
V. Szemerédi’s regularity lemma

1. Preliminaries

The ‘regularity lemma’ of Endre Szemerédi [5] roughly asserts that, for each ε > 0, there
exists a number k such that the vertex set V of any graph G = (V, E) can be partitioned
into at most k almost equal-sized classes so that between almost any two classes, the edges
are distributed almost homogeneously. Here almost depends on ε. We will make this precise
and prove it in Section 2. First, some ‘ε-free’ preliminaries.

Let G = (V, E) be a graph. For nonempty A, B ⊆ V , define

(1) e(A, B) := number of adjacent pairs in A × B,

d(A, B) :=
e(A, B)

|A||B|
and c(A, B) :=

e(A, B)2

|A||B|
.

Moreover, if P and Q are collections of nonempty sets, define

(2) c(P,Q) :=
∑

X∈P,Y ∈Q

c(X, Y ) and c(P) := c(P,P).

A partition of a set X is a collection of pairwise disjoint nonempty sets with union X.
Observe that, if λ1, . . . , λn, α1, . . . , αn ∈ R with λ1 + · · ·+ λn = 1 and α :=

∑n
i=1

λiαi, then

(3)

n∑

i=1

λiα
2
i = α2 +

n∑

i=1

λi(αi − α)2.

This implies that, if P and Q are partitions of the nonempty sets A and B respectively,

(4) c(P,Q) = c(A, B) +
∑

X∈P,Y ∈Q

|X||Y |(d(X, Y ) − d(A, B))2.

Indeed, for X ∈ P and Y ∈ Q, define λX,Y := |X||Y |/|A||B| and αX,Y := d(X, Y ).
Then

∑
X,Y λX,Y = 1 and d(A, B) =

∑
X,Y λX,Y d(X, Y ) (as e(A, B) =

∑
X,Y e(X, Y )).

Appropriate substitution in (3) and multiplying both sides by |A||B| gives (4).
Equality (4) implies c(P,Q) ≥ c(A, B), which in turn implies the following. Call a

partition P ′ of a set A a refinement of partition P of A if each set in P ′ is contained in
some set in P. Then, if P ′ and Q′ are refinements of P and Q respectively,

(5) c(P ′,Q′) ≥ c(P,Q).

2. Szemerédi’s regularity lemma

Let ε > 0 and let V be any set. Call a partition P of V ε-balanced if P contains a
subcollection C such that all sets in C have the same size and such that |V \

⋃
C| ≤ ε|V |.

Lemma 1. Each partition P of V has an ε-balanced refinement Q with |Q| ≤ (1+ε−1)|P|.
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Proof. Define t := ε|V |/|P|. Split each class of P into classes, each of size ⌈t⌉, except for
at most one of size less than t. This gives Q. Then |Q| ≤ |P| + |V |/t = (1 + ε−1)|P|.
Moreover, the union of the classes of Q of size less than t has size at most |P|t = ε|V |. So
Q is ε-balanced.

Now, let ε > 0 and let G = (V, E) be a graph. Call a pair (A, B) of subsets A, B ⊆ V
ε-regular if for all X ⊆ A and Y ⊆ B:

(6) if |X| > ε|A| and |Y | > ε|B| then |d(X, Y ) − d(A, B)| ≤ ε.

Call a partition P of V ε-regular if

(7)
∑

A,B∈P

(A,B) ε-irregular

|A||B| ≤ ε|V |2.

Define fε(m) = (1 + ε−1)m4m. For n ∈ N, fn
ε is the n-th iterate of fε.

Theorem 1 (Szemerédi’s regularity lemma). For each ε > 0 and graph G = (V, E), each

partition P of V has an ε-balanced ε-regular refinement Q with |Q| ≤ f
⌈ε−5⌉
ε (|P|).

Proof. Set P0 := P. For i ≥ 0, if Pi has been set, let Pi+1 be an ε-balanced refinement
of Pi with |Pi+1| ≤ fε(|Pi|) and with c(Pi+1) maximal. Using (5) we know 0 ≤ c(Pi) ≤
c(T ) = 2|E| ≤ |V |2 for each i, where T is the trivial partition of V into singletons. Hence
c(Pi+1) ≤ c(Pi) + ε5|V |2 for some i with 1 ≤ i ≤ ⌈ε−5⌉. Set Q := Pi. So |Q| ≤ f i

ε(|P|) ≤

f
⌈ε−5⌉
ε (|P|). As Q = Pi is ε-balanced, it suffices to prove that Q is ε-regular.

Suppose it is not. For each ε-irregular pair (A, B) ∈ Q2, we can choose X ⊆ A and
Y ⊆ B with |X| > ε|A|, |Y | > ε|B|, and |d(X, Y ) − d(A, B)| > ε. Define partitions
XA,B := {X, A \ X} of A and YA,B := {Y, B \ Y } of B. Then (4) implies:

(8) c(XA,B,YA,B) ≥ c(A, B) + |X||Y |(d(X, Y ) − d(A, B))2 > c(A, B) + ε4|A||B|.

Now for each fixed A ∈ Q, all partitions XA,B and YB,A of A (over all B with (A, B)
ε-irregular) have a common refinement RA with |RA| ≤ 22|Q| (as |XA,B| = |YB,A| = 2). Let
R :=

⋃
A∈QRA. So |R| ≤ |Q|4|Q|. Let S be an ε-balanced refinement of R with |S| ≤

(1 + ε−1)|R| (exists by Lemma 1). So |S| ≤ fε(|Q|). We show that c(S) > c(Q) + ε5|V |2,
and hence c(S) > c(Pi+1), contradicting the maximality of c(Pi+1).

