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SEMIDEFINITE APPROXIMATIONS FOR GLOBAL
UNCONSTRAINED POLYNOMIAL OPTIMIZATION∗
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Abstract. We consider the problem of minimizing a polynomial function on Rn, known to
be hard even for degree 4 polynomials. Therefore approximation algorithms are of interest. Lasserre
[SIAM J. Optim., 11 (2001), pp. 796–817] and Parrilo [Math. Program., 96 (2003), pp. 293–320] have
proposed approximating the minimum of the original problem using a hierarchy of lower bounds
obtained via semidefinite programming relaxations. We propose here a method for computing tight
upper bounds based on perturbing the original polynomial and using semidefinite programming. The
method is applied to several examples.

Key words. semidefinite programming, global optimization, approximation algorithm, positive
polynomial, sum of squares of polynomials, moment matrix

AMS subject classifications. 90C22, 90C26, 49M20

DOI. 10.1137/04060562X

1. Introduction. We consider the problem

p∗ := inf
x∈Rn

p(x)(1)

of minimizing a polynomial p in n indeterminates over R
n. We may assume that p has

an even degree 2m, since otherwise p∗ = −∞. There are three possibilities: Either p
has an infinite infimum (i.e., p∗ = −∞), p has a finite infimum (e.g., for the polynomial
p(x1, x2) = x2

1 + (x1x2 − 1)2), or p has a minimum. Computing the infimum of a
polynomial is a hard problem, already for degree 4 polynomials. Indeed, it contains
the problem of deciding whether a matrix is copositive, which is known to be co-NP-
hard [21], with an n× n matrix P being copositive if p(x) :=

∑n
i,j=1 Pijx

2
ix

2
j ≥ 0 for

all x ∈ R
n, i.e., if p∗ = 0. Alternatively, problem (1) contains the problem of deciding

whether an integer sequence a1, . . . , an can be partitioned, which is known to be NP-
complete [7], with a1, . . . , an being partitionable if there exists x ∈ {±1}n such that
aTx = 0, i.e., if the infimum of the polynomial p(x) := (aTx)2 +

∑n
i=1(x

2
i − 1)2 is

equal to 0.

1.1. Some known approaches to polynomial unconstrained minimiza-
tion. An approach followed by some authors (e.g., by Hägglöf, Lindberg, and Steven-
son [8]) is to look at the first order conditions ∂p/∂xi = 0 (i = 1, . . . , n). Various
algebraic techniques can be used for determining the real solutions to this system
of polynomial equations; e.g., using Gröbner bases and the eigenvalue method, using
resultants and discriminants, or homotopy methods (see, e.g., [3]; see [25] for a discus-
sion and comparison). However, there are several difficulties with such an approach.
It is computationally expensive (e.g., computing a Gröbner basis may be computa-
tionally very demanding), the number of critical points can be infinite, and, moreover,
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this approach applies only if the polynomial p attains its minimum. We will come
back to this type of approach later in this section.

Hanzon and Jibetean [9] (see also Jibetean [12]) proposed going around these
difficulties by considering a perturbation

pλ(x) := p(x) + λ

(
n∑

i=1

x2m+2
i

)
(2)

of the original polynomial p for small λ > 0. Set

p∗λ := inf
x∈Rn

pλ(x).

Thus, p∗ ≤ p∗λ ≤ p∗ + λ‖x∗‖2m+2 if x∗ is a global minimizer of p. The perturbed
polynomial has the following properties: pλ attains its minimum, the set of critical
points of pλ is finite, and the limit of the minima p∗λ as λ → 0 is equal to the infimum
p∗ of p. Moreover, if p has a global minimum, then the limit set as λ ↓ 0 of the set
of global minimizers of pλ is contained in the set of global minimizers of p, and each
connected component of the set of global minimizers of p contains a point which is the
limit of a branch of local minimizers of pλ. Exploiting these facts, Hanzon and Jibetean
proposed an exact algorithm for computing the limit p∗ of the minima p∗λ as well as
a global minimizer of p (if some exist). Their algorithm uses algebraic techniques,
some of them closely related to the algebraic machinery developed by Basu, Pollack,
and Roy [1]. Hanzon and Jibetean’s method applies to any polynomial p, i.e., no
assumption is made on the existence of a minimum. However, its computational cost
is very high and the algorithm can be applied in practice only to small instances.

Another type of approach consists of solving a convex (in fact, semidefinite) re-
laxation of the original problem; see, e.g., Lasserre [15], Parrilo [22, 23], and Shor [28].
The approach applies more generally to the problem

p∗ := inf
x∈K

p(x), where K := {x ∈ R
n | h1(x) ≥ 0, . . . , h�(x) ≥ 0}(3)

of minimizing p over a set defined by polynomial inequalities and equations (treating
an equation h(x) = 0 as two opposite inequalities: h(x) ≥ 0, −h(x) ≥ 0). Following
Lasserre [15], set di := 	deg(hi)/2
 and, for an integer k ≥ max(	deg(p)/2
, d1, . . . , d�),
consider the semidefinite program

p∗L,k := inf pT y s.t. Mk(y) � 0, Mk−di(hiy) � 0 (i = 1, . . . , �), y0 = 1(4)

(the moment relaxation of order k of (3)), and its dual

ρ∗k := sup ρ s.t. p(x) − ρ = u0 +
∑�

i=1 uihi, where
u0, u1, . . . , u� are sum of squares of polynomials
and deg(u0),deg(u1h1), . . . ,deg(u�h�) ≤ 2k

(5)

(the sum of squares relaxation of order k of (3)). Program (4) uses the variables y =
(yα)α∈S2k

, Mk(y) := (yα+α′)α,α′∈Sk
is the moment matrix of order k, Mk−di

(hiy) are
localizing matrices, and for an integer k, we set Sk := {α ∈ Z

n
+ | |α| :=

∑n
i=1 αi ≤ k}.

Then ρ∗k ≤ p∗L,k ≤ p∗, ρ∗k ≤ ρ∗k+1, and p∗L,k ≤ p∗L,k+1. Under some assumption on K,
there is asymptotic convergence of the parameters ρ∗k, μ

∗
k to p∗. The following cases

are of particular interest for our purpose:
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(I) K = {x ∈ R
n |

∑n
i=1 x

2
i ≤ R2}. Then there is asymptotic convergence of ρ∗k

and p∗L,k to p∗ (see [15]).
(II) K = {x ∈ R

n | h1(x) = 0, . . . , h�(x) = 0} and the polynomials h1, . . . , h�

generate a zero-dimensional ideal I (i.e., they have finitely many common
complex zeros). Then there is finite convergence of p∗L,k to p∗, and of ρ∗k
when h1, . . . , h� form a Gröbner basis of I (see [18]) or when I is radical (see
[24]).

(III) K = {x ∈ R
n | ∂p

∂xi
(x) = 0 (i = 1, . . . , n)}. Then there is asymptotic

convergence of ρ∗k and p∗k to p∗, and finite convergence when the ideal Igrad
generated by the polynomials ∂p

∂xi
(i = 1, . . . , n) is radical (see [6]). (By case

(II) there is finite convergence of p∗k to p∗ when Igrad is zero-dimensional.)
Henrion and Lasserre [11] gave the following stopping criterion: If the optimum solu-
tion y to (4) satisfies the rank condition

rankMk(y) = rankMk−d(y), where d := max(d1, . . . , d�),(6)

then p∗k = p∗. See section 2.2 for details.
For our original unconstrained minimization problem (1) (then � = 0 and K =

R
n), we have p∗L,k = p∗L,m ≤ p∗ for all k ≥ m, with equality p∗L,m = p∗ if and only

if p − p∗ is a sum of squares. One possible option to better approximate p∗ is to
transform the unconstrained problem (1) into a constrained problem of the form (3).
This is possible if p attains its minimum, as p∗ can then be formulated as

p∗ = p∗grad := inf p(x) s.t. ∂p(x)/∂xi = 0 (i = 1, . . . , n).(7)

The equality p∗ = p∗grad does not hold in general if p does not attain its minimum;

for instance, p∗ = 0 and p∗grad = 1 for p(x1, x2) = x2
1 + (x1x2 − 1)2; p∗ = −∞ and

p∗grad = 0 for p(x) = x3. If p has a minimum and if some upper bound R is known
a priori on the norm of a global minimizer, then p∗ can also be expressed as

p∗ = min p(x) s.t.

n∑
i=1

x2
i ≤ R2.(8)

A major drawback of approaches based on formulations like (7) or (8) is that it is
not clear how to test whether a polynomial has a minimum and, for (8), how to
find a ball containing a global minimizer. We will, however, present in section 2.1 a
result of Marshall [19] concerning a class of polynomials for which such a ball can be
determined beforehand.

1.2. Our approach. In this paper we propose the following strategy for getting
around these difficulties. Following Hanzon and Jibetean [9], we consider the per-
turbed polynomial pλ from (2). As computing the exact limit p∗ of the minima p∗λ
is not a realistic option for large problems, we work toward the less ambitious goal
of computing a good upper approximation p∗λ of p∗ for some small value of λ. As
mentioned earlier, the polynomial pλ enjoys several properties (that p may not have
in general). Namely, pλ attains its minimum, which can thus be formulated as

p∗λ = min
x∈Vλ∩Rn

pλ(x),(9)

where

Vλ :=

{
x ∈ C

n | hλ,i(x) :=
∂pλ
∂xi

(x) = 0 (i = 1, . . . , n)

}
,
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and the set Vλ is finite (|Vλ| ≤ (2m + 1)n). Moreover, one can give an explicit radius

Rλ =
nm

λ

∑
α�=0

|pα|(10)

for a ball containing the global minima of pλ (see Corollary 3); thus

p∗λ = min
x∈Bλ

pλ(x),(11)

where

Bλ :=

{
x ∈ R

n | hλ,0(x) := R2
λ −

n∑
i=1

x2
i ≥ 0

}
.

By minimizing p(x) over the algebraic set Vλ ∩ R
n or over the ball Bλ, one obtains

even better bounds μ∗
λ and β∗

λ, respectively; that is,

p∗ ≤ μ∗
λ := min

x∈Vλ∩Rn
p(x) ≤ p∗λ, p∗ ≤ β∗

λ := min
x∈Bλ

p(x) ≤ p∗λ.

