
Strong t-perfection of bad-K4-free graphs

Alexander Schrijver1

Abstract. We show that each graph not containing a bad subdivision of K4 as a subgraph, is
strongly t-perfect. Here a graph G = (V, E) is strongly t-perfect if for each weight function w : V →
Z+, the maximum weight of a stable set is equal to the minimum (total) cost of a family of vertices,
edges, and circuits covering any vertex v at least w(v) times. By definition, the cost of a vertex or
edge is 1, and the cost of a circuit C is b 1

2
|V C|c. A subdivision of K4 is called bad if each triangle

has become an odd circuit and if it is not obtained by making the edges in a 4-circuit of K4 evenly
subdivided, while the other two edges are not subdivided.

The theorem generalizes earlier results of Gerards (1989) on the strong t-perfection of odd-K4-
free graphs and of Gerards and Shepherd (1998) on the t-perfection of bad-K4-free graphs.

1. Introduction

A graph G = (V,E) is called t-perfect if the stable set polytope of G (= the convex hull
of the incidence vectors in R

V of stable sets) is determined by:

(i) 0 ≤ xv ≤ 1 for each v ∈ V ;
(ii) xu + xv ≤ 1 for each edge uv ∈ E;
(iii) x(V C) ≤ b1

2 |V C|c for each odd circuit C.

(1)

Here x(U) :=
∑

v∈U xv for any U ⊆ V . V.. and E.. denote the sets of vertices and edges,
respectively, of .. . A circuit C is odd (even) if |V C| is odd (even).

A motivation for the concept of t-perfection lies in the fact that a linear function wTx

can be maximized over (1) in strongly polynomial time (with the ellipsoid method, since
the separation problem over (1) is polynomial-time solvable). Hence a maximum-weight
stable set in a t-perfect graph can be found in strongly polynomial time.

G is called strongly t-perfect if system (1) is totally dual integral — that is, if for each
weight function w : V → Z+, the linear program of maximizing wTx over (1) has an integer
optimum dual solution. This implies that it also has an integer optimum primal solution. In
particular, all vertices of the polytope determined by (1) are integer, and hence the polytope
is the stable set polytope. So strong t-perfection implies t-perfection.

Strong t-perfection can be characterized equivalently as follows. For any w : V → Z+,
let αw(G) denote the maximum weight of a stable set in G. Define a w-cover as a family
of vertices, edges, and odd circuits such that each vertex v is covered at least w(v) times
(in a family, repetition is allowed). By definition, the cost of a vertex or edge is 1, the cost

of a circuit C is b1
2 |V C|c, and the cost of a w-cover is the sum of the costs of its elements

(counting multiplicities). Let ρ̃w(G) denote the minimum cost of a w-cover. Then

a graph G is strongly t-perfect if and only if αw(G) = ρ̃w(G) for each w : V → Z+.(2)

The classes of t-perfect and strongly t-perfect graphs are closed under taking induced
subgraphs. However, no characterization is known in terms of forbidden induced subgraphs.
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If we take also noninduced subgraphs, the situation is clearer (although it does not yield
a characterization). Here subdivisions of K4 come in. A K4-subdivision H is called odd, or
just an odd K4, if each triangle of K4 has become an odd circuit in H. It was shown by
Gerards [7] that

each graph without odd K4 is strongly t-perfect.(3)

(By ‘a graph without’ odd K4 we mean a graph not containing an odd K4 as subgraph.) It
extends an earlier result of Gerards and Schrijver [8] that such graphs are t-perfect.

There exist however odd K4’s that are t-perfect. Following Gerards and Shepherd [9],
we call an odd K4 subdivision a bad K4 if it does not have the following property:

the edges of K4 that have become an even path, form a 4-cycle in K4, while the
two other edges of K4 are not subdivided.

(4)

This name is motivated by the fact, shown by Barahona and Mahjoub [1], that a subdivision
of K4 is t-perfect if and only if it is not a bad K4. Gerards and Shepherd [9] proved that

each graph without bad K4 is t-perfect.(5)

(Gerards and Shepherd [9] also showed that graphs without bad K4 can be recognized in
polynomial time.)

In the present paper, we show more strongly that these graphs are strongly t-perfect.
This generalizes (3) and (5), and implies for any graph G:

each subgraph of G is t-perfect ⇐⇒ each subgraph of G is strongly t-perfect
⇐⇒ G has no bad K4 as subgraph.

(6)

In Section 4 we give some other equivalent properties, regarding the b-stable set polytope.

Figure 1

On the other hand, there exist strongly t-perfect graphs that contain a bad K4 — see
Figure 1.

Our proof method was inspired by a method of Geelen and Guenin [6] for proving a
special case of a theorem of Seymour [14] on packing the edge sets of odd circuits in odd-
K4-free graphs.

The above results contain the strong t-perfection of series-parallel graphs, which are, as
is well-known, those graphs not containing any K4-subdivision (Boulala and Uhry [2]), and
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of almost bipartite graphs — graphs G having a vertex v with G− v bipartite (Fonlupt and
Uhry [4], Sbihi and Uhry [11]).

A related theorem was proved by Sewell and Trotter [13]. A K4-subdivision is called a
totally odd K4 if it arises from K4 by replacing each edge by an odd path. The theorem
says that a graph G without totally odd K4 satisfies α1(G) = ρ̃1(G), where 1 denotes the
all-one weight function. This result does not follow from our methods.

