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The problem

|
Given polynomials hy, ..., hn € R[x] = R[x1, ..., Xa]
generating the ideal
I'=(h1,...,hm)

Compute a base of the real radical ideal /I of the ideal |

Compute the real variety Vi (I)

Assuming that Vi(!) is finite.



The complex case: V¢ (/) is well understood

= Homotopy continuation methods
[Sommese, Verschelde, Wampler,..]

m Elimination methods: Find polynomials in | with special
structure that can be used to represent the roots:

~» Compute polynomials in / in triangular shape: fi € R[xq],
fr € Rlxi,x2], ..., fn € R[x1,...,xp] (via Grobner bases)

~» Compute a rational univariate representation (RUR) of the
roots: x; = h;(t)/h(t), f(t)=0 [Rouillier,...]

~» Compute a border base and reduce to some eigenvalue
computations
[Kehrein-Kreuzer-Robbiano, Mourrain, Mdller, Stetter,...]



The real case: V() is less well understood

m Subdivision methods combined with search methods and
real root counting [Mourrain-Pavone, ...]

m Khovanskii-Rolle continuation: exploiting sharp bounds for
real roots of fewnomials [Bates-Sottile,...]

Our contribution:

m A characterization of the real radical ideal VI, as kernel of a
positive semidefinite moment matrix

m When |Vg(/)| < oo, an algorithm for computing a base of v//
and the real variety V(/)

Remarks about our method:

m Real algebraic in nature: no complex roots are computed
m Works if Vr(/) is finite (while Vc(/) could be infinite)
m Numerical: uses semidefinite programming (SDP)



Recap: (Real) Nullstellensatz, sums of squares of polynomials
and semidefinite programming (SDP), eigenvalue method

m Moment matrices and real radical ideals

m Moment matrix approach for v//

Extension to the complex case and links to the elimination
method of Zhi-Reid



m Polynomial ring: R = K]x] [K =R or C, mostly R]
(Complex) variety of | C R:
Ve(l)={veC"|f(v)=0Vfel}

m Real variety of /:

Ve(l) = Ve()NR"
Radical ideal of /:
Vi={feR|3ImeN f"ecl}
m Real radical of /:

Vi={feR|ImeNIseR "+ s’ cl}

1

m The ideal / is radical if | = /I and real radical if | = /I.
m Vanishing ideal of V C K™
I(V)={feR|f(v)=0VveV}



A small example

Consider the ideal | = ((x2 +x3)?) in R[xy,x].

m V() = {(x,tix1) | x1 € C}
Radical ideal: v/ = (x? + x3).

= Vi(/) ={(0,0)}
Real radical ideal: v/ = (x1,x2).

Indeed: x{ + 2x3x3 + x5 € | = x, € VI
—_—

sum of squares

Feature of this example:

V(1) is finite while V(1) is infinite.



A small example

Consider the ideal 1= ((x3 +x3)2) in R[x1, xo].

| V(C(/) = {(Xl, :|:iX1) ’ X1 € (C}
Radical ideal: V1 = (x2 +x3) = I(V(1)).

m Ve(/) ={(0,0)}
Real radical ideal: /I = (x1,x2) = I(Vi(])).



Nullstellensatz and Real Nullstellensatz

[Hilbert’s Nullstellensatz] For an ideal | C C[x],

VI =1(Ve(D)).

[Real Nullstellensatz, Krivine (1964)]
For an ideal | C R[x],

V1= 1(Ve(D)).

|
Hence, for an ideal | = (hy,..., hy)

V() = = 1= erll uJ'hj el [with LP]

Ve() =0 <= 1+3,;s7 =Y uh €l [with SDP]

for some polynomials s;, u;.



Semidefinite programming

Semidefinite programming (SDP) is linear optimization (LP) over
the cone of positive semidefinite matrices.

m LP: vector variable x ¢ R", x > 0

m SDP: matrix variable X € R"*" X = 0 (positive semidefinite)

(Semidefinite program)

Given symmetric matrices C, A;j € R"*" and b € R™, compute:
max Tr(CX) such that Tr(AjX)=b; (j=1,...,m), X =0

Dual SDP:

min bTy such that ZyjAj —C>0
j=1

There are efficient (interior-point) algorithms to solve semidefinite
programs (to arbitrary precision).