As the parameters μ∗
λ and β∗

λ are expressed via constrained polynomial programs
of the form (3), a first option is to apply Lasserre’s approach for computing them.
Namely, for any integer k ≥ m + 1, consider the programs

μ∗
L,k,λ := inf pT y s.t. y0 = 1, Mk(y) � 0,

Mk−m−1(hλ,iy) = 0 (i = 1, . . . , n),
(12)

β∗
L,k,λ := inf pT y s.t. y0 = 1, Mk(y) � 0, Mk−1(hλ,0y) � 0.(13)

Then

μ∗
L,k,λ ≤ μ∗

L,k+1,λ ≤ μ∗
λ, β∗

L,k,λ ≤ β∗
L,k+1,λ ≤ β∗

λ for k ≥ m + 1.

As k goes to infinity, there is asymptotic convergence of β∗
L,k,λ to β∗

λ (recall case (I))
and finite convergence of the parameters μ∗

L,k,λ to μ∗
λ (recall case (II)).

As the set Vλ is finite, another option for computing the bound μ∗
λ is to apply the

semidefinite representation result for finite varieties of Laurent [18]. Namely, μ∗
λ can

be expressed as the optimum of the semidefinite program

μ∗
λ = min pT y s.t. MB(y) � 0, y0 = 1,(14)

involving a combinatorial moment matrix MB(y). Here, y = (yβ)β∈B ∈ R
B, where

B := {β ∈ Z
n | 0 ≤ βi ≤ 2m (i = 1, . . . , n)}

has the property that the set of monomials {xβ | β ∈ B} forms a basis of the space
R[x1, . . . , xn]/Iλ, and Iλ is the ideal generated by hλ,i = ∂pλ/∂xi (i = 1, . . . , n). The
matrix MB(y) is obtained from a classical moment matrix by “factoring” through Iλ,
which, roughly speaking, means that the equations hλ,i(x) = 0 are used for expressing
any yα (α ∈ Z

n
+) in terms of yβ (β ∈ B). As a by-product, this implies the finite

convergence of the bounds μ∗
L,k,λ from (12) to μ∗

λ; more precisely, μ∗
L,k,λ = μ∗

λ for
k ≥ 2nm (by Theorem 23 in [18]).



494 DORINA JIBETEAN AND MONIQUE LAURENT

The semidefinite program (14) is more compact than (12) (for any k ensuring
finite convergence). Indeed, program (14) involves only one linear matrix inequality
(LMI) and |B| = (2m + 1)n variables, whereas (12) involves n + 1 LMIs and

(
n+2k

2k

)
variables. Moreover the size of the matrix MB(y) is |B| = (2m+1)n, which is smaller
than the size

(
n+k
k

)
of the matrix Mk(y) for any k ≥ 2nm. Solving the semidefinite

program (14) is, however, still out of reach for large n or m. Moreover, the entries of
MB(y) are polynomial in 1/λ (and linear in y) and thus, for λ close to 0, they may
be ill-conditioned. These difficulties can be addressed in the following way. Given an
integer k, m ≤ k ≤ 2nm, consider the truncated semidefinite program obtained by
considering the principal submatrix of MB(y), denoted MBk

(y), indexed by the subset
Bk := B ∩ Sk, and set

μ∗
k,λ := inf pT y s.t. MBk

(y) � 0, y0 = 1.(15)

Thus,

μ∗
k,λ ≤ μ∗

k+1,λ ≤ μ∗
2nm,λ = μ∗

λ.

When the optimum solution MBk
(y) satisfies the following rank condition

rankMBh
(y) = rankMBh−1

(y)(16)

for some m ≤ h ≤ k, one can conclude that the optimum value of the truncated
problem (15) is an upper bound for the infimum p∗; that is, p∗ ≤ μ∗

k,λ ≤ μ∗
λ. Moreover,

one can extract a point x for which p∗ ≤ p(x) ≤ μ∗
k,λ, thus giving a certificate for

the claimed upper bound μ∗
k,λ on p∗ (see Corollary 19). In this way, one is (often)

able to compute a very good upper approximation of p∗ by solving a much smaller
semidefinite program. Moreover the degree in 1/λ of the entries of MBk

(y) is at
most k −m (see Theorem 18) and thus remains small for small values of k. Several
examples illustrating this procedure are given in section 3.2. In most cases one is
able to conclude that the parameter μ∗

k,λ from program (15) is an upper bound for
p∗ already for k = m + 1 or m + 2, in which case the entries of MBk

(y) are at most
quadratic in 1/λ, and we are thus able to carry out the computations for a small
perturbation parameter λ ∼ 10−4 and sometimes even smaller. By the results of [9],
for such small λ, the extracted minimizer xλ is very close to a global minimizer of p
(if some exist); this will be verified in the examples.

Given an integer k ≥ m, program (15) can be seen as a “compact” analogue of
program (12). We can prove the following interlacing property for their optimal values
(see Theorem 17):

μ∗
k,λ ≤ μ∗

L,k+1,λ ≤ μ∗
k+1,λ(17)

for m ≤ k ≤ 2nm, with equality μ∗
2nm,λ = μ∗

L,2nm,λ = μ∗
λ; see Examples 4, 5, 6 for

a numerical comparison. Program (12) involves matrices of size |Sk| =
(
n+k
k

)
and

|S2k| =
(
n+2k

2k

)
variables, whereas its compact analogue (15) involves matrices of size

|Bk| = |Sk ∩B| and |B2k| = |S2k ∩B| variables. For k ≤ 2m, Bk = Sk, but B2k is then
already significantly smaller than S2k. This is illustrated in Table 1, which displays
some values of |S2k \ B2k| = |S2k \ B| for k = m + 1,m + 2.

1.3. Contents of the paper. The paper is organized as follows. Section 2 con-
tains preliminaries about polynomials and about classical and combinatorial moment
matrices and their application to polynomial optimization. In section 3, we present
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Table 1

Gain in number of variables when using program (15) instead of program (12).

|S2m+2 \ B| |S2m+4 \ B| for m ≥ 2 |S2m+4 \ B| for m = 1

n n(n + 1) 4n + 12
(
n
2

)
+ 12

(
n
3

)
+ 4

(
n
4

)
4n + 11

(
n
2

)
+ 12

(
n
3

)
+ 4

(
n
4

)
n = 2 6 20 19

n = 3 12 60 57

n = 4 20 140 136

n = 5 30 280 275

n = 10 110 2860 2850

our method for computing the upper approximations μ∗
λ for the infimum p∗ of a poly-

nomial p over R
n, and in section 3.2 we present several examples on which our method

has been tested.

2. Preliminaries.

2.1. Polynomials. We begin with some preliminaries on ideals of polynomi-
als. Throughout the paper, R[x1, . . . , xn] denotes the ring of real polynomials in n
indeterminates. For an integer k ≥ 0, Sk denotes the set of α ∈ Z

n
+ with |α| :=∑n

i=1 αi ≤ k. Write a polynomial p ∈ R[x1, . . . , xn] with (total) degree at most k as
p(x) =

∑
α∈Sk

pαx
α, where xα denotes the monomial xα := xα1

1 · · ·xαn
n . As usual,

we identify a polynomial p of degree at most k with the sequence of its coefficients
p = (pα)α∈Sk

.
Let I be an ideal in R[x1, . . . , xn]. The set

V = V (I) := {x ∈ C
n | f(x) = 0 ∀f ∈ I}

is its associated (complex) variety. The ideal I is said to be zero-dimensional if
|V | < ∞. The sets I(V ) := {f ∈ R[x1, . . . , xn] | f(v) = 0 ∀v ∈ V } and

√
I :=

{f ∈ R[x1, . . . , xn] | fk ∈ I for some integer k ≥ 1} are again ideals in R[x1, . . . , xn],
which obviously contain the ideal I. The Nullstellensatz asserts that these two ideals
coincide; namely,

√
I = I(V ). The ideal I is said to be radical when I =

√
I. Hence,

by the Nullstellensatz,

I is radical ⇐⇒ the polynomials vanishing at all points of V
are precisely the polynomials in I.

(18)

The following result, relating the dimension of the quotient vector space R[x1, . . . , xn]/I
and the cardinality of V , can be found, e.g., in [2, section 5.3]:

|V | < ∞ ⇐⇒ dim R[x1, . . . , xn]/I < ∞,
|V | ≤ dim R[x1, . . . , xn]/I, with equality if and only if I is radical.

(19)

We now recall a result of Marshall [19] giving a sufficient condition for a polyno-
mial to have a minimum. Given a nonzero polynomial p, let p̃ be its highest degree
homogeneous component, defined as the sum of the terms of p having maximum degree,
and set

p̃S := min
x∈S

p̃(x), where S :=

{
x ∈ R

n

∣∣∣∣
n∑

I=1

x2
i = 1

}
.

If p̃S < 0, then p has obviously an infinite infimum, i.e., p∗ = −∞. If p̃S > 0, then,
following Marshall [19], p is said to be stably bounded from below and, as the next
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result shows, p attains its minimum. On the other hand, no conclusion can be drawn
when p̃S = 0; indeed, p may have an infinite infimum (e.g., for p(x1, x2) = x2

1 + x2),
a finite infimum (e.g., for p(x1, x2) = x2

1 + (x1x2 − 1)2), or a minimum (e.g., for
p(x1, x2) = x2

1x
2
2).

Lemma 1 (see [19]). Assume p is stably bounded from below. Given x ∈ R
n,

p(x) ≤ 0 =⇒ ‖x‖ ≤ max

⎛
⎝ 1

p̃S

∑
α:|α|≤deg(p)−1

|pα|, 1

⎞
⎠.(20)

In particular, any global minimum of p belongs to the ball centered at the origin with
radius Rp := max(1, 1

p̃S

∑
α:1≤|α|≤deg(p)−1 |pα|).

Proof. Say p has degree d and write p = p̃ + g, where all terms of p̃ have degree
d and all terms of g have degree ≤ d− 1. Let x ∈ R

n \ {0} such that p(x) ≤ 0. Thus,
p̃(x) ≤ −g(x) ≤

∑
α:|α|≤d−1 |pα||xα|. By assumption, p̃(x) = ‖x‖dp̃( x

‖x‖ ) ≥ ‖x‖dp̃S >

0. On the other hand, if ‖x‖ ≥ 1 and |α| ≤ d − 1, then |xα| ≤ ‖x‖|α| ≤ ‖x‖d−1.
Combining these two facts, we find the relation (20). If x is a global minimum of
p, then p(x) ≤ p(0) and thus ‖x‖ ≤ Rp follows from (20) applied to the polynomial
p− p(0).

In general, the polynomial p may not be stably bounded from below and it may
not even have a minimum. However, for any positive λ, the perturbed polynomial pλ
is stably bounded from below. Indeed, if p has degree 2m, then the highest degree
homogeneous component of pλ is equal to λ

∑n
i=1 x

2m+2
i , whose minimum value over

the unit sphere is equal to λ
nm as the next lemma shows.