The totally odd K4’s are precisely those K4-subdivisions G with α1(G) < ρ̃1(G). So
the theorem of Sewell and Trotter and the theorem presented in this paper suggest the
question if for each graph G and each w : V G → Z+ with αw(G) < ρ̃w(G), G contains
a K4-subdivision H as subgraph such that αw′(H) < ρ̃w′(H), where w′ := w|V H. The
answer is unknown.

To complete the picture, it was shown by Zang [17] and Thomassen [15] that χ(G) ≤ 3
for any graph G without totally odd K4. This was conjectured by Toft [16], and was proved
by Hadwiger [10] for series-parallel graphs, by Catlin [3] for odd-K4-free graphs, and by
Gerards and Shepherd [9] for bad-K4-free graphs. (However, there exist strongly t-perfect
graphs G with χ(G) > 3.)

A.M.H. Gerards and P.D. Seymour proved in 1991 (personal communication) that, if
G contains no odd K4, then the stable set polytope of G has the integer decomposition
property. In other words, any w : V G → Z+ is the sum of the incidence vectors of k stable
sets, where k is the minimum integer for which 1

k
w belongs to the stable set polytope. It

implies the result of Catlin mentioned above.

2. Graphs without bad K4

In this section we prove a technical lemma on bad-K4-free graphs. Let G be graph
without bad K4, and let C be an even circuit in G. Let e1, . . . , en be chords of C, such
that ei has ends si and sn+i (say) (for i = 1, . . . , n), such that s1, . . . , s2n are distinct and
occur in this order clockwise along C, and such that for each i = 1, . . . , 2n, the clockwise
si−1 − si path Ri along C has even length. (We take indices mod 2n, and set en+i := ei for
i = 1, . . . , n.) Define D := {e1, . . . , en}.

Call a path B in G a bow if B is simple, has length at least 2, and intersects C precisely
in its end vertices. We call a bow an odd bow if it forms with a subpath of C an odd circuit,
and an even bow if it forms with a subpath of C an even circuit. (So an odd (even) bow
need not be an odd (even) path. To avoid confusion, we therefore do not use the more
familiar term ‘ear’.)

We will study in particular the occurrence of odd bows. We say that a bow B crosses

an edge e ∈ D (and conversely), if e is disjoint from the ends a, b (say) of B and connects
distinct components of the graph C − a − b. Then

an odd bow B does not cross any edge e in D.(7)

Otherwise C, B, and e form a bad K4, a contradiction.
(7) implies that the ends of any odd bow belong to V Rj , for some j = 1, . . . , 2n. Define

J := {j ∈ {1, . . . , 2n}| there exists an odd bow with ends in V Rj}.(8)

We prove:
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Lemma 1. There exists an i ∈ {1, . . . , 2n} such that i + 1, i + 2, . . . , i + n − 1 6∈ J .

Proof. Consider a counterexample with n as small as possible. Define L := {i|i+2, . . . , i+
n − 1 6∈ J}. Then for each i:

i ∈ L or i + n ∈ L.(9)

To see this, by symmetry it suffices to show this for i = n. Delete en. By the minimality
of n, the lemma holds for the new structure. In the new structure, the paths Rn and Rn+1

have merged to one path, and similarly the path R2n and R1 have merged to one path. If
(9) does not hold for the original structure, then, for some i ∈ {2, . . . , n−1}, there is no odd
bow with ends in one of V Ri+1, . . . , V Rn−1, V Rn ∪ V Rn+1, V Rn+2, . . . , V Ri+n−1 or there
is no odd bow with ends in one of V Ri+n+1, . . . , V R2n−1, V R2n ∪ V R1, V R2, . . . , V Ri−1.
Either case implies the lemma for the original structure, a contradiction. So we have (9).

We derive from this that n = 2. As the lemma does not hold, we know that i 6∈ L or
i + 1 6∈ L for each i. Hence, by (9), i ∈ L or i + 1 ∈ L for each i. So the indices i are
alternatingly in and out of L. If n ≥ 4, then we can assume that each even i belongs to L,
and hence, by the definition of L, J = ∅, a contradiction.

So n ≤ 3. Suppose n = 3. We may assume J = {1, 3, 5}. For j = 1, 3, 5, let Bj be an
odd bow with ends in V Rj . Then B1, B3, B5 are pairwise disjoint, for suppose that (say)
B1 and B3 have a vertex in common. Choose an end a of B1 with a 6= s1. Follow B1 from
a till we reach B3. We can continue along B3 so as to create an odd bow B (as B3 is an
odd bow). As B crosses e1, this contradicts (7).

So B1, B3, B5 are pairwise disjoint. Let R′

j be obtained from Rj by replacing part of Rj

by Bj . Then R′

1, R2, R
′

3, R4, R
′

5 and e1, e2, e3 form a bad K4, a contradiction.
So n = 2. As the lemma does not hold, we know J = {1, 2, 3, 4}. For j = 1, . . . , 4,

let Bj be an odd bow with ends in V Rj . If the Bj are pairwise internally vertex-disjoint,
we obtain a bad K4, a contradiction. So at least two of the Bj have an internal vertex in
common. Define S := {s1, s2, s3, s4}. To analyze this, we first prove:

Let B be a bow with ends a, b and a ∈ V R1 \ S and b 6∈ V R1. Then a and b are
equal to the middle vertices of R1 and R3 respectively.

(10)

By (7), B is an even bow. By symmetry, we can assume that b ∈ V R2 ∪ V R3 \ {s1, s3}.
Let C ′ be the (even) circuit obtained from C by replacing the a − b path P along C that
traverses s1, by B. Let e′1 be the extension of e1 with the s1 − a part of R1. So e′1 is an
odd bow of C ′. If b ∈ V R2 then e2 is a chord of C ′ that crosses e′1, contradicting (7). So
b ∈ V R3 \ S.

