III. Disjoint paths

1. Shortest paths

Let $D=(V, A)$ be a directed graph, and let $s, t \in V .1$ A path is a sequence $P=$ $\left(v_{0}, a_{1}, v_{1}, \ldots, a_{m}, v_{m}\right)$ where a_{i} is an arc from v_{i-1} to v_{i} for $i=1, \ldots, m$ and where v_{0}, \ldots, v_{m} all are different. The path P is called an $s-t$ path if $v_{0}=s$ and $v_{m}=t$. The length of P is m. Here m is allowed to be 0 . The distance from s to t is the minimum length of any $s-t$ path. (If no $s-t$ path exists, we set the distance from s to t equal to ∞.) A shortest $s-t$ path can easily be found by breadth-first search.

There is a trivial min-max relation characterizing the minimum length of an $s-t$ path. To this end, call a subset C of A an $s-t$ cut if $C=\delta^{\text {out }}(U)$ for some subset U of V satisfying $s \in U$ and $t \notin U .2$ Throughout, disjoint means pairwise disjoint. Then the following was observed by Robacker [8]:

Theorem 1. The minimum length of an $s-t$ path is equal to the maximum number of disjoint $s-t$ cuts.

Proof. Trivially, the minimum is at least the maximum, since each $s-t$ path intersects each $s-t$ cut in an arc. To see equality, let d be the distance from s to t, and let U_{i} be the set of vertices at distance less than i from s, for $i=1, \ldots, d$. Taking $C_{i}:=\delta^{\text {out }}\left(U_{i}\right)$, we obtain disjoint $s-t$ cuts C_{1}, \ldots, C_{d}.

2. Length functions

This can be generalized to the case where arcs have a certain 'length'. Let $l: A \rightarrow \mathbb{R}_{+}$, called a length function. For any path $P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{m}, v_{m}\right)$, let $l(P)$ be the length of P. That is:

$$
\begin{equation*}
l(P):=\sum_{i=1}^{m} l\left(a_{i}\right) . \tag{1}
\end{equation*}
$$

Now the distance from s to (with respect to l) is equal to the minimum length of any $s-t$ path. If no $s-t$ path exists, the distance is ∞.

Then a weighted version of Theorem 1 is as follows:
Theorem 2. Let $D=(V, A)$ be a directed graph, let $s, t \in V$, and let $l: A \rightarrow \mathbb{Z}_{+}$. Then the minimum length of an $s-t$ path is equal to the maximum number k of $s-t$ cuts C_{1}, \ldots, C_{k} (repetition allowed) such that each arc a is in at most l(a) of the cuts C_{i}.

[^0]Proof. Again, the minimum is not smaller than the maximum, since if P is any $s-t$ path and C_{1}, \ldots, C_{k} is any collection as described in the theorem: 3^{3}

$$
\begin{equation*}
l(P)=\sum_{a \in A P} l(a) \geq \sum_{a \in A P}\left(\text { number of } i \text { with } a \in C_{i}\right)=\sum_{i=1}^{k}\left|C_{i} \cap A P\right| \geq \sum_{i=1}^{k} 1=k \tag{2}
\end{equation*}
$$

To see equality, let d be the distance from s to t, and let U_{i} be the set of vertices at distance less than i from s, for $i=1, \ldots, d$. Taking $C_{i}:=\delta^{\text {out }}\left(U_{i}\right)$, we obtain a collection C_{1}, \ldots, C_{d} as required.

3. Menger's theorem

In this section we study the maximum number k of disjoint paths in a graph connecting two vertices, or two sets of vertices.

Let $D=(V, A)$ be a directed graph and let S and T be subsets of V. A path is called an $S-T$ path if it runs from a vertex in S to a vertex in T.

Menger [7] gave a min-max theorem for the maximum number of disjoint $S-T$ paths. We follow the proof given by Göring [6].

Call a set of paths vertex-disjoint if no two of them have vertices in common. (Hence they also have no arcs in common.) A set C of vertices is called $S-T$ disconnecting if C intersects each $S-T$ path (C may intersect $S \cup T$).

Theorem 3 (Menger's theorem (directed vertex-disjoint version)). Let $D=(V, A)$ be a digraph and let $S, T \subseteq V$. Then the maximum number of vertex-disjoint $S-T$ paths is equal to the minimum size of an $S-T$ disconnecting vertex set.

Proof. Obviously, the maximum does not exceed the minimum. Equality is shown by induction on $|A|$, the case $A=\emptyset$ being trivial.

