V. Szemerédi's regularity lemma

1. Preliminaries

The 'regularity lemma' of Endre Szemerédi [5] roughly asserts that, for each $\varepsilon > 0$, there exists a number k such that the vertex set V of any graph G = (V, E) can be partitioned into at most k almost equal-sized classes so that between almost any two classes, the edges are distributed almost homogeneously. Here almost depends on ε . We will make this precise and prove it in Section 2. First, some ' ε -free' preliminaries.

Let G = (V, E) be a graph. For nonempty $A, B \subseteq V$, define

(1)
$$e(A, B) := \text{number of adjacent pairs in } A \times B,$$

$$d(A,B) := \frac{e(A,B)}{|A||B|}$$
 and $c(A,B) := \frac{e(A,B)^2}{|A||B|}$.

Moreover, if \mathcal{P} and \mathcal{Q} are collections of nonempty sets, define

(2)
$$c(\mathcal{P}, \mathcal{Q}) := \sum_{X \in \mathcal{P}, Y \in \mathcal{Q}} c(X, Y) \text{ and } c(\mathcal{P}) := c(\mathcal{P}, \mathcal{P}).$$

A partition of a set X is a collection of pairwise disjoint nonempty sets with union X. Observe that, if $\lambda_1, \ldots, \lambda_n, \alpha_1, \ldots, \alpha_n \in \mathbb{R}$ with $\lambda_1 + \cdots + \lambda_n = 1$ and $\alpha := \sum_{i=1}^n \lambda_i \alpha_i$, then

(3)
$$\sum_{i=1}^{n} \lambda_i \alpha_i^2 = \alpha^2 + \sum_{i=1}^{n} \lambda_i (\alpha_i - \alpha)^2.$$

This implies that, if \mathcal{P} and \mathcal{Q} are partitions of the nonempty sets A and B respectively,

(4)
$$c(\mathcal{P}, \mathcal{Q}) = c(A, B) + \sum_{X \in \mathcal{P}, Y \in \mathcal{Q}} |X||Y|(d(X, Y) - d(A, B))^2.$$

Indeed, for $X \in \mathcal{P}$ and $Y \in \mathcal{Q}$, define $\lambda_{X,Y} := |X||Y|/|A||B|$ and $\alpha_{X,Y} := d(X,Y)$. Then $\sum_{X,Y} \lambda_{X,Y} = 1$ and $d(A,B) = \sum_{X,Y} \lambda_{X,Y} d(X,Y)$ (as $e(A,B) = \sum_{X,Y} e(X,Y)$). Appropriate substitution in (3) and multiplying both sides by |A||B| gives (4).

Equality (4) implies $c(\mathcal{P}, \mathcal{Q}) \geq c(A, B)$, which in turn implies the following. Call a partition \mathcal{P}' of a set A a refinement of partition \mathcal{P} of A if each set in \mathcal{P}' is contained in some set in \mathcal{P} . Then, if \mathcal{P}' and \mathcal{Q}' are refinements of \mathcal{P} and \mathcal{Q} respectively,

(5)
$$c(\mathcal{P}', \mathcal{Q}') \ge c(\mathcal{P}, \mathcal{Q}).$$

2. Szemerédi's regularity lemma

Let $\varepsilon > 0$ and let V be any set. Call a partition \mathcal{P} of V ε -balanced if \mathcal{P} contains a subcollection \mathcal{C} such that all sets in \mathcal{C} have the same size and such that $|V \setminus \bigcup \mathcal{C}| \leq \varepsilon |V|$.

Lemma 1. Each partition \mathcal{P} of V has an ε -balanced refinement \mathcal{Q} with $|\mathcal{Q}| \leq (1 + \varepsilon^{-1})|\mathcal{P}|$.

Proof. Define $t := \varepsilon |V|/|\mathcal{P}|$. Split each class of \mathcal{P} into classes, each of size $\lceil t \rceil$, except for at most one of size less than t. This gives \mathcal{Q} . Then $|\mathcal{Q}| \leq |\mathcal{P}| + |V|/t = (1 + \varepsilon^{-1})|\mathcal{P}|$. Moreover, the union of the classes of \mathcal{Q} of size less than t has size at most $|\mathcal{P}|t = \varepsilon |V|$. So \mathcal{Q} is ε -balanced.

