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Abstract

We extend Bayesian MAP and Minimum Description Length (MDL) learning by testing
whether the data can be substantially more compressed by a mixture of the MDL/MAP
distribution with another element of the model, and adjusting the learning rate if this is
the case. While standard Bayes and MDL can fail to converge if the model is wrong, the
resulting “safe” estimator continues to achieve good rates with wrong models. Moreover,
when applied to classification and regression models as considered in statistical learning
theory, the approach achieves optimal rates under, e.g., Tsybakov’s conditions, and reveals
new situations in which we can penalize by (− log prior)/n rather than

√
(− log prior)/n.

1 Introduction

1. Learning Theory; Predictor Models. In much of statistical learning and machine learning theory,
the goal is to learn, based on a set of observed data Zn = (Z1, . . . , Zn), a predictor f̆ taken from
some set of candidate prediction rules F . Here each Zi = (Xi, Yi), each Xi takes values in some
set X , each Yi takes values in Y, and F is a set of functions f : X → Y. The Zi are assumed
to be sampled i.i.d. according to some distribution P ∗ on Z = X × Y. The learned predictor f̆
should have a small generalization error or risk, defined as risk(f) := E∗[loss(Y, f(X))] where
loss is some given loss function and here, as elsewhere in this paper, E∗ = E(X,Y )∼P∗ denotes joint
expectation of (X,Y ) over P ∗. In a typical classification setting, Y = {0, 1} and loss(y, ŷ) := |y− ŷ|
is the 0/1-loss; in typical regression problems, Y = R and loss(y, ŷ) := (y − ŷ)2 is the squared loss.
Crucially, risk bounds are usually proved in worst-case settings, using only weak assumptions on P ∗
2. Standard Statistics; Probability Models. Here one models uncertainty by a statistical model, i.e. a
set of probability distributions P, and the goal is to learn a distribution p̆ that is a good representation
of the underlying distribution P ∗ from which the data Zn are sampled. Here we focus on the case
that Zn are i.i.d., Zi = (Xi, Yi) as above, and P is a set of conditional distributions p(y | x),
identified by their mass functions (if Y is finite/countable) or densities, and extended to n outcomes
by independence. Witness papers such as The Two Cultures (Breiman, 2001), the difference between
statistical/machine learning theory and standard statistics based on probability models is often
regarded as fundamental. Here, I propose a first, preliminary, attempt at an overarching, single
theory of learning, as embodied by a new ‘safe’ estimator. It is called ‘safe’ because, when applied
to probability models P, then, unlike standard Bayes and MDL, it is guaranteed to perform well in
the often inevitable situation that ‘all models (elements of P) are wrong, yet some are useful’.

Safe Estimation for Probability Models For probability models P, the safe estimator behaves
similarly to the Bayesian MAP or two-part MDL estimator. Following Barron and Cover (1991), we
define the κ-two part estimator, written as p̈κ, as a generalization of the MAP/MDL estimator, as
follows: fix some prior distribution w and some κ > 0. For each xn ∈ Xn, yn ∈ Yn, p̈κ is defined∗
as the p ∈ P achieving1

min
p∈P

{−κ logw(p)− log p(yn | xn) } . (1)

∗Supported in part by the IST Programme of the EU, under the PASCAL NoE, IST-2002-506778. I
would like to thank Andrew Barron, Tim van Erven and Rui Castro for some very useful discussions.
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When κ ≥ 1, then, via the Kraft inequality, (1) can be thought of as the number of bits needed to
encode Y n given Xn in a two-stage code; −κ logw(p) is the codelength needed to encode p, and acts
as a complexity penalty. − log p(yn | xn) is the codelength of the data yn when encoded with the
help of p and xn. To get good convergence rates, one needs to set κ > 1 (Zhang, 2006); while any
fixed κ > 1 will do, for ‘standard 2-part MDL’ one takes κ = 2 which is mathematically convenient
(Barron and Cover, 1991). In contrast, the safe estimator is defined (in Section 2, Eq. (9)) as
p̆safe = p̈2κ̆safe

where κ̆safe is not fixed but determined by the data. κ̆safe will be a small constant
≥ 2, unless the data indicate that the model is misspecified (wrong). Whereas ordinary Bayesian and
MDL approaches can fail to converge in this case (Example 3 below), the safe estimator continues to
perform well in the following sense: suppose that data Zn are i.i.d. ∼ P ∗, as above, where for each
x, P ∗(Y = · | X = x) has conditional density p∗(· | x). Let q be the best approximation within P
of p∗ in terms of Kullback-Leibler (KL) divergence. Then the KL divergence between p̆safe and p∗

converges to the KL divergence between q and p∗ at fast rates. To express this formally, for any two
conditional densities p and p′, we define∗ the generalized KL divergence (Grünwald, 2007) relative
to P ∗ as