Lemma 2. Given an integer m ≥ 2, the minimum value taken by
∑n

i=1 x
2m
i over

the unit sphere is equal to 1
nm−1 .

Proof. By evaluating f(x) :=
∑

i x
2m
i at the point x := 1√

n
(1, . . . , 1), we find that

the minimum value fS of f over the unit sphere is at most 1
nm−1 . To show the reverse

inequality, note that fS is equal to the minimum value of g(x) :=
∑n

i=1 x
m
i over x ∈ R

n
+

with
∑n

i=1 xi = 1. Let x be a minimizer to this program. Applying the Karush–
Kuhn–Tucker conditions, there exist λ ∈ R, z ∈ R

n
+ such that ∇g(x) − λe − z = 0

and xT z = 0. As x, z ≥ 0, xizi = 0 for all i and ∂g
∂xi

(x) = λ if zi = 0. Say,
z1 = · · · = zp = 0, zp+1, . . . , zn > 0 for some p ≤ n; thus xp+1 = · · · = xn = 0. For

i = 1, . . . , p, ∂g
∂xi

(x) = λ = mxm−1
i . From this follows that x1 = · · · = xp = 1

p . Now,

g(x) = 1
pm−1 ≥ 1

nm−1 as p ≤ n.
Corollary 3. Given a polynomial p of degree 2m, the global minima of the

perturbed polynomial pλ(x) = p(x) + λ(
∑n

i=1 x
2m+2
i ) are located in the ball Bλ with

radius Rλ := nm

λ

∑
α�=0 |pα|.

2.2. Moment matrices. We recall here some results about moment matrices
that we need in the paper. Given a probability measure μ on R

n, the quantity
yα :=

∫
xαμ(dx) is called its moment of order α. A probability measure with finite

support is of the form μ =
∑r

i=1 λiδxi , where λi > 0,
∑r

i=1 λi = 1, xi ∈ R
n (the

atoms of the measure); then μ is said to be r-atomic. Here, δx is the Dirac measure
at x ∈ R

n, having mass 1 at x and mass 0 elsewhere.
The moment problem concerns the characterization of the sequences y ∈ R

S2k

(k ≥ 1) that are the sequences of moments of some probability measure μ; in that
case one also says that μ is a representing measure for y. Given y ∈ R

S2k , its moment
matrix of order k is the matrix Mk(y) indexed by Sk with (α, β)th entry yα+β for
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α, β ∈ Sk. Given a polynomial h(x) of degree 2d or 2d − 1, define the vector hy
with entries (hy)α :=

∑
γ hγyα+γ for α ∈ S2k−2d; Mk−d(hy) is known as a localizing

moment matrix. A well-known necessary condition for the existence of a representing
measure for y is the positive semidefiniteness of its moment matrix.

Lemma 4. If y ∈ R
S2k has a representing measure μ, then Mk(y) � 0. Moreover,

if the support of μ is contained in the set {x | h(x) ≥ 0}, where h(x) is a polynomial
of degree 2d or 2d− 1, then Mk−d(hy) � 0.

Proof. For p ∈ R
Sk , we have

pTMk(y)p =
∑

α,β∈Sk

pαpβyα+β =
∑

α,β∈Sk

pαpβ

∫
xα+βdμ(x) =

∫
p(x)2dμ(x) ≥ 0,

which shows that Mk(y) � 0. If the support of μ is contained in {x | h(x) ≥ 0}, one
can verify that pTMk−d(hy)p =

∫
p(x)2h(x)dμ(x) ≥ 0 for all p ∈ R

Sk−d , which shows
that Mk−d(hy) � 0.

Curto and Fialkow [4, 5] prove some results showing that, under some rank con-
dition, the necessary conditions from the above lemma are also sufficient for the
existence of a representing measure. A key notion is that of “flat extension.” Let X
be a symmetric matrix and let A be a principal submatrix of X. One says that X is
a flat extension of A if rank X = rank A. Then X � 0 ⇐⇒ A � 0.

Theorem 5 (see [4]). Let y ∈ R
S2k . If Mk(y) � 0 and Mk(y) is a flat extension

of Mk−1(y), then y has a representing measure which is (rank Mk(y))-atomic.

The proof uses the following property of the kernel of Mk(y), which also permits
one to derive Corollary 7 below.

Lemma 6 (see [4]). Assume that Mk(y) � 0 and let f, g ∈ R[x1, . . . , xn], whose
product h := fg has degree deg(h) ≤ k − 1. Then Mk(y)f = 0 implies Mk(y)h = 0.

Corollary 7. If Mk(y) � 0 and rank Mh(y) = rank Mh−1(y) for some 1 ≤
h ≤ k − 1, then rank Mk−1(y) = rank Mk−2(y).

Theorem 8 (see [5]; see [17] for a short proof). Let y ∈ R
S2k , h1, . . . , h� ∈

R[x1, . . . , xn], di := 	deg(hi)/2
, and d := max(d1, . . . , d�). Assume that Mk(y) � 0,
Mk−di(hiy) � 0 (for i = 1, . . . , �), and rank Mk(y) = rank Mk−d(y). Then y has a
representing measure μ supported by the set {x | h1(x) ≥ 0, . . . , h�(x) ≥ 0}; moreover
μ is (rank Mk(y))-atomic.

The above results underlie the semidefinite relaxations (4) and (5) of problem
(3). In particular, as an application of Theorem 8, one finds the stopping criterion of
Henrion and Lasserre [11]: If Mk(y) is an optimum solution to (4) satisfying the rank
condition (6), then p∗L,k = p∗. This is a very useful fact, as it permits one very often
in practice to conclude that the relaxation (4) of a given order k solves the original
problem (3) at optimality for small values of k. The following two results imply the
asymptotic (or finite) convergence of the parameters ρ∗k and p∗L,k to the optimum p∗

in cases (I) and (III) mentioned in section 1.1.

Theorem 9 (see [26]). Let K = {x ∈ R
n | h1(x) ≥ 0, . . . , h�(x) ≥ 0} and

M := {u0 +
∑�

i=1 uihi | u0, u1, . . . , u� are sums of squares of polynomials}. Assume
that K is compact and that there exists a polynomial u ∈ M for which the set {x ∈
R

n | u(x) ≥ 0} is compact. Then every positive polynomial on K belongs to M .

Theorem 10 (see [6]). Given a polynomial p, define K := {x ∈ R
n | ∂p

∂xi
(x) =

0 (i = 1, . . . , n)} and let Igrad be the ideal generated by ∂p/∂xi (i = 1, . . . , n). If p is
positive on K, then p is a sum of squares of polynomials modulo Igrad. When Igrad
is radical, the same conclusion holds if p is nonnegative on K.
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2.3. Combinatorial moment matrices. Let I be a zero-dimensional ideal in
R[x1, . . . , xn] with V = V (I) as associated complex variety. With respect to a given
monomial ordering, let G be a Gröbner basis of I and let S be the associated set of
standard monomials consisting of the monomials that are not divisible by the leading
term of any polynomial in G. Let B be the set of exponents of the standard monomials;
that is, S = {xβ | β ∈ B}. The set S is a basis of R[x1, . . . , xn]/I; that is, for every
polynomial f ∈ R[x1, . . . , xn], there exists a unique polynomial r(x) =

∑
β∈B rβx

β for
which f − r ∈ I; r is called the residue of f modulo I.

Given y = (yβ)β∈B ∈ R
B, let MB(y) be the B × B matrix whose (α, β)th entry

is equal to
∑

γ∈B rγyγ for α, β ∈ B, where
∑

γ∈B rγx
γ is the residue of xαxβ modulo

I; MB(y) is called the combinatorial moment matrix of y. In other words, MB(y) is
obtained from a classical moment matrix by expressing all entries of y in terms of
those indexed by the standard monomials using the equations defining I. For v ∈ R

n,
define the vector ζv := (vβ)β∈B ∈ R

B. It is not difficult to check that if v ∈ V ∩ R
n,

then MB(ζv) = ζvζ
T
v is positive semidefinite. Hence, MB(y) � 0 if y belongs to the

cone generated by the vectors ζv (v ∈ V ∩ R
n). Laurent [18] shows that equivalence

holds.
Theorem 11 (see [18]). Let I be a zero-dimensional ideal in R[x1, . . . , xn], let

V be the associated variety, and let {xβ | β ∈ B} be the set of standard monomials
with respect to some monomial ordering. Let y ∈ R

B and let MB(y) be its associated
combinatorial moment matrix. Then MB(y) � 0 if and only if y belongs to the cone
generated by ζv (v ∈ V ∩ R

n); that is, y is the sequence of moments (of order α ∈ B)
of a nonnegative atomic measure μ whose support is contained in V ∩ R

n.

2.4. Truncated combinatorial moment matrices. We assume in this section
and the next one that the ideal I is generated by n polynomials of the form

hi(x) := x2m+1
i − h̃i(x) for i = 1, . . . , n,(21)

where deg(h̃i) ≤ 2m and m ≥ 1 is a given integer. In that case, we can prove some
results about flat extensions of truncated combinatorial moment matrices, which will
be useful for our application to optimization.

The polynomials h1, . . . , hn form a Gröbner basis of the ideal I (with respect
to a total degree monomial ordering) (apply [2, section 2.6]). Therefore, the set of
standard monomials is S = {xβ | β ∈ B}, where

B := {β ∈ Z
n | 0 ≤ βi ≤ 2m ∀i = 1, . . . , n}.(22)

It follows from (19) that the ideal I is zero-dimensional. Given an integer 1 ≤ k ≤
2nm, define

Bk := B ∩ Sk = {β ∈ B | |β| ≤ k}.(23)

Lemma 12. Given f ∈ R[x1, . . . , xn], let r be its residue modulo I. Then deg(r) ≤
deg(f).

Proof. Fix a total degree monomial ordering. Then the division algorithm applied
for dividing f by h1, . . . , hn yields a decomposition f =

∑n
i=1 uihi + r, where r(x) =∑

β∈B rβx
β is the residue of f , and deg(uihi) ≤ deg(f) whenever ui �= 0 (see [2,

section 2.3]). Therefore, deg(r) ≤ deg(f).
For a monomial xα, let r(α)(x) denote its residue modulo I; by Lemma 12, r(α)(x)

is of the form r(α)(x) =
∑

β∈Bk
r
(α)
β xβ if |α| ≤ k. Therefore, given a truncated
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sequence y ∈ R
B2k , one can define its truncated combinatorial moment matrix MBk

(y)
as the matrix indexed by Bk whose (α, β)th entry is yT r(α+β) for α, β ∈ Bk. We now
indicate how to extend a combinatorial moment matrix to a classical moment matrix.

