
III. Disjoint paths

1. Shortest paths

Let D = (V, A) be a directed graph, and let s, t ∈ V .1 A path is a sequence P =
(v0, a1, v1, . . . , am, vm) where ai is an arc from vi−1 to vi for i = 1, . . . , m and where
v0, . . . , vm all are different. The path P is called an s − t path if v0 = s and vm = t.
The length of P is m. Here m is allowed to be 0. The distance from s to t is the minimum
length of any s − t path. (If no s − t path exists, we set the distance from s to t equal to
∞.) A shortest s − t path can easily be found by breadth-first search.

There is a trivial min-max relation characterizing the minimum length of an s− t path.
To this end, call a subset C of A an s−t cut if C = δout(U) for some subset U of V satisfying
s ∈ U and t 6∈ U .2 Throughout, disjoint means pairwise disjoint. Then the following was
observed by Robacker [8]:

Theorem 1. The minimum length of an s − t path is equal to the maximum number of
disjoint s − t cuts.

Proof. Trivially, the minimum is at least the maximum, since each s − t path intersects
each s − t cut in an arc. To see equality, let d be the distance from s to t, and let Ui be
the set of vertices at distance less than i from s, for i = 1, . . . , d. Taking Ci := δout(Ui), we
obtain disjoint s − t cuts C1, . . . , Cd.

2. Length functions

This can be generalized to the case where arcs have a certain ‘length’. Let l : A → R+,
called a length function. For any path P = (v0, a1, v1, . . . , am, vm), let l(P ) be the length of
P . That is:

(1) l(P ) :=
m

∑

i=1

l(ai).

Now the distance from s to t (with respect to l) is equal to the minimum length of any s− t
path. If no s − t path exists, the distance is ∞.

Then a weighted version of Theorem 1 is as follows:

Theorem 2. Let D = (V, A) be a directed graph, let s, t ∈ V , and let l : A → Z+. Then the
minimum length of an s− t path is equal to the maximum number k of s− t cuts C1, . . . , Ck

(repetition allowed) such that each arc a is in at most l(a) of the cuts Ci.

1A directed graph or digraph is a pair (V, A), where V is a finite set and A ⊆ V × V . The elements of A

are called the arcs of D. If a = (u, v), then u is called the tail of a and v is called the head of a.
2 δout(U) and δin(U) denote the sets of arcs leaving and entering U , respectively.
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Proof. Again, the minimum is not smaller than the maximum, since if P is any s− t path
and C1, . . . , Ck is any collection as described in the theorem:3

(2) l(P ) =
∑

a∈AP

l(a) ≥
∑

a∈AP

( number of i with a ∈ Ci) =
k

∑

i=1

|Ci ∩ AP | ≥
k

∑

i=1

1 = k.

To see equality, let d be the distance from s to t, and let Ui be the set of vertices at
distance less than i from s, for i = 1, . . . , d. Taking Ci := δout(Ui), we obtain a collection
C1, . . . , Cd as required.

3. Menger’s theorem

In this section we study the maximum number k of disjoint paths in a graph connecting
two vertices, or two sets of vertices.

Let D = (V, A) be a directed graph and let S and T be subsets of V . A path is called
an S − T path if it runs from a vertex in S to a vertex in T .

Menger [7] gave a min-max theorem for the maximum number of disjoint S − T paths.
We follow the proof given by Göring [6].

Call a set of paths vertex-disjoint if no two of them have vertices in common. (Hence
they also have no arcs in common.) A set C of vertices is called S − T disconnecting if C
intersects each S − T path (C may intersect S ∪ T ).

Theorem 3 (Menger’s theorem (directed vertex-disjoint version)). Let D = (V, A) be a
digraph and let S, T ⊆ V . Then the maximum number of vertex-disjoint S − T paths is
equal to the minimum size of an S − T disconnecting vertex set.

Proof. Obviously, the maximum does not exceed the minimum. Equality is shown by
induction on |A|, the case A = ∅ being trivial.

Let k be the minimum size of an S−T disconnecting vertex set. Choose a = (u, v) ∈ A.
Let D′ := (V, A \ {a}). If each S −T disconnecting vertex set in D′ has size at least k, then
inductively there exist k vertex-disjoint S − T paths in D′, hence in D.

So we can assume that D′ has an S−T disconnecting vertex set C of size ≤ k−1. Then
C ∪ {u} and C ∪ {v} are S − T disconnecting vertex sets of D of size k.

Now each S − (C ∪ {u}) disconnecting vertex set B of D′ has size at least k, as it is
S − T disconnecting in D. Indeed, each S − T path P in D intersects C ∪ {u}, and hence
P contains an S − (C ∪ {u}) path in D′. So P intersects B.