Let e′2 be the extension of e2 with the s2 − b part of R3. Again, e′2 is an odd bow of C ′.
Then C ′, e′1, e′2 form an odd K4-subdivision H, with trivalent vertices a, b, s3, and s4. As
H is not bad, and as s4 is nonadjacent (in H) to b and s3, we know that s4 is adjacent (in
H) to a. By symmetry, a is adjacent to s1, and b to s2 and to s3. This gives (10).

From this we derive:

Let T be a tree with three end vertices a, b, c, and trivalent vertex v, such that
T has only its end vertices in common with C, and such that a, b, c do not all
belong to some V Ri (i = 1, . . . , 4). Then for some i, {a, b, c} = {si−1, si, si+1},
si is adjacent to v, and the v − si−1 and v − si+1 paths along T are even.

(11)
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Figure 2

We first show that a, b, c ∈ S. Suppose not. Then we can assume a ∈ V R1 \ S. Since a, b, c

not all belong to V R1, we can assume that b 6∈ V R1. Then by (10), a and b are the middle
vertices of R1 and R3 respectively. By symmetry of a and b, we can assume that c 6∈ V R1,
implying similarly that c = b, a contradiction. So a, b, c ∈ S.

Next we can assume that {a, b, c} = {s1, s2, s3}. Let Pi be the v − si path in T (for
i = 1, 2, 3) (cf. Figure 2(a)). As P1 and P3 form a bow connecting s1 and s3, it is an even
bow and we have |EP1| ≡ |EP3| (mod 2). If moreover |EP1| ≡ |EP2| (mod 2), then P1, P2,
P3, R1, R4, e1 and e2 form a bad K4. So |EP1| 6≡ |EP2| (mod 2). Then P1, P2, P3, R2,
R3, and e1 form an odd K4. As it is not bad and as e1 has length 1, we have |EP2| = 1,
implying (11).

This implies:

G − V C has no component K with s1, s2, s3, s4 ∈ N(K).(12)

Otherwise, there is a tree T intersecting V C only in its end vertices s1, s2, s3, s4. By (11),
the neighbour vi of any si in T has degree at least 3 (by considering a subtree with ends
si−1, si, si+1). It also follows from (11) that vi 6= vi+1 for each i. So v1 = v3, contradicting
(11) (by considering a subtree with ends s1, s2, s3). This gives (12).

This implies that B1 and B3 are disjoint. Otherwise, by (11), the ends of B1 and B3

are s1, s2, s3, s4, contradicting (12). Similarly, B2 and B4 are disjoint.
So we can assume that B2 and B3 have a vertex in common, and hence, by (11), that

there is a vertex v 6∈ V C adjacent to s2, and a v − s1 path Q2 and a v − s3 path Q3 such
that for i = 2, 3, Bi is the concatenation of the edge s2v and Qi (cf. Figure 2(b)).

By (12), neither B1 nor B4 has an internal vertex in common with B2 and B3. If B1

and B4 are internally vertex-disjoint, then B1, B4, e1, e2, vs2, Q1, Q2, and parts of R1 and
R4 form a bad K4.

So B1 and B4 are not internally vertex-disjoint. Hence, by (11), there is a vertex u 6∈ V C

adjacent to s4 and a u − s1 path Q1 and a u − s3 path Q4 such that for i = 1, 4, Bi is the
concatenation of the edge s4u and Qi (cf. Figure 2(c)). Then Q1, . . . , Q4, vs2, us4, e2, and
e1 form a bad K4, a contradiction.

3. Strong t-perfection of bad-K4-free graphs
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We now prove our main theorem:

Theorem 1. A graph without bad K4 is strongly t-perfect.

Proof. Let G = (V,E) be a counterexample with |V | + |E| minimum. For any weight
function w : V → Z+, denote αw := αw(G) and ρ̃w := ρ̃w(G). For any subset U of V let
χU be the incidence vector of U . So for an edge e = uv, χe is the 0, 1 vector in R

V having
1’s in positions u and v.

We first show:

Claim 1. There is a w : V → Z+ and an edge f such that

ρ̃w+χf = αw + 1 = ρ̃w(13)

and such that

αw−χV C = ρ̃w−χV C(14)

for each odd circuit C.

Proof. Choose a vertex u. For any w : V → Z+ with αw < ρ̃w one has:

w(u) < w(N(u))(15)

(where N(u) denotes the set of neighbours of u). Otherwise, by the minimality of G, setting
G′ := G − u − N(u) and w′ := w|V G′,

αw(G) = w(u) + αw′(G′) = w(u) + ρ̃w′(G′) ≥ ρ̃w(G),(16)

since G[{u} ∪ N(u)] has a w|N(u) ∪ {u}-cover of cost w(u) (as w(u) ≥ w(N(u))). (16)
contradicts our assumption, which proves (15).

By (15), we can choose w such that αw < ρ̃w and such that w(V \ {u}) − w(u) is as
small as possible. Then:

there exists a z ∈ Z
δ(u)
+ such that for w̃ := w +

∑
e∈δ(u) zeχ

e we have αw̃ = ρ̃w̃.(17)

To see this, it suffices to show:

there exists a z ∈ Z
δ(u) and a stable set S, such that w̃ := w +

∑
e∈δ(u) zeχ

e is
nonnegative and such that w̃(S) = ρ̃w̃ and S intersects each edge incident with
u.