Definition 13. Given y ∈ R
B2k , extend y to ỹ ∈ R

S2k by setting

ỹγ := yT r(γ) for γ ∈ S2k,(24)

where r(γ)(x) is the residue of xγ modulo I.
Lemma 14. Let y ∈ R

B2k , with ỹ ∈ R
S2k its extension from (24). Let f be a

polynomial of degree at most 2k and r its residue modulo I. Then fT ỹ = rT y.

Proof. Using (24), we find that fT ỹ =
∑

δ fδ ỹδ =
∑

δ fδy
T r(δ) =

∑
β,δ fδr

(δ)
β yβ ,

while yT r =
∑

β rβyβ . Hence it suffices to show that the two polynomials r(x)

and s(x) :=
∑

β,δ fδr
(δ)
β xβ are identical. For this, note that s(x) =

∑
δ fδr

(δ)(x) ≡∑
δ fδx

δ = f(x) ≡ r(x) modulo I. Hence, r = s, since both r and s are polynomials
using only standard monomials.

Lemma 15. Let y ∈ R
B2k , with ỹ ∈ R

S2k its extension from (24). Then Mk(ỹ) is
a flat extension of MBk

(y).
Proof. By the definition of ỹ, the principal submatrix of Mk(ỹ) indexed by Bk

coincides with MBk
(y). Consider a column Cγ of Mk(ỹ) indexed by γ ∈ Sk \ Bk. We

verify that Cγ =
∑

β∈Bk
r
(γ)
β Cβ ; that is,

ỹα+γ =
∑
β∈Bk

r
(γ)
β ỹα+β ∀α ∈ Sk.

For this consider the polynomial f(x) := xα+γ −
∑

β∈Bk
r
(γ)
β xα+β . As f has degree at

most 2k and f ∈ I, it follows from Lemma 14 that fT ỹ = 0, which gives the desired
relation.

Corollary 16. Let y ∈ R
B2k , with ỹ ∈ R

S2k its extension from (24). Assume
that MBh

(y) is a flat extension of MBh−1
(y) for some 1 ≤ h ≤ k. (Then this holds

for h = k or k − 1 by Corollary 7.) Then (ỹα)α∈S2h
(and thus (yα)α∈B2h

) is the
sequence of moments of an r-atomic measure μ, where r := rank MBh

(y). Moreover,
if h ≥ 2m + 1, then the support of μ is contained in V .

Proof. By Lemma 15, Mh(ỹ) is a flat extension of Mh−1(ỹ). Hence, by Theo-
rem 5, (yα)α∈S2h

has an r-atomic representing measure μ, where r = rank Mh(ỹ) =
rank MBh

(y). If h ≥ 2m+1, then the polynomials hi(x) (i = 1, . . . , n) generating the
ideal I belong to the kernel of Mh(ỹ) (by the construction of ỹ). Hence, the support
of μ is contained in the set of common zeros of the hi’s, i.e., in the variety V .

2.5. Optimization and extraction of solutions. Given a polynomial p ∈
R[x1, . . . , xn], consider the problem

p∗ := min p(x) s.t. h1(x) = 0, . . . , hn(x) = 0,

where h1, . . . , hn are as in (21). We can assume that p has degree at most 2m;
otherwise replace p by its residue modulo the ideal I. We first compare the following
two hierarchies of lower bounds for p∗, defined for k ≥ m:

μ∗
k := inf pT y s.t. MBk

(y) � 0, y0 = 1,(25)

μ∗
L,k := inf pT y s.t. y0 = 1, Mk(y) � 0,

Mk−m−1(hiy) = 0 (i = 1, . . . , n),
(26)
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where we omit the condition Mk−m−1(hiy) = 0 when k = m. If k = m, the two
programs (25) and (26) are identical and thus μ∗

m = μ∗
L,m. Moreover, by Theorem

11 (and Theorem 23 in [18]), μ∗
2nm = μ∗

L,2nm = p∗. One can show the following
interlacing property for the parameters μ∗

k and μ∗
L,k, which implies the interlacing

property (17) for the two hierarchies of bounds from (12) and (15).
Theorem 17. μ∗

k−1 ≤ μ∗
L,k ≤ μ∗

k for all k ≥ m + 1.
Proof. Let z be a feasible solution to (26), i.e., Mk(z) � 0, Mk−m−1(hiz) = 0,

z0 = 1. We observe first that fT z = 0 for every polynomial f ∈ I with degree at
most 2k − 1. Indeed, as f ∈ I, f =

∑n
i=1 uihi, where deg(uihi) ≤ deg(f) ≤ 2k − 1,

i.e., deg(ui) ≤ 2k − 1 − (2m + 1) = 2k − 2m − 2 whenever ui �= 0. Moreover,
f(x) =

∑n
i=1

∑
γ,δ(ui)γ(hi)δx

γ+δ. Hence,

fT z =
∑
β

fβzβ =
∑
β

zβ

n∑
i=1

∑
γ,δ|γ+δ=β

(ui)γ(hi)δ =

n∑
i=1

∑
γ

(ui)γ
∑
δ

(hi)δzγ+δ.

Now,
∑

δ(hi)δzγ+δ = (hiz)γ = 0 since |γ| ≤ deg(ui) ≤ 2k−2m−2 and Mk−m−1(hiz) =
0. Therefore, we find that fT z = 0. Hence, if we denote by y the restriction of z to
R

B2k , then zγ = yT r(γ) for |γ| ≤ 2k − 1. Hence MBk−1
(y) coincides with the princi-

pal submatrix of Mk(z) indexed by Bk−1 and thus MBk−1
(y) � 0. This implies that

pT z = pT y ≥ μ∗
k−1 and thus μ∗

L,k ≥ μ∗
k−1.

Consider now a feasible solution y ∈ R
B2k to (25). Let ỹ be its extension to R

S2k

from (24). Then Mk(ỹ) � 0 by Lemma 15. It remains to verify that Mk−m−1(hiỹ) = 0,
i.e., that (hiỹ)α =

∑
γ(hi)γ ỹα+γ is equal to 0 for |α| ≤ 2k−2m−2. As the polynomial

f(x) := hi(x)xα belongs to I and its degree is at most 2k, it follows from Lemma 14
that fT ỹ = 0, which gives the desired relation. Hence, ỹ is feasible for (26), which
implies that pT y = pT ỹ ≥ μ∗

L,k and thus μ∗
k ≥ μ∗

L,k.
Let y be an optimum solution to (25). Assume that rankMBh

(y) = rankMBh−1
(y)

=: r for some 1 ≤ h ≤ k. By Corollary 16, (yβ)β∈B2h
is the sequence of moments

of a measure μ =
∑r

i=1 λiδvi
(λi > 0,

∑
i λi = 1, vi ∈ R

n). If h ≥ m, then p∗ ≥
μ∗
k = pT y =

∑
i λip(vi) ≥ mini p(vi); moreover, v1, . . . , vr belong to V (I) and thus

are global minimizers of p over the set {x ∈ R
n | h1(x) = · · · = hn(x) = 0} when

h ≥ 2m + 1. We now indicate how to extract the points v1, . . . , vr from the matrix
MBh

(y); this is analogous to the extraction procedure in [11] (for program (26)).
As rankMBh

(y) = rankMBh−1
(y) = r, one can find a subset A of Bh−1, |A| =

r, indexing a positive definite principal submatrix A of MBh
(y). If h ≤ 2m, let

J denote the ideal generated by the kernel of MBh
(y) and, if h ≥ 2m + 1, let J

be the ideal generated by I and the kernel of MBh
(y). Obviously, {v1, . . . , vr} ⊆

V (J). On the other hand, A is a basis of R[x1, . . . , xn]/J (easy to verify) and thus
dim R[x1, . . . , xn]/J = r, which implies that |V (J)| ≤ r (by (19)). Therefore, V (J) =
{v1, . . . , vr} and J is a zero-dimensional radical ideal. Thus, determining v1, . . . , vr
amounts to finding the common zeros to the polynomials in J , which can be done with
the eigenvalue method, briefly described below (see, e.g., [3, Chapter 2, section 4]).

For a polynomial f , the multiplication matrix Mf is the |A| × |A| matrix whose
αth column (for α ∈ A) contains the coefficients in the base A of the residue modulo
J of the polynomial xαf(x). If f is chosen in such a way that the values f(v) are
distinct for v ∈ V (J), then the right eigenspaces of Mf are one-dimensional and
spanned by the vectors (vα)α∈A (for v ∈ V (J)) (Proposition 4.7 in [3]). Hence, the
points v1, . . . , vr of V (J) can be determined from the right eigenvectors of Mf .

In our extraction procedure, we construct the base A in a “greedy manner”;
starting from the constant monomial 1, we insert in A as many low degree monomials
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as possible. Then, given an eigenvector (vα)α∈A (or a scalar multiple of it), it is
easy to recover the components of v (in fact, immediate, if A contains the monomials
x1, . . . , xn). We determine the multiplication matrices Mxi (for f = xi, i = 1, . . . , n)
in the following way. As before let A be the principal submatrix of MBh

(y) indexed
by A and let Ui be the submatrix of MBh

(y) with row indices A and column indices
the set xiA := {xix

α | α ∈ A}. When h ≤ 2m (which is the case considered for
practical applications), Mxi

= A−1Ui. (Indeed, given β ∈ A, let v be the column
of MBh

(y) indexed by xix
β , u := (vα)α∈A the corresponding column of Ui, and

c = (cα)α∈A the unique scalars permitting to express v as v =
∑

α∈A cαCα, with Cα

being the column of MBh
(y) indexed by xα. Then c = A−1u and the polynomial

xix
β −

∑
α∈A cαx

α belongs to the ideal J generated by the kernel of MBh
(y). Thus∑

α∈A cαx
α is the residue of xix

β modulo J ; i.e., c is the corresponding column of
Mxi .) Then, for an arbitrary polynomial f , its multiplication matrix Mf is given
by Mf = f(Mx1

, . . . ,Mxn
), whose eigenvectors can be used for extracting the global

optimizers.

Let us make a comment at this point. For solving our original problem of min-
imizing p over the set of real points in V (I), one could use the following strategy:
Determine all points in V (I) (using the eigenvalue method) and evaluate p at the
real points. This is, however, computationally expensive, as this involves computing
the eigenvalues of a multiplication matrix whose size is |B| = (2m + 1)n, thus expo-
nential in the number of variables. Instead, we propose to solve the relaxed convex
program (25) for small values of k. Typically it has an optimum solution of small
rank r and, when the rank condition holds, one can extract a solution by computing
the eigenvalues of a much smaller matrix of size r.