If (A, B) ∈ Q2 is ε-irregular, then c(RA,RB) ≥ c(XA,B,YA,B) ≥ c(A, B) + ε4|A||B| (by
(5) and (8)). So, as c(RA,RB) ≥ c(A, B) for any A, B ∈ Q by (5), we obtain as required,
using the negation of (7),

(9) c(S) ≥ c(R) =
∑

A,B∈Q

c(RA,RB) ≥ c(Q) + ε4
∑

A,B∈Q

(A,B) ε-irregular

|A||B| > c(Q) + ε5|V |2.

It is important to observe that the bound on |Q|, though generally huge, only depends
on ε and |P|, and not on the size of the graph. Gowers [1] showed that the bound necessarily
is huge (at least a tower of powers of 2’s of height proportional to ε−1/16).
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Exercise

2.1. Let P be an ε-balanced ε-regular partition of V , and let C be as above. Prove that at most
(ε/(1 − ε)2)|C|2 pairs in C2 are ε-irregular.

3. ∆-graphs

Call a graph G = (V, E) a ∆-graph if each edge belongs to a unique triangle. For any n, let
τ(n) be the maximum number of edges of any ∆-graph on n vertices.1

Theorem 2. τ(n) = o(n2).

Proof. Let ε > 0 with ε < 1

2
. Set kε := f

⌊ε−5⌋
ε (1). It suffices to prove:

(10) Let G = (V, E) be a ∆-graph with n := |V | ≥ kε/ε3. Then |E| ≤ 12εn2.

By Szemerédi’s regularity lemma, V has an ε-regular partition P with |P| ≤ kε. Let F be
the set of edges uv for which there exists (X, Y ) ∈ P with u ∈ X, v ∈ Y such that (X, Y )
is ε-irregular, or d(X, Y ) ≤ 2ε, or |X| < ε−2. We claim

(11) E \ F contains no triangles.

If not, there exist (not necessarily distinct) X1, X2, X3 ∈ P such that (Xi, Xj) is ε-regular
and d(Xi, Xj) > 2ε for all distinct i, j = 1, 2, 3 and such that |X3| ≥ ε−2. Let U be the set of
vertices in X1 with at most ε|X2| neighbours in X2. Then d(U, X2) ≤ ε < d(X1, X2)−ε, so,
since (X1, X2) is ε-regular, |U | ≤ εX1. So less than half of the vertices in X1 have at most
ε|X2| neighbours in X2. Similarly, less than half of the vertices in X1 have at most ε|X3|
neighbours in X3. Hence there exists a vertex u ∈ X1 with more than ε|X2| neighbours
in X2 and more than ε|X3| neighbours in X3. Let Ui be the set of neighbours of u in Xi

(i = 2, 3). As G is a ∆-graph, the edges spanned by U2 ∪ U3 form a matching, and so
e(U2, U3) ≤ |U2|. So |U3|

−1 ≥ d(U2, U3) ≥ d(X2, X3) − ε > ε. Hence |U3| < ε−1. Therefore,
|X3| < ε−1|U3| < ε−2, a contradiction. This proves (11).

Next we show:

(12) |F | ≤ 4εn2.

The number of edges connecting any ε-irregular pair (X, Y ) is at most εn2, by (7). The num-
ber of edges spanned by those (X, Y ) ∈ P2 with d(X, Y ) ≤ 2ε is at most

∑
X,Y ∈P 2ε|X||Y | ≤

2εn2. The number of edges intersecting those Xi with |Xi| < ε−2 is at most kεε
−2n ≤ εn2.

So we have (12).
By (11), each triangle of G contains an edge in F . Hence, by (12), G has at most 4εn2

triangles, and hence, as G is a ∆-graph, at most 12εn2 edges. This proves (10).

Note that ε-balancedness of partition P of V is not used in this proof.

1f(n) = o(g(n)) means limn→∞ f(n)/g(n) = 0.
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4. Arithmetic progressions

An arithmetic progression of length k is a sequence of numbers a1, . . . , ak with ai − ai−1 =
a2 − a1 6= 0 for i = 2, . . . , k. For any k and n, let αk(n) be the maximum size of a subset
of [n] containing no arithmetic progression of length k. (Here [n] := {1, . . . , n}.)

We can now derive the theorem of Roth [3], which implies that any set X of natural
numbers with lim supn→∞ |X ∩ [n]|/n > 0 contains an arithmetic progression of length 3.

Corollary 2a. α3(n) = o(n).

Proof. We show that α3(n) ≤ τ(9n)/3n. Then Theorem 2 gives the corollary.
Choose S ⊆ [n] with |S| = α3(n) such that S contains no arithmetic progression of

length 3. Let V := [3n] × [3] and for i ∈ [n] and s ∈ S, let Ti,s be the triangle spanned by
(i, 1), (i + s, 2), (i + 2s, 3). Let E be the set of edges spanned by these Ti,s. We show that
G = (V, E) is a ∆-graph.

Let T be any triangle in E. Let T be spanned by (i, 1), (j, 2) and (k, 3). Then j = i+ s,
k = j + t, and k = i + 2u for some s, t, u ∈ S. So u = 1

2
(s + t). If T 6= Ti,s, then t 6= s, and

hence s, u, t is an arithmetic progression of length 3, contradicting our assumption. So G is
a ∆-graph.

Now 3nα3(n) = 3n|S| = |E| ≤ τ(|V |) = τ(9n).

This was extended to αk(n) = o(n) for any fixed k by Szemerédi [4]. Recently, Green
and Tao [2] proved that there exist arbitrarily long arithmetic progressions of primes.
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