D∗(p′‖p) := E∗[− log p(Y | X) + log p′(Y | X)].
Then, for q satisfying infp∈P D∗(p∗‖p) = D∗(p∗‖q) we prove, under suitable regularity conditions, in
Theorem 1 in combination with Theorem 3 below that D(p∗‖p̆safe)−D(p∗‖q)→ 0, or equivalently,
D∗(q‖p̆safe)→ 0, in probability at fast rates.

Safe Estimation for Predictor Models In our overarching approach, all models are formally
defined as sets of probability distributions. Predictor models F are “transformed” into corresponding
probability models PF := {pf | f ∈ F} by a standard transformation (called ‘entropification’ and
extensively motivated from an MDL perspective by Grünwald (1999)): for each f ∈ F ,

pf (y | x) := 1
Z(β)e

−βloss(y,f(x)) , pf (yn | xn) :=
∏n
i=1 pf (yi | xi). (2)

Here Z(β) =
∫
y∈Y exp(βloss(y, f(x)))dy is a normalization factor (if Y is finite/countable, then

here, as everywhere else in this paper, the integral should be replaced by a sum). In this preliminary
study, we set β to some fixed value, say, 1 (but see Section 6). For the squared loss, Z(β) does not
depend on f(x); if we set β = 1/2σ2, we see that (2) expresses that Y is Gaussian with mean f(X)
and variance σ2. For the 0/1-loss, Z(β) does not depend on f(x) either; loss functions for which
Z(β) depends on f are handled as described under Eq.(7) below. Taking logarithms in (2), we then
get that the excess risk of any f as compared to any g is a linear function of the generalized KL
divergence of the corresponding distributions:

excess-risk(g‖f) = risk(f)− risk(g) = E∗[loss(Y, f(X))− loss(Y, g(X))] = 1
βD
∗(pg‖pf ). (3)

Now let g be such that risk(g) = inff∈F risk(f). Even if F is a good ‘model’, i.e. risk(g) is small,
the corresponding model PF will typically be misspecified (e.g. in the squared loss case, the ‘true’
noise may not be Gaussian at all). Since the safe estimator is immune to this problem, we can safely
apply it to the model PF . Then Theorems 1 and 3 show that the excess risk excess-risk(g‖f̆safe)
converges to 0 at rates that are in many cases optimal; here f̆safe := f for the f with p̆safe = pf .
Thus, by the construction (2), convergence in generalized KL-divergence becomes equivalent to
convergence in the loss function of interest.

The Role of Convexity Our starting point is the known fact that ‘standard MDL still works’,
i.e., (broadly speaking), D∗(q‖p̈2) → 0 at the appropriate rate if the closure 〈P〉 (suitably defined
as in (10) below) of the model P is convex (Li, 1999, Theorem 5.5); see also (Kleijn and van der
Vaart, 2006). Our first observation is that, even if 〈P〉 is not convex, then as long as we have the
weaker condition

inf
p∈P

D∗(p∗‖p) = inf
p∈convex-hull(P)

D∗(p∗‖p), (4)

we still get that D∗(q‖p̈2) → 0 at the right rates. Now define, for η ≤ 1, the model P(η) := {p(η) |
p ∈ P}, where p(η)(y | x) ∝ (p(y | x))η (for predictor models PF , this corresponds to replacing β in
(2) by η ·β; a precise definition is beneath (7) below). Our second insight is that, even if (4) does not
hold for P, then still, for all η no greater than some critical value ηcrit, (4) will actually hold with P
replaced by P(η) and thus ‘standard MDL still works’ for P(η). The third insight is that the MDL
estimator p̈2κ for model P with κ = 1/ηcrit is essentially equivalent to the standard MDL estimator
p̈

(η)
2 for model P(ηcrit); indeed, we will prove (implicitly in Theorem 3) that the MDL estimator p̈2κ

with κ = 1/ηcrit leads to good results for the model P. The fourth, and main, insight is that, for
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any given η, we can test whether η ≤ ηcrit, i.e. whether (4) is the case for P(η), by looking at the
observed data: essentially, the likelihood of the data according to p̈

(η)
2 will be significantly smaller

than the likelihood according to a 2-component mixture of p̈(η)
2 and another, suitably chosen p ∈ P,

if and only if (4) does not hold. The minus logarithm of this discrepancy is measured in terms of
a function conv-lack, a key concept of this paper, defined formally in (8). The safe estimator
is defined as p̆safe = p̈2κ̆safe

, i.e. it is the 2κ̆safe-two-part estimator where κ̆safe = 1/η, and η is
determined by the data: it is effectively set to the largest value for which conv-lack is small, i.e.
for which we cannot fit the data better by a two-component mixture.