3. Application to unconstrained polynomial minimization.

3.1. Our method. Let us return to the problem (1) of computing the infimum
p∗ of a polynomial p over R

n. As before, we assume that p has degree 2m and, for
λ > 0, we consider the perturbed polynomial pλ as in (2) and set p∗λ := infx∈Rn pλ(x).
For i = 1, . . . , n, let

hλ,i(x) := ∂pλ(x)/∂xi = ∂p(x)/∂xi + λ(2m + 2)x2m+1
i(27)

denote the partial derivatives of pλ(x). Let Iλ be the ideal generated by hλ,1, . . . , hλ,n

and let Vλ := V (Iλ) be its associated variety. Up to a constant factor, each hλ,i(x) is

of the form x2m+1
i + h̃i(x), where h̃i(x) has degree at most 2m− 1, and thus we are

in the situation of section 2.4. Therefore, for λ �= 0, the set {xβ | β ∈ B}, where B is
as in (22), is the set of standard monomials, forming a basis of R[x1, . . . , xn]/Iλ, and
Iλ is a zero-dimensional ideal.

As pλ attains its minimum, it follows that it attains its minimum at a critical
point. That is, infx∈Rn pλ(x) = minx∈Vλ∩Rn pλ(x). If x∗ is a global minimizer of p,
then p∗ ≤ p∗λ ≤ pλ(x∗) ≤ p∗ + λ‖x∗‖2m+2. As p(x) ≤ pλ(x) for all x, we have

p∗ ≤ μ∗
λ := min

x∈Vλ∩Rn
p(x) ≤ min

x∈Vλ∩Rn
pλ(x).

As Iλ is a zero-dimensional ideal, we can apply Theorem 11 and compute the bound
μ∗
λ via the following semidefinite program:

μ∗
λ = min pT y s.t. MB(y) � 0, y0 = 1,(28)
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where B is defined in (22). Given an integer m ≤ k ≤ 2nm, one can consider the
following semidefinite program involving truncated combinatorial moment matrices:

μ∗
k,λ := inf pT y s.t. MBk

(y) � 0, y0 = 1,(29)

where Bk is as in (23). These parameters define a hierarchy of lower bounds for μ∗
λ,

μ∗
m,λ ≤ · · · ≤ μ∗

k,λ ≤ · · · ≤ μ∗
2nm,λ = μ∗

λ,(30)

where the last equality holds since B2nm = B.
Let us give some information about the structure of the matrix MBk

(y). For
α, β ∈ Bk, the (α, β)th entry of MBk

(y) is equal to yT r(α+β), where r(α+β)(x) is
the residue of xα+β modulo the ideal Iλ. This residue is obtained by dividing the
monomial xα+β by the polynomials hλ,i from (27), forming a Gröbner basis of Iλ.
Hence, the entries of MBk

(y) are polynomial in 1/λ (and linear in y). The next result
gives an estimate on the degree in 1/λ of the entries of MBk

(y).
Theorem 18. For k = m, . . . , 2nm, the matrices MBk

(y) are polynomial matrices
in 1/λ; the maximal degree in 1/λ of the entries of MBk

(y) is at most k −m.
Proof. Consider a monomial xγ where γ ∈ Z

n
+ with |γ| ≥ 2m. We show by

induction on |γ| that the coefficients of the residue of xγ modulo the ideal Iλ are
polynomial in 1/λ with degree at most 	(|γ| − 2m)/2
. If γi ≤ 2m for all i = 1, . . . , n,
then xγ is a standard monomial; that is, its residue is xγ whose degree in 1/λ is 0.
Suppose, e.g., that γ1 ≥ 2m + 1. Then xγ = x2m+1

1 xγ̃ , where γ̃1 = γ1 − 2m − 1 and

γ̃i = γi for i ≥ 2. Thus, |γ̃| = |γ| − 2m− 1 and xγ ≡ − 1
2m+2

1
λ

∂p(x)
∂x1

xγ̃ modulo Iλ. As

the degree of xγ̃∂p(x)/∂x1 is at most 2m − 1 + |γ̃| = |γ| − 2, we know by induction
that the degree in 1/λ of its residue is at most 	(|γ|−2−2m)/2
 = 	(|γ|−2m)/2
−1.
Therefore, the degree in 1/λ of the residue of xγ is at most 	(|γ| − 2m)/2
. The
theorem now follows since each entry of MBk

(y) is the residue of a monomial of
degree at most 2k.

As MBm(y) does not depend on λ, the matrix MBm(y) coincides with the classical
matrix Mm(y). Hence, the first member μ∗

m,λ in the hierarchy (30) does not depend
on λ and is equal to p∗L,m, the Lasserre lower bound for p∗ from (4); thus,

μ∗
m,λ = p∗L,m ≤ p∗.

It is not clear a priori on which side of p∗ the parameter μ∗
k,λ is located when m < k <

2nm. In some cases, one can derive this information with the help of the following
result.

Corollary 19. Let MBk
(y) be an optimum solution to program (29) defining

μ∗
k,λ. Assume that rank MBh

(y) = rank MBh−1
(y) for some m ≤ h ≤ k. Then

p∗ ≤ μ∗
k,λ ≤ μ∗

λ and one can extract a point x ∈ R
n for which p∗ ≤ p(x) ≤ μ∗

k,λ.
Moreover, μ∗

k,λ = μ∗
λ if h ≥ 2m + 1.

Proof. By Corollary 16, (yα)α∈B2h
is the sequence of moments of a probability

measure μ =
∑r

i=1 λiδvi
. Hence, μ∗

k,λ = pT y =
∑r

i=1 λip(vi) ≥ mini p(vi) ≥ p∗. If
h ≥ 2m + 1, then v1, . . . , vr ∈ Vλ and thus μ∗

k,λ = μ∗
λ.

Let us point out that, for the problem of computing the minimum p∗ of a polyno-
mial of the form p =

∑n
i=1 cix

2m+2
i + p0 where deg p0 ≤ 2m+1 (c1, . . . , cn ∈ R \ {0}),

our method can be applied directly to p, without any perturbation. Namely, let r be
the residue of p modulo the ideal generated by ∂p/∂xi (i = 1, . . . , n); then

p∗ = min rT y s.t. MB(y) � 0, y0 = 1,
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and the parameters μ∗
k from (25) are lower bounds for p∗, with equality μ∗

k = p∗ if
rankMBh

(y) = rankMBh−1
(y) for some 2m + 1 ≤ h ≤ k. See Examples 9 and 10 in

the next section for an illustration.
We now illustrate our method on two small examples; both will be revisited in

the next section.
Example 1. Consider the polynomial p(x1, x2) = x2

1 + x2 and its perturbation
pλ(x1, x2) = p(x1, x2) + λ(x4

1 + x4
2). Then p∗ = −∞. One can compute explicitly the

set Vλ of solutions to the system

∂pλ
∂x1

= 2x1(2λx
2
1 + 1) = 0,

∂pλ
∂x2

= 4λx3
2 + 1 = 0.

Namely, Vλ consists of the nine points (x1, x2) with x1 = 0,±i
√

1/2λ, and x2 =

− 3
√

1/4λ,−j 3
√

1/4λ,−j2 3
√

1/4λ (where i, j ∈C, i2 =−1, j3 = 1). Hence, (0,− 3
√

1/4λ)
is the only real point in Vλ and thus the unique minimizer of p over Vλ. This implies
that μ∗

λ = − 3
√

1/4λ.
Example 2. Consider the polynomial p(x1, x2) = (x2

1 + x2
2 − 1)2 whose minimum

is p∗ = 0 attained at all points on the unit circle. One can verify that the set Vλ

contains 25 points, among them 9 real points, namely, (0, 0) and

(i) (x1, x2) = ±(0, a), ±(a, 0), where a :=
√

(−1 +
√

6λ + 1)/3λ;

(ii) (x1, x2) = (±b,±b), where b :=
√

(−2 +
√

6λ + 4)/3λ.

The minimum of p over Vλ is μ∗
λ = (2b2−1)2, which is attained at the points (±b,±b)

in (ii). As a = 1 + o(1) and b = 1/
√

2 + o(1), the limit as λ ↓ 0 of the real points in
Vλ are the points (0,±1), (±1, 0), (±1/

√
2,±1/

√
2) on the unit circle together with

the origin.

3.2. Examples. We present here several examples on which our method has
been tested. Let p be the polynomial whose infimum p∗ is to be found and let 2m
be its degree. We compute the approximations μ∗

k,λ of p∗ provided by program (29).

The computation is carried out for several values of λ, ranging typically from 10−1

to 10−4 (sometimes much smaller). We solve the program (29) for increasing values
of k starting from k = m. Let MBk

(y∗) be the returned optimum solution and μ∗
k,λ

the returned optimum value. At k = m, we find the Lasserre lower bound p∗L,m

for p∗.
At each step k, we check whether the rank condition (16) holds; if not, we go to

the next step k + 1. More precisely, we have the following:
• If k = m, then μ∗

m,λ = p∗L,m ≤ p∗. Moreover, μ∗
m,λ = p∗L,m = p∗ if

rankMBm(y∗) = rank MBm−1(y
∗); i.e., the infimum p∗ has been found.

• If k ≥ m + 1, and rank MBh
(y∗) = rank MBh−1

(y∗) =: r for h = k or
h = k − 1, then μ∗

k,λ ≥ p∗; moreover, one can extract r points x ∈ R
n, and

evaluating p at any such point x gives a certified upper bound on p∗.
There are two phases in the resolution of program (29): (1) Compute the en-

tries of the matrix variable MBk
(y) in (29); that is, compute the residue of xα+β

modulo Iλ with respect to the basis B for each α, β ∈ Bk; and (2) solve the semidef-
inite program (29). The first phase is carried out using Mathematica 4.2, and the
semidefinite programming problem is solved with SeDuMi 1.05 (used with accuracy
parameter pars.eps = 0). When evaluating the rank of a matrix we consider the
eigenvalues with a precision of 10−3; that is, we ignore all decimals starting with the
fifth one.
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In the tables below, at a given order k, (rk, rk−1, rk−2) is the triple consisting
of the ranks of the matrices MBk

(y∗), MBk−1
(y∗), MBk−2

(y∗), where MBk
(y∗) is the

optimum solution to (29) returned by the algorithm.
In some examples, we also compute the upper approximations μ∗

L,k,λ on p∗ ob-
tained from program (12), and some other approximations obtained by minimiz-
ing p over a ball. Then (rk, rk−1, . . .) contains the ranks of the matrices Mk(y

∗),
Mk−1(y

∗), . . . , where Mk(y
∗) is the optimum solution to (12) (or (4) when optimizing

over a ball).
Example 1 (revisited). Consider again the polynomial p(x1, x2) = x2

1 + x2 with
infimum p∗ = −∞. Then n = 2, m = 1, |B1| = 3, |B2| = 6, |B| = 9. When computing
the Lasserre lower bound p∗L,1, GloptiPoly returns as expected that the “SeDuMi
dual may be unbounded.” As can be seen in Table 2, our algorithm retrieves a very
accurate estimate of the minimizer (0,− 3

√
1/4λ).