(18)

This suffices, since if z′ arises from z by replacing the negative entries by 0, and

w′ := w +
∑

e∈δ(u)

z′eχ
e,(19)

then w′(S) = w̃(S)−
∑

(ze|ze < 0) and ρ̃w′ ≤ ρ̃w̃−
∑

(ze|ze < 0), as w′ = w̃−
∑

(zeχ
e|ze < 0).

This implies (17).
To prove (18), first suppose that N(u) is a stable set. Let G′ be the graph obtained

from G by contracting the edges in δ(u). Then G′ contains no bad K4. Let t be the new
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vertex. Let w′ : V G′ → Z+ be defined by w′(t) := w(N(u)) − w(u) and w′(v) := w(v) if
v 6= t. Since G′ is smaller than G, we know αw′(G′) = ρ̃w′(G′).

Consider a w′-cover F ′ in G′ of cost ρ̃w′(G′). Let λ be the number of circuits in F ′ that
are not circuits in G. So they traverse t, and can be made to circuits in G by adding two
edges incident with u. It gives, for some w̃, a w̃-cover F in G of cost ρ̃w′(G′) + λ such that
w̃ coincides with w on V \ (N(u)∪ {u}), and such that w̃(u) = λ and w̃(N(u)) = w′(t) + λ.
Hence the cost is ρ̃w′(G′) + w̃(u) and w̃(N(u))− w̃(u) = w(N(u))−w(u). This last implies
that w̃ = w +

∑
e∈δ(u) zeχ

e for some z ∈ Z
δ(v).

Now let S′ be a stable set in G′ with w′(S′) = αw′(G′). If t ∈ S′, define S := (S′ \{t})∪
N(u), and if t 6∈ S′, define S := S′∪{u}. So S is a stable set in G. Then w(S) = w′(S′)+w(u)
and S intersects each edge incident with u. So

w̃(S) = w′(S′) + w̃(u) = ρ̃w′(G′) + w̃(u) ≥ ρ̃w̃(G).(20)

This gives (18) in case N(u) is a stable set.
If N(u) is not a stable set, let G′ := G−u−N(u) and w′ := w|V G′. By the minimality

of G, αw′(G′) = ρ̃w′(G′). Let F ′ be a w′-cover in G′ of cost ρ̃w′(G′). By adding to F ′ a
number of times a triangle incident with u we obtain a w̃-cover F in G for some w̃ : V → Z+,
where w̃ coincides with w on V \ ({u} ∪ N(u)), where w̃(N(u))− w̃(u) = w(N(u))− w(u),
and where F has cost ρ̃w′(G′) + w̃(u).

Now let S′ be a stable set in G′ with w′(S′) = αw′(G′). Define S := S′ ∪ {u}. So S is
a stable set in G. Then w(S) = w′(S′) + w(u) and S intersects each edge incident with u.
Moreover, w̃(S) = w′(S′) + w̃(u) = ρ̃w′(G′) + w̃(u) ≥ ρ̃w̃(G). So we have (18), and hence
(17).

Choose z in (17) with z(δ(u)) as small as possible. Choose f ∈ δ(u) with zf ≥ 1. We
can assume that zf = 1 and ze = 0 for all other edges e, as we can reset w := w̃−χf . (This
resetting does not change the value of w(V \ {u}) − w(u).)

Then (14) follows from the minimality of w(V \ {u}) − w(u). We finally show (13). By
the definition of z, ρ̃w+χf = αw+χf . Also we have αw+χf ≤ αw + 1, since any stable set S

satisfies (w + χf )(S) ≤ w(S) + 1. As ρ̃w ≤ ρ̃w+χf , this implies (13). End of Proof of Claim

1.

As of now we assume that w and f satisfy (13) and (14). Let f connect vertices u and
u′. Since by the minimality of G, G has no isolated vertices, there exists a minimum-cost
w+χf -cover consisting only of edges and odd circuits, say, e1, . . . , et, C1, . . . , Ck. We choose
f and e1, . . . , et, C1, . . . , Ck such that

|V C1| + · · · + |V Ck|(21)

is as small as possible. Then:

at least two of the Ci traverse f .(22)

To see this, let G′ := G− f . If αw(G′) = αw(G), then by induction G′ has a w-cover of cost
αw. As this is a w-cover in G as well, this would imply αw = ρ̃w, a contradiction.

So αw(G′) > αw(G). That is, there exists a stable set S in G′ with w(S) > αw.
Necessarily, S contains both u and u′. Then for any circuit C traversing f :

|V C ∩ S| ≤ b1
2 |V C|c + 1.(23)
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Also, f is not among e1, . . . , et, since otherwise ρ̃w ≤ ρ̃w+χf − 1, contradicting (13). Setting
l to the number of Ci traversing f , we obtain:

ρ̃w+χf ≤ αw + 1 ≤ w(S) = (w + χf )(S) − 2 ≤ −2 +
t∑

j=1

|ej ∩ S| +
k∑

i=1

|V Ci ∩ S|

≤ −2 + t +
k∑

i=1

b1
2 |V Ci|c + l = ρ̃w+χf + l − 2.

(24)

So l ≥ 2, which is (22).
By (22) we can assume that C1 and C2 traverse f . It is convenient to assume that

EC1 \ {f} and EC2 \ {f} are disjoint; this can be achieved by adding parallel edges. So
EC1 ∩ EC2 = {f}.

