween the releases “2.6.12” and “2.6.21”, from the
repository (listing 11).

Init
ChangeSets

releases

changesets

Init
Mappings childParents

revChangeset

tagChangeset

versionRevisions

versionNoMergesChangesets

Repository

Legend

Procedure�call

Data�initialization

*

*Can be in different colors
to increase the visibility

DataName

Data�usage

Repository SCM�repository

Data�initialization
procedureName

Starting�point

Figure 9: Data initialization in Rminer

Init Mappings initializes various data mappings
to be used during the calculations of various statis-
tics. With dotted lines Figure 9 shows which data
mappings are used in the initialization phase of which
data field. For example: in order to initialize “ver-
sionNoMergesChangesets”, we need “tagChangeset”
and “changesets”, while we don’t need any data to
initialize “releases” since the list of release version’s
are provided by the user.

• childParents contains the relations between the
revision identifiers of the changesets and their
ancestors

• revChangeset contains the relations between the
revision identifiers and the changeset they iden-
tify

• tagChanget contains the relations between the
tag identifiers and the changeset they refer to

• versionRevisions contains the relations between
the version tags and the revision identifier of all
the changesets that have been committed since
the previous version

• versionNoMergesChangesets contains the rela-
tions between the version tags and the change-
set committed since since the previous version.
Please do note that this relation excludes the
changesets that represent a merge operation,
while the rest of the mappings do contain the
merge changesets. This is in line with the re-
quirements of the statistics that will be using
this data.

Rate Of
Change

Frequency
of Release

releases

changesets

childParents

revChangeset

tagChangeset

versionRevisions

versionNoMergesChangesets

Repository

Kernel
Source Size

Where the
Change is
Happening

Who is
doing

the work

Legend

Procedure�call

Data�initialization

*

*Can be in different colors
to increase the visibility

DataName

Data�usage

Repository SCM�repository

Statistic�calculation
procedure

Name

Starting�point

Figure 10: Data usage in Rminer when mining all
the versions of Linux.

Data usage by the statistics calculation scripts is
shown in Figure 10. The diagram shows which data is

30

used in the calculation of which statistics.We can see
that three of the seven data mappings are only (di-
rectly) used in the initialization phase. However, this
mappings where used to initialiaze the other map-
pings which are used by the calculation scripts.

Round trips to the repository are limited to: one
during the initialization phase plus the amount of
checkout commands made by the statistics calcula-
tion scripts where the actual resources stored on the
repository is needed.

6.1.2 Gitdm

Gitdm (Figure 11) uses the third scheduling ap-
proach, where the analysis scripts interefere with the
parsing process. Below the pros and cons of Gitdm:

• The analysis script is integrated with the pars-
ing process and decides how and which lines of
the repository log has to be parsed. This has as
consequence that the parsing process can take
much less time since only the data used by the
analysis script needs to be parsed.

• Gitdm keeps track of various data mappings,
so that data can be reused to calculate differ-
ent statistics. However, as can be seen in Fig-
ure 11, the data mappings are not used by more
then one statistic script. This is due the fact
that the other statistics are calculated with ad-
ditional ad-hoc bash or perl scripts, which have
their own temprory data structures and connect
to the repository on their own.

• Gitdm cannot be used with data from other
repositories then Git.

Round trips to the repository is required for each
release version of Linux we want to mine. Gitdm
requests the history of each release separatly from
the repository, which means that all the scripts need
to be executed all over again for each revision being
mined.

Snarf
ChangeSets

HackersByEmail

HackersByName

HackersById

ChangeSetCount

Repository

Legend

Procedure�call

Data�initialization

*

*Can be in different colors
to increase the visibility

DataName

Data�usage

Repository SCM�repository

ProcedureName

Starting�point

Patch

Rate Of
Change

Frequency
of Release

Kernel
Source Size

Where the
Change is
Happening

Who is
doing

the work

Rate Of
Change

Frequency
of Release

Kernel
Source Size

Where the
Change is
Happening

Who is
doing

the work

Figure 11: Data initialization and usage in Gitdm.
To be executed for each Linux release mined.

6.1.3 Kenyon

Kenyon programs use the second scheduling ap-
proach, where the analysis script is called each time
a changeset is parsed. Below the pros and cons of
Kenyon:

• Kenyon checks out the actual contents of the re-
visions, before the analysis script is being called
back. That means that in an initialization phase
it has little value to fetch all the changesets be-

31

forehand. Besides the fact that most of our
statistics do not use the actual contents of the
files, Kenyon would overwrite the checked out
files when fetching a new version. This means
that it would take unnnecessary much time to
gather all the changesets metainformation from
the repository in the initialization phase.

• The parsed meta-data is reusable because it is
stored in a predefined data structure and is not
altered by the analysis scripts.

6.2 Frequency of release

6.2.1 Rminer

Rminer scripts are able to calculate the time frame
between the releases by using the “Tag to Changeset”
mapping. This results in 7 lines procedure shown in
listing 12.

1 public int statsOne(map[Tag version,
ChangeSet cs] tagChangeset, list[Tag]
releases) {

2 int i = 0;
3 for (version <- releases, version in

tagChangeset) {
4 if (i > 0) {
5 prev = releases[i-1];
6 print("<version.name> - <daysDiff(

tagChangeset[prev].committer.date,
tagChangeset[version].committer.date)>"
);

7 }
8 i += 1;
9 }
10 return printStopTimer("statsOne");
11 }

Listing 12: Calculating release frequency in Rascal

Reusability of this script is very high, since no
decision points are used to distinguish based on the
repository used.

6.2.2 Gitdm

Gitdm does not provide any scripts that calculates
the time frame between releases. Judging on the de-
sign of Gitdm, a solution would be very much similar
to the Rascal solution. Gitdm stores necessary data
during the parsing process in various maps, and uses
it during the reporting process.

6.2.3 Kenyon

Kenyon makes it impossible to calculate the time
frame between releases becaus no tag information
is available. Furthermore, because of the Kenyon’s
callback mechanism (schedule approach 2) only one
changeset is loaded into the memory at a time. This
means that adding the tag information to the change-
sets will not be enough, unless the changesets can be
loaded from the database on basis of the tag informa-
tion (currently it is only possible to load a changeset
on basis of a datetime).