Table 2

Bounds μ∗
k,λ for Example 1.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−3 2 (1,1,1) −6.2996 (0,−6.2996)

10−6 2 (1,1,1) −62.9961 (0,−62.9961)

10−9 2 (1,1,1) −629.9606 (0,−629.9606)

Example 2 (revisited). Consider again the polynomial p(x1, x2) = (x2
1 + x2

2 − 1)2

with infimum p∗ = 0 attained at the points of the unit circle. Then n = 2, m = 2,
|B2| = 6, |B3| = 10, |B4| = 15, |B| = 25. The Lasserre lower bound is p∗L,2 =

2.82 10−11 ≤ p∗ (with r2 = 5, r1 = 3).
Again, one can see in Table 3 that the algorithm retrieves very accurate estimates

of the four minimizers (±b,±b) of p over Vλ. Moreover, μ∗
4,10−3 ≥ p∗ and μ∗

4,10−3 ∼
10−7 is an accurate estimate of p∗ = 0.

Table 3

Bounds μ∗
k,λ for Example 2.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 3 (4,4,4) 1.3854 10−5 (±0.7058,±0.7058)

10−3 3 (9,5,3) 1.3320 10−7 none

10−3 4 (4,4,4) 1.4043 10−7 (±0.7070,±0.7070)

Example 3. Consider the polynomial p(x1, x2) = (x2
1 + 1)2 + (x2

2 + 1)2 − 2(x1 +
x2 + 1)2. Then n = 2, m = 2, |B3| = 10, |B4| = 15, |B| = 25. It is known (see [15])
that p∗ = −11.4581 is attained at the point (1.3247, 1.3247), and that the polynomial
p(x)−p∗ is a sum of squares. Indeed, p∗L,2 = −11.4581 and, as r2 = r1 = 1, GloptiPoly
extracts the minimizer (1.3247, 1.3247). Nevertheless Table 4 shows the behavior of
our method on this example.

We have also computed the bound β∗
L,k,λ from (13), computing the order k

moment relaxation for the minimum of p over the ball with radius Rλ as in (10).
Here, Rλ = 56

λ . For λ = 10−1, k = 2, Rλ = 560 and GloptiPoly returns the value
β∗
L,2,1/10 = −11.4581 and extracts the solution (1.3247, 1.3247).

Example 4. Consider the polynomial p(x1, x2) = 1/27 + x2
1x

2
2(x

2
1 + x2

2 − 1), a
dehomogenized version of the Motzkin polynomial, considered in [11]. Then n = 2,
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Table 4

Bounds μ∗
k,λ for Example 3.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 3 (1,1,1) −11.4548 (1.3109, 1.3109)

10−3 3 (1,1,1) −11.4580 (1.3233, 1.3233)

10−4 3 (1,1,1) −11.4581 (1.3246, 1.3246)

10−5 3 (1,1,1) −11.4581 (1.3247, 1.3247)

Table 5a

Bounds μ∗
k,λ for Example 4.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 4 (11,8,6) −8.8740 10−5 none

10−2 5 (4,4,4) 2.1500 10−6 (±0.5761,±0.5761)

10−3 4 (11,8,6) −0.0060 none

10−3 5 (4,4,4) 2.1897 10−8 (±0.5772,±0.5772)

10−4 4 (11,8,6) −0.0336 none

10−4 5 (4,4,4) 1.9042 10−10 (±0.5773,±0.5773)

Table 5b

Bounds μ∗
L,k,λ for Example 4.

λ Order k (rk, rk−1, . . . , r1) μ∗
L,k,λ Extracted solutions

10−2 4 (15,10,6,3) −1.0815 none

10−2 5 (21,15,8,6,3) −0.0060 none

10−2 6 (11,4,4,4,4,3) 2.1904 10−8 none∗

10−2 7 (-,4,4,4,4,4,3) 2.1904 10−8 (±0.5772,±0.5772)

10−3 4 (15,10,6,3) −1.3072 none

10−3 5 (21,15,8,6,3) −0.0332 none

10−3 6 (11,4,4,4,4,3) 2.1993 10−10 none∗

10−3 7 (-,4,4,4,4,4,3) 2.3084 10−10 (±0.5773,±0.5773)

10−4 4 (15,10,6,3) −1.1225 none

10−4 5 (21,15,10,6,3) −0.0909 none

10−4 6 (11,4,4,4,4,3) 1.0209 10−11 none∗

10−4 7 (-,4,4,4,4,4,3) 1.498 10−11 (±0.5773,±0.5773)

m = 3, |B3| = 10, |B4| = 15, |B5| = 21, |B| = 49. It is known that p has minimum
p∗ = 0, attained at (±1/

√
3,±1/

√
3), and p is not a sum of squares. As Table 5a

shows, our algorithm finds a very accurate estimate of p∗ and of its minimizers at the
relaxation of order 5 when using the perturbation λ = 10−4.

We have also computed the parameters μ∗
L,k,λ from (12) using GloptiPoly. The

results are shown in Table 5b. We have |S4| = 15, |S5| = 21, |S6| = 28, |S7| = 36. (At
the relaxation of order 7, GloptiPoly does not return the value of the rank of M7(y),
which is indicated by “-” in the table.) At the relaxation of order 6, GloptiPoly
does not yet extract a solution since the stronger rank condition (6) does not hold.
However, this stronger condition is needed only to be able to claim that the extracted
solution does satisfy the constraints ∂pλ/∂xi = 0 (i = 1, . . . , n). As rankMk−1(y) =
rankMk−2(y) one could already extract a solution at order 6, which permits us to
claim that μ∗

L,6,λ ≥ p∗. Note, however, that our algorithm based on combinatorial
moment matrices is able to find an upper bound for p∗ at order k = 5 already.
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Moreover, at a given order k, the parameter μ∗
k,λ is a more accurate approximation

of p∗ than the parameter μ∗
L,k,λ.

Finally we have computed the bounds β∗
L,k,λ from (13). Here, the radius is Rλ =

24
λ . For λ = 1/10 and k = 3, 4, 5, SeDuMi reports that the “dual may be unbounded.”
For λ = 1, one finds β∗

L,3,λ = −3.9722 (with (r3, r2, r1) = (8, 6, 3), thus no solution
extracted) and SeDuMi reports that the “dual may be unbounded” for k ≥ 4.

When using the radius R = 20 (instead of Rλ), the smallest order k for which
the rank condition holds for the moment relaxation is k = 6, where we find the upper
bound 8.5345 10−12 for p∗ and GloptiPoly extracts the solution (±0.5774,±0.5774).

If we use a smaller radius R = 2, then the rank condition holds already at the
moment relaxation of order k = 3, where we find the upper bound 1.2561 10−13 for
p∗ and GloptiPoly extracts the solutions (±0.5774,±0.5774).

Therefore, the approach via optimization on a ball seems to work well only if one
knows a priori a small ball containing a global minimizer.

Example 5. Consider the polynomial p(x1, x2) = x2
2 + (x1x2 − 1)2. This is a

classical example of a polynomial having a finite infimum, which is not attained;
p∗ = 0 as limε↓0 p(1/ε, ε) = 0. Here, n = 2, m = 2, |B2| = 6, |B3| = 10, |B| = 25. The
Lasserre lower bound is p∗L,2 = 5.4776 10−5 and Table 6a shows the bounds μ∗

k,λ.

Table 6a

Bounds μ∗
k,λ for Example 5.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 3 (2,2,2) 0.3385 ±(1.3981, 0.4729)

10−3 3 (2,2,2) 0.2082 ±(1.9499, 0.4060)

10−4 3 (2,2,2) 0.1232 ±(2.6674, 0.3287)

10−5 3 (2,2,2) 0.0713 ±(3.6085, 0.2574)

10−6 3 (2,2,2) 0.0408 ±(4.8511, 0.1977)

10−7 3 (3,2,2) 0.0231 ±(6.4986, 0.1503)

10−8 3 (3,2,2) 0.0131 ±(8.6882, 0.1136)

10−9 3 (8,4,2) 0.0074 none

10−10 3 (7,4,2) 0.0041 none

We have also computed the bounds μ∗
L,k,λ, shown in Table 6b. When the order k

is marked with an asterisk (like 6∗), this means that we have rescaled the problem for
SeDuMi (setting pars.scaling = [1 10]). (This is advised when the expected solutions
have large entries; see the manual for GloptiPoly [10]. Without rescaling, the solution
returned by GloptiPoly is approximatively 1, which is the value of p at the point (0, 0)
of Vλ, and thus not the true minimum.) Recall that |S3| = 10, |S4| = 15, |S5| = 21,
|S6| = 28.

One can make the following observations regarding the results from Tables 6a and
6b. While our algorithm extracts the correct solutions at order k = 3, when using the
moment relaxation to program (7) GloptiPoly needs to go to higher orders to be able
to extract solutions. We have computed (with Mathematica) the points in the gradient
variety Vλ; it turns out that there are three real points which are (0, 0) and the two
points extracted by the algorithms for the given values of λ in Tables 6a and 6b.

Example 6. Consider the polynomial q(z1, z2, z3, z4, z5) =
∑5

i=1

∏
j �=i(zi − zj),

which is again an instance of a nonnegative polynomial which is not a sum of squares,
due to Lax–Lax and Schmüdgen. More such examples can be found, e.g., in [27].
Introducing new variables xi := z1 − zi+1 (i = 1, . . . , 4), minimizing q(z) is equivalent
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Table 6b

Bounds μ∗
L,k,λ for Example 5.