Then:

if C is an odd circuit with EC ⊆ EC1 ∪EC2, then f ∈ EC and EC14EC24EC

is again an odd circuit.
(25)

To see this, define C ′

1 := C. As EC14EC24EC is an odd cycle (a cycle is an edge-disjoint
union of circuits), it can be decomposed into circuits C ′

2, . . . , C
′

p, with C ′

2, . . . , C
′

q odd and
C ′

q+1, . . . , C
′

p even (q ≥ 2). Choose for each i = q + 1, . . . , p a perfect matching Mi in C ′

i.
Let e′1, . . . , e

′

r be the edges in the matchings Mi and in {f} \ EC. Then

χV C1 + χV C2 =
q∑

i=1

χV C′

i +
r∑

j=1

χ
e′
j(26)

and

b1
2 |V C1|c + b1

2 |V C2|c = 1
2 |EC1| +

1
2 |EC2| − 1 = r − 1 + 1

2

q∑

i=1

|EC ′

i|

≥ r +
q∑

i=1

b1
2 |V C ′

i|c.

(27)

So replacing C1, C2 by C ′

1, . . . , C
′

q and adding e′1, . . . , e
′

r to e1, . . . , et, gives again a w + χf -
cover of cost at most ρ̃w+χf .

If f 6∈ EC, then f is among e′1, . . . , e
′

r. Hence deleting f gives a w-cover of cost at most
ρ̃w+χf − 1 ≤ αw, contradicting (13). So f ∈ EC. As this is true for any odd circuit in
EC1 ∪ EC2 we know that f ∈ EC ′

i for i = 1, . . . , q and that q = 2.
If p ≥ 3 or r ≥ 1, then |EC ′

1|+ |EC ′

2| < |EC1|+ |EC2|, contradicting the minimality of
(21). This proves (25).

First, it implies

a circuit in EC1 ∪ EC2 is odd if and only if it contains f .(28)

A second consequence is as follows. Let Pi be the u−u′ path Ci \ {f}. Orient the edges
occurring in the path Pi := Ci \ {f} in the direction from u to u′, for i = 1, 2. Then

the orientation is acyclic.(29)
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For suppose there exists a directed circuit C. Then (EC1 ∪ EC2) \ EC contains a directed
u−u′ path, and hence an odd circuit C ′. Hence by (25), EC14EC24EC ′ is an odd circuit,
however containing the even circuit EC, a contradiction.

Let A and B be the colour classes of the bipartite graph (V P1 ∪ V P2, EP1 ∪EP2), such
that u, u′ ∈ A. So

A := {v ∈ V P1 ∪ V P2|there exists an even-length directed u − v path},
B := {v ∈ V P1 ∪ V P2|there exists an odd-length directed u − v path}.

(30)

Define

W := V P1 ∩ V P2 and

U := {v ∈ V |w(v) =
t∑

j=1

|ej ∩ {v}| +
k∑

j=1

|V Cj ∩ {v}|}.

(31)

We next show the following technical, but straightforward to prove, claim:

Claim 2. Let z ∈ A, let Q be an even length directed u − z path, and let S be a stable set

in G. Then

(w − χV Q)(S) ≥ αw − b1
2 |V Q|c + 1(32)

if and only if

(i) |ej ∩ S| = 1 for each j = 1, . . . , t,

(ii) |V Cj ∩ S| = b1
2 |V Cj |c for j = 3, . . . , k,

(iii) S ⊆ U ,

(iv) S contains B \ V Q and is disjoint from A \ V Q,

(v) S contains B ∩ W and is disjoint from A ∩ W .

(33)

Proof. We can assume that EQ ⊆ EC1. Set X := V C1 \ V Q. So |X| is even. Consider the
following sequence of (in)equalities:

(w − χV Q)(S) = w(S) − |V Q ∩ S| ≤ (w + χf )(S) − |V Q ∩ S|

≤
t∑

j=1

|ej ∩ S|+
k∑

j=1

|V Cj ∩ S| − |V Q∩ S| =
t∑

j=1

|ej ∩ S|+
k∑

j=2

|V Cj ∩ S|+ |X ∩ S|

≤ t +
k∑

j=2

b1
2 |V Cj |c + |X ∩ S| = ρ̃w+χf − b1

2 |V C1|c + |X ∩ S|

≤ ρ̃w+χf − b1
2 |V C1|c + 1

2 |X| = αw + 1 − b1
2 |V Q|c.

(34)

Hence (32) holds if and only if equality holds throughout in (34), which is equivalent to
(33). End of Proof of Claim 2.

By (29), we can order the vertices in W as v0 = u, v1, . . . , vs = u′ such that both P1 and
P2 traverse them in this order. For j = 0, . . . , s, let Pj be the collection of directed u − x

paths, where x = vj if vj ∈ A and x is an in-neighbour of vj if vj ∈ B. So x ∈ A.
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Let j be the largest index for which there exists a path Q ∈ Pj with

αw−χV Q ≤ αw − b1
2 |V Q|c.(35)

Such a j exists, since (35) holds for the trivial directed u − u path, as αw−χu ≤ αw. Also,
j < s, since otherwise V Q = V C for some odd circuit C, and hence, with (14) we have

ρ̃w ≤ ρ̃w−χV C + b1
2 |V C|c = αw−χV C + b1

2 |V C|c ≤ αw,(36)

contradicting (13).
Let Q1 and Q2 be the two paths in Pj+1 that extend Q. By the maximality of j, we

know

αw−χV Qi ≥ αw − b1
2 |V Qi|c + 1.(37)