6.2.4 Rate of Change

An important aspect of this statistics is that calcu-
lating the “Changes per release” is not as simple as
counting all the changesets between two release dates.
It is for example possible for an changeset to be com-
mitted in-between the commit dates of release A and
B, but not being included in release B. In order to
know which changesets have contributed to a partic-
ular release, the (merge) parents of a release need to
be followed back to the initial commit and include all
the changesets that are being passed by.

Rascal scripts solve this problem by following the
history of a release through it’s changeset’s (merge)
parents back to the initial commit and including
all the changesets passed by. The“versionRevisions”
mapping is used to print the amount of changesets in
listing 14.

1 public int statsTwo(rel[Tag version,
RevisionId revision] versionRevisions,
list[Tag] releases) {

32

2 for (version <- releases, version in
versionRevisions.version) {

3 print("<version> - <size(versionRevisions
[version])>");

4 }
5 }

Listing 13: Calculating Rate of Change in Rascal

Reusability of this script is not so high, since
the getVersionRevisions(), used by the initialization
script to initialize “versionRevisions”, checks whether
the Git repository is used.

1 if (gitRepo) {
2 reachable = reach(childParents, {

tagChangeset[version].revision.id})
;

3 } else {
4 reachable = reach(childParents, {

tagChangeset[version].revision.id},
{tagChangeset[ver].revision.id|
ver <- tagChangeset.version, ver !=
version});

5 }
6 }

Listing 14: Getting the changesets resulted to each
version in Rascal

Gitdm solves this problem by commanding Git
to only provide the “textual log” of the change-
sets resulted to a particular release (e.g. git log
v2.6.20..v.2.6.21). This approach has the following
implications:

• This approach is the fastest one, since Git can
use it’s intern structure to efficiently select the
changesets to output. Since the “textual log”
will only contain the needed changesets, no un-
necessary parsing will happen.

• However, if many releases are analysed, this ap-
proach could be inefficient, since for each release
the whole history needs to be requested from Git
and parsed. Those release histories often con-
tain common changesets, which needlessly will
be reparsed.

Kenyon can’t solve this problem, due to i’ts lack of
knowledge of tags and support for Git. Even if Tags
and Git would be supported, it would be needlessy
slow to count the amount of changesets, because each
changeset needs to be checked out first.

6.2.5 Kernel Source Size

Rascal script counts the lines of code of the files
in Java with the LineNumberReader9 library. List-
ing 15 shows this process of: checking out the files,
gathering them into a “wcResources” and counting
the amount of lines.

1 public int statsThree(Repository repo, map[
Tag version, ChangeSet cs] tagChangeset,
list[Tag] releases) {

2 for (version <- releases) {
3 checkoutVersion(repo, tagChangeset,

version);
4 set[WcResource] wcResources =

getResources(repo);
5 set[Resource resource] resources = {r.

resource | r <- wcResources};
6 map[Resource file, int lines] fileLines =

linesCount(resources);
7 int totalLines = 0;
8 for(f <- fileLines.file) {
9 totalLines += fileLines[f];
10 }
11 print("<version.name> - <size(fileLines.

file)> - <totalLines>");
12 }
13 }

Listing 15: Calculating Kernel Size in Rascal

1 public void checkoutVersion(Repository repo,
map[Tag version, ChangeSet cs]
tagChangeset, Tag version) {

2 CheckoutUnit cu;
3 //little workaround for gits lack of

checkout by date
4 if (git(_,_,_) := repo) {
5 cu = cunit(tagChangeset[version].revision

);
6 } else {
7 cu = cunit(tagChangeset[version].

committer.date);
8 }

9http://download-llnw.oracle.com/javase/6/
docs/api/java/io/LineNumberReader.html

33

http://download-llnw.oracle.com/javase/6/docs/api/java/io/LineNumberReader.html
http://download-llnw.oracle.com/javase/6/docs/api/java/io/LineNumberReader.html

9 checkoutResources(cu, repo);
10 }

Listing 16: Checking out a version from the
repository

Gitdm Gitdm does not provide the script used to
calculate this statistics, but since the next statistic
is very similar to this one, one can imagine how the
author had calculated the amount of files and lines.
More on this in the next section.

Kenyon checks out the files of each revision, and
further calculation of the file statistics can be done
in Java similar to the Rascal approach.

6.2.6 Where the Change is Happening

Rascal scripts calculate the size of the linux source
tree categories, by dividing the source files into the
categories and performing the analysis on the re-
sources in each category. Listing 17 contains the
method that given a set of “Resources” and a rela-
tion of (top) directories to the appropriate category,
returns a relation of category and it’s Resources.

1 public rel[str cat, Resource file]
resourcesByCategory(set[Resource
resource] resources, rel[str dir, str
cat] dirCategories) {

2 rel[str cat, Resource resource]
catResources = {};

3 for (r <- resources) {
4 for(dir <- domain(dirCategories)) {
5 if (startsWith(r.id.path, dir)) {
6 for(cat <- dirCategories[dir]) {
7 catResources += {<cat, r>};
8 }
9 }
10 }
11 }
12 return catResources;
13 }

Listing 17: Categorizing Resources in Rascal

Gitdm calculates this statistics with the bash com-
mands “find”, “wc”, “cut” and “grep”. See 19 for the
full bash script used by Gitdm.

Kenyon provides the Java mining programs with
a “File” object referring to the root directory where
the files are checked out. This means that the pro-
grams are free to calculate the statistics the way they
wish. It is hoewever obvious to use the “File” and
“LineNumber” API, just like the Rascal library does
under the hood, to calculate the metrics. The file
categories can be specified with “FileFilters”.

6.2.7 Who is doing the work and Who is
sponsoring it

Rascal parses the author’s information with regu-
lar expressions, as shown in listing 18. E-mail aliasses
and misspelled names are detected with the “solve-
BrokenRelation” method.