λ Order k (rk, . . . , r1) μ∗
L,k,λ Extracted solutions

10−2 3 (10,6,2) 0.0096 none

10−2 4 (7,2,2,2) 0.3385 none

10−2 5 (-,2,2,2,2) 0.3385 ±(1.3981, 0.4729)

10−3 3 (10,6,2) 0.0105 none

10−3 4 (7,2,2,2) 0.2082 none

10−3 5 (-,2,2,2,2) 0.2082 ±(1.9499, 0.4060)

10−4 3 (10,6,2) 0.0095 none

10−4 4 (7,2,2,2) 0.1232 none

10−4 5 (-,2,2,2,2) 0.1233 ±(2.6674, 0.3287)

10−5 5 (-,2,2,2,2) 0.0718 ±(3.6085, 0.2574)

10−6 6∗ (-,-,2,2,2,2) 0.0408 ±(4.8511, 0.1977)

10−7 6∗ (-,-,2,2,2,2) 0.0231 ±(6.4986, 0.1503)

10−8 6∗ (-,-,2,2,2,2) 0.0131 ±(8.6882, 0.1136)

10−9 6∗ (-,-,2,2,2,2) 0.0074 ±(11.6026, 0.0856)

10−10 6∗ (-,-,2,2,2,2) 0.0042 ±(15.4849, 0.0643)

to minimizing a polynomial p in the four variables x1, . . . , x4. After performing this
substitution, we have n = 4, m = 2, |B2| = 15, |B3| = 35, |B4| = 70, |B| = 625.
When computing the lower bound p∗L,2, SeDuMi reports that the “primal problem is
infeasible” and the “dual problem may be unbounded.” Table 7a gives some values
of μ∗

k,λ.

Table 7a

Bounds μ∗
k,λ for Example 6.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−1 3 (20,10,5) −0.0575 none

10−1 4 (5,5,5) −8.9342 10−8 ±(0.0407, 0.0445, 0.0482, 0.0520)

approx. (0,0,0,0) three times

Table 7b gives some values of the parameter μ∗
L,k,λ. At order k = 3, for λ =

10−1, 10−2, SeDuMi reports that the “dual problem may be unbounded.” On this
example the parameter μ∗

L,k,λ appears to be a more accurate approximation of p∗

than μ∗
k,λ.

Table 7b

Bounds μ∗
L,k,λ for Example 6.

λ Order k (r3, r2, r1) μ∗
L,k,λ Extracted solutions

10−1 4 (1,1,1) 6.0249 10−15 10−8(−0.6138,−0.7014, 0.5825, 0.9606)

10−2 4 (1,1,1) 3.9252 10−14 10−8(0.0602, 0.4502,−0.0416,−0.2084)

As the polynomial p is homogeneous, i.e., p(tx) = t2mp(x) for all x (m = 2 here),
there are in fact two possibilities for its infimum: Either p∗ = 0 if p is nonnegative,
or p∗ = −∞ otherwise. The parameters μ∗

k,λ and μ∗
L,k,λ are upper bounds for p∗.

Hence, if for some small λ they are close to 0, it is then quite likely that p∗ = 0 (since
μ∗
λ converges to p∗ as λ ↓ 0), but this cannot be claimed with certitude. On the other
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hand, such upper bounds will be useful for proving that p∗ = −∞. Indeed, if we find
a negative upper bound for p∗, then we can conclude that p∗ = −∞; moreover, any
extracted solution gives a certificate for this. See Example 8 for an illustration.

When p is homogeneous, one can also test its nonnegativity by computing its
minimum p∗B over the unit ball B. Indeed, either p∗B = 0 if p is nonnegative, or p∗B < 0
otherwise. However, if p is nonnegative but not a sum of squares, then the moment
relaxation (4) of any order k is never exact; i.e., the inequality p∗L,k ≤ p∗B is always
strict (and thus the optimum matrix does not satisfy the rank condition). (Indeed,
suppose that p∗L,k = p∗B = 0. For k large enough, there is no duality gap between (4)
and (5), and (5) attains its supremum (see [15]). Hence, ρ∗k = p∗L,k = p∗B = 0, implying

that p can be written as p = u+(1−
∑

i x
2
i )v, where u, v are sums of squares. As p is

homogeneous, this implies easily that p must be a sum of squares (see [14]), yielding
a contradiction.) Let us illustrate this in our current example. Table 7c shows the
values p∗L,k obtained for the moment relaxations (4) for the minimum p∗B of p over
the unit ball. Recall that |S5| = 126, |S6| = 210.

Table 7c

Bounds from optimizing over a ball for Example 6.

Order k (rk, rk−1, . . . , r1) p∗L,k Extracted solutions

2 (10,5) −0.0375 none

3 (25,15,5) −0.0035 none

4 (39,29,15,5) −7.7935 10−4 none

5 (55,44,29,15,5) −2.7268 10−4 none

6 (210,126,70,29,15,5) −1.1936 10−4 none

Example 7. Consider the matrix

P =

⎛
⎜⎜⎜⎜⎝

1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠

and the associated homogeneous polynomial q(x) =
∑5

i,j=1 x
2
ix

2
jPij (Example 5.4 in

[22]). The matrix P is said to be copositive when q is nonnegative. Testing matrix
copositivity is a co-NP-complete problem [21]. Although some necessary and sufficient
conditions for the copositivity of a matrix are known (see, e.g., [13]), their algorithmic
application is computationally too expensive. An alternative consists therefore of
using numerical algorithms for testing (non)copositivity. Parrilo [22, 23] introduced
the following criterion, useful for proving copositivity. Namely, if the polynomial
(
∑n

i=1 x
2
i )

rq(x) is a sum of squares for some integer r ≥ 0, then q is nonnegative and
thus P is copositive. For the matrix P considered in the present example, it is known
that this criterion is satisfied for r = 1.

Let us nevertheless see the behavior of our method in this example. Due to sym-
metry, the polynomial q is nonnegative if and only if the (dehomogenized) polynomial
p(x) := q(x1, x2, x3, x4, 1) is nonnegative. Then n = 4, m = 2, |B2| = 15, |B3| = 35,
|B4| = 70, |B5| = 122, |B| = 625. The Lasserre lower bound is p∗L,2 = −1.4955 106

with (r1, r2) = (5, 15) and Table 8 gives the parameters μ∗
k,λ.

Example 8. Let G = (V,E) be a graph with node set V = {1, . . . , n} and let
AG be its adjacency matrix, with (AG)ij = 1 if ij ∈ E and (AG)ij = 0 otherwise for
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Table 8

Bounds μ∗
k,λ for Example 7.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 3 (18,6,3) −1.5407 none

10−2 4 (4,4,4) 1.3854 10−5 (±0.7058, 0, 0,±0.7058)

10−3 4 (4,4,4) 1.3854 10−5 (±0.7058, 0, 0,±0.7058)

10−4 4 (9,7,5) 1.5544 10−7 none

i, j ∈ V . Consider the matrix

P := t(I + AG) − J,

where t ∈ R, I is the identity matrix and J is the all-ones matrix, and the associated
homogeneous polynomial p(x) :=

∑n
i,j=1 x

2
ix

2
jPij . By the Motzkin–Straus theorem

[20], p is nonnegative (i.e., p∗ = 0) (equivalently, P is a copositive matrix) if and only
if t ≥ α(G), where α(G) is the stability number of G, i.e., the largest cardinality of a
stable set in G. In Example 7, G is the circuit (1, 4, 2, 5, 3) on 5 nodes with α(G) = 2
and P = 2(I + AG) − J , which is therefore copositive. Consider now the case when
G is the path (1, 4, 2, 5, 3) on 5 nodes and t = 2, giving the matrix

P =

⎛
⎜⎜⎜⎜⎝

1 −1 −1 1 −1
−1 1 −1 1 1
−1 −1 1 −1 1

1 1 −1 1 −1
−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠.

Then P is not copositive, as t < α(G) = 3 (note also p(1, 1, 1, 0, 0) = −3). This
is confirmed by the results about p∗ from Table 9a, where we have n = 5, m = 2,
|B1| = 6, |B2| = 21, |B3| = 56, |B4| = 126, |B| = 3125.

Table 9a

Bounds μ∗
k,λ for Example 8, when G is the path on 5 nodes and t = 2.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

1 3 (8,7,4) −1.3333 none

1 4 (8,8,7) −1.3333 two of the extracted solutions:

±(0.8165, 0.8165, 0.8165, 0, 0)

(0.8165 ∼
√

2/3)

10−1 3 (8,7,4) −133.3333 none

10−1 4 (8,8,7) −133.3333 two of the extracted solutions:

±(2.5820, 2.5820, 2.5820, 0, 0)

(2.5820 ∼
√

20/3)

10−2 3 (8,7,4) −1.3333 104 none

Consider now the case when G is the circuit (1, 2, 3, 4, 5, 6) on 6 nodes and t = 2.
Again the corresponding matrix P is not copositive, since t < α(G) = 3. This is
confirmed by the results about p∗ from Table 9b. Because of symmetry, we made
the computations for the polynomial p(x1, x2, x3, x4, x5, 1). Then n = 5, m = 2,
|B2| = 21, |B3| = 56, |B4| = 126.
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Table 9b

Bounds μ∗
k,λ for Example 8, when G is the circuit on 6 nodes and t = 2.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

1 3 (4,4,3) −2.2660 (0,±0.9036, 0,±0.9036, 0)

10−1 3 (8,7,4) −106.6640 none

10−1 4 (8,8,7) −106.6640 -

10−2 3 (8,7,4) −1.3067 104 none

In both instances we find a point x with p(x) < 0 (which certifies that P is not
copositive) at the relaxation of order 3 or 4, already for the perturbation λ = 1. The
bounds μ∗

3,λ decrease rapidly as λ goes to 0.
Consider finally the case when G is the circuit (1, 2, 3, 4, 5, 6, 7) on 7 nodes and

t = 2. Again, P is not copositive since t < α(G) = 3. Due to symmetry it suffices
to consider the polynomial p where we set x7 = 1. Then n = 6, m = 2, |B2| = 28,
|B3| = 84 and |B4| = 210. Table 9c shows some parameters μ∗

3,λ which again decrease
rapidly as λ becomes small.

Table 9c

Bounds μ∗
k,λ for Example 8, when G is the circuit on 7 nodes and t = 2.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

1 3 (62,24,7) −4.1114 none

10−1 3 (62,24,7) −304.7340 none

10−2 3 (66,24,7) −3.0745 104 none

10−3 3 (83,27,7) −3.0808 106 none

Example 9. Consider the polynomial p(x) =
∑

i=1,2,3 x
8
i + p0(x), where p0(x)

is the Motzkin polynomial x2
1x

2
2(x

2
1 + x2

2 − 3x2
3) + x6

3. It is known that p∗ = 0 and
that p is not a sum of squares (in fact, p is not a sum of squares modulo its gradient
ideal [6]). In view of the form of p, we can apply directly our method for computing
p∗ without perturbing p. Table 10 shows values of the parameter μ∗

k from (25); as
μ∗
k ≤ p∗ ≤ 0, we can conclude that p∗ ∼ 0 already at the relaxation of order k = 4.