Now, let $\varepsilon > 0$ and let G = (V, E) be a graph. Call a pair (A, B) of subsets $A, B \subseteq V$ ε -regular if for all $X \subseteq A$ and $Y \subseteq B$:

(6) if
$$|X| > \varepsilon |A|$$
 and $|Y| > \varepsilon |B|$ then $|d(X,Y) - d(A,B)| \le \varepsilon$.

Call a partition \mathcal{P} of $V \varepsilon$ -regular if

(7)
$$\sum_{\substack{A,B\in\mathcal{P}\\(A,B)\ \varepsilon\text{-irregular}}} |A||B| \le \varepsilon |V|^2.$$

Define $f_{\varepsilon}(m) = (1 + \varepsilon^{-1})m4^m$. For $n \in \mathbb{N}$, f_{ε}^n is the *n*-th iterate of f_{ε} .

Theorem 1 (Szemerédi's regularity lemma). For each $\varepsilon > 0$ and graph G = (V, E), each partition \mathcal{P} of V has an ε -balanced ε -regular refinement \mathcal{Q} with $|\mathcal{Q}| \leq f_{\varepsilon}^{\lceil \varepsilon^{-5} \rceil}(|\mathcal{P}|)$.

Proof. Set $\mathcal{P}_0 := \mathcal{P}$. For $i \geq 0$, if P_i has been set, let \mathcal{P}_{i+1} be an ε -balanced refinement of \mathcal{P}_i with $|\mathcal{P}_{i+1}| \leq f_{\varepsilon}(|\mathcal{P}_i|)$ and with $c(\mathcal{P}_{i+1})$ maximal. Using (5) we know $0 \leq c(\mathcal{P}_i) \leq c(\mathcal{T}) = 2|E| \leq |V|^2$ for each i, where \mathcal{T} is the trivial partition of V into singletons. Hence $c(\mathcal{P}_{i+1}) \leq c(\mathcal{P}_i) + \varepsilon^5 |V|^2$ for some i with $1 \leq i \leq \lceil \varepsilon^{-5} \rceil$. Set $\mathcal{Q} := \mathcal{P}_i$. So $|\mathcal{Q}| \leq f_{\varepsilon}^i(|\mathcal{P}|) \leq f_{\varepsilon}^{\lceil \varepsilon^{-5} \rceil}(|\mathcal{P}|)$. As $\mathcal{Q} = \mathcal{P}_i$ is ε -balanced, it suffices to prove that \mathcal{Q} is ε -regular.

Suppose it is not. For each ε -irregular pair $(A, B) \in \mathcal{Q}^2$, we can choose $X \subseteq A$ and $Y \subseteq B$ with $|X| > \varepsilon |A|$, $|Y| > \varepsilon |B|$, and $|d(X,Y) - d(A,B)| > \varepsilon$. Define partitions $\mathcal{X}_{A,B} := \{X, A \setminus X\}$ of A and $\mathcal{Y}_{A,B} := \{Y, B \setminus Y\}$ of B. Then (4) implies:

(8)
$$c(\mathcal{X}_{A,B}, \mathcal{Y}_{A,B}) \ge c(A,B) + |X||Y|(d(X,Y) - d(A,B))^2 > c(A,B) + \varepsilon^4|A||B|.$$

Now for each fixed $A \in \mathcal{Q}$, all partitions $\mathcal{X}_{A,B}$ and $\mathcal{Y}_{B,A}$ of A (over all B with (A,B) ε -irregular) have a common refinement \mathcal{R}_A with $|\mathcal{R}_A| \leq 2^{2|\mathcal{Q}|}$ (as $|\mathcal{X}_{A,B}| = |\mathcal{Y}_{B,A}| = 2$). Let $\mathcal{R} := \bigcup_{A \in \mathcal{Q}} \mathcal{R}_A$. So $|\mathcal{R}| \leq |\mathcal{Q}|4^{|\mathcal{Q}|}$. Let \mathcal{S} be an ε -balanced refinement of \mathcal{R} with $|\mathcal{S}| \leq (1 + \varepsilon^{-1})|\mathcal{R}|$ (exists by Lemma 1). So $|\mathcal{S}| \leq f_{\varepsilon}(|\mathcal{Q}|)$. We show that $c(\mathcal{S}) > c(\mathcal{Q}) + \varepsilon^5 |V|^2$, and hence $c(\mathcal{S}) > c(\mathcal{P}_{i+1})$, contradicting the maximality of $c(\mathcal{P}_{i+1})$.