1 public rel[Tag version, str action, str
devverName, str email, ChangeSet cs]
calcDevelopers(Tag version, str action,

2 rel[Info info, ChangeSet cs] devvers,
bool parseCsMessage) {

3 rel[Tag version, str action, str
devverName, str email, ChangeSet cs]
results = {};

4 for (Info info <- devvers.info) {
5 str msg = (parseCsMessage ? (info.

message ? "") : "") + " " + action
+ "-by: " + info.name;

6 for (/\s*<action:[ˆ\s]*>-by:\s*<name
:.*>/ := msg) {

7 if (/\s*"?<fname:[ˆ\<"]+>"?\s\<<mail
:[ˆ\>]+>\>/ := name) {

8 results += {<version, action, fname
, toLowerCase(mail), cs> | cs
<- devvers[info]};

9 } else if (/\<<mail:[ˆ\>]+>\>/ :=
name){

10 results += {<version, action, "",
toLowerCase(mail), cs> | cs <-
devvers[info]};

11 } else {
12 results += {<version, action, name,

"", cs> | cs <- devvers[info
]};

13 }
14 }

34

15 }
16 return results;
17 }

Listing 18: Parsing author information in Rascal

Gitdm uses regular expressions too to parse the
author information. Please note that due to the ad-
hocness of Gitdm, this information is directly parsed
as it is outputed from the Git repository. This is
a difference with Rascal, where the parsing process
only parses the common fields and properties and no
specific comit message parsing is performed. Another
difference with the Rascal approach is the detection
of e-mail aliasses and misspelled names. This process
is also integrated into the parsing process, where a
map of predefined email aliasses are used to detect
aliasses.

Kenyon provides the Java programs with the Au-
thor name of a changeset. It is therefore possible
to parse this information the same way, the Rascal
scripts have done it. Due to it’s callback nature, the
caller has to save the parsed information and do the
e-mail alias detection at the end.

6.3 Speed

In this section the execution times of Rminer and
Gitdm are presented, which can help to see which
statistics need the most time and if Rminer is rea-
sonably fast enough.

Initialization phase of Rminer took place in 262s
and 346ms, 15s and 168ms of which where spend on
fetching the changesets from the repository.

Statistics calculated with Rminer took in total
213s and 903ms. Below the measured times per
statistic:

1. Frequency of release: 23ms

2. Rate of Change: 168ms

3. Kernel Source Size: 162s 834ms

4. Where the Change is Happening: 21s 366ms

5. Who is Doing the Work and Who is sponsoring
it: 29s 512ms

Gitdm has a different architecture then Rminer,
which makes it hard to measure the times per statis-
tic. Individual scripts are used to calculate some of
the statistics, while the rest of the statistics are cal-
culated by one python script.

The statistics “Rate of Change” and “Who is Doing
the Work and Who is sponsoring it” are calculated in
a total time of 194s and 325ms. “Where the Change
is Happening” is calculated in 46s and 331ms. Since
no scripts are provided to calculate the “Frequency of
release” and “Kernel Source Size” statistics, we can’t
measure the times of those statistics.

Summary of the execution time of the statistics
measured on both scripts are as follows: Rminer:
213,903+0,168+21,366+29,512= 264s 949ms and
Gitdm: 194.325+46.331 = 240s and 656ms. We can
thus say that, at least for this case study, Rminer is
not too slow and is almost as fast as the ad-hoc tool
(Gitdm).

6.4 Evaluation

Before concluding the research in next section, by an-
swering the main research question, we will evaluate
the case study in this section.

Performing the case study, we have encountered that
mistakes can be made very easily. Especially in cases
where the various repositories seem to be similar, but
are not. Below an example of a case where a MSR
research could fail because of semantic differences be-
tween Git and other SCM systems.

Most of the SCM systems allow the users to set lim-
itation on the history extraction process based on a

35

“begin” and “end” revisions. In SVN we can get all
the changesets from A until B by using the “-rA:B”
filter. Git’s “since..until” filter seems to provide the
same behaviour: return the history of the repository
started from “since” and ended by “until”. However,
Git might exclude some of the changesets commit-
ted after “since” and before “until” in the resulted
history. In fact, the filter makes sure that only the
changesets that where an ancestors of “until”, but
where not an ancestor of “since” are returned.

This differences between the SCM systems have been
made explicit in Rminer by creating an extra fil-
ter that is only supported by Git. So when a MSR
script uses the common filter to specify the “since”
and “until” ranges, the expected behaviour of pro-
cessing all the changesets between “since” and “until”
will be encountered. However, the extra filter in the
Git module can be used if the “ancestors exclusion”
behaviour is preferred.

Nevertheless, future research needs to be done on the
usage of various SCM systems to make the more sub-
tle differences between the repositories explicit. Bird
et al. has investigated the perils and promises of min-
ing Git”[2] and similar studies for other SCM systems
should be done, in order to further improve Rminer.

6.5 Validation

In this research we have investigated three SCM sys-
tems as data sources for Rminer. The question
arises: are those three systems representative for the
domain of SCM systems?

During the research we have encountered many (of-
ten small) differences between the datamodels and
the feature sets of the three SCM systems. However,
the high-level SCM concepts are shared between the
systems (section 3.1). Furthermore, we have exam-
ined two different types of SCM systems (centralized,
CVS/SVN, and decentralized: Git). This makes the
model more representative, because the two differ-
ent types have their own concepts (e.g. hashing of
resources in decentralized systems) and supporting
them means supporting (part of) the models of other

SCM systems of the same type.

Therefore, we expect that the concepts introduced by
the three SCM systems will be shared by other SCM
systems (e.g. there is always a repository, a revision
or a resource change kind). So, the answer to the
question is: Yes, the three SCM systems examined
are representative for the domain of SCM systems.

A second question that remains to be answered is:
can the integrated model easily be extended so that
more SCM systems are supported?

Due to Rminer’s design it is possible to easilty add
new data types and variation points to the integrated
repository model. By hiding the differences between
the repository models behind various abstraction lev-
els, Rminer allows us to extend the integrated repos-
itory model without changing the models of the SCM
systems already supported. This means that the
probability that MSR scripts already written need
to be changed is very low.

It is worth mentioning that some MSR research use
additional kinds of data sources (e.g. bug-tracking
systems), which we have not investigated in our re-
search. Rminer is designed with only SCM systems
in mind which means that adding other kinds of data
sources to the integrated model can be potentially
more difficult then expected.

Furthermore, we have performed only one case study,
and as stated earlier more case studies have to be
performed to fully validate the model. One of the
reason for this is the fact that various SCM systems
can be used on different ways, so it is not always
possible to write repository independent MSR scripts
and expect it to give the correct results when used
with different SCM systems.