Overview of Results In Section 2 we formally define conv-lack and p̆safe. In Section 3 and 4,
p̆safe will be shown to converge at optimal rates up to log factors in a variety of situations, as
illustrated by examples in Section 4. Convergence of p̆safe is shown in two stages: Theorem 1
bounds D∗(q‖p̆) for arbitrary estimators p̆ in terms of a ‘redundancy’ term red and the conv-lack
term. The redundancy term also shows up in classical MDL analyses and tends to 0 if we set p̆ to
a two-part estimator. Theorem 3 shows (essentially) that if p̆ is set to p̈2κ with κ ≥ 1/ηcrit, then
the conv-lack-term is small as well. Taken together, Theorem 1 and 3 imply that p̆safe converges
(a) at the right rates if the model is correct or convex; and (b) also if the model is “incorrect in the
worst possible manner”, and finally, (c) also if the model is a classification model, i.e. P = PF for
some set of classifiers F , and a Tsybakov condition holds for F .

In case (a), ηcrit = 1. As shown in Example 1, if the model is in fact correct (p∗ = q) we get
the same bound on D∗(p∗‖p̆safe) as the bounds obtained on D∗(p∗‖p̈2) by Barron and Cover (1991),
but with a larger constant factor — this is the price we have to pay for using a method that still
works if the model is incorrect in a situation in which the model in fact, turns out to be correct. In
the special case that w(p∗) = w(q) > 0, D∗(q‖p̆safe) will tend to 0 as O((log n)/n). In case (b), ηcrit

may be as small as C/
√
n for some C > 0. Example 2 shows that D∗(q‖p̆safe) may then tend to 0

at rate as slow as (log n)/
√
n, a worst-case bound familiar from the statistical learning literature.

In case (c), ηcrit � n−(1−ν)/(2−ν) for some 0 ≤ ν ≤ 1 and the convergence rate depends on ν. In the
special case that w(q) > 0, D∗(q‖p̆safe) will tend to 0 as O((log n)n−1/(2−ν)); see above Example 3.
The examples illustrate the generality of p̆safe, capturing both the common asymptotics for density
estimation if the model is correct and for statistical classifier learning under the celebrated Tysbakov
condition. p̆safe also gives a new interpretation of the difference in complexity penalties prescribed by
MDL/Bayes on the one hand and learning theory approaches (such as Structural Risk Minimization
and PAC-Bayesian methods) on the other: since the PF constructed from a predictor model F is in
general nonconvex, we may have ηcrit � 1, and the standard MDL penalties become too small.

A third main result is Theorem 2, which gives a new PAC-Bayes style empirical generalization
bound in which, if we are ‘lucky’ on the observed data, the codelength (− logw(p̆safe)) only appears
in an O(1/n) rather than an O(1/

√
n) term, even if the empirical error of the learned classifier is

not close to 0. As such it provides another step in the race to “root out the square root” that
characterizes so much of the work on classification bounds in learning theory.

Related Work — Learning the Learning Rate The larger η = 1/κ, the more influence the
data has on the chosen hypothesis p̈2κ. For predictor models, the same holds for the β appearing
in (2). Thus η · β may be viewed as the learning rate. A straightforward approach to learn it from
data is to fix η and instead pick the β in (2) that minimizes overall description length of the data,
as suggested by Grünwald (1999). Soon after publishing that paper, it became clear to me that this
does not work (this was shown formally in (Grünwald and Langford, 2007)), and I started looking for
an estimator that performs as well as if the optimal learning rate ηcrit had been known in advance.
The safe estimator does achieve this goal, thus ending a twelve-year long search. In a sense, p̆safe

learns the optimal learning rate. Note however that we cannot prove that the κ̆safe selected by the
safe estimator is equal or close to 1/ηcrit; we can only prove that it leads to the same asymptotic
performance bounds.