Hence there exist stable sets S1 and S2 with

(w − χV Qi)(Si) ≥ αw − b1
2 |V Qi|c + 1(38)

for i = 1, 2. So for i = 1, 2, (33) holds for Qi, Si. By (33)(iv), S1 and S2 coincide on
V P1 ∪ V P2 except on V Q1 ∪ V Q2. In other words:

(S14S2) ∩ (V P1 ∪ V P2) ⊆ V Q1 ∪ V Q2.(39)

By (33)(v), S1 and S2 moreover coincide on W .
Let H be the subgraph of G induced by S14S2. So H is a bipartite graph, with colour

classes S1 \ S2 and S2 \ S1. Define

Yi := V Qi \ V Q(40)

for i = 1, 2. Then

H contains a path connecting Y1 and Y2.(41)

For suppose not. Let K be the union of the components of H that intersect Y1. So K is
disjoint from Y2. Define S := S14K. Then S ∩ Y1 = S2 ∩ Y1 and S ∩ Y2 = S1 ∩ Y2. This
implies that Q,S satisfy (33). Hence (32) holds, contradicting (35). This proves (41).

Let C be the (even) circuit formed by the two directed vj − vj+1 paths. So Y1 and Y2

are subsets of V C. Let R be a shortest path in H that connects Y1 and Y2; say it connects
y1 ∈ Y1 and y2 ∈ Y2.

Since y1, y2 ∈ S14S2, we know by (33)(v) that y1, y2 6∈ W . By (33)(iv), if y1 ∈ S1 \ S2

then y1 ∈ A and if y1 ∈ S2 \ S1 then y1 ∈ B. Similarly, if y2 ∈ S2 \ S1 then y2 ∈ A and if
y2 ∈ S1 \ S2 then y2 ∈ B.

So if R is even then y1 and y2 belong to different sets A,B, and if R is odd then y1 and
y2 belong to the same set among A,B. Hence R forms with part of C an odd circuit.

By (39) and as (S14S2) ∩ W = ∅, there exist a directed u − vj path N ′ and a directed
vj+1 − u′ path N ′′ that are (vertex-)disjoint from S14S2. N ′, N ′′, and f make a vj+1 − vj

path N . Then N , R, and C make an odd K4, with 3-valent vertices vj , vj+1, y1, y2.
By assumption, it is not a bad K4; that is, it satisfies (4). Suppose first that R has even

length. Then by (4) also N has even length. Hence vj and vj+1 belong to different sets
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A,B. Then by (4) and the symmetry of y1 and y2, we may assume that y1 is adjacent to
vj and that y2 is adjacent to vj+1. Hence, as y1, y2 ∈ S1 ∪ S2, vj and vj+1 do not belong to
S1 ∩ S2, and so vj , vj+1 6∈ B (by (33)(v)), a contradiction.

So R has length 1. Hence N has length 1 as well, and vj , vj+1, y1, y2 lie in the same
colour class of the bipartition A,B of C. So we know:

vj = u, vj+1 = u′, y1, y2 ∈ A, and R has length 1.(42)

Let D be the set of edges of G connecting two vertices in A. So f ∈ D and y1y2 ∈ D. Hence
|D| ≥ 2. We consider the edges in D as chords of the circuit C with EC = EP1 ∪ EP2.

Now any edge d in D can play the same role as f , since, if C ′

1 and C ′

2 denote the two
odd circuits in EC ∪ {d}, then:

C ′

1, C
′

2, C3, . . . , Ck, e1, . . . , et form a w + χd-cover of cost ρ̃w+χd = ρ̃w+χf .(43)

Indeed, as χC′

1 +χC′

2 = χd +χC1 +χC2 −χf , the collection C ′

1, C
′

2, C3, . . . , Ck, e1, . . . , et is a
w + χd-cover of cost ρ̃w+χf with |V C ′

1| + |V C ′

2| + |V C3| + · · · + |V Ck| at most (21). Hence
(43) follows from the choice of f .

So each d ∈ D has all the properties derived for f so far and it would lead to the same
circuit C and to the same bipartition A,B of C.

This is used to prove:

any edge in D crosses any chord of C.(44)

Indeed, we only need to prove this for f . However, by the minimality of (21) all circuits
among C1, . . . , Ck are chordless, so each chord of C crosses f .

Let n := |D|, and let s1, s2, . . . , s2n be the ends of the edges in D, in cyclic order. Let
f1, . . . , f2n be the edges in D incident with s1, . . . , s2n, respectively. So fn+j = fj for all j

(taking indices mod 2n). For j = 1, . . . , 2n, let Rj be the sj−1 − sj path along C that does
not contain any other of the vertices si.

By Lemma 1, we can assume that 2, . . . , n 6∈ J , where J is as defined in (8). Let Q1 be
the path of the form Q = Rj+1Rj+2 · · ·Rn with 0 ≤ j ≤ n such that

αw−χV Q ≥ αw − b1
2 |V Q|c + 1,(45)

and such that j is maximal. This path exists, since for j = 0 we have (45), as otherwise
(36) would again yield a contradiction.