7 Conclusion

In this thesis the feasibility of an integrated model
for repository mining using Rascal is examined. Fol-
lowing are the contributions of this research:

36

• we have summarized research in MSR domain
and tools available for it.

• we have summarized the commonalities and dif-
ferences between three SCM systems (CVS/SVN
and Git), on concepts important for MSR re-
search

• we have designed and implemented an integrated
model for repository mining with Rascal

• we have performed a case study to evaluate the
feasibility of the model

RQ1 Feasibility: Can we design and implement an
integrated repository model using Rascal, that facil-
itates repository independent MSR research?

In order to support a broad range of MSR research,
we have chosen to include as much of the meta-data
provided by the various software repositories as possi-
ble, in the (extensions of the) integrated model. This,
ofcourse, means that MSR research using repository
specific meta-data are not repository independent.
Furthermore, every SCM system has it’s own set of
filters and options that can be used to configure the
software history extraction process. Since most of
the MSR research require the history from the repos-
itory, care should be taken when using those filters
and options, otherwise the extraction process will not
be repository independent.

So, the answer to the question is: partially. If the
MSR scripts make use of the generic parts of the
model, that are supported by all the SCM systems,
then it is indeed possible to perform repository in-
dependent MSR research. Otherwise, when SCM
specific data or filters/options are used, the inte-
grated model and its extensions should be checked
to see which SCM systems are supported. Never-
theless, Rminer unifies as much common meta-data
from the repository models as possible (section 4.2.2)
, while providing multiple abstraction levels for dif-
ferent needs (section 4.2.3).

RQ1.4 Is the integrated repository model for Ras-
cal a good solution for repository independent MSR
research?

It is a step in the right direction. Various SCM sys-
tems might contain data, and/or functionality, that
at first sight might seem to be similar but has slightly
different meaning. Therefore, it is important to make
the differences between the models explicit, when uni-
fying the models. Rminer does this, as described in
section 4.

It is important to know if concepts unified between
the models, are indeed in practice used the same way.
If that is not the case, MSR research using those
parts of the unified model might get erroneous re-
sults when performed on various SCM systems. Par-
tially, this problem can be solved by cleaning the data
as described in section 4.4. However, improving the
unified model by making the different usage patterns
more explicit is a better solution.

To conclude this research we can say that while
Rminer unifies the commonalities between various
repository models and makes the differences explicit,
it is not the silver bullet.

References

[1] Jennifer Bevan, E. James Whitehead, Jr.,
Sunghun Kim, and Michael Godfrey. Facilitat-
ing software evolution research with kenyon. In
ESEC/FSE-13: Proceedings of the 10th Euro-
pean software engineering conference held jointly
with 13th ACM SIGSOFT international sym-
posium on Foundations of software engineer-
ing, pages 177–186, New York, NY, USA, 2005.
ACM. ISBN 1-59593-014-0. doi: http://doi.acm.
org/10.1145/1081706.1081736.

[2] Christian Bird, Peter C. Rigby, Earl T. Barr,
David J. Hamilton, Daniel M. German, and
Prem Devanbu. The promises and perils of
mining git. In MSR ’09: Proceedings of the
2009 6th IEEE International Working Confer-
ence on Mining Software Repositories, pages 1–
10, Washington, DC, USA, 2009. IEEE Com-
puter Society. ISBN 978-1-4244-3493-0. doi:
http://dx.doi.org/10.1109/MSR.2009.5069475.

37

[3] D. Cubranic, G. C. Murphy, J. Singer, and K. S.
Booth. Hipikat: a project memory for soft-
ware development. 31(6):446–465, 2005. doi:
10.1109/TSE.2005.71.

[4] D. Draheim and L. Pekacki. Process-centric
analytical processing of version control data.
In Proc. Sixth Int Software Evolution Work-
shop Principles of, pages 131–136, 2003. doi:
10.1109/IWPSE.2003.1231220.

[5] Daniel M. German, Davor Cubranić, and
Margaret-Anne D. Storey. A framework for de-
scribing and understanding mining tools in soft-
ware development. In MSR ’05: Proceedings
of the 2005 international workshop on Mining
software repositories, pages 1–5, New York, NY,
USA, 2005. ACM. ISBN 1-59593-123-6. doi:
http://doi.acm.org/10.1145/1083142.1083160.

[6] Collard M.L. Maletic J.I. Kagdi, H. A survey
and taxonomy of approaches for mining software
repositories in the context of software evolution.
Journal of Software Maintenance and Evolution:
Research and Practice (JSME), Vol 19, No 2:77–
131, 2007.

[7] Sunghun Kim, Thomas Zimmermann, Kai Pan,
and E. James Jr. Whitehead. Automatic iden-
tification of bug-introducing changes. In ASE
’06: Proceedings of the 21st IEEE/ACM Inter-
national Conference on Automated Software En-
gineering, pages 81–90, Washington, DC, USA,
2006. IEEE Computer Society. ISBN 0-7695-
2579-2. doi: http://dx.doi.org/10.1109/ASE.
2006.23.

[8] Paul Klint, Tijs van der Storm, and Jurgen
Vinju. Rascal: A domain specific language
for source code analysis and manipulation. In
SCAM ’09: Proceedings of the 2009 Ninth IEEE
International Working Conference on Source
Code Analysis and Manipulation, pages 168–
177, Washington, DC, USA, 2009. IEEE Com-
puter Society. ISBN 978-0-7695-3793-1. doi:
http://dx.doi.org/10.1109/SCAM.2009.28.

[9] Greg Kroah-Hartman. Linux kernel develop-
ment. volume One, pages 239–244, 2007.

[10] Premkumar T. Devanbu Omar Alonso and
Michael Gertz. Database techniques for the anal-
ysis and exploration of software repositories. In
Proceedings of the 1st International Workshop
on Mining Software Repositories (MSR 2004).,
2004.

[11] Vladimir Rubin, Christian W. Günther, Wil
M. P. Van Der Aalst, Ekkart Kindler,
Boudewijn F. Van Dongen, and Wilhelm
Schäfer. Process mining framework for soft-
ware processes. In ICSP’07: Proceedings of the
2007 international conference on Software pro-
cess, pages 169–181, Berlin, Heidelberg, 2007.
Springer-Verlag. ISBN 978-3-540-72425-4.

