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For any two graphs F and G , let hom(F , G) denote the number
of homomorphisms F → G , that is, adjacency preserving maps
V (F ) → V (G) (graphs may have loops but no multiple edges). We
characterize graph parameters f for which there exists a graph F
such that f (G) = hom(F , G) for each graph G .
The result may be considered as a certain dual of a characterization
of graph parameters of the form hom(., H), given by Freedman,
Lovász and Schrijver [M. Freedman, L. Lovász, A. Schrijver, Reflec-
tion positivity, rank connectivity, and homomorphisms of graphs,
J. Amer. Math. Soc. 20 (2007) 37–51]. The conditions amount to the
multiplicativity of f and to the positive semidefiniteness of certain
matrices N( f ,k).
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1. Introduction

In this paper, the graphs we consider are finite, undirected and have no parallel edges, but they
may have loops. A graph parameter is a real valued function defined on graphs, invariant under iso-
morphisms.

For two graphs F and G , let hom(F , G) denote the number of homomorphisms F → G , that is,
adjacency preserving maps V (F ) → V (G).

The definition can be extended to weighted graphs (when the nodes and edges of G have real
weights). In [1] multigraph parameters of the form hom(·, G) were characterized, where G is a
weighted graph. Several variants of this result have been obtained, characterizing graph parameters
hom(·, G) where all nodeweights of G are 1 [6], such graph parameters defined on simple graphs
where G is weighted [5], and also when G is an infinite object called a “graphon” [4], and graph
parameters defined in a dual setting where the roles of nodes and edges are interchanged [7]. These
characterizations involve certain infinite matrices, called connection matrices, which are required to be
positive semidefinite. Often they also have to satisfy a condition on their rank.

The goal of this paper is to study the dual question, and characterize graph parameters of the form
hom(F , ·), where F is an (unweighted) graph. It turns out that reversing the arrows in the category
of graphs gives the right hints for the condition, and the characterization involves the dually defined
connection matrices.

It is unclear what a weighted version of this dual theorem might mean. That is, if F is a weighted
graph (with real weights on its edges), then there is no clear definition for hom(F , G). On the other
hand, the authors recently have obtained a more general theorem in terms of categories that combines
both the primal and dual (unweighted) cases — see [3].

For two graphs G and H , the product G × H is the graph with node set V (G) × V (H), two nodes
(u, v) and (u′, v ′) being adjacent if and only if uu′ ∈ E(G) and v v ′ ∈ E(H). Then

hom(F , G × H) = hom(F , G)hom(F , H). (1)

An S-colored graph is a pair (G, φ), where G is a graph and φ : V (G) → S , where S is a finite set.
We call (G, φ) colored if it is S-colored for some S . We call φ(v) the color of v .

The product (G, φ) × (H,ψ) of two colored graphs is the colored graph ( J , ϑ), where J is the
subgraph of G × H induced by the set of nodes (u, v) with φ(u) = ψ(v), and where ϑ(u, v) := φ(u)

(= ψ(v)).
For two colored graphs (F , φ) and (G,ψ), a homomorphism h : V (F ) → V (G) is color-preserving if

φ = ψh. Let homc((F , φ), (G,ψ)) denote the number of color-preserving homomorphisms F → G .
It is easy to see that for any three colored graphs F , G and H ,

homc(F , G × H) = homc(F , G)homc(F , H).

(Eq. (1) is the special case where all nodes have color 1.) Moreover, if both G and H are S-colored,
then for any uncolored graph F ,

hom(F , G × H) =
∑

φ : V (F )→S

homc
(
(F , φ), G

)
homc

(
(F , φ), H

)
. (2)

Here hom(F , (G, φ)) := hom(F , G) for any colored graph (G, φ). More generally, we extend any graph
parameter f to colored graphs by defining f (G, φ) := f (G) for any colored graph (G, φ).

For every graph parameter f and k � 1, we define an (infinite) matrix N( f ,k) as follows. The rows
and columns are indexed by [k]-colored graphs (where [k] = {1, . . . ,k}), and the entry in row G and
column H (where G and H are [k]-colored graphs) is f (G × H).

Eq. (2) implies that for any graph F and any k � 1, the matrix N( f ,k) belonging to f = hom(F , ·)
is positive semidefinite. Moreover, if f = hom(F , ·), then f is multiplicative, that is, f (K̃1) = 1 and
f (G × H) = f (G) f (H) for any two (uncolored) graphs. Here K̃n denotes the complete graph with
n vertices and with a loop attached at each vertex. The main result of this paper is that these prop-
erties characterize such graph parameters:
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Theorem 1. Let f be a graph parameter. Then f = hom(F , ·) for some graph F if and only if f is multiplicative
and, for each k � 1, the matrix N( f ,k) is positive semidefinite.