Trivially, j < n, since the empty path does not satisfy (45). Let Q2 := Rj+2Rj+3 · · ·Rj+1+n.
Since also Q2 satisfies (45) (as again, (36) would yield a contradiction otherwise), there exist
stable sets S1 and S2 with

(w − χV Qi)(Si) ≥ αw − b1
2 |V Qi|c + 1(46)

for i = 1, 2. So for i = 1, 2, (33) holds for Qi, Si where we can take for f any edge not
incident with an internal vertex of Qi. By (33)(iv),

(S14S2) ∩ V C ⊆ V Q1 ∪ V Q2.(47)

We (re)define H as the subgraph of G induced by S14S2. Define

Y1 := V Rj+1 and Y2 := V Rn+1 ∪ V Rn+2 ∪ · · · ∪ V Rn+j+1.(48)
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Then

H contains a path connecting Y1 and Y2.(49)

For suppose not. Let K be the union of the components of H that intersect Y1. So K is
disjoint from Y2. Define S := S14K. Then S ∩ Y1 = S2 ∩ Y1 and S ∩ Y2 = S1 ∩ Y2. This
implies that Q := Rj+2Rj+3 · · ·Rn and S satisfy (33), taking f := fn. Hence (32) holds for
Q, contradicting the maximality of j. This proves (49).

Let R be a shortest path in H that connects Y1 and Y2; say it connects y1 ∈ Y1 and y2 ∈
Y2. By (47), any internal vertex of R that is on C, is an internal vertex of Rj+2Rj+3 · · ·Rn.
If y1 ∈ S1\S2, as y1 is not an internal vertex of Q2, we know y1 ∈ A. Similarly, if y1 ∈ S2\S1,
then y1 ∈ B. Similarly, if y2 ∈ S2 \ S1, then y2 ∈ A, and if y2 ∈ S1 \ S2, then y2 ∈ B. So R

together with the y1−y2 part of Rj+1Rj+2 · · ·Rn+j+1 forms an odd cycle. Hence it contains
an odd circuit, and so R contains an odd bow. By (7), this bow connects two vertices in
some Rj+2, . . . , Rn. This contradicts the fact that j + 2, . . . , n 6∈ J .

Figure 1 gives a strongly t-perfect graph that contains a bad K4. So the implication in
Theorem 1 cannot be reversed. However one has:

Corollary 1a. For any graph G, the following are equivalent:

(i) G contains no bad K4;

(ii) each subgraph of G is t-perfect;

(iii) each subgraph of G is strongly t-perfect.

(50)

Proof. The implication (i)⇒(iii) follows from Theorem 1, while the implication (iii)⇒(ii)
follows by the observations made in Section 1.

The implication (ii)⇒(i) was proved by Barahona and Mahjoub [1]. It suffices to show
that a bad K4 is not t-perfect. Choose a smallest counterexample G. As G is t-perfect,
G 6= K4. If (4) does not hold then G has a vertex v such that contracting the edges in δ(v)
gives an odd K4-subdivision G′ that again does not satisfy (4). As G′ is again a t-perfect
odd K4 (as one easily checks), this contradicts the minimality of G.

4. b-stable sets

The results on stable sets in bad-K4-free graphs described above are of a self-refining
character, and can be extended to b-stable sets.

Given a graph G = (V,E) and a function b : E → Z+, a b-stable set is a function
x : V → Z+ such that xu + xv ≤ be for each edge e = uv. So if b = 1, b-stable sets are the
incidence vectors of stable sets. The b-stable set polytope is the convex hull of the b-stable
sets.

Theorem 1 implies a generalization to b-stable sets. Consider the following system:

(i) xv ≥ 0 for each v ∈ V ,
(ii) xu + xf ≤ be for each e = uv ∈ E,
(iii) x(V C) ≤ b1

2b(EC)c for each odd circuit C.

(51)
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Theorem 2. For any graph G = (V,E), the following are equivalent:

(i) G contains no bad K4;

(ii) for each b : E → Z+, (51) determines the b-stable set polytope;

(iii) for each b : E → Z+, (51) is totally dual integral.

(52)

Proof. The implication (iii)⇒(ii) is general polyhedral theory (cf. [12]). Also the implication
(ii)⇒(i) is direct: if G contains a bad K4-subdivision H, we can set be := 1 if e ∈ EH and
be = 3 otherwise. Then (51) does not determine an integer polytope, since otherwise H

would be t-perfect.
We next show the implication (i)⇒(ii). Let G contain no bad K4. We show that the

polytope P determined by (51) is integer, and hence is equal to the b-stable set polytope.
Let x be a vertex of P . By resetting be := be−bxu +xvc for e = uv ∈ E and xv := xv −bxvc
for v ∈ V , we can assume that 0 ≤ xv < 1 for each v ∈ V . Let E′ be the set of edges e of G

with be = 1. Then G′ = (V,E′) contains no bad K4, and hence is t-perfect (Theorem 1). So
x is a convex combination of incidence vectors of stable sets of G′. (To be precise, if be = 0
for e = uv, then xu = xv = 0, and we can delete u and v from G′.) As each such incidence
vector satisfies (i) and (ii) of (51), it also satisfies (iii). Hence x is a convex combination of
integer solutions of (51). So P is integer.

Using the implication (i)⇒(ii), we finally show (i)⇒(iii). Assume (i) holds, but not (iii).
We choose G with |V | + |E| minimal, and next, we choose b with bT1 minimal. As (iii)
does not hold, there exists a weight function w ∈ Z

V
+ such that maximizing wTx over (51)

has no integer optimum dual solution. We choose such a w for which the maximum value
of wTx over (51) is minimal. This implies:

be ≥ 1 for each edge e.(53)

Assume this is false and that be = 0 for some edge e = uv. Consider the system obtained
from (51) by deleting edge e and setting xu = 0 and xv = 0. The new system is totally dual
integral, by the minimality of |V |+ |E| and since setting inequalities to equalities maintains
total dual integrality (cf. [12]). The maximum of wTx over the original system (51) is equal
to the maximum of wTx over the new system (51). Moreover, the inequality xu ≤ 0 in the
new system is the sum of the inequalities xu + xv ≤ 0 and −xv ≤ 0 in the original system.
Similarly, xv ≤ 0 is the sum of xu + xv ≤ 0 and −xu ≤ 0. So an integer optimum dual
solution for the new linear program yields an integer optimum dual solution for the original
linear program, contradicting our assumption that no such solution exists.