Let k be the minimum size of an $S-T$ disconnecting vertex set. Choose $a=(u, v) \in A$. Let $D^{\prime}:=(V, A \backslash\{a\})$. If each $S-T$ disconnecting vertex set in D^{\prime} has size at least k, then inductively there exist k vertex-disjoint $S-T$ paths in D^{\prime}, hence in D.

So we can assume that D^{\prime} has an $S-T$ disconnecting vertex set C of size $\leq k-1$. Then $C \cup\{u\}$ and $C \cup\{v\}$ are $S-T$ disconnecting vertex sets of D of size k.

Now each $S-(C \cup\{u\})$ disconnecting vertex set B of D^{\prime} has size at least k, as it is $S-T$ disconnecting in D. Indeed, each $S-T$ path P in D intersects $C \cup\{u\}$, and hence P contains an $S-(C \cup\{u\})$ path in D^{\prime}. So P intersects B.

So by induction, D^{\prime} contains k disjoint $S-(C \cup\{u\})$ paths. Similarly, D^{\prime} contains k disjoint $(C \cup\{v\})-T$ paths. Any path in the first collection intersects any path in the second collection only in C, since otherwise D^{\prime} contains an $S-T$ path avoiding C.

Hence, as $|C|=k-1$, we can pairwise concatenate these paths to obtain disjoint $S-T$ paths, inserting arc a between the path ending at u and the path starting at v.

A consequence of this theorem is a variant on internally vertex-disjoint $s-t$ paths, that

[^1]is, $s-t$ paths no two of which have a vertex in common except for s and t. A set U of vertices is called an $s-t$ vertex-cut if $s, t \notin U$ and each $s-t$ path intersects U.

Corollary 3a (Menger's theorem (directed internally vertex-disjoint version)). Let $D=$ (V, A) be a digraph and let s and t be two nonadjacent vertices of D. Then the maximum number of internally vertex-disjoint $s-t$ paths is equal to the minimum size of an $s-t$ vertex-cut.

Proof. Let $D^{\prime}:=D-s-t$ and let S and T be the sets of outneighbours of s and of inneighbours of t, respectively. Then Theorem 3 applied to D^{\prime}, S, T gives the corollary.

In turn, Theorem 3 follows from Corollary 3a by adding two new vertices s and t and $\operatorname{arcs}(s, v)$ for all $v \in S$ and (v, t) for all $v \in T$.

Also an arc-disjoint version can be derived, where paths are arc-disjoint if they have no arc in common. Recall that a set C of arcs is an $s-t c u t$ if $C=\delta^{\text {out }}(U)$ for some subset U of V with $s \in U$ and $t \notin U$.

Corollary 3b (Menger's theorem (directed arc-disjoint version)). Let $D=(V, A)$ be a digraph and let $s, t \in V$. Then the maximum number of arc-disjoint $s-t$ paths is equal to the minimum size of an $s-t$ cut.
Proof. Let $L(D)$ be the line digraph of $D \sqrt{4}$ Let $S:=\delta_{A}^{\text {out }}(s)$ and $T:=\delta_{A}^{\text {in }}(t)$. Then Theorem 3 for $L(D), S, T$ implies the corollary. Note that a minimum-size set of arcs intersecting each $s-t$ path necessarily is an $s-t$ cut.

The internally vertex-disjoint version of Menger's theorem can be derived in turn from the arc-disjoint version: make a digraph D^{\prime} as follows from D : replace any vertex v by two vertices $v^{\prime}, v^{\prime \prime}$ and make an $\operatorname{arc}\left(v^{\prime}, v^{\prime \prime}\right)$; moreover, replace each $\operatorname{arc}(u, v)$ by $\left(u^{\prime \prime}, v^{\prime}\right)$. Then Corollary 3b for $D^{\prime}, s^{\prime \prime}, t^{\prime}$ gives Corollary 3a for D, s, t.

Similar theorems hold for undirected graphs. They can be derived from the directed case by replacing each undirected edge $u w$ by two opposite $\operatorname{arcs}(u, w)$ and (w, u).