[12] Thomas Zimmermann. Preprocessing cvs data
for fine-grained analysis. 2004.

[13] Thomas Zimmermann. Fine-grained process-
ing of cvs archives with apfel. In eclipse ’06:
Proceedings of the 2006 OOPSLA workshop on
eclipse technology eXchange, pages 16–20, New
York, NY, USA, 2006. ACM. ISBN 1-59593-621-
1. doi: http://doi.acm.org/10.1145/1188835.
1188839.

38

A Appendix A

Listing 19: Gitdm kernel source size script (stats.sh)

1 #!/bin/bash
2
3 CORE="init/ block/ ipc/ kernel/ lib/ mm/ include/linux/ include/keys/"
4 DRIVERS="crypto/ drivers/ sound/ security/ include/acpi include/crypto include/media include/

mtd include/pcmcia include/rdma include/rxrpc include/scsi/ include/sound/ include/video/"
5 ARCH="arch/ include/asm-* include/math-emu/ include/xen"
6 NET="net/ include/net/"
7 FS="fs/"
8 MISC="Documentation/ scripts/ usr/"
9
10
11 echo ‘ketchup -m‘
12 echo "files in whole tree ‘find . -type f | wc -l‘"
13 echo ""
14 echo "files in core ‘find $CORE -type f | wc -l‘"
15 echo "files in drivers ‘find $DRIVERS -type f | wc -l‘"
16 echo "files in architecture ‘find $ARCH -type f | wc -l‘"
17 echo "files in network ‘find $NET -type f | wc -l‘"
18 echo "files in filesystems ‘find $FS -type f | wc -l‘"
19 echo "files in miscellaneus ‘find $MISC -type f | wc -l‘"
20
21 echo ""
22
23 echo "lines in whole tree ‘find . -type f | xargs wc -l | grep total | cut -f 1 -d ’t’‘"
24
25
26 CORE_LINES=‘find $CORE -type f | xargs wc -l | grep total | cut -f 1 -d ’t’‘
27 echo "lines in core $CORE_LINES"
28
29 DRIVERS_LINES=‘find $DRIVERS -type f | xargs wc -l | grep total | cut -f 1 -d ’t’‘
30 echo "lines in drivers $DRIVERS_LINES"
31
32 ARCH_LINES=‘find $ARCH -type f | xargs wc -l | grep total | cut -f 1 -d ’t’‘
33 echo "lines in architecture $ARCH_LINES"
34
35 NET_LINES=‘find $NET -type f | xargs wc -l | grep total | cut -f 1 -d ’t’‘
36 echo "lines in network $NET_LINES"
37
38 FS_LINES=‘find $FS -type f | xargs wc -l | grep total | cut -f 1 -d ’t’‘
39 echo "lines in filesystems $FS_LINES"
40
41 MISC_LINES=‘find $MISC -type f | xargs wc -l | grep total | cut -f 1 -d ’t’‘
42 echo "lines in miscellaneus $MISC_LINES"

39

B Appendix B

Listing 20: Rminer Linux stats configuration (Git.rsc)

1 module Git
2
3 import Utilities;
4 import Statistics;
5 import experiments::scm::Scm;
6 import experiments::scm::git::Git;
7
8 import DateTime;
9 import List;
10 import Map;
11 import Set;
12 import Relation;
13 import Graph;
14 import String;
15 import Real;
16 import Node;
17
18 public tuple[list[int], InitVars, MappingVars] gitStats() {
19 gitConfig = getGitConfig();
20 initVars = <gitConfig.releases, gitConfig.repo, gitConfig.catDirs, getChanges(gitConfig.repo)

>;
21 MappingVars maps = getMappings(initVars, ());
22 return <stats(initVars, maps), initVars, maps>;
23 }
24
25 public tuple[list[Tag] releases, Repository repo, rel[str cat, str dir] catDirs] getGitConfig()

{
26 repo = git(fs("/export/scratch1/shabazi/linux-2.6"), "", {});
27 releases = [label("v2.6.<i>") | i <- [12..21]];
28
29 rootDir = repo.conn.url;
30 rel[str cat, str dir] catDirs = {};
31 catDirs += {<"core", "<rootDir>/<d>"> | d <- ["init", "block", "ipc", "kernel", "lib", "mm",

"include/linux", "include/keys"]};
32 catDirs += {<"drivers", "<rootDir>/<d>"> | d <- ["crypto", "drivers", "sound", "security", "

include/acpi", "include/crypto",
33 "include/media", "include/mtd", "include/pcmcia", "include/rdma", "include/rxrpc", "include

/scsi", "include/sound", "include/video"]};
34 catDirs += {<"architecture", "<rootDir>/<d>"> | d <- ["arch", "include/asm-", "include/math-

emu", "include/x"]};
35 catDirs += {<"network", "<rootDir>/<d>"> | d <- ["net", "include/net"]};
36 catDirs += {<"filesystems", "<rootDir>/<d>"> | d <- ["fs"]};
37 catDirs += {<"miscellaneous", "<rootDir>/<d>"> | d <- ["Documentation", "scripts", "usr"]};
38
39 return <releases, repo, catDirs>;
40 }

40

Listing 21: Rminer stats (Statistics.rsc)

1 module Statistics
2
3 import Utilities;
4 import ValueIO;
5 import DateTime;
6 import IO;
7 import experiments::scm::Scm;
8 import experiments::scm::cvs::Cvs;
9 import experiments::scm::svn::Svn;
10 import experiments::scm::git::Git;
11 import experiments::scm::Timer;
12 import DateTime;
13 import List;
14 import Map;
15 import Set;
16 import Relation;
17 import Graph;
18 import String;
19 import Real;
20 import Node;
21
22 public alias InitVars = tuple[list[Tag] releases, Repository repo, rel[str cat, str dir]

catDirs, list[ChangeSet] changesets];
23 public alias MappingVars = tuple[rel[RevisionId child, RevisionId parent] childParents,
24 map[Tag version, ChangeSet changeset] tagChangeset,
25 map[RevisionId revId, ChangeSet cs] revChangeset,
26 rel[Tag version, RevisionId revId] versionRevisions,
27 rel[Tag version, ChangeSet cs] versionNoMergesChangesets];
28
29 public list[int] stats(InitVars initVars, MappingVars maps) {
30 domainMap = readTextValueFile(#(map[str domain, str company]), |file:///export/scratch1/