If $(A, B) \in \mathcal{Q}^2$ is ε -irregular, then $c(\mathcal{R}_A, \mathcal{R}_B) \geq c(\mathcal{X}_{A,B}, \mathcal{Y}_{A,B}) \geq c(A, B) + \varepsilon^4 |A| |B|$ (by (5) and (8)). So, as $c(\mathcal{R}_A, \mathcal{R}_B) \geq c(A, B)$ for any $A, B \in \mathcal{Q}$ by (5), we obtain as required, using the negation of (7),

(9)
$$c(\mathcal{S}) \ge c(\mathcal{R}) = \sum_{A,B \in \mathcal{Q}} c(\mathcal{R}_A, \mathcal{R}_B) \ge c(\mathcal{Q}) + \varepsilon^4 \sum_{\substack{A,B \in \mathcal{Q} \\ (A,B) \ \varepsilon\text{-irregular}}} |A||B| > c(\mathcal{Q}) + \varepsilon^5 |V|^2.$$

It is important to observe that the bound on $|\mathcal{Q}|$, though generally huge, only depends on ε and $|\mathcal{P}|$, and not on the size of the graph. Gowers [1] showed that the bound necessarily is huge (at least a tower of powers of 2's of height proportional to $\varepsilon^{-1/16}$).

Exercise

2.1. Let \mathcal{P} be an ε -balanced ε -regular partition of V, and let \mathcal{C} be as above. Prove that at most $(\varepsilon/(1-\varepsilon)^2)|\mathcal{C}|^2$ pairs in \mathcal{C}^2 are ε -irregular.

3. Δ -graphs

Call a graph G = (V, E) a Δ -graph if each edge belongs to a unique triangle. For any n, let $\tau(n)$ be the maximum number of edges of any Δ -graph on n vertices.¹

Theorem 2. $\tau(n) = o(n^2)$.

Proof. Let $\varepsilon > 0$ with $\varepsilon < \frac{1}{2}$. Set $k_{\varepsilon} := f_{\varepsilon}^{\lfloor \varepsilon^{-5} \rfloor}(1)$. It suffices to prove:

(10) Let
$$G = (V, E)$$
 be a Δ -graph with $n := |V| \ge k_{\varepsilon}/\varepsilon^3$. Then $|E| \le 12\varepsilon n^2$.

By Szemerédi's regularity lemma, V has an ε -regular partition \mathcal{P} with $|\mathcal{P}| \leq k_{\varepsilon}$. Let F be the set of edges uv for which there exists $(X,Y) \in \mathcal{P}$ with $u \in X$, $v \in Y$ such that (X,Y) is ε -irregular, or $d(X,Y) \leq 2\varepsilon$, or $|X| < \varepsilon^{-2}$. We claim

(11) $E \setminus F$ contains no triangles.

If not, there exist (not necessarily distinct) $X_1, X_2, X_3 \in \mathcal{P}$ such that (X_i, X_j) is ε -regular and $d(X_i, X_j) > 2\varepsilon$ for all distinct i, j = 1, 2, 3 and such that $|X_3| \geq \varepsilon^{-2}$. Let U be the set of vertices in X_1 with at most $\varepsilon |X_2|$ neighbours in X_2 . Then $d(U, X_2) \leq \varepsilon < d(X_1, X_2) - \varepsilon$, so, since (X_1, X_2) is ε -regular, $|U| \leq \varepsilon X_1$. So less than half of the vertices in X_1 have at most $\varepsilon |X_2|$ neighbours in X_2 . Similarly, less than half of the vertices in X_1 have at most $\varepsilon |X_3|$ neighbours in X_3 . Hence there exists a vertex $u \in X_1$ with more than $\varepsilon |X_2|$ neighbours in X_2 and more than $\varepsilon |X_3|$ neighbours in X_3 . Let U_i be the set of neighbours of u in X_i (i = 2, 3). As G is a Δ -graph, the edges spanned by $U_2 \cup U_3$ form a matching, and so $e(U_2, U_3) \leq |U_2|$. So $|U_3|^{-1} \geq d(U_2, U_3) \geq d(X_2, X_3) - \varepsilon > \varepsilon$. Hence $|U_3| < \varepsilon^{-1}$. Therefore, $|X_3| < \varepsilon^{-1} |U_3| < \varepsilon^{-2}$, a contradiction. This proves (11).