So by induction, D′ contains k disjoint S − (C ∪ {u}) paths. Similarly, D′ contains k
disjoint (C ∪ {v}) − T paths. Any path in the first collection intersects any path in the
second collection only in C, since otherwise D′ contains an S − T path avoiding C.

Hence, as |C| = k− 1, we can pairwise concatenate these paths to obtain disjoint S −T
paths, inserting arc a between the path ending at u and the path starting at v.

A consequence of this theorem is a variant on internally vertex-disjoint s− t paths, that

3AP denotes the set of arcs traversed by P .
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is, s − t paths no two of which have a vertex in common except for s and t. A set U of
vertices is called an s − t vertex-cut if s, t 6∈ U and each s − t path intersects U .

Corollary 3a (Menger’s theorem (directed internally vertex-disjoint version)). Let D =
(V, A) be a digraph and let s and t be two nonadjacent vertices of D. Then the maximum
number of internally vertex-disjoint s − t paths is equal to the minimum size of an s − t
vertex-cut.

Proof. Let D′ := D − s − t and let S and T be the sets of outneighbours of s and of
inneighbours of t, respectively. Then Theorem 3 applied to D′, S, T gives the corollary.

In turn, Theorem 3 follows from Corollary 3a by adding two new vertices s and t and
arcs (s, v) for all v ∈ S and (v, t) for all v ∈ T .

Also an arc-disjoint version can be derived, where paths are arc-disjoint if they have no
arc in common. Recall that a set C of arcs is an s − t cut if C = δout(U) for some subset
U of V with s ∈ U and t 6∈ U .

Corollary 3b (Menger’s theorem (directed arc-disjoint version)). Let D = (V, A) be a
digraph and let s, t ∈ V . Then the maximum number of arc-disjoint s − t paths is equal to
the minimum size of an s − t cut.

Proof. Let L(D) be the line digraph of D.4 Let S := δout
A (s) and T := δin

A (t). Then Theorem
3 for L(D), S, T implies the corollary. Note that a minimum-size set of arcs intersecting
each s − t path necessarily is an s − t cut.

The internally vertex-disjoint version of Menger’s theorem can be derived in turn from
the arc-disjoint version: make a digraph D′ as follows from D: replace any vertex v by two
vertices v′, v′′ and make an arc (v′, v′′); moreover, replace each arc (u, v) by (u′′, v′). Then
Corollary 3b for D′, s′′, t′ gives Corollary 3a for D, s, t.

Similar theorems hold for undirected graphs. They can be derived from the directed
case by replacing each undirected edge uw by two opposite arcs (u, w) and (w, u).

Exercises

3.1. Derive Kőnig’s matching theorem from Theorem 3.

3.2. Let D = (V,A) be a directed graph and let s, t1, . . . , tk be vertices of D. Prove that there
exist arc-disjoint paths P1, . . . , Pk such that Pi is an s − ti path (i = 1, . . . , k) if and only if
for each U ⊆ V with s ∈ U one has

(3) |δout(U)| ≥ |{i | ti 6∈ U}|.

3.3. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of subsets of a finite set. Show that
A and B have a common SDR if and only if for all I, J ⊆ {1, . . . , n} one has

(4)
∣

∣

⋃

i∈I

Ai ∩
⋃

j∈J

Bj

∣

∣ ≥ |I| + |J | − n.

4The line digraph of a digraph D = (V, A) is the digraph with vertex set A and arcs set {(a, a′) | a, a′ ∈ A,
head(a) =tail(a′)}.
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4. Flows in networks

Other consequences of Menger’s theorem concern ‘flows in networks’. Let D = (V, A) be a
directed graph and let s, t ∈ V . A function f : A → R is called an s − t flow if:5

(5) (i) f(a) ≥ 0 for each a ∈ A;

(ii)
∑

a∈δin(v)

f(a) =
∑

a∈δout(v)

f(a) for each v ∈ V \ {s, t}.

Condition (5)(ii) is called the flow conservation law : the amount of flow entering a vertex
v 6= s, t should be equal to the amount of flow leaving v.

The value of an s − t flow f is, by definition:

(6) value(f) :=
∑

a∈δout(s)

f(a) −
∑

a∈δin(s)

f(a).

So the value is the net amount of flow leaving s. It can be shown that it is equal to the net
amount of flow entering t.

Let c : A → R+, called a capacity function. We say that a flow f is under c (or subject
to c) if

(7) f(a) ≤ c(a) for each a ∈ A;

that is, if f ≤ c. The maximum flow problem now is to find an s − t flow under c, of
maximum value.