Exercises

3.1. Derive Kőnig's matching theorem from Theorem 3.
3.2. Let $D=(V, A)$ be a directed graph and let s, t_{1}, \ldots, t_{k} be vertices of D. Prove that there exist arc-disjoint paths P_{1}, \ldots, P_{k} such that P_{i} is an $s-t_{i}$ path $(i=1, \ldots, k)$ if and only if for each $U \subseteq V$ with $s \in U$ one has

$$
\begin{equation*}
\left|\delta^{\text {out }}(U)\right| \geq\left|\left\{i \mid t_{i} \notin U\right\}\right| . \tag{3}
\end{equation*}
$$

3.3. Let $\mathcal{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\mathcal{B}=\left(B_{1}, \ldots, B_{n}\right)$ be families of subsets of a finite set. Show that \mathcal{A} and \mathcal{B} have a common SDR if and only if for all $I, J \subseteq\{1, \ldots, n\}$ one has

$$
\begin{equation*}
\left|\bigcup_{i \in I} A_{i} \cap \bigcup_{j \in J} B_{j}\right| \geq|I|+|J|-n . \tag{4}
\end{equation*}
$$

[^2]
4. Flows in networks

Other consequences of Menger's theorem concern 'flows in networks'. Let $D=(V, A)$ be a directed graph and let $s, t \in V$. A function $f: A \rightarrow \mathbb{R}$ is called an $s-t$ flow if: ${ }^{5}$

$$
\begin{array}{rlrl}
\text { (i) } & f(a) & \geq 0 & \text { for each } a \in A ; \tag{5}\\
\text { (ii) } & \sum_{a \in \delta^{\operatorname{in}}(v)} f(a) & =\sum_{a \in \delta^{\text {out }}(v)} f(a) & \\
\text { for each } v \in V \backslash\{s, t\} .
\end{array}
$$

Condition (5)(ii) is called the flow conservation law: the amount of flow entering a vertex $v \neq s, t$ should be equal to the amount of flow leaving v.

The value of an $s-t$ flow f is, by definition:

$$
\begin{equation*}
\operatorname{value}(f):=\sum_{a \in \delta^{\mathrm{out}}(s)} f(a)-\sum_{a \in \delta^{\mathrm{in}}(s)} f(a) . \tag{6}
\end{equation*}
$$

So the value is the net amount of flow leaving s. It can be shown that it is equal to the net amount of flow entering t.

Let $c: A \rightarrow \mathbb{R}_{+}$, called a capacity function. We say that a flow f is under c (or subject to c) if

$$
\begin{equation*}
f(a) \leq c(a) \text { for each } a \in A ; \tag{7}
\end{equation*}
$$

that is, if $f \leq c$. The maximum flow problem now is to find an $s-t$ flow under c, of maximum value.

To formulate a min-max relation, define the capacity of a cut $\delta^{\text {out }}(U)$ by:

$$
\begin{equation*}
c\left(\delta^{\mathrm{out}}(U)\right):=\sum_{a \in \delta^{\text {out }}(U)} c(a) . \tag{8}
\end{equation*}
$$

Then:
Proposition 1. For every $s-t$ flow f under c and every $s-t$ cut $\delta^{\text {out }}(U)$ one has:

$$
\begin{equation*}
\operatorname{value}(f) \leq c\left(\delta^{\mathrm{out}}(U)\right) \tag{9}
\end{equation*}
$$

Proof.

$$
\begin{align*}
& \text { value }(f)=\sum_{a \in \delta^{\text {out }}(s)} f(a)-\sum_{a \in \delta^{\text {in }}(s)} f(a) \tag{10}\\
& =\sum_{a \in \delta^{\text {out }}(s)} f(a)-\sum_{a \in \delta^{\sin }(s)} f(a)+\sum_{v \in U \backslash\{s\}}\left(\sum_{a \in \delta^{\text {out }}(v)} f(a)-\sum_{a \in \delta^{\text {in }}(v)} f(a)\right)
\end{align*}
$$

[^3]\[

$$
\begin{aligned}
& =\sum_{v \in U}\left(\sum_{a \in \delta^{\text {out }}(v)} f(a)-\sum_{a \in \delta^{\text {in }}(v)} f(a)\right)=\sum_{a \in \delta^{\text {out }}(U)} f(a)-\sum_{a \in \delta^{\text {in }}(U)} f(a) \\
& \stackrel{\star}{\leq} \sum_{a \in \delta^{\text {out }}(U)} f(a) \stackrel{\star \star}{\leq} \sum_{a \in \delta^{\text {out }}(U)} c(a)=c\left(\delta^{\text {out }}(U)\right) .
\end{aligned}
$$
\]