Next we show:

$$(12) |F| \le 4\varepsilon n^2.$$

The number of edges connecting any ε -irregular pair (X,Y) is at most εn^2 , by (7). The number of edges spanned by those $(X,Y) \in \mathcal{P}^2$ with $d(X,Y) \leq 2\varepsilon$ is at most $\sum_{X,Y \in \mathcal{P}} 2\varepsilon |X| |Y| \leq 2\varepsilon n^2$. The number of edges intersecting those X_i with $|X_i| < \varepsilon^{-2}$ is at most $k_{\varepsilon} \varepsilon^{-2} n \leq \varepsilon n^2$. So we have (12).

By (11), each triangle of G contains an edge in F. Hence, by (12), G has at most $4\varepsilon n^2$ triangles, and hence, as G is a Δ -graph, at most $12\varepsilon n^2$ edges. This proves (10).

Note that ε -balancedness of partition \mathcal{P} of V is not used in this proof.

f(n) = o(g(n)) means $\lim_{n \to \infty} f(n)/g(n) = 0$.

4. Arithmetic progressions

An arithmetic progression of length k is a sequence of numbers a_1, \ldots, a_k with $a_i - a_{i-1} = a_2 - a_1 \neq 0$ for $i = 2, \ldots, k$. For any k and n, let $\alpha_k(n)$ be the maximum size of a subset of [n] containing no arithmetic progression of length k. (Here $[n] := \{1, \ldots, n\}$.)

We can now derive the theorem of Roth [3], which implies that any set X of natural numbers with $\limsup_{n\to\infty} |X\cap[n]|/n > 0$ contains an arithmetic progression of length 3.

Corollary 2a. $\alpha_3(n) = o(n)$.

Proof. We show that $\alpha_3(n) \leq \tau(9n)/3n$. Then Theorem 2 gives the corollary.

Choose $S \subseteq [n]$ with $|S| = \alpha_3(n)$ such that S contains no arithmetic progression of length 3. Let $V := [3n] \times [3]$ and for $i \in [n]$ and $s \in S$, let $T_{i,s}$ be the triangle spanned by (i,1), (i+s,2), (i+2s,3). Let E be the set of edges spanned by these $T_{i,s}$. We show that G = (V, E) is a Δ -graph.

Let T be any triangle in E. Let T be spanned by (i,1), (j,2) and (k,3). Then j=i+s, k=j+t, and k=i+2u for some $s,t,u\in S$. So $u=\frac{1}{2}(s+t)$. If $T\neq T_{i,s}$, then $t\neq s$, and hence s,u,t is an arithmetic progression of length 3, contradicting our assumption. So G is a Δ -graph.

Now
$$3n\alpha_3(n) = 3n|S| = |E| \le \tau(|V|) = \tau(9n)$$
.

This was extended to $\alpha_k(n) = o(n)$ for any fixed k by Szemerédi [4]. Recently, Green and Tao [2] proved that there exist arbitrarily long arithmetic progressions of primes.

References

- [1] W.T. Gowers, Lower bounds of tower type for Szemerédi's uniformity lemma, Geometric and Functional Analysis 7 (1997) 322–337.
- [2] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, *Annals of Mathematics* (2) 167 (2008) 481–547.
- [3] K. Roth, Sur quelques ensembles d'entiers, Comptes Rendus des Séances de l'Académie des Sciences Paris 234 (1952) 388–390.
- [4] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975) 199–245.
- [5] E. Szemerédi, Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes (Proceedings Colloque International C.N.R.S., Paris-Orsay, 1976) [Colloques Internationaux du C.N.R.S. Nº 260], Éditions du C.N.R.S., Paris, 1978, pp. 399–401.