V. Szemerédi’s regularity lemma

1. Preliminaries

The ‘regularity lemma’ of Endre Szemerédi [5] roughly asserts that, for each € > 0, there
exists a number k such that the vertex set V' of any graph G = (V, F) can be partitioned
into at most k almost equal-sized classes so that between almost any two classes, the edges
are distributed almost homogeneously. Here almost depends on €. We will make this precise
and prove it in Section[2. First, some ‘e-free’ preliminaries.

Let G = (V, E) be a graph. For nonempty A, B C V, define

(1) e(A, B) := number of adjacent pairs in A x B,
e(4, B) e(4, B)?
d(A,B):= ———= and ¢(A,B):= —1——.
W)= Tam BT

Moreover, if P and Q are collections of nonempty sets, define
(2) (P, Q) := Z c(X,Y) and ¢(P):=c(P,P).
XeP,YeQ

A partition of a set X is a collection of pairwise disjoint nonempty sets with union X.
Observe that, if Ai,..., Ay, a1,...,0p € Rwith Ay +---4+ X, =1l and a := > | \jay, then

n n
(3) Z Na? = o + Z i — a)?.
i=1 i=1
This implies that, if P and Q are partitions of the nonempty sets A and B respectively,

(4) c(P,Q)=c(A,B) + Z [ X|Y](d(X,Y) — d(A, B))2
XeP,YeQ

Indeed, for X € P and Y € Q, define A\xy := |X||Y]|/|A||B| and axy := d(X,Y).
Then > vy Axy = 1 and d(A,B) = >} xy Axyd(X,Y) (as e(4,B) = Y xye(X,Y)).
Appropriate substitution in (3) and multiplying both sides by |A||B| gives (4).

Equality (4) implies ¢(P, Q) > ¢(A, B), which in turn implies the following. Call a
partition P’ of a set A a refinement of partition P of A if each set in P’ is contained in
some set in P. Then, if P’ and Q' are refinements of P and Q respectively,

(5) (P, Q) = (P, Q).

2. Szemerédi’s regularity lemma

Let ¢ > 0 and let V be any set. Call a partition P of V' e-balanced if P contains a
subcollection C such that all sets in C have the same size and such that |V \ |JC| < ¢|V].

Lemma 1. Each partition P of V has an e-balanced refinement Q with |Q| < (14+&1)|P].



Proof. Define t := ¢|V|/|P|. Split each class of P into classes, each of size [t], except for
at most one of size less than t. This gives Q. Then |Q| < |[P|+ [V|/t = (1 +¢&7 Y|P
Moreover, the union of the classes of Q of size less than t has size at most |P|t = ¢|V]. So
Q is e-balanced. |

Now, let € > 0 and let G = (V, E) be a graph. Call a pair (A, B) of subsets A,B C V
e-reqular if for all X C Aand Y C B:

(6) if | X| > ¢|A| and |Y| > ¢|B] then |d(X,Y) — d(A, B)| < e.
Call a partition P of V' e-regular if

(7) > lAIBl <<V

A,BeP
(A,B) e-irregular

Define f.(m) = (1+ &~ 1)md™. For n € N, f" is the n-th iterate of f-.

Theorem 1 (Szemerédi’s regularity lemma). For each e > 0 and graph G = (V, E), each
partition P of V' has an e-balanced e-regular refinement Q with |Q| < fggiﬂ (IP]).

Proof. Set Py := P. For i > 0, if P; has been set, let P;11 be an e-balanced refinement
of P; with |Piy1]| < f-(|Pi]) and with ¢(P;+1) maximal. Using (5) we know 0 < ¢(P;) <
c(T) = 2|E| < |V|? for each i, where T is the trivial partition of V into singletons. Hence
c(Pizr1) < c(P;) + &3|V|? for some i with 1 <4 < [¢7%]. Set Q := P;. So |Q| < fi(|P]) <
5[675] (IP|). As Q = P; is e-balanced, it suffices to prove that Q is e-regular.

Suppose it is not. For each e-irregular pair (4, B) € Q2 we can choose X C A and
Y C B with |X| > €|A]|, |Y] > ¢|B|, and |[d(X,Y) — d(A,B)| > e. Define partitions
Xap ={X,A\ X} of Aand Y4 p:={Y,B\Y} of B. Then (4) implies:

(8) c(Xa,p, Yap) 2 ¢(A, B) + | X||Y[(d(X,Y) — d(A, B))* > ¢(A, B) +£'|A|| B|.

Now for each fixed A € Q, all partitions X4 p and Yp 4 of A (over all B with (4, B)
e-irregular) have a common refinement R 4 with [Ra| < 2219 (as |Xa p| = | V54| = 2). Let
R = UgeoRa- So [R| < |QJ4!€l. Let S be an e-balanced refinement of R with |S| <
(14 e H|R| (exists by Lemmall). So |S| < f-(|Q]). We show that ¢(S) > ¢(Q) + £°|V|?,
and hence ¢(S) > ¢(P;i41), contradicting the maximality of ¢(Pj41).