It is convenient to note the following:

$$
\begin{align*}
\text { equality holds in }(9) \Longleftrightarrow & \forall a \in \delta^{\mathrm{in}}(U): f(a)=0 \text { and } \tag{11}\\
& \forall a \in \delta^{\text {out }}(U): f(a)=c(a) .
\end{align*}
$$

This follows directly from the inequalities \star and $\star \star$ in (10).
Now from Menger's theorem one can derive that equality can be attained in (9), which is a theorem of Ford and Fulkerson [4]:

Theorem 4 (max-flow min-cut theorem). For any directed graph $D=(V, A), s, t \in V$, and $c: A \rightarrow \mathbb{R}_{+}$, the maximum value of an $s-t$ flow under c is equal to the minimum capacity of an $s-t$ cut. In formula:

$$
\begin{equation*}
\max _{\substack{f-t \text {-fow } \\ f \leq c}} \operatorname{value}(f)=\min _{\delta^{\text {out }}(U) s-t \text {-cut }} c\left(\delta^{\text {out }}(U)\right) \tag{12}
\end{equation*}
$$

Proof. If c is integer-valued, the corollary follows from Menger's theorem by replacing each arc a by $c(a)$ parallel arcs. If c is rational-valued, there exists a natural number N such that $N c(a)$ is integer for each $a \in A$. This resetting multiplies both the maximum and the minimum by N. So the equality follows from the case where c is integer-valued.

If c is real-valued, we can derive the corollary from the case where c is rational-valued, by continuity and compactness arguments, as follows. Suppose that

$$
\begin{equation*}
\max _{\substack{f-t \text { flow } \\ f \leq c}} \operatorname{value}(f)<\min _{\delta^{\text {out }}(U) s-t \text { cut }} c\left(\delta^{\text {out }}(U)\right) \tag{13}
\end{equation*}
$$

(The maximum exists, as the set of $s-t$ flows f with $f \leq c$ is compact.)
Then we can choose a rational-valued $c^{\prime} \leq c$ close enough to c such that

$$
\begin{equation*}
\max _{\substack{f s-t \text { flow } \\ f \leq c}} \operatorname{value}(f)<\min _{\delta^{\text {out }}(U) s-t \text { cut }} c^{\prime}\left(\delta^{\text {out }}(U)\right) \tag{14}
\end{equation*}
$$

So

$$
\begin{equation*}
\max _{\substack{s-t \text { flow } \\ f \leq c^{\prime}}} \operatorname{value}(f) \leq \max _{\substack{s-t \text { flow } \\ f \leq c c}} \operatorname{value}(f)<\min _{\delta^{\text {out }}(U) s-t \text { cut }} c^{\prime}\left(\delta^{\text {out }}(U)\right) \tag{15}
\end{equation*}
$$

This contradicts the above, as c^{\prime} is rational.

Moreover, one has (Dantzig [1]):
Corollary 4a (Integrity theorem). If c is integer-valued, there exists an integer-valued maximum-value flow $f \leq c$.

Proof. Directly from Menger's theorem.

Exercises

4.1. Let $D=(V, A)$ be a directed graph and let $s, t \in V$. Let $f: A \rightarrow \mathbb{R}_{+}$be an $s-t$ flow of value β. Show that there exists an $s-t$ flow $f^{\prime}: A \rightarrow \mathbb{Z}_{+}$of value $\lceil\beta\rceil$ such that $\lfloor f(a)\rfloor \leq f^{\prime}(a) \leq\lceil f(a)\rceil$ for each arc a.

5. Finding a maximum flow

Let $D=(V, A)$ be a directed graph, let $s, t \in V$, and let $c: A \rightarrow \mathbb{Q}_{+}$be a 'capacity' function. We now describe the algorithm of Ford and Fulkerson [4] to find an $s-t$ flow of maximum value under c.

By flow we will mean an $s-t$ flow under c, and by cut an $s-t$ cut. A maximum flow is a flow of maximum value.

We now describe the algorithm of Ford and Fulkerson [5] to determine a maximum flow. We assume that $c(a)>0$ for each arc a. First we give an important subroutine:

Flow augmenting algorithm

input: a flow f.
output: either (i) a flow f^{\prime} with value $\left(f^{\prime}\right)>\operatorname{value}(f)$,
or (ii) a cut $\delta^{\text {out }}(U)$ with $c\left(\delta^{\text {out }}(U)\right)=\operatorname{value}(f)$.
description of the algorithm: For any pair $a=(v, w)$ define $a^{-1}:=(w, v)$. Make an auxiliary graph $D_{f}=\left(V, A_{f}\right)$ by the following rule: for any arc $a \in A$,

$$
\begin{align*}
& \text { if } f(a)<c(a) \text { then } a \in A_{f}, \tag{16}\\
& \text { if } f(a)>0 \text { then } a^{-1} \in A_{f} .
\end{align*}
$$

So if $0<f(a)<c(a)$ then both a and a^{-1} are arcs of A_{f}.
Now there are two possibilities:
(17) Case 1: There exists an $s-t$ path in D_{f}.