The proof will require a development of an algebraic machinery, similar to the one used in [1] (but
the details are different).

2. The algebras A and AS

The colored graphs form a semigroup under multiplication ×. Let G denote its semigroup algebra
(the elements of G are formal linear combinations of colored graphs with real coefficients, also called
quantum colored graphs). Let GS denote the semigroup algebra of the semigroup of S-colored graphs.
For each S , the graph K̃ S is the unit element of GS , where K̃ S is the S-colored graph whose underlying
graph is the complete graph on S , with a loop at each vertex, and where vertex s ∈ S has color s. The
function f can be extended linearly to G and GS .

By the positive semidefiniteness of N( f ,k), the function

〈G, H〉 := f (G × H)

defines a semidefinite (but not necessarily definite) inner product on G . The set

I := {
g ∈ G

∣∣ 〈g, g〉 = 0
} = {

g ∈ G
∣∣ 〈g, x〉 = 0 for all x ∈ G

}
is an ideal in G . (This follows essentially from the fact that 〈G × H, L〉 = 〈G, H × L〉 for all graphs
G, H, L.) Hence the quotient A = G/I is a commutative algebra with (definite) inner product. We
denote multiplication in A by concatenation. Since g ∈ I implies f (g) = 0, we can define f on A by
f (g + I) := f (g) for g ∈ G .

It is easy to check that

I ∩ GS = {
g ∈ GS

∣∣ 〈g, x〉 = 0 for all x ∈ GS
}

is an ideal in GS , and hence the quotient AS = GS/(I ∩ GS ) is also a commutative algebra with a
(definite) inner product. This algebra can be identified with GS/I in a natural way.

Note that 1S := K̃ S + I is the unit element of AS and that AS is an ideal in A. Moreover, AS ⊆ AT

if S ⊆ T . In fact, the stronger relation AS ∩ AT = AS AT = AS∩T holds. To see this, we show that

AS ∩ AT ⊆ AS AT ⊆ AS∩T ⊆ AS ∩ AT .

Indeed, if x ∈ AS ∩ AT then x = x1T ∈ AS AT , which proves the first inclusion. If g ∈ GS and h ∈ GT ,
then (g + I)(h + I) = gh + I ∈ AS∩T , which proves the second. The third inclusion is trivial.

3. Finite-dimensionality of AS

Proposition 2. For each S, AS has finite dimension, and dim(AS ) � f (K̃ S ).

Proof. Choose elements e1, . . . , en ∈ GS with 〈ei, e j〉 = δi, j for i, j = 1, . . . ,n. We show n � f (K̃ S ),
which proves the proposition.

For S-colored graphs (G, φ) and (H,ψ), let (G, φ) · (H,ψ) be the S × S-colored graph (G × H,

φ × ψ), where G × H is the product of G and H as uncolored graphs. This extends bilinearly to
GS × GS → GS×S . Let K be the S × S-colored graph whose underlying graph is the complete graph
on S , with a loop at each vertex, and where any vertex s ∈ S has color (s, s). Define the quantum
S × S-colored graph x by

x := K −
n∑

i=1

ei · ei .
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We evaluate 〈x, x〉. First,

〈ei · ei, e j · e j〉 = 〈ei, e j〉2 = δi, j

for all i, j = 1, . . . ,n. Here we use that for any S-colored graphs G, G ′, H, H ′ , (G · H) × (G ′ · H ′) =
(G × G ′) · (H × H ′) and f (G · H) = f (G) f (H). Moreover we have

〈ei · ei, K 〉 = 〈ei, ei〉 = 1

for all i = 1, . . . ,n. Finally, 〈K , K 〉 = f (K̃ S ). Concluding,

〈x, x〉 = f (K̃ S) − 2n + n = f (K̃ S) − n.

Since 〈x, x〉 � 0, this proves n � f (K̃ S ). �
As the inner product 〈·,·〉 satisfies 〈xy, z〉 = 〈x, yz〉 for all x, y, z ∈ AS , AS has a unique orthogonal

basis MS consisting of idempotents, called the basic idempotents of AS . Every idempotent in AS is
the sum of a subset of MS , and in particular

1S =
∑

p∈MS

p. (3)

For every nonzero idempotent p we have f (p) = f (p2) = 〈p, p〉 > 0.