If (A, B) € Q2 is e-irregular, then ¢(Ra, Rp) > ¢(Xap,Van) > c(A, B) +e*|A||B| (by
(5) and (8))). So, as ¢(Ra,Rp) > ¢(A, B) for any A, B € Q by (5)), we obtain as required,
using the negation of (7)),

(9) oS)ze(R)= Y c(RaRp)2c(Q) +e' Y |AB>c(Q+ VP 1

A,BeQ A,BEQ
(A,B) e-irregular

It is important to observe that the bound on |Q|, though generally huge, only depends
on ¢ and |P|, and not on the size of the graph. Gowers [1] showed that the bound necessarily
is huge (at least a tower of powers of 2’s of height proportional to e~1/16).



Exercise

2.1. Let P be an e-balanced e-regular partition of V', and let C be as above. Prove that at most
(e/(1 —£)?)|C|? pairs in C? are e-irregular.

3. A-graphs

Call a graph G = (V, E) a A-graph if each edge belongs to a unique triangle. For any n, let
7(n) be the maximum number of edges of any A-graph on n vertices.!

Theorem 2. 7(n) = o(n?).
Proof. Let ¢ > 0 with € < % Set k. := f€E_5J (1). It suffices to prove:

(10) Let G = (V, E) be a A-graph with n := |V| > k./e3. Then |E| < 12en?.

By Szemerédi’s regularity lemma, V' has an e-regular partition P with |P| < k.. Let F be
the set of edges uv for which there exists (X,Y) € P with u € X, v € Y such that (X,Y)
is e-irregular, or d(X,Y) < 2¢, or | X| < e72. We claim

(11) E\ F contains no triangles.

If not, there exist (not necessarily distinct) X1, X2, X3 € P such that (X;, X;) is e-regular
and d(X;, X;) > 2¢ for all distinct 4,7 = 1,2, 3 and such that | X3| > 72, Let U be the set of
vertices in X with at most €| X2| neighbours in X5. Then d(U, X2) < e < d(X1, X2) —¢, so,
since (X1, X2) is e-regular, |U| < eX;. So less than half of the vertices in X; have at most
€| X3| neighbours in Xs. Similarly, less than half of the vertices in X; have at most ]| X3|
neighbours in X3. Hence there exists a vertex u € X; with more than ¢|Xs| neighbours
in X9 and more than €|X3| neighbours in X3. Let U; be the set of neighbours of u in X
(1 = 2,3). As G is a A-graph, the edges spanned by U, U Us form a matching, and so
e(Uy, Uz) < |Us|. So |Us|™! > d(Us,Us) > d(X2, X3) — & > . Hence |Us| < e~1. Therefore,
| X3 < e7YUs| < €72, a contradiction. This proves (11).
Next we show:

(12) |F| < 4en?.

The number of edges connecting any e-irregular pair (X,Y) is at most en?, by (7). The num-
ber of edges spanned by those (X,Y) € P2 with d(X,Y) < 2¢ is at most Yoxyep 26| X[|Y] <
2en?. The number of edges intersecting those X; with |X;| < ¢72 is at most k.e 2n < en?.
So we have (12]).

By (11), each triangle of G' contains an edge in F. Hence, by (12), G has at most 4en?
triangles, and hence, as G is a A-graph, at most 12en? edges. This proves (10). |

Note that e-balancedness of partition P of V is not used in this proof.

"f(n) = o(g(n)) means lim,,—co f(n)/g(n) = 0.




4. Arithmetic progressions

An arithmetic progression of length k is a sequence of numbers aq,...,ar with a; — a;—1 =
az —ajp # 0 for i =2,... k. For any k and n, let ax(n) be the maximum size of a subset
of [n] containing no arithmetic progression of length k. (Here [n] := {1,...,n}.)

We can now derive the theorem of Roth [3], which implies that any set X of natural
numbers with limsup,,_, |X N [n]|/n > 0 contains an arithmetic progression of length 3.

Corollary 2a. ag(n) = o(n).

Proof. We show that as(n) < 7(9n)/3n. Then Theorem[2 gives the corollary.

Choose S C [n] with |S| = as(n) such that S contains no arithmetic progression of
length 3. Let V := [3n] x [3] and for i € [n] and s € S, let T; s be the triangle spanned by
(i,1), (i+s,2), (i +2s,3). Let E be the set of edges spanned by these T; ;. We show that
G = (V,E) is a A-graph.

Let T be any triangle in E. Let T be spanned by (i, 1), (4,2) and (k,3). Then j =i+ s,
k=j+1t,and k =i+ 2u for some s,t,u € S. So u = %(s—i-t). If T'# T, then t # s, and
hence s, u,t is an arithmetic progression of length 3, contradicting our assumption. So G is
a A-graph.

Now 3nag(n) = 3n|S| = |E| < 7(|V]) = 7(9n). |

This was extended to ag(n) = o(n) for any fixed k by Szemerédi [4]. Recently, Green
and Tao [2] proved that there exist arbitrarily long arithmetic progressions of primes.
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