shabazi/domain-map.txt|);
31 list[int] durations = [];
32 Tag lastVersion = initVars.releases[size(initVars.releases) - 1];
33 print("------------------STATS 1------------------");
34 durations += statsOne(maps.tagChangeset, initVars.releases);
35 print("------------------STATS 2------------------");
36 durations += statsTwo(maps.versionRevisions, initVars.releases);
37 print("------------------STATS 3------------------");
38 durations += statsThree(initVars.repo, maps.tagChangeset, initVars.releases);
39 print("------------------STATS 4------------------");
40 durations += statsFour(initVars.repo, maps.tagChangeset, [lastVersion], initVars.catDirs);
41 print("------------------STATS 5------------------");
42 durations += statsFive(maps.versionNoMergesChangesets, domainMap, [lastVersion]);
43
44 int totalDuration = 0;
45 for(d <- durations) {
46 totalDuration += d;
47 }
48 print("Duration:<totalDuration>");
49 return durations;
50 }
51
52 public int statsOne(map[Tag version, ChangeSet cs] tagChangeset, list[Tag] releases) {
53 printStartTimer("statsOne");
54 int i = 0;

41

55 for (version <- releases, version in tagChangeset) {
56 if (i > 0) {
57 prev = releases[i-1];
58 print("<version.name> - <daysDiff(tagChangeset[prev].committer.date, tagChangeset[version

].committer.date)>");
59 }
60 i += 1;
61 }
62 return printStopTimer("statsOne");
63 }
64
65 public int statsTwo(rel[Tag version, RevisionId revision] versionRevisions, list[Tag] releases)

{
66 printStartTimer("statsTwo");
67 for (version <- releases, version in versionRevisions.version) {
68 print("<version> - <size(versionRevisions[version])>");
69 }
70 return printStopTimer("statsTwo");
71 }
72
73 public int statsThree(Repository repo, map[Tag version, ChangeSet cs] tagChangeset, list[Tag]

releases) {
74 printStartTimer("statsThree");
75 for (version <- releases) {
76 checkoutVersion(repo, tagChangeset, version);
77 set[WcResource] wcResources = getResources(repo);
78 set[Resource resource] resources = {r.resource | r <- wcResources};
79 map[Resource file, int lines] fileLines = linesCount(resources);
80 int totalLines = 0;
81 for(f <- fileLines.file) {
82 totalLines += fileLines[f];
83 }
84 print("<version.name> - <size(fileLines.file)> - <totalLines>");
85 }
86 return printStopTimer("statsThree");
87 }
88
89 public void checkoutVersion(Repository repo, map[Tag version, ChangeSet cs] tagChangeset, Tag

version) {
90 CheckoutUnit cu;
91 //little workaround for gits lack of checkout by date
92 if (git(_,_,_) := repo) {
93 cu = cunit(version);
94 } else {
95 cu = cunit(tagChangeset[version].committer.date);
96 }
97 checkoutResources(cu, repo);
98 }
99
100 public int statsFour(Repository repo, map[Tag version, ChangeSet cs] tagChangeset, list[Tag]

releases, rel[str cat, str dir] catDirs) {
101 int duration = 0;
102 for (version <- releases) {
103 printStartTimer("checkout <version>");
104 checkoutVersion(repo, tagChangeset, version);
105 duration += printRestartTimer("getResources <version>");
106 set[WcResource] wcResources = getResources(repo);

42

107 duration += printStopTimer("getResources <version>");
108 set[Resource resource] resources = {r.resource | r <- wcResources};
109 duration += statsFour(repo, resources, catDirs);
110 print("statsFour - <version> - <duration>ms");
111 }
112 return duration;
113 }
114
115 public int statsFour(Repository repo, set[Resource resource] resources, rel[str cat, str dir]

catDirs) {
116 int duration = 0;
117
118 printStartTimer("resourcesByCategory");
119 rel[str cat, Resource file] filesByCat = resourcesByCategory(resources, catDirs<1,0>);
120 duration += printStopTimer("resourcesByCategory");
121 print("Category - Files - % of kernel");
122 int totalFiles = size(filesByCat.file);
123 for (c <- filesByCat.cat) {
124 print("<c> - <size(filesByCat[c])> - <size(filesByCat[c])*100/totalFiles>% ");
125 }
126
127 print("Category - Lines of Code - % of kernel");
128 printStartTimer("resourcesByCategory");
129 map[Resource file, int lines] fileLines = linesCount(filesByCat.file);
130 duration += printStopTimer("resourcesByCategory");
131 int totalLines = 0;
132 for(f <- fileLines.file) {
133 totalLines += fileLines[f];
134 }
135 for (c <- filesByCat.cat) {
136 int catLines = 0;
137 for (f <- filesByCat[c], file(_) := f) {
138 catLines += fileLines[f];
139 }
140 print("<c> - <catLines> - <catLines*100/totalLines>%");
141 }
142 return duration;
143 }
144
145 public rel[str cat, Resource file] resourcesByCategory(set[Resource resource] resources, rel[

str dir, str cat] dirCategories) {
146 rel[str cat, Resource resource] catResources = {};
147 for (r <- resources) {
148 for(dir <- domain(dirCategories)) {
149 if (startsWith(r.id.path, dir)) {
150 for(cat <- dirCategories[dir]) {
151 catResources += {<cat, r>};
152 }
153 }
154 }
155 }
156 return catResources;
157 }
158
159
160 public int statsFive(rel[Tag version, ChangeSet cs] versionChangesets, map[str, str] domainMap,

list[Tag] releases) {

43

161 int duration = 0;
162 rel[Tag version, str email, str devverName, ChangeSet cs] result = {};
163 printStartTimer("calcDevelopers");
164 for (version <- releases, version in versionChangesets.version) {
165 result += calcDevelopers(version, "Author", {<cs@author ? cs.committer, cs>| cs <-

versionChangesets[version]}, false)<0,2,3,4>;
166 }
167
168 duration += printRestartTimer("calcDevelopers");
169 for (version <- releases, version in result.version) {
170 map[set[str name] user, set[ChangeSet] cs] userChanges = getUserChangeSets(result[version])