4. Maps between algebras with different color sets

Let S and T be finite subsets of Z, and let α : S → T . We define a linear function α̌ : GS → GT by

α̌(G, φ) := (G,αφ)

for any S-colored graph (G, φ). We define another linear map α̂ : GT → GS as follows. Let (G, φ) be
a T -colored graph. For any node v of G , split v into |α−1(φ(v))| copies, adjacent to any copy of
any neighbor of v in G . Give these copies of v distinct colors from α−1(φ(v)), to get the colored
graph α̂(G, φ).

It is easy to see that the map α̂ is an algebra homomorphism, while in general the map α̌ is not.
On the other hand, α̌ is an isomorphism of the underlying uncolored graphs, but in general α̂ is not.

For any T -colored graph G and any S-colored graph H , we have

α̌
(
α̂(G) × H

) = G × α̌(H),

which implies that the underlying uncolored graphs of α̂(G) × H and G × α̌(H) are the same. Then
g ∈ I implies α̌(g) ∈ I for any g ∈ GS , since 〈α̌(g), α̌(g)〉 = 〈g, α̂α̌(g)〉 = 0. Hence α̌ quotients to
a linear function AS → AT . Similarly, g ∈ I implies α̂(g) ∈ I for any g ∈ GT , hence α̂ quotients
to an algebra homomorphism AT → AS . We abuse notation and denote these induced maps also
by α̌ and α̂.

Then

α̌
(
α̂(x)y

) = xα̌(y)

and hence〈
α̂(x), y

〉 = 〈
x, α̌(y)

〉
(4)

for all x ∈ AT and y ∈ AS .
It is easy to see that if α : S → T is surjective, then α̌ : GS → GT is surjective and so is the map

AS → AT it induces. On the other hand, if again α : S → T is surjective, then α̂ : GT → GS is injective,
and so is the map AT → AS it induces.



Author's personal copy

220 L. Lovász, A. Schrijver / Journal of Combinatorial Theory, Series A 117 (2010) 216–222

Since α̂ is an algebra homomorphism, α̂(p) is an idempotent in AS for any idempotent p ∈ AT ,
and α̂(1T ) = 1S . So (3) implies that∑

p∈MT

α̂(p) = α̂(1T ) = 1S =
∑

q∈MS

q. (5)

Define for any p ∈ MT and α : S → T :

Mα,p := {
q ∈ MS

∣∣ α̂(p)q = q
}
.

By (5),

α̂(p) =
∑

q∈Mα,p

q.

This implies that if α is surjective, then Mα,p 	= ∅.

Proposition 3. Let p ∈ MT , α : S → T , and q ∈ Mα,p . Then

α̌(q) = f (q)

f (p)
p.

Proof. If p′ ∈ MT \ {p}, then

〈
α̌(q), p′〉 = 〈

q, α̂(p′)
〉 = 0 =

〈
f (q)

f (p)
p, p′

〉
,

since 〈p, p′〉 = 0. Moreover,

〈
α̌(q), p

〉 = 〈
q, α̂(p)

〉 = f
(
α̂(p)q

) = f (q) =
〈

f (q)

f (p)
p, p

〉
,

since 〈p, p〉 = f (p). �
5. Maximal basic idempotents

For each x ∈ A, let C(x) be the minimal set S of colors for which x ∈ AS . This is well defined
because AS ∩ AT = AS∩T .

Proposition 4. |C(p)| � log2 f (K̃2) for each basic idempotent p.

Proof. Let S := C(p). Suppose |S| > log2 f (K̃2). Then for t large enough(
2t

|S|
)

>
(
2t)log2 f (K̃2) = f (K̃2)

t = f (K̃2t ).

Now choose T with |T | = 2t . Then AT has at least
(2t

|S|
)

basic idempotents, since for each subset S ′
of T of size |S| we can choose a bijection α : S → S ′ . Then α̌(p) belongs to AT , and they are all
distinct.

So dim(AT ) �
(2t

|S|
)
> f (K̃2t ), contradicting Proposition 2. �

This proposition implies that we can choose a basic idempotent p with |C(p)| maximal, which we
fix from now on. Define S := C(p).
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Proposition 5. Let α : T → S be surjective. Then

α̂(p) =
∑

β:S→T
αβ=idS

β̌(p).

Note that the maps β in the summation are necessarily injections.

