
IV. Stable matchings

1. Stable matchings

Let G = (V, E) be a graph and let for each v ∈ V , ≤v be a total order on δ(v). Put e ¹ f

if e and f have a vertex v in common with e ≤v f . Call a set M of edges stable if for each
e ∈ E there exists an f ∈ M with e ¹ f .

In general, stable matchings need not exist (e.g., generally not for K3). However, Gale
and Shapley [1] showed that if G is bipartite, they do exist:

Theorem 1 (Gale-Shapley theorem). If G is bipartite, then there exists a stable matching.

Proof. Let U and W be the colour classes of G. For each edge e = uw with u ∈ U and
w ∈ W , let ϕ(e) be the height of e in (δ(w),≤w). (The height of e is the maximum size of
a chain with maximum e.) Choose a matching M in G such that for each edge e = uw of
G, with u ∈ U and w ∈ W ,

(1) if f ≤u e for some f ∈ M , then e ≤w g for some g ∈ M ,

and such that
∑

e∈M ϕ(e) is as large as possible. (Such a matching exists, since M = ∅
satisfies (1).) We show that M is stable.

Choose e = uw ∈ E with u ∈ U and w ∈ W and suppose that there is no e′ ∈ M with
e ¹ e′. Choose e largest in ≤u with this property. Then by (1) there is no f ∈ M with
f ≤u e; and moreover, there is no f ∈ M with e ≤u f . Hence u is missed by M .

Since also there is no g ∈ M with e ≤w g, we can remove any edge in M incident with
w and add e to M , so as to obtain a matching satisfying (1) with larger

∑
e∈M ϕ(e), a

contradiction.

This proof also gives a polynomial-time algorithm to find a stable matching. It was
noted by Roth [3] that this algorithm is in fact in use in practice since 1951 in the U.S., to
match hospitals and medical students (cf. Roth and Sotomayor [4]).

2. List-edge-colouring

An interesting extension of Kőnig’s edge-colouring theorem was shown by Galvin [2], by
using the Gale-Shapley theorem on stable matchings (Theorem 1).

Let G = (V, E) be a graph. Then G is k-list-edge-colourable if for each choice of finite
sets Le for e ∈ E with |Le| = k, we can choose le ∈ Le for e ∈ E such that le 6= lf if
e and f are incident. The smallest k for which G is k-list-edge-colourable is called the
list-edge-colouring number of G.

Trivially, the list-edge-colouring number of G is at least the edge-colouring number of
G, and hence at least the maximum degree ∆(G) of G. Galvin [2] showed:

Theorem 2. The list-edge-colouring number of a bipartite graph is equal to its maximum

degree.
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Proof. Let G = (V, E) be a bipartite graph, with colour classes U and W , and with
maximum degree k := ∆(G). The theorem follows by applying the following statement to
any ∆(G)-edge-colouring ϕ : E → {1, . . . ,∆(G)} of G.

(2) Let ϕ : E → Z be such that ϕ(e) 6= ϕ(f) if e and f are incident. For each
e = uw ∈ E with u ∈ U and w ∈ W , let Le be a finite set satisfying

|Le| > |{f ∈ δ(u) | ϕ(f) < ϕ(e)}| + |{f ∈ δ(w) | ϕ(f) > ϕ(e)}|.

Then there exist le ∈ Le (e ∈ E) such that le 6= lf if e and f are incident.

So it suffices to prove (2), which is done by induction on |E|. Choose p ∈
⋃

Le and let
F := {e ∈ E | p ∈ Le}. Define for each v ∈ V a total order <v on δF (v) by:

(3) e ≤v f ⇐⇒ ϕ(e) ≥ ϕ(f), if v ∈ U ,
e ≤v f ⇐⇒ ϕ(e) ≤ ϕ(f), if v ∈ W ,

for e, f ∈ δF (v). By the Gale-Shapley theorem (Theorem 1), F contains a stable matching
M . So M is a matching such that for each e ∈ F there is an f ∈ M with e ≤v f for some
v ∈ e. Hence for each edge e = uw ∈ F \ M , with u ∈ U and w ∈ W : ∃f ∈ M ∩ δ(u) :
ϕ(f) < ϕ(e) or ∃f ∈ M ∩ δ(w) : ϕ(f) > ϕ(e). So removing M from E and resetting
Le := Le \ {p} for each e ∈ F \ M , we can apply induction.

For school scheduling (cf. König’s edge-colouring theorem) this theorem can be inter-
preted as: if we prescribe for each open ‘slot’ a set of ∆ hours, where ∆ is the maximum
number of open slots over all teachers and all classes, then there exists a feasible schedule.
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