A transformation similar to (2) is done in PAC-Bayesian methods (McAllester, 2003), where
Bayesian averages of pf are viewed as Gibbs distributions. Our approach is similar, yet closer in
spirit to standard Bayes and MDL — There may be some relation with the advanced PAC-Bayesian
analyses of Audibert (2004), Catoni (2007), who provide algorithms for predictor models that learn
a learning rate (similar to η = 1/κ) determined by the amount of ‘disagreement’ on the input data
(X1, . . . , Xn) between the chosen predictor f̆ and other predictors in F . It would be interesting to
study the connections further.

Finally, our approach can (broadly) be seen as equipping (a form of) Bayesian inference with a
frequentist test, and adjusting the priors if the test indicates that the model is misspecified. Such an

3



idea was already suggested in broad terms by other researchers, e.g. Dawid (1982). It can also be
viewed as equipping (a form of) MDL with a randomness test (can we compress the data more by
stepping outside the model?), an idea that goes back to the Kolmogorov complexity roots of MDL.

2 The Safe Estimator

Preliminaries A probabilistic model P is a countable set of conditional distributions on Y given
X , identified with their mass functions (in case Y is finite or countable) or otherwise their densities
relative to Lebesgue measure, which we assume to exist; X can be arbitrary. We allow the p ∈ P
to be defective (sum to less than one). That is, p(y | x) can be any function such that, for all x,
for all y, p(y | x) ≥ 0 and

∑
y∈Y p(y | x) ≤ 1. We extend p to n outcomes by independence, i.e.

p(yn | xn) :=
∏n
i=1 p(yi | xi). For given zn = (x1, y1), . . . (xn, yn), znp is shorthand for yn | xn, i.e.

p(znp ) = p(yn | xn). All logarithms are to base e.
Crucially, the models P we are to consider, though countable, will usually represent very “large”,

“complex” sets of distributions, which may be thought of as dense (in the information closure sense,
see Section 3) subsets of an even larger, “nonparametric” P̄ with P ⊂ P̄: for example, we may
consider the set P̄ of all Gaussian mixtures with an arbitrary number of components, and then
define P as the subset of all p ∈ P̄ with rational-valued means and mixture coefficients.

We may fix a probability mass function w on P, which we shall think of as the prior distribution
on P. An estimator at sample size n is a function p̆ : Zn → P that maps each possible sequence
of observations zn = (x1, y1), . . . (xn, yn) ∈ Zn to some p ∈ P, Following e.g. Barron and Cover
(1991), the notation p̆(Zn) denotes the density of the observed data Zn according to the p̆ that was
selected (estimated) based on the same data Zn.

Conditions We only consider combinations of (P, P ∗) and prior w for which (A) for each (x, y) ∈
Z, there is a p ∈ P such that w(p)p(y | x) > 0. We also assume (B) that for some finite integer
Lmax > 0, for all n, all zn ∈ Zn, − logw(p̈2) ≤ nLmax. Hence the codelength of the 2-MDL estimator
is of order no larger than n. This assumption is innocuous, since it can always be satisfied by adding
one or a few distributions to P (proof sketch in appendix). Finally, let

V = V (P, P ∗) := ess supZ supp,p′∈P
p(Zp)
p′(Zp)

. (5)

We assume (C) 1 < V and (D) V <∞. We may think of V (P, P ∗) as the maximum ratio between
the density of zp = y | x assigned by different p ∈ P, where the maximum is over all (x, y) in the
support of P ∗. In case P ∗ has full support, the essential supremum can be replaced by the standard
supremum. Assumptions (A), (B) and (C) are harmless; (D) is further discussed in Section 6.

Mixing The safe estimator is the κ̆safe-two part estimator, with κ̆safe determined by the data.
To find κ̆safe, we test, for each fixed κ, whether we can get a better fit of the data/additionally
compress the data by a convex combination of p̈κ with a single other distribution p′ ∈ P. Of course,
since P may be infinite and arbitrary, it may be the case that, no matter what data we observe,
there is always some p ∈ P such that a convex combination of p̈κ and p gives a substantially better
fit to the data. This problem, it turns out, can be addressed by only looking at distributions p with
prior mass not much smaller than w(p̈κ): specifically, we require − logw(p) ≤ d− logw(p̈κ)e, where
d·e denotes rounding up.