Recognizing sums of squares of polynomials with SDP

Gram-matrix method of Powers-Wérmann [1998]:

f(x) = Z fax® is a sum of squares of polynomials

| <2d
§
f(x) =>:si(x)? [ write s;(x) =5 " [x]q ]
§
F6) =3 35 57 Ida = b7 (D557 )
i i
X0
9

> Xep=fa (jo] <20)
The SDP: { 5,31y=a is feasible

X >0



Example: f(x,y) = x* + 2x3y + 3x%y? + 2xy3 + y* SOS?

2

a b c X
foy) =0 xy y?) [ b d el |xy
c e f y?
X0
Equating coefficients on both sides:
xa=1 X3y:2b=2 x°y? 2c+d=3
xy3:2e=2 y* f=2
1 1 c
X=113-2c 1| >0 < —-1<c<1
c 1 2

c=—1~ f=(x2+xy—y?)?+ (y*+2xy)?
c=0~f=02+x)+ 30y +y?)?+ 300 —y?)?



The eigenvalue method: Linear algebra in A = R//

I C R ideal ~~ A= R/ its quotient algebra.

Lemma

m|Ve())] <0 <= dimA< 0.

m |Ve(/)| < dim A, with equality if and only if | is radical.

Theorem (Stickelberger)

For h € R, consider the multiplication operator (by h):
Mh A = A
[f] — [hf]

m The eigenvalues of My, are {h(v) | v € Vc(/)}.
m The eigenvectors of M,T give the points v € V(1).



Multiplication matrices M, ~» base of /

m B={by=1,bs,...,by}: a monomial base of A =R/l

N
m Write any (border) monomial: x;b; = Z c,((U)bk + g

~—
k=1 el
X,'b1 X,'bj X,'b/\/ eSpan(B)
b
m M, = b c,Eij) ... | : multiplication matrix
by

m G={g)|i=1,....n, j=1,...,N}: (border) base of /.

|
Therefore: To find a base of 3/7, it suffices to compute a base B
of A=R/ VI and the multiplication matrices M,



Characterizing border bases

Theorem (Mourrain 1999)

Given:
e [3: set of monomials connected to 1, i.e., 1 € B and
VmeB Im e B Ix; m=xm
BT =BUxiBU...Ux,B: prolongation of B (by one degree).
OB = BT\ B: border of B.

e G C R: rewriting family for 3, permitting to express any
monomial of 913 in Span([3).

Then:
B is a base of A = R/(G) ~» [ G is a border base]

i.e., any polynomial can be uniquely written in Span(3) modulo
the ideal (G)

<= The (formal) multiplication matrices M,, ..., M,,
commute pairwise.



Count (real) roots and compute v// with the Hermite form

Consider the Hermite quadratic form:

H: A — A
(f.g) = Tr(Mg)

Let | be a zero-dimensional ideal, i.e., |Vc(I)| < oo.

m rank(H) = |V (/).
m Sign(H) = [Ve(/)]
m /I = Ker(H) + /.



Our strategy to compute v//: Work on the dual side

m Goal: Compute the real radical ¥/I of | = (hy, ..., hy).

m Strategy: Use the dual space R*:= linear forms N\ on R.

v e Vr(l) ~ A, € R*: Evaluation at v, defined by

A(f)=f(v) for f €R

Properties of A,:

A, vanishes on | [True for all complex v]
Indeed: A, (hjx*) = hj(v)v® =0 V) Va
A, is positive on squares: N\, = 0 [True only for real v]

Indeed: N, (f?) = f(v)> >0 Vf€ER



Moment matrices and Hankel operators

Definition

The moment matrix M(A) of A € R* is indexed by all monomials:
M(A) = (A(xx®) ) seren
~» M(A) is a generalized Hankel matrix.

Lemma

N positive on squares <= M(N\) = 0: positive semidefinite matrix.

Proof: A(f2) =F M(A)f  where f =Y £fx®, F = (£,).