Case 2: There is no $s-t$ path in D_{f}.

Case 1: There exists an $s-t$ path $P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$ in $D_{f}=\left(V, A_{f}\right)$.
So $v_{0}=s$ and $v_{k}=t$. As a_{1}, \ldots, a_{k} belong to A_{f}, we know by (16) that for each $i=1, \ldots, k$:
either (i) $\quad a_{i} \in A$ and $\sigma_{i}:=c\left(a_{i}\right)-f\left(a_{i}\right)>0$
or (ii) $\quad a_{i}^{-1} \in A$ and $\sigma_{i}:=f\left(a_{i}^{-1}\right)>0$.

Define $\alpha:=\min \left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$. So $\alpha>0$. Let $f^{\prime}: A \rightarrow \mathbb{R}_{+}$be defined by, for $a \in A$:

$$
f^{\prime}(a):= \begin{cases}f(a)+\alpha & \text { if } a=a_{i} \text { for some } i=1, \ldots, k \tag{19}\\ f(a)-\alpha & \text { if } a=a_{i}^{-1} \text { for some } i=1, \ldots, k \\ f(a) & \text { for all other } a\end{cases}
$$

Then f^{\prime} again is an $s-t$ flow under c. The inequalities $0 \leq f^{\prime}(a) \leq c(a)$ hold because of our choice of α. It is easy to check that also the flow conservation law (5)(ii) is maintained.

Moreover,

$$
\begin{equation*}
\operatorname{value}\left(f^{\prime}\right)=\operatorname{value}(f)+\alpha \tag{20}
\end{equation*}
$$

since either $\left(v_{0}, v_{1}\right) \in A$, in which case the outgoing flow in s is increased by α, or $\left(v_{1}, v_{0}\right) \in$ A, in which case the ingoing flow in s is decreased by α.

Path P is called a flow augmenting path.
Case 2: There is no $s-t$ path in $D_{f}=\left(V, A_{f}\right)$.
Now define:

$$
\begin{equation*}
U:=\left\{u \in V \mid \text { there exists a path in } D_{f} \text { from } s \text { to } u\right\} . \tag{21}
\end{equation*}
$$

Then $s \in U$ while $t \notin U$, and so $\delta^{\text {out }}(U)$ is an $s-t$ cut.
By definition of U, if $u \in U$ and $v \notin U$, then $(u, v) \notin A_{f}$ (as otherwise also v would belong to U). Therefore:

$$
\begin{align*}
& \text { if }(u, v) \in \delta^{\text {out }}(U) \text {, then }(u, v) \notin A_{f} \text {, and so (by (16)): } f(u, v)=c(u, v) \text {, } \tag{22}\\
& \text { if }(u, v) \in \delta^{\text {in }}(U) \text {, then }(v, u) \notin A_{f} \text {, and so (by (16)): } f(u, v)=0 \text {. }
\end{align*}
$$

Then (11) gives:

$$
\begin{equation*}
c\left(\delta^{\text {out }}(U)\right)=\operatorname{value}(f) . \tag{23}
\end{equation*}
$$

This finishes the description of the flow augmenting algorithm. The description of the (Ford-Fulkerson) maximum flow algorithm is now simple:

Maximum flow algorithm

input: directed graph $D=(V, A), s, t \in V, c: A \rightarrow \mathbb{R}_{+}$.
output: a maximum flow f and a cut $\delta^{\text {out }}(U)$ of minimum capacity, with value $(f)=$ $c\left(\delta^{\text {out }}(U)\right)$.
description of the algorithm: Let f_{0} be the 'null flow' (that is, $f_{0}(a)=0$ for each arc $a)$. Determine with the flow augmenting algorithm flows $f_{1}, f_{2}, \ldots, f_{N}$ such that $f_{i+1}=f_{i}^{\prime}$, until, in the N th iteration, say, we obtain output (ii) of the flow augmenting algorithm. Then we have flow f_{N} and a cut $\delta^{\text {out }}(U)$ with the given properties.