By (53), we can choose w, among all w satisfying the previous conditions, such that
wT1 is maximal.

Let x maximize wTx over (51), such that x has a maximum number of noninteger
components and such that x is in general position on the face of optimum solutions. Call a
constraint among (51) tight if it is satisfied by x with equality. Call an edge or odd circuit
tight if the corresponding constraint in (51) is tight.

Then:

0 < xv ≤ 1 for each v ∈ V .(54)
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To see that xv > 0, suppose xv = 0. Then resetting wv := wv + 1 does not change the
optimum value (as x is in general position), contradicting the maximality of wT1. So xv > 0.
If xv > 1, reset xv := xv−1 and be := be−1 for each e ∈ δ(v). Then the constraints that are
tight for the new x in the new system, are also tight for the original x in the original system.
As the new system is TDI (by our choice of b), we obtain an integer optimum dual solution
also for the original system, contradicting our assumption. Therefore, we have (54).

Define

U := {v ∈ V |xv < 1} and W := {v ∈ V |xv = 1}.(55)

Then by (54):

if v ∈ W and e ∈ δ(v) then be ≥ 2.(56)

Next:

if e is spanned by U , then e is not tight.(57)

Otherwise, be = 1. Then resetting w := w − χe decreases the maximum of wTx over (51).
Hence for the new w there is an integer optimum dual solution. Increasing in this optimum
dual solution the variable corresponding to e by 1, gives an integer optimum dual solution
for the original w — a contradiction. This proves (57).

Now consider any tight odd circuit C. For each v ∈ V C, let Mv be the unique perfect
matching in C − v. Then

b(EC) ≤ 2b(Mv) + 1 for each v ∈ U ∩ V C.(58)

Indeed,

b1
2b(EC)c = x(V C) ≤ b(Mv) + xv < b(Mv) + 1,(59)

hence b1
2b(EC)c ≤ b(Mv), implying (58).

This gives:

if e = uv ∈ EC with u, v ∈ U , then be = 1, b(EC) is odd, and b(Mu) = b(Mv) =
b1

2b(EC)c.
(60)

Indeed,

b(EC) = b(Mu)+b(Mv)+be ≥ (1
2b(EC)− 1

2)+(1
2b(EC)− 1

2)+be = b(EC)+be−1
≥ b(EC).

(61)

So we have equality throughout. This gives (60).
Now:

for each tight odd circuit C we have either be = 1 for each e ∈ EC or be ≥ 2 for
each e ∈ EC.

(62)

If not, C has consecutive edges e = tu and f = uv with be = 1 and bf ≥ 2. By (56), t ∈ U .
Also, Mv = (Mt \ {f})∪{e}, and hence b(Mv) = b(Mt)− bf + be ≤ b(Mt)− 1. Hence, using
(60),

b(Mv) + 1 ≤ b(Mt) = b1
2b(EC)c = x(V C) ≤ b(Mv) + xv ≤ b(Mv) + 1.(63)
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So we have equality throughout. Since e ∈ Mv, this implies that be is tight, contradicting
(57).

This proves (62), which implies:

for each tight odd circuit C we have V C ⊆ U or V C ⊆ W .(64)

Indeed, if be = 1 for all e ∈ EC, then V C ⊆ U by (56). If be ≥ 2 for all e ∈ EC, then

|EC| ≤ b1
2b(EC)c = x(V C) ≤ |V C| = |EC|,(65)

implying xv = 1 for all v ∈ V C. So V C ⊆ W .
(60) implies:

each edge e spanned by U satisfies be = 1,(66)

since e belongs to at least one tight odd circuit, as otherwise we can delete e from G and
apply induction, a contradiction.

(64) implies that the maximum of wTx over (51) is equal to the maximum of (w|U)Tx′

over the corresponding system for G[U ] plus the maximum of (w|W )Tx′′ over the correspond-
ing system for G[W ]. If U 6= V and W 6= V , there exist, by induction, integer optimum
dual solutions y′ and y′′. Combining them, gives an integer optimum dual solution for G.

So we know that U = V or W = V . If U = V , then b = 1, and total dual integrality of
(51) follows from Theorem 1.

Hence W = V . Then x is a maximum-weight 2-stable set of G, since any 2-stable set
gives a feasible solution of (51) (as it satisfies (i) and (ii), hence also (iii) as it is integer).
Then wTx is equal to the minimum size yT1 of a 2w-edge cover y ∈ Z

E
+ of G (Gallai [5]).

Choose y so that
∑

e∈E y(e)2 is maximized. Then y(δ(v)) is even for each v ∈ V .
Otherwise, there exists a simple path P between two vertices u and v with y(δ(u)) and
y(δ(v)) odd, such that y(e) ≥ 1 for each e ∈ EP . We can split EP into two matchings M

and N . Assume that |M | ≤ |N |, and that if |M | = |N | then y(M) ≥ y(N). Then resetting
y := y + χM − χN improves y, a contradiction. By similar arguments we know that the
support of y contains no even circuit.

So y is the sum of an even vector 2z ∈ Z
E and of incidence vectors of odd circuits. They

give an optimum dual solution of value yT1 = wTx, as required.
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