RENEILS

M(N) is the matrix (in the monomial/dual bases of R, R*) of the
Hankel operator Hy: f € R — f - A € R*, defined by

(f-N)(g) =N(fg) VgeR.

This lecture: Use the terminology of moment matrices.



Basic properties of moment matrices
ANeR* ~~ B
Ker M(A) = {f € R|gTM(A)f =0, i.e., A(fg) = 0 Vg € R}

Ker M(N) is an ideal, with dim R/KerM(A) = rank M(A).
B column base of M(t.a) <= B is a base of R/Ker M(N)
A= 0 = Ker M(A) is a real radical ideal.

Assume N\ = 0 and rank M(A) < co. Then,
A € cone{A, | v € R"}

Proof of (2): Assume Y. p? € Ker M(A). Then:

0=A(Z;p7) = i Mp7) = N(pf) = 0 = pi € Ker M(A)
>0
Curto-Fialkow (1996) show (3) with functional analysis

Next: Short proof using the Real Nullstellensatz




Theorem (Finite rank moment matrix thm, Curto-Fialkow 1996)

Let N € R*. Assume M(A) = 0 and rank M(A) = r < co. Then

A= Z Al
i=1

for some \j > 0 and {vq,...,v.} = V(Ker M(A)) C R".

[A has a finite atomic representing measure]

Proof:
m Ker M(A) is real radical [as M(A) = 0]
m Ker M(A) is zero-dimensional [as dim R/Ker M(A) = r]

m V(Ker M(A)) :={v1,...,v,} C R"
m Ker M(A) =1({v1,...,w})
m A= > A(p?)A,, [with p; interpolation polynomials at v;]



Our strategy: Work with truncated moment matrices

Given: | = (hy,..., hy), D = max; deg(h;)
H
For t > D, define:

m The prolongation of H up to degree t:

(H|t) = {hjx™ | deg(hix®) < t} C I N R.

m The cone of truncated positive linear forms:

L ={N€ R |N(f) =0VFf € (H|t), N(f*) > 0 VFf € Riejo 1}

Mis2)(N) = 0

Clearly: L. D cone{A, | v e Wr(l)}



A crucial geometric property of the cone L; -

Lemma (Generic linear form)

The following properties are equivalent for N € L y:
N lies in the relative interior of the cone Lt (N is generic).
rank M|;/2|(N) is maximum.
Ker M|¢/2((N) is minimum, i.e.,

Ker M\;2((A) € KerM\,jo|(N') VN € Ly .
—_————

Nt: generic kernel

Lemma

NeCNepr €...C VI

Proof: For all v € Vr(/), N: C Ker M4/ (Av) € I(v).
Hence: N; C I(Vi(l)) = V1.



Semidefinite characterization of v//

I =(h1,. . hm), N C V1

Theorem

VI = (N;) for t large enough.

Sketch of proof: For t large enough, N; contains a given basis
{g1,...,8.} of VI

e Real Nullstellensatz: g7 + ;57 = Y. ujh;

o Ny is “real ideal like": g?™+>.s? € Ny = g1 € N\;

Question

How to recognize when N; generates v/I ?

Next: An answer in the case |Vr(/)| < o0



Stopping criterion

I'=(hy,...,hn), D=maxjdeg(h;), d = [D/2], t > D

Theorem (Stopping criterion)

Let A be a generic element of L .
Assume one of the following two flatness conditions holds:
(F1) rank Ms(A) = rank Ms_1(A)  for some s € [D, |t/2]]
(Fd) rank Ms(A) = rank Ms_4(A)  for some s € [d, | t/2]]
Then:
m VI = (KerMs(N))
m Any column base B of M_1(A) is a base of R/ /I

m The multiplication matrices can be constructed from Ms(N\)

Key tool: Use the Flat extension thm of [Curto-Fialkow 1996]:
rank Ms(A) = rank Ms_1(A) = A has a flat extension A € R*,

i.e., rank M(A) = rank Ms(A); thus Ker M(A) = (Ker Ms(N)).




Termination when |Vg(/)| < oo

Theorem (Termination)

If V(1) =0, then 1 € N; for some t.

If1 < |Wg(l)|] < oo, then the stopping criterion (F1) (or (Fd))
holds for some t.