We show that the algorithm terminates, provided that all capacities are rational.
Theorem 5. If all capacities $c(a)$ are rational, the algorithm terminates.
Proof. If all capacities are rational, there exists a natural number K so that $K c(a)$ is an integer for each $a \in A$. (We can take for K the l.c.m. of the denominators of the $c(a)$.)

Then in the flow augmenting iterations, every flow $f_{i}(a)$ and every α is a multiple of $1 / K$. So at each iteration, the flow value increases by at least $1 / K$. Since the flow value cannot exceed $c\left(\delta^{\text {out }}(s)\right)$, we can have only finitely many iterations.

We note here that this theorem is not true if we allow general real-valued capacities. On the other hand, it was shown by Dinits [2] and Edmonds and Karp [3] that if we choose always a shortest path as flow augmenting path, then the algorithm has polynomially bounded running time (also in the case of irrational capacities).

Note that the algorithm also implies the max-flow min-cut theorem (Theorem 4). Note moreover that in the maximum flow algorithm, if all capacities are integer, then the maximum flow found will also be integer-valued. So it also implies the integrity theorem (Corollary 4a).

Exercises

5.1. Determine with the maximum flow algorithm an $s-t$ flow of maximum value and an $s-t$ cut of minimum capacity in the following graphs (where the numbers at the arcs give the capacities):

5.2. Describe the problem of finding a maximum-size matching in a bipartite graph as a maximum integer flow problem.
5.3. Let $D=(V, A)$ be a directed graph, let $s, t \in V$ and let $f: A \rightarrow \mathbb{Q}_{+}$be an $s-t$ flow of value b. Show that for each $U \subseteq V$ with $s \in U, t \notin U$ one has:

$$
\begin{equation*}
\sum_{a \in \delta^{\operatorname{out}_{(U)}}} f(a)-\sum_{a \in \delta^{\sin }(U)} f(a)=b . \tag{24}
\end{equation*}
$$

References

[1] G.B. Dantzig, Application of the simplex method to a transportation problem, in: Activity Analysis of Production and Allocation - Proceedings of a Conference (Proceedings Conference on Linear Programming, Chicago, Illinois, 1949; Tj.C. Koopmans, ed.), Wiley, New York, 1951, pp. 359-373.
[2] E.A. Dinits, Algoritm resheniya zadachi o maksimal'nom potoke v seti so stepennŏ̆ otsenkŏ̆ [Russian], Doklady Akademii Nauk SSSR 194 (1970) 754-757 [English translation: Algorithm for solution of a problem of maximum flow in a network with power estimation Soviet Mathematics Doklady 11 (1970) 1277-1280].
[3] J. Edmonds, R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, Journal of the Association for Computing Machinery 19 (1972) 248-264.
[4] L.R. Ford, Jr, D.R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics 8 (1956) 399-404.
[5] L.R. Ford, Jr, D.R. Fulkerson, A simple algorithm for finding maximal network flows and an application to the Hitchcock problem, Canadian Journal of Mathematics 9 (1957) 210-218.
[6] F. Göring, Short proof of Menger's theorem, Discrete Mathematics 219 (2000) 295-296.
[7] K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10 (1927) 96-115.
[8] J.T. Robacker, Min-Max Theorems on Shortest Chains and Disjoint Cuts of a Network, Research Memorandum RM-1660, The RAND Corporation, Santa Monica, California, [12 January] 1956.

[^0]: ${ }^{1} \mathrm{~A}$ directed graph or digraph is a pair (V, A), where V is a finite set and $A \subseteq V \times V$. The elements of A are called the arcs of D. If $a=(u, v)$, then u is called the tail of a and v is called the head of a.
 ${ }^{2} \delta^{\text {out }}(U)$ and $\delta^{\text {in }}(U)$ denote the sets of arcs leaving and entering U, respectively.

[^1]: ${ }^{3} A P$ denotes the set of arcs traversed by P.

[^2]: ${ }^{4}$ The line digraph of a digraph $D=(V, A)$ is the digraph with vertex set A and $\operatorname{arcs} \operatorname{set}\left\{\left(a, a^{\prime}\right) \mid a, a^{\prime} \in A\right.$, $\left.\operatorname{head}(a)=\operatorname{tail}\left(a^{\prime}\right)\right\}$.

[^3]: ${ }^{5} \delta^{\text {out }}(v)$ and $\delta^{\text {in }}(v)$ denote the sets of arcs leaving v and entering v, respectively.