Here n = 3, m = 3, |B3| = 20, |B4| = 35, |B5| = 56, |B6| = 84.

Table 10

Bounds μ∗
k,λ for Example 9.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

3 (12,2,1) −1 none

4 (4,4,4) −1.1990 10−9 ±(0.0220, 0.0440, 0.0263)

and approx. (0,0,0) twice

5 (4,4,4) −1.9880 10−10 ±(0.0160, 0.0319, 0.0274)

and approx. (0,0,0) twice

6 (4,4,4) −8.8465 10−11 ±(0.0143, 0.0285, 0.0256)

and approx. (0,0,0) twice

Example 10. Consider the polynomial p(x) = (aTx)2 +
∑n

i=1(x
2
i − 1)2, where

a1, . . . , an are given positive integers. As mentioned in the introduction, the sequence
a = (a1, . . . , an) can be partitioned if and only if p∗ = 0, in which case a global mini-
mizer is ±1-valued and thus provides a partition of the sequence. Deciding whether an
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Table 11a

The sequence a = (2, 2, 2, 3, 3) is partitionable with aT x = 0 at the returned solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (10,5,1) 2.3994 10−9 none

3 (2,2,2) 2.5072 10−10 ±(1, 1, 1,−1,−1)

Table 11b

The sequence a = (1, 2, 3, 4, 5) is not partitionable as p∗ ≥ μ∗
3 ≥ μ∗

2 > 0; its minimum gap is 1,
realized at ±(1, 1,−1, 1,−1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (12,5,1) 0.0639 none

3 (2,2,2) 0.0657 ±(1.0157, 1.0308,−0.9477, 1.0590,−0.9069)

Table 11c

The sequence a = (2, 2, 3, 4, 5) is partitionable with aT x = 0 at the returned solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 2.2649 10−12 ±(1, 1,−1, 1,−1)

Table 11d

The sequence a = (3, 3, 4, 5, 6, 7) is partitionable with aT x = 0 at the returned solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (15,6,1) −1.5649 10−8 none

3 (4,4,3) 1.3816 10−8 ±(1,−1,−1, 1, 1,−1), ±(1,−1, 1,−1,−1, 1)

integer sequence can be partitioned is an NP-complete problem, and, more generally,
computing the parameter γ := minz∈{±1}n |aT z| (the minimum gap of the sequence
a1, . . . , an) is NP-hard.

It is interesting to note1 that γ = 0 (resp., γ = 1) if p∗ ≤ 1
s2 and s :=

∑n
i=1 ai is

even (resp., odd); moreover, a partition realizing the minimum gap can be obtained
from a real point x with p(x) ≤ 1

s2 by letting z := sign(x) (with zi = 1 if xi > 0
and zi = −1 otherwise). More generally, a similar argument permits us to show
that a partition realizing the minimum gap γ can be derived from a global minimizer
x to the polynomial pC(x) := (aTx)2 + C2

∑n
i=1(x

2
i − 1)2 by letting z := sign(x),

C := 1
2 (maxi ai)(

∑
i ai).

Again we can apply directly our method (without perturbation) for computing
the minimum p∗ of the polynomial p. If we find a positive lower bound μ∗

k, then we
can conclude that the sequence cannot be partitioned. Although this approach can be
used only for sequences of small length n (where the minimum gap could in fact easily
be found directly), we consider below some sequences of length n = 5, 6, 7, 10, 11 to
see the behavior of the method. We have m = 1, (|B1|, |B2|, |B3|) = (6, 21, 51) (resp.,
(7, 28, 78), (8, 36, 113), (11, 66, 276), (12, 78, 353)) if n = 5 (resp., n = 6, n = 7, n = 10,
n = 11) and |B| = 3n. Results are shown in Tables 11a–11h.

1Indeed, let x ∈ Rn such that p(x) ≤ 1
s2

; thus |aT x|, |x2
i − 1| ≤ 1

s
. Define z := sgn(x), i.e.,

zi := 1 if xi > 0 and zi = −1 otherwise. Then |aT z| ≤ |aT (x − z)| + |aT x| ≤ 1 + 1
s
< 2; indeed,

|aT (x− z)| ≤
∑

i
ai|xi − zi| ≤

∑
i
ai|xi − zi||xi + zi| =

∑
i
ai|1− x2

i | ≤
1
s

∑
i
ai = 1. As |aT z| has

the same parity as s =
∑

i
ai, a

T z = 0 if s is even, and aT z = ±1 otherwise, which shows that the
±1-vector z provides a partition of the sequence a1, . . . , an realizing the minimum gap.
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Table 11e

The sequence a = (1, 1, 2, 2, 3, 3, 13) is not partitionable as p∗ ≥ μ∗
2 > 0; its minimum gap is 1,

realized at ±(1, 1, 1, 1, 1, 1,−1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 0.0188 ±(1.0045, 1.0045, 1.0090, 1.0090, 1.0135, 1.0135,−0.9342)

Table 11f

The sequence a = (1, 1, 2, 2, 3, 3, 14) is not partitionable, as p∗ ≥ μ∗
2 > 0; its minimum gap is

2, realized at ±(1, 1, 1, 1, 1, 1,−1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 0.0628 ±(1.0073, 1.0073, 1.0145, 1.0145, 1.0215, 1.0215,−0.8736)

Table 11g

The sequence a = (1, 2, 3, 20, 5, 6, 7, 10, 11, 77) is not partitionable as p∗ ≥ μ∗
2 > 0; its minimum

gap is 12, realized at ±(1, 1, 1, 1, 1, 1, 1, 1, 1,−1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 0.0758 ±(1.0015, 1.0029, 1.0044, 1.0282, 1.0073,

1.0087, 1.0101, 1.0144, 1.0158,−0.8580)

Table 11h

The sequence a = (1, 2, 3, 20, 5, 6, 7, 10, 11, 77, 3) is not partitionable as p∗ ≥ μ∗
2 > 0; its mini-

mum gap is 9, realized at ±(1, 1, 1, 1, 1, 1, 1, 1, 1,−1, 1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 0.0441 ±(1.0012, 1.0023, 1.0035, 1.0225, 1.0058,

1.0069, 1.0080, 1.0114, 1.0126,−0.8943, 1.0035)

4. Conclusions. We consider the problem of computing the global infimum p∗

of a multivariate polynomial p of degree 2m. We propose a method for determining
upper approximations μ∗

λ (or μ∗
k,λ for some integer k ≥ m) for the infimum that

converge to p∗ as λ goes to 0. In the examples in which our method was tested, a
tight upper bound μ∗

k,λ for p∗ is very often found for k small (k = m+ 1 or m+ 2) by
solving a semidefinite program of reasonable size, together with a real point x whose
evaluation p(x) gives a certificate for the upper bound. For small λ, p(x) is in fact
very close to the infimum p∗ and x is close to a global minimizer (if some exists),
which has been confirmed in the examples.

Our method applies to any polynomial; in particular, no assumption about the
existence of a minimum is needed. In fact, it works with a perturbation pλ of p,
which has the property of having a minimum as well as a finite set Vλ of critical
points. Moreover, the minima μ∗

λ of p over the set Vλ converge to p∗ as λ goes to
0. One has two options for computing the minimum μ∗

λ: Either apply the moment
relaxations of Lasserre [15] or apply the more compact relaxations via combinatorial
moment matrices of Laurent [18] as proposed here. A feature of this second approach
is that one has to solve smaller semidefinite programs, and, moreover, one can often
extract a solution (giving a certified upper bound for p∗) at an earlier stage than in
the approach based on the classical moment relaxation. In fact, our method can be
applied directly to polynomials of the form p =

∑
i cix

2m
i + p0, where ci �= 0 and

deg(p0) ≤ 2m− 1, without perturbing p; then it gives a monotonically nondecreasing
hierarchy of lower bounds μ∗

k on the infimum. A limitation for our method is the size
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of the matrix variable MBk
(y), which has to be generated and then processed by the

semidefinite solver. Thus it applies only to medium-size problems.

Previous methods of Lasserre [15] and Parrilo [23] approximate the infimum of p
by giving a hierarchy of lower bounds for p∗. Thus in a sense the various methods
complement each other.

Parrilo’s method computes for an integer k ≥ 0 the parameter γ∗
k := sup γ such

that (
∑

i x
2
i )

k(p(x) − γ(
∑

i x
2
i )

m) is a sum of squares of polynomials. It is useful
for proving that a homogeneous polynomial p is nonnegative, i.e., p∗ = 0; indeed, if
γ∗
k ≥ 0 for some k, then p is nonnegative. On the other hand, our method is useful

for proving that a homogeneous polynomial is not nonnegative (e.g., for proving that
a matrix is not copositive). Indeed, if one finds an upper bound μ∗

k,λ < 0 for p∗, then
p is not nonnegative; in the examples such certified negative upper bounds on the
infimum p∗ are (often) found for a small order k = m + 1 or m + 2.

When applied to the unconstrained minimization of p, Lasserre’s approach gives
a lower bound p∗L,m for p∗, with equality p∗ = p∗L,m if and only if p − p∗ is a sum of
squares. One can construct a hierarchy of lower bounds converging to p∗ by consid-
ering the constrained problem of minimizing p over its gradient variety (when p has a
minimum) or over a ball (when a ball is known a priori containing a global minimum).

Let us finally mention another method based on perturbations recently introduced
by Lasserre [16]. Given ε > 0 and an integer k ≥ 0, define the perturbed polynomial

pk,ε := p + ε
∑k

r=0

∑n
i=1

x2r
i

r! . Lasserre [16] defines the parameter

�∗k,ε := inf pTk,εy s.t. Mk(y) � 0, y0 = 1,

and shows that, given ε > 0, p∗ ≤ �∗k,ε for k large enough, and �∗k,ε ≤ p∗ + ε
∑n

i=1 e
x2
i if

x is a global minimum of p. From the numerical results given in [16], it appears that
the bound �∗k,ε is sensitive to the parameter ε (e.g., �∗k,ε does not approximate p∗ very
well for some values of k and small ε) and �∗k,ε provides less good approximations of
p∗ than when solving a constrained program with the first order conditions (which is,
however, allowed only when p has a minimum).
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