Sketch of proof:
For t > ty, Nt = Ker M2 (A) contains a Grobner base

{g1,...,8.} of ¥/I (for total degree ordering)
B={by,...,by}: standard monomials ~» base of R/ /I
Let s := 1 + maxpep deg(b) and t > max{ty,2s}

N L
X% = Z Aib; + Z ug if deg(x®) <s
i=1 =1
IH,_/ ——

€Span(B), deg<s—1 /], deg<|a|<s<|t/2]

N
s x% =Y " Aibi € KerM| o) (A) ~ rk Ms(A) = rk Mc_1(N)



x| AGD) AGE) ALd) A AGExe)  AxxS)

xixo | A(xixe) A(xEx2) ANGx2) NxPxd)  Nxaxd)

x5\ A AC3)  AGEG) AGax3)  AGS)

A€ Lyy if Ma(N) = 0 and 0 = A(h) = A(x) +A(3) +2 A (x353)
>0 >0 >0

Hence: A(x{) = A(x3) = A(x¥x3) =0



1 A1) AGa)  Ale)
i | AGa)  AGR)  Alax)
o | Abe)  AGax)  AGR)

X3 NG)  AGE)  Abdx)
s | Aaxe)  A(xse)

3\ Ax3) A(x3)

Hence: A(x®) = 0 for all x* # 1
~ rank Mp(A) = rank Mp(A) =1
~ % = (Ker Mg(/\)) = (X1,X2)




Moment matrix algorithm for VAl

Input: hy,...,hp € R [Assume |Vr(/)| < oo]
Output: base B of R/V/I, multiplication matrices M, of R/ V/I
or an infeasibility certificate if Vg(/) =0

Algorithm: For t > D
Compute a generic element A € L;
Check if (F1) or (Fd) holds
If yes, return a column base B of Ms_1(A\), M, = Mgz=1P;
m Vj: principal submatrix of Ms_1(A) indexed by 53

m P submatrix of Ms(A) with rows in 3 and columns in x;3

If no, go to Step 1 with t > t+1

Theorem (Termination)

If [Ve(I)| < oo, the algorithm terminates.



Compute a generic element in £; - with SDP

Mt/2(N) = 0 (PSD)
Solve the SDP: min 0 s.t. ¢ A(f) =0Vf e (H[t) (L)
A1) =1 (N)

Introduce variables y, = A(x®) for |a| < t
m Positive semidefinite condition: Z|a‘<t Bayo =0

B, are matrices indexed by monomials of degree < |t/2]

m Linear condition: A;y =0

The coefficient vectors of polynomials in (H|t) are rows of A;

m Normalization condition: yp =1

Interior-point algorithms (with self-dual embedding technique)
return an optimal solution in the relative interior of the optimal
face ~+ generic element of L; -



Example (from Bini-Mourrain list)

I = (5x7 —6xP x2+x1 X5 +2x1 X3, —2x0x0+2x2 X3 +2x0X3, X2 + x5 —0.265625)
D=9, d=5 |W(/)| =8, |Vc(l)] =20

order rank sequence of extract. order s | accuracy | comm. error
t | Ms(A) (0<s<[t/2])
10 148162534 — — —
12 13915222632 — — —
14 13810121620 24 3 0.12786 | 0.00019754
16 1488812162024 4 4.6789%-5 | 4.7073e-5

B = {1,x1, %2, X3, X2, x1X2, X1X3, X2X3 } ~> border basis G of size 10

Real solutions:
x1 = (—0.515,—0.000153, —0.0124) x, =
x3 = (0.502,0.119,0.0124) X4 =
= (0.262,0.444,—0.0132) Xg =
= (—0.262,0.444,—0.0132) Xg =

—0.502,0.119,0.0124)
0.515, —0.000185, —0.0125)
—2.07e-5,0.515, —1.27¢-6)

—1.05e-5, —0.515, —7.56¢-7)

AA,-\,—\



The moment matrix approach for v/1

Omit the PSD condition and work with the linear space:

Lei={Ae R | A(f) =0 VF e (H]t)}

The same algorithm works: For t > d

Compute a generic element A € L,
[rank Ms(A) maximum Vs < |t/2]]
[choose random element A € L]

Check if (F1) or (Fd) holds

If yes, return a base 3 of R/J, where J = (Ker Ms(A))
satisfies | C J C /I so that v J = /1

If no, go to Step 1 with t - t+ 1



Computing the radical ideal v//

Given: Generic A € L; with rank Ms(A) = rank Ms_1(A),
J = (Ker Ms(N)), B={bs,...,byn} column base of Ms_1(A)

Goal: Find the Hermite matrix H of J ~~ description of v/J.