To formulate a min-max relation, define the capacity of a cut δout(U) by:

(8) c(δout(U)) :=
∑

a∈δout(U)

c(a).

Then:

Proposition 1. For every s − t flow f under c and every s − t cut δout(U) one has:

(9) value(f) ≤ c(δout(U)).

Proof.

(10) value(f) =
∑

a∈δout(s)

f(a) −
∑

a∈δin(s)

f(a)

=
∑

a∈δout(s)

f(a) −
∑

a∈δin(s)

f(a) +
∑

v∈U\{s}

(
∑

a∈δout(v)

f(a) −
∑

a∈δin(v)

f(a))

5 δout(v) and δin(v) denote the sets of arcs leaving v and entering v, respectively.
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=
∑

v∈U

(
∑

a∈δout(v)

f(a) −
∑

a∈δin(v)

f(a)) =
∑

a∈δout(U)

f(a) −
∑

a∈δin(U)

f(a)

⋆
≤

∑

a∈δout(U)

f(a)
⋆⋆
≤

∑

a∈δout(U)

c(a) = c(δout(U)).

It is convenient to note the following:

(11) equality holds in (9) ⇐⇒ ∀a ∈ δin(U) : f(a) = 0 and
∀a ∈ δout(U) : f(a) = c(a).

This follows directly from the inequalities ⋆ and ⋆⋆ in (10).
Now from Menger’s theorem one can derive that equality can be attained in (9), which

is a theorem of Ford and Fulkerson [4]:

Theorem 4 (max-flow min-cut theorem). For any directed graph D = (V, A), s, t ∈ V , and
c : A → R+, the maximum value of an s− t flow under c is equal to the minimum capacity
of an s − t cut. In formula:

(12) max
f s − t-flow

f≤c

value(f) = min
δout(U) s − t-cut

c(δout(U)).

Proof. If c is integer-valued, the corollary follows from Menger’s theorem by replacing each
arc a by c(a) parallel arcs. If c is rational-valued, there exists a natural number N such
that Nc(a) is integer for each a ∈ A. This resetting multiplies both the maximum and the
minimum by N . So the equality follows from the case where c is integer-valued.

If c is real-valued, we can derive the corollary from the case where c is rational-valued,
by continuity and compactness arguments, as follows. Suppose that

(13) max
f s − t flow

f≤c

value(f) < min
δout(U) s − t cut

c(δout(U)).

(The maximum exists, as the set of s − t flows f with f ≤ c is compact.)
Then we can choose a rational-valued c′ ≤ c close enough to c such that

(14) max
f s − t flow

f≤c

value(f) < min
δout(U) s − t cut

c′(δout(U)).

So

(15) max
f s − t flow

f≤c′

value(f) ≤ max
f s − t flow

f≤c

value(f) < min
δout(U) s − t cut

c′(δout(U)).

This contradicts the above, as c′ is rational.
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Moreover, one has (Dantzig [1]):

Corollary 4a (Integrity theorem). If c is integer-valued, there exists an integer-valued
maximum-value flow f ≤ c.

Proof. Directly from Menger’s theorem.

Exercises

4.1. Let D = (V,A) be a directed graph and let s, t ∈ V . Let f : A → R+ be an s−t flow of value β.
Show that there exists an s−t flow f ′ : A → Z+ of value ⌈β⌉ such that ⌊f(a)⌋ ≤ f ′(a) ≤ ⌈f(a)⌉
for each arc a.

5. Finding a maximum flow

Let D = (V, A) be a directed graph, let s, t ∈ V , and let c : A → Q+ be a ‘capacity’
function. We now describe the algorithm of Ford and Fulkerson [4] to find an s − t flow of
maximum value under c.

By flow we will mean an s − t flow under c, and by cut an s − t cut. A maximum flow
is a flow of maximum value.

We now describe the algorithm of Ford and Fulkerson [5] to determine a maximum flow.
We assume that c(a) > 0 for each arc a. First we give an important subroutine:

Flow augmenting algorithm

input: a flow f .
output: either (i) a flow f ′ with value(f ′) > value(f),

or (ii) a cut δout(U) with c(δout(U)) = value(f).
description of the algorithm: For any pair a = (v, w) define a−1 := (w, v). Make an
auxiliary graph Df = (V, Af ) by the following rule: for any arc a ∈ A,

(16) if f(a) < c(a) then a ∈ Af ,
if f(a) > 0 then a−1 ∈ Af .

So if 0 < f(a) < c(a) then both a and a−1 are arcs of Af .
Now there are two possibilities:

(17) Case 1: There exists an s − t path in Df .
Case 2: There is no s − t path in Df .