Proof of Proposition 5. Consider any q ∈ Mα,p . By Proposition 3, α̌(q) is a nonzero multiple of p.
This implies C(p) = C(α̌(q)) ⊆ α(C(q)). So |C(q)| � |C(p)|, hence by the maximality of |C(p)|, |C(q)| =
|C(p)|. So α|C(q) is a bijection between C(q) and C(p). Setting β = (α|C(q))

−1, we get q = β̌(p). By
symmetry, φ̌(p) occurs in the sum (1) for every injective φ : S → T such that αφ = idS . �
Proposition 6. For any finite set T ,∑

α:S→T

α̌(p) = f (p)1T . (6)

Proof. Let σ and τ be the projections of S × T on S and on T , respectively. Then for any S-colored
graph G and any T -colored graph H one has that σ̂ (G) × τ̂ (H) is, as uncolored graph, equal to the
product of the underlying uncolored graphs of G and H . Hence, since f is multiplicative,

f
(
σ̂ (G) × τ̂ (H)

) = f (G) f (H). (7)

Now for each α : S → T , there is a unique β : S → S × T with σβ = idS and τβ = α. Hence, with
Proposition 5,∑

α:S→T

α̌(p) =
∑

β:S→S×T
σβ=idS

τ̌ β̌(p) = τ̌
∑

β:S→S×T
σβ=idS

β̌(p) = τ̌ σ̂ (p).

So for any x ∈ AT , with (4) and (7),〈
τ̌ σ̂ (p), x

〉 = 〈
σ̂ (p), τ̂ (x)

〉 = f
(
σ̂ (p)τ̂ (x)

) = f (p) f (x) = 〈
f (p)1T , x

〉
.

This implies that τ̌ σ̂ (p) = f (p)1T . �
Remark 7. While it follows from the theorem, it may be worthwhile to point out that the maximal
basic idempotent p is unique up to renaming the colors, and all other basic idempotents arise from
it by merging and renaming colors. Indeed, we know by Proposition 3 that every term in (6) is a
positive multiple of a basic idempotent in AT , and so it follows that every basic idempotent in AT is
a positive multiple of α̌(p) for an appropriate map α. In particular, if p′ is another basic idempotent
with |C(p′)| = |C(p)|, then it follows that p′ = α̌(p) for some bijective map α : C(p) → C(p′).

6. Möbius transforms

For any colored graph H , define the quantum graph μ(H) (the Möbius transform) by

μ(H) :=
∑

Y ⊆E(H)

(−1)|Y |(H − Y ).

We call a colored graph G flat, if V (G) = T , and the color of node t is t . For any T -colored graph G
and any finite set S , define

λS(G) :=
∑

α:S→T

α̂(G).
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Proposition 8. Let F and G be flat colored graphs, and S := V (F ), T := V (G). Then

λS(G) × μ(F ) = hom(F , G)μ(F ). (8)

Proof. Consider any map α : S → T . If α is a homomorphism F → G , then α̂(G) × μ(F ) is equal
to μ(F ). If α is not a homomorphism F → G , then α̂(G) × μ(F ) = 0, since F contains edges that are
not represented in α̂(G) × F . �
7. Completing the proof

Since K̃ S = ∑
F μ(F ), where F ranges over all flat S-colored graphs, and since K̃ S p = p, there

exists a flat S-colored graph F with μ(F )p 	= 0. (Here we denote the image in A of any element g
of G just by g .) We prove that f = hom(F , ·).

Choose a flat T -colored graph G . As p is a basic idempotent, μ(F )p = γ p for some real γ 	= 0. So
p is in the ideal generated by μ(F ). Hence, by (8), λS (G)p = hom(F , G)p. Then by (6) and (4):

f (p) f (G) = f (p)〈G,1T 〉 =
∑

α:S→T

〈
G, α̌(p)

〉 = ∑
α:S→T

〈
α̂(G), p

〉
= 〈

λS(G), p
〉 = f

(
λS(G)p

) = hom(F , G) f (p).

Since f (p) 	= 0, this gives f = hom(F , ·).

8. Concluding remarks

For a fixed finite set S of colors, colored graphs can be thought of as arrows G → K̃ S in the cat-
egory of graph homomorphisms. The product of two colored graphs is pullback of the corresponding
pair of maps. The setup in [1,6] can be described by reversing the arrows. This raises the possibility
that there is a common generalization in terms of categories, which is handled in [3].

The methods from [1] have been applied in extremal graph theory and elsewhere (see [2] for
a survey). Are there similar applications of the methods used in this paper?
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