;
171 map[set[str name] user, int count] userChangesCount = (usr : size(userChanges[usr]) | usr

<- domain(userChanges));
172 duration += printRestartTimer("<version.name> - <size(userChanges.user)> users");
173 printMapOrderedOnRange(userChangesCount, 10);
174 }
175 startTimer();//quietly restart the timer
176 map[str mail, str company] emailCompany = (addr : domainMap[dom] | dom <- domain(domainMap),

addr <- result.email, endsWith(addr, dom));
177 duration += printRestartTimer("emailCompany");
178 rel[Tag version, str company, ChangeSet cs] versionCompanyChangesets =
179 {<version, emailCompany[email] ? "Unknown", cs> | <Tag version, str email, str devverName,

ChangeSet cs> <- result};
180 duration += printRestartTimer("versionCompanyChangesets");
181 for (version <- releases, version in versionCompanyChangesets.version) {
182 rel[str company, ChangeSet cs] companyChangesets = versionCompanyChangesets[version];
183 map[str company, int changes] companyChangesCount = (company : size(companyChangesets[

company]) | company <- domain(companyChangesets));
184 duration += printRestartTimer("\n<version.name> & <size(companyChangesets.company)>

companies");
185 printMapOrderedOnRange(companyChangesCount, 10);
186 }
187 duration += printStopTimer("versionCompanyChangesets");
188 return duration;
189 }
190
191 public map[set[str name] user, set[ChangeSet] cs] getUserChangeSets(rel[str email, str

devverName, ChangeSet cs] input) {
192 rel[str name, str email] devMail = {<user, email> | email <- input.email, email != "", user

<- input[email]<0>, user != ""};
193 rel[str name, ChangeSet cs] userCs = input[_];
194 rel[str email, ChangeSet cs] mailCs = input<0,2>;
195
196 devMail = solveBrokenRelations(devMail);
197
198 mailDev = devMail<1,0>;
199 map[str mail, set[str] userNames] mailUserNames = (email : mailDev[email] | email <- range(

devMail));
200 map[set[str] userNames, set[str] mailAdresses] users = invert(mailUserNames);
201
202 map[set[str name] user, set[ChangeSet] cs] result =
203 (userNames : domainR(userCs, userNames)<1> + domainR(mailCs, users[userNames])<1> | set[str

] userNames <- users.userNames);
204
205 set[str] processedUsernames = {userName | userName <- users.userNames};
206 set[str] usersWithoutMail = domainX(userCs, processedUsernames)<0>;

44

207 result += ({user} : userCs[user]| user <- usersWithoutMail);
208
209 return result;
210 }
211
212 /**
213 * Makes sure that each name has a relation with any email known for the same user,
214 * even if alternative usernames are used
215 * For example, if the tuple <Linus Torvalds, linus@linux.com> exists in the input along with

two
216 * other tuples: <Linus Torvalds, linux@linux.com> and <Torvalds, linux@linux.com>, then the

resulted set will
217 * have the additional tuple: <Torvalds, linus@linux.com>.
218 */
219 public rel[str name, str email] solveBrokenRelations(rel[str name, str email] input) {
220 r = input;
221 solve(r) {
222 r = r o invert(r) o r;
223 }
224 return r;
225 }
226
227 /*
228 * Reachability from set of start nodes with exclusion of certain nodes.
229 * Another implementation then the one in Graph.rsc, since the later uses
230 * the transitive closure and gets out of memory by large amount of data.
231 */
232 public set[&T] reach(Graph[&T] G, set[&T] Start, set[&T] Excl) {
233 set[&T] R = Start;
234 solve (R) {
235 R = R + G[R] - Excl;
236 }
237 return R;
238 }
239
240 public void printMapOrderedOnRange(map[value,int] content, int topMax) {
241 int totalCount = 0;
242 for(v <- domain(content)) {
243 totalCount += content[v];
244 }
245 for (int v <- reverse(quickSort(range(content))), d <- rangeR(content, {v}), topMax >= 0) {
246 topMax -= 1;
247 print("<d> - <v> - <v*100/totalCount>%");
248 }
249 }
250
251 public rel[Tag version, str action, str email, str devverName, ChangeSet cs] calcDevelopers(Tag

version, str action,
252 rel[Info info, ChangeSet cs] devvers, bool parseCsMessage) {
253 rel[Tag version, str action, str email, str devverName, ChangeSet cs] results = {};
254 for (Info info <- devvers.info) {
255 str msg = (parseCsMessage ? (info.message ? "") : "") + " " + action + "-by: " + info.name;
256 for (/\s*<action:[ˆ\s]*>-by:\s*<name:.*>/ := msg) {
257 if (/\s*"?<fname:[ˆ\<"]+>"?\s\<<mail:[ˆ\>]+>\>/ := name) {
258 results += {<version, action, toLowerCase(mail), fname, cs> | cs <- devvers[info]};
259 } else if (/\<<mail:[ˆ\>]+>\>/ := name){
260 results += {<version, action, toLowerCase(mail), "", cs> | cs <- devvers[info]};

45

261 } else {
262 results += {<version, action, "", name, cs> | cs <- devvers[info]};
263 }
264 }
265 }
266 return results;
267 }
268
269 //gets the changesets and measures the time
270 public list[ChangeSet] getChanges(Repository repo) {
271 printStartTimer("initChangesets");
272 changesets = getChangesets(repo);
273 printStopTimer("initChangesets");
274 return changesets;
275 }
276
277 public MappingVars getMappings(InitVars initVars, map[Tag version, CheckoutUnit cunit]

manualReleases) {
278 changesets = initVars.changesets;
279 repo = initVars.repo;
280 releases = initVars.releases;
281
282 int total = 0;
283 printStartTimer("childParents");
284 childParents = {<cs.revision.id, m.parent.id> | cs <-changesets, revision(_, _) := cs.