Case 1: There exists an s − t path P = (v0, a1, v1, . . . , ak, vk) in Df = (V, Af ).
So v0 = s and vk = t. As a1, . . . , ak belong to Af , we know by (16) that for each i = 1, . . . , k:

(18) either (i) ai ∈ A and σi := c(ai) − f(ai) > 0

or (ii) a−1
i ∈ A and σi := f(a−1

i ) > 0.
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Define α := min{σ1, . . . , σk}. So α > 0. Let f ′ : A → R+ be defined by, for a ∈ A:

(19) f ′(a) :=











f(a) + α if a = ai for some i = 1, . . . , k;

f(a) − α if a = a−1
i for some i = 1, . . . , k;

f(a) for all other a.

Then f ′ again is an s− t flow under c. The inequalities 0 ≤ f ′(a) ≤ c(a) hold because of
our choice of α. It is easy to check that also the flow conservation law (5)(ii) is maintained.

Moreover,

(20) value(f ′) = value(f) + α,

since either (v0, v1) ∈ A, in which case the outgoing flow in s is increased by α, or (v1, v0) ∈
A, in which case the ingoing flow in s is decreased by α.

Path P is called a flow augmenting path.

Case 2: There is no s − t path in Df = (V, Af ).
Now define:

(21) U := {u ∈ V | there exists a path in Df from s to u}.

Then s ∈ U while t 6∈ U , and so δout(U) is an s − t cut.
By definition of U , if u ∈ U and v 6∈ U , then (u, v) 6∈ Af (as otherwise also v would

belong to U). Therefore:

(22) if (u, v) ∈ δout(U), then (u, v) 6∈ Af , and so (by (16)): f(u, v) = c(u, v),
if (u, v) ∈ δin(U), then (v, u) 6∈ Af , and so (by (16)): f(u, v) = 0.

Then (11) gives:

(23) c(δout(U)) = value(f).

This finishes the description of the flow augmenting algorithm. The description of the
(Ford-Fulkerson) maximum flow algorithm is now simple:

Maximum flow algorithm

input: directed graph D = (V, A), s, t ∈ V, c : A → R+.
output: a maximum flow f and a cut δout(U) of minimum capacity, with value(f) =
c(δout(U)).
description of the algorithm: Let f0 be the ‘null flow’ (that is, f0(a) = 0 for each arc
a). Determine with the flow augmenting algorithm flows f1, f2, . . . , fN such that fi+1 = f ′

i ,
until, in the Nth iteration, say, we obtain output (ii) of the flow augmenting algorithm.
Then we have flow fN and a cut δout(U) with the given properties.
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We show that the algorithm terminates, provided that all capacities are rational.

Theorem 5. If all capacities c(a) are rational, the algorithm terminates.

Proof. If all capacities are rational, there exists a natural number K so that Kc(a) is an
integer for each a ∈ A. (We can take for K the l.c.m. of the denominators of the c(a).)

Then in the flow augmenting iterations, every flow fi(a) and every α is a multiple of
1/K. So at each iteration, the flow value increases by at least 1/K. Since the flow value
cannot exceed c(δout(s)), we can have only finitely many iterations.

We note here that this theorem is not true if we allow general real-valued capacities.
On the other hand, it was shown by Dinits [2] and Edmonds and Karp [3] that if we
choose always a shortest path as flow augmenting path, then the algorithm has polynomially
bounded running time (also in the case of irrational capacities).

Note that the algorithm also implies the max-flow min-cut theorem (Theorem 4). Note
moreover that in the maximum flow algorithm, if all capacities are integer, then the maxi-
mum flow found will also be integer-valued. So it also implies the integrity theorem (Corol-
lary 4a).

Exercises

5.1. Determine with the maximum flow algorithm an s − t flow of maximum value and an s − t
cut of minimum capacity in the following graphs (where the numbers at the arcs give the
capacities):

(i)

1 11

5

2

5

1

2

4

2

7

4

10 12

2 2s t

2

(ii)

12

7
3

4
1 1

3

1

9

1
11

2

1

3 2

352

2

7

5

s t
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(iii) s t

3
3

6 9

8

4

5

4

4

1

52

7

1

2

6

(iv) s t

2
2

4

4

5

2
2

10 4

12

1

5 7

6

2

3

3

5.2. Describe the problem of finding a maximum-size matching in a bipartite graph as a maximum
integer flow problem.

5.3. Let D = (V,A) be a directed graph, let s, t ∈ V and let f : A → Q+ be an s − t flow of value
b. Show that for each U ⊆ V with s ∈ U, t 6∈ U one has:

(24)
∑

a∈δout(U)

f(a) −
∑

a∈δin(U)

f(a) = b.
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