Inspired by [Janovitz-Freireich, Szantd, Mourrain, Ronyai 2008]:
Compute the dual base {b], ..., by} of Bs.t. A(bjbf) =6
(6%, ..., by]T = Mg [by,. .., bn]"
A:= residue of 21 | b;b* in Span(B8) modulo J
Claim: Hermite matrix H = ST

m S: N x Mjs_»> matrix with rows the coefficient vectors of
Aby,...,Aby

m T: submatrix of Ms(A) with row indices Mjs_» and column
indices B

m Using the fact: Tr(M,) = A(hA) for he R



Example: the real/complex moment matrix algorithm

I =(x2—2x1x3 +5, x1x3 +xx3 +1, 3x3 —8x1x3), D=3,d=2

Ranks of M,(A) for generic A € Ly, L, :

t=2 3 4 5 6 7 8 9
s=0 1 1 1 1 1 1 1 1
s=1 4 4 4 4 4 4 4 4
s=2 8 8 8 8 8 8
s=3 1 10 9 8
s=4 12 10

no PSD ~- 8 complex roots

|t=2 3 4 5 6
s=0] 1 1 1 1 1
s=1| 4 4 4 2 2
s=2 8 8 2
s=3 10

with PSD ~~ 2 real roots



Link to the elimination algorithm of Zhi-Reid

I(hl, ceey hm), D= max; deg(hj)
Theorem (Zhi-Reid 2004)

If the following dimension condition holds for s € [D, t|:
(D) dim ﬂ-s(ﬁt) = dims_l(ﬁt) =dim 7T5(£t+1)

then one can construct the multiplication matrices of R/I.

Theorem (Link to the flatness condition)

The flatness condition for generic A € L, s € [D, [t/2]]:
(F1) rank Ms(A) = rankMs_1(A)
implies the dimension condition at order (t,2s):

dim Wzs(ﬁt) = dimzsfl(ﬁt) = dim 7T25(£t+1)

~- The stopping criterion (D) might hold earlier than (F1)



Extension to the real case

Complex case: Dimensions of projections of £; = (H|t)*

Real case: Dimension of cone £, = dim G;-

Ge = (H[t) U{X* | f € Ny, |of < [t/2]}

Theorem

If the following dimension condition holds for s € [D, t]:
(Dy) dim7s(Gi) = dim7s_1(GH) = dimws((G;)1)
then one can construct the multiplication matrices of R/J, where

I € JC VI, with equality: J = /I if dim7s(Gi-) = |Vr(/)).

Theorem (Link to the flatness condition)

(F1) rank M(A) = rank Ms_1(N) for generic N € L

is equivalent to the dimension condition at order (t,2s):

(Dy1) dimms(Gi) = dimmas_1(GiH) = dim mas((G;)F)



| = (x12 — 2x1x3 + 5, x1x22 + xox3 + 1, 3x22 — 8x1x3)

‘ t=3 Two real roots

|
o
B o=

[N e
N =IO
NN =IO

rank M, (A)=rankM;(A) = 2
for A € E6,t




Bottleneck: Solve large SDP problems involving matrices indexed
by all monomials up to degree t

Idea: Combine the SDP based moment matrix approach with
border base algorithms to obtain an iterative procedure, involving
SDP computations on smaller matrices

Theorem (Generalized flat extension theorem, La-Mourrain 2009)

Let A: BT - Bt — R, where B is connected to 1.
If rank Mg(A) = rank Mg+ (A), then N has a flat extension to
A€ R*.

~+ Lecture of Bernard Mourrain this afternoon
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