revision, m <- (cs.revision@mergeDetails ? {mergeParent(cs.revision.parent)})};
285 total += printRestartTimer("childParents");
286 revChangeset = (cs.revision.id : cs |cs <- changesets);
287 total += printRestartTimer("revChangeset");
288 tagChangeset = (t : cs | cs <- changesets, t <- (cs.revision@tags ? {}));
289 extraTags = (t : revChangeset[rev.id] | t <- manualReleases, cunit(Revision rev) :=

manualReleases[t]);
290 //TODO we currently only support tags, but we might implement support for other checkoutunit

types (e.g. date)
291 tagChangeset += extraTags;
292 if (size(extraTags) < size(manualReleases)) {
293 tagChangeset += (t : tagChangeset[symName] | t <- manualReleases, cunit(Tag symName) :=

manualReleases[t]);
294 }
295 total += printRestartTimer("tagChangeset");
296
297 totalVersionRevisions = getVersionRevisions(repo, childParents, tagChangeset, releases);
298 total += totalVersionRevisions[0];
299 versionRevisions = getOnlyUniqueRevisions(totalVersionRevisions[1], releases);
300 total += printRestartTimer("uniqueVersionRevisions");
301 rel[Tag version, ChangeSet cs] versionChangesets = versionRevisions o toRel(revChangeset);
302 total += printRestartTimer("versionChangesets");
303 versionNoMergesChangesets = {<version, cs> | version <- versionChangesets.version, cs <-

versionChangesets[version], "mergeDetails" notin getAnnotations(cs.revision)};
304 total += printStopTimer("versionNoMergesChangesets");
305 print("Total duration:<total>");
306
307 mappingVars = <childParents, tagChangeset, revChangeset, versionRevisions,

versionNoMergesChangesets>;
308 return mappingVars;
309 }
310

46

311
312 public tuple[int total, rel[Tag version, RevisionId revision] versionRevisions]

getVersionRevisions(
313 Repository repo, rel[RevisionId child, RevisionId parent] childParents, map[Tag version,

ChangeSet cs] tagChangeset, list[Tag] releases) {
314 int total = 0;
315
316 rel[Tag version, RevisionId revision] versionRevisions = {};
317 for (version <- releases, version in tagChangeset) {
318 set[RevisionId] reachable = {};
319 if (git(_,_,_) := repo) {
320 reachable = reach(childParents, {tagChangeset[version].revision.id});
321 } else {
322 reachable = reach(childParents, {tagChangeset[version].revision.id}, {tagChangeset[ver].

revision.id| ver <- tagChangeset.version, ver != version});
323 }
324 versionRevisions += {<version, reaching> | reaching <- reachable};
325 total += printRestartTimer("versionRevision - <version> - <size(reachable)>");
326 }
327 return <total, versionRevisions>;
328 }
329 /**
330 * Makes sure that a revisionId is only referenced by one version. So if revision A is part of

release 12 and 13, release 13 will
331 * no longer reference to it in the returned relation.
332 */
333 public rel[Tag version, RevisionId revision] getOnlyUniqueRevisions(rel[Tag version, RevisionId

revision] versionRevisions, list[Tag] releases) {
334 rel[Tag version, RevisionId revision] results = {};
335
336 int i = 0;
337 for (version <- releases, version in versionRevisions.version) {
338 if (i == 0) {
339 results += {<version, rev> | rev <- versionRevisions[version]};
340 } else {
341 prev = versionRevisions[releases[i-1]];
342 results += {<version, rev> | rev <- versionRevisions[version], rev notin prev};
343 }
344 i += 1;
345 }
346 return results;
347 }

47

Listing 22: Rminer utilities (Utilities.rsc)

1 module Utilities
2
3 import Set;
4 import List;
5 import IO;
6 import experiments::scm::Timer;
7
8 //Timer functions
9 public datetime printStartTimer(str msg) {
10 sTime = startTimer();
11 print("started at <sTime> \t[<msg>]");
12 return sTime;
13 }
14 public int printStopTimer(str msg) {
15 dur = stopTimer();
16 print("duration <dur> ms \t[<msg>]");
17 return dur;
18 }
19 public int printRestartTimer(str msg) {
20 dur = stopTimer();
21 print("duration <dur> ms \t[<msg>], restarted <startTimer()>");
22 return dur;
23 }
24
25 //Utility functions
26 public list[&T] quickSort(set[&T] st) {
27 return quickSort(toList(st));
28 }
29 public list[&T] quickSort(list[&T] lst)
30 {
31 if(size(lst) <= 1){
32 return lst;
33 }
34
35 list[&T] less = [];
36 list[&T] greater = [];
37 &T pivot = lst[0];
38
39 <pivot, lst> = takeOneFrom(lst);
40
41 for(&T elm <- lst){
42 if(elm <= pivot){
43 less = [elm] + less;
44 } else {
45 greater = [elm] + greater;
46 }
47 }
48
49 return quickSort(less) + pivot + quickSort(greater);
50 }

48

	Introduction
	Motivation
	Research question
	Research method
	Requirements analysis
	Design & Implementation
	Testing

	Definitions

	Mining Software Repositories
	Taxonomy
	Software Evolution
	Purpose
	Representation
	Information Sources
	Research Question

	Tools
	Kenyon
	No option for only meta-information
	Too few meta-information
	Fixed transaction recovery algorithm
	Library dependencies
	GraphSchema

	APFEL
	Gitdm
	Conclusion

	SCM Systems
	Similarities
	Revision
	Info
	Changeset
	RevisionChange
	Resource

	Differences
	Atomic operations
	Revision identification
	Tags, Branches and Merges

	Conclusion

	Rminer
	Requirements
	Support for multiple SCM systems
	Partially history
	Common Meta-data
	SCM specific Meta-data
	File based history access
	Reuse
	File management

	Design
	Raw facts
	Integrated model
	Abstraction
	Annotations

	Recovery
	Enhancements
	Research question

	Case study
	Method
	Statistics
	Evaluation
	Script reusability
	Data reusability
	Correctness
	Speed

	Results
	Initialization
	Frequency of release
	Rate of Change
	Kernel Source Size
	Where the Change is Happening
	Who is doing the work and Who is sponsoring it

	Discussion
	Global design
	Rminer
	Gitdm
	Kenyon

	Frequency of release
	Rminer
	Gitdm
	Kenyon
	Rate of Change
	Kernel Source Size
	Where the Change is Happening
	Who is doing the work and Who is sponsoring it

	Speed
	Evaluation
	Validation

	Conclusion
	Appendix A
	Appendix B