To formalize this, for any p, p′ ∈ P and any λ ∈ [0, 1], we define the mixture distribution
mix(p, p′, λ) as (1−λ)p+λp′, so that for a single outcome z, mix(p, p′, λ)(zp) := (1−λ)p(zp)+λp′(zp)
(note the somewhat special notation). mix is extended to n outcomes by independence:

mix(p, p′, λ)(znp ) :=
∏n
i=1((1− λ)p(zip) + λp′(zip)). (6)

Our test is defined in terms of how much better fit can be achieved by the best-fitting convex
combination of this form. To this end, for an arbitrary estimator p̆, we let

supmix(p̆)(Znp ) := sup
p∈P:− logw(p)≤d− logw(p̆)e,λ∈[0,1]

mix(p, p̆, λ)(Znp ). (7)

Let Z(η) := supx∈X ,p∈P
∫
y∈Y(p(y | x))ηdy. For each p ∈ P, and each η ∈ R with Z(η) < ∞, we

define p(η)(y|x) := (p(y|x))η/Z(η). Note that the p(η) all represent distributions which, in general,
may be defective, even if p is not. We define P(η) := {p(η) | p ∈ P}. Since, in all our equations,
every occurrence of a density p(η) will actually be as a ratio of two densities, i.e. p(η)(Znp )/q(η)(Znp ),
we can safely write pη instead of p(η) everywhere without affecting the results. This is what we
do below. However, for interpreting our results it is useful to think of the p(η) as densities. For
predictor models, η corresponds to β in (2); but see Section 6.
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Convexity Lack We define the convexity lack of an arbitrary estimator p̆ on data Znp as

conv-lack(η, p̆) = −cη
η

log
p̆η(Znp )w2(p̆)

supmix(p̆η)(Znp )
, (8)

where cη = 1 +CηC
′
η, and Cη = 2 + 2η log V and C ′η = 2V 2η. The rationale behind these values will

become clear in Theorem 1 and Lemma 2 below. conv-lack is a measure of how many more bits
are needed to encode the data using a two-part code (with κ = 2) based on p̆η (the numerator in the
logarithm) as compared to the number of bits needed by the two-component mixture that provides
the best fit (smallest codelength) with hindsight (the denominator). The larger this number, the
more could have been gained by modelling the data with the convex hull of P rather than just P.
Our main insight (see Theorem 3 below) is that, if η ≤ ηcrit (ηcrit, introduced in Section 1, is
formally defined below), then conv-lack is guaranteed to be small. This suggests to test various
values of κ, and define the safe estimator as the κ-two part estimator for the smallest value of κ for
which conv-lack(1/κ, p̈κ) is below some fixed threshold. Here we opt for the essentially equivalent,
but mathematically more convenient option to simply add conv-lack as an additional penalty to
the codelength of the two-part estimator:

Safe Estimation Let κmax = d
√
n/(2 log V )e (this value is motivated below Lemma 1). The safe

estimator p̆safe is defined as the 2κ- two-part estimator for the κ ∈ {1, 2, . . . , κmax} that minimizes

− log p̈2κ(Znp )− 2κ logw(p̈2κ) + conv-lack(κ, p̈2κ). (9)

This is just the formula for p̈2κ, but with the term conv-lack(κ, p̈2κ) added. Here we establish
that p̆safe has good theoretical properties; whether it is useful in practice is discussed in Section 6.

3 Generalization Bounds for the Safe Estimator

Preliminaries We define the (generalized) information closure of P (Barron and Cover, 1991) as

〈P〉 := {p′ | for some P ∗, infp∈P D∗(p∗‖p) = D∗(p∗‖p′)}, (10)

where p′ ranges over all conditional densities for Y given X (i.e. p′ is not necessarily in P), and
P ∗ ranges over all distributions on Z that have some conditional density; we denote the density
corresponding to P ∗ by p∗(y | x). Henceforth we assume that data Zn are sampled from a P ∗ that
admits such a p∗. We also assume that P ∗ and P are such that there exists a best-approximating q,
defined as a q such that:

D∗(p∗‖q) = infp∈P D∗(p∗‖p) and V (P ∪ {q}, P ∗) = V (P, P ∗). (11)

From now on, for given (P, P ∗), we fix a particular best-approximating density once and for all and
keep denoting it by q. We must have q ∈ 〈P〉, and D∗(q‖p) ≥ 0 for all p ∈ P. Our assumption
that p∗ and q exist simplifies the formulation of our theorems. Still, all our results continue to hold,
with appropriately generalized definitions, if no such q or p∗ exist∗. In the well-specified case, with
q = p∗ ∈ 〈P〉, we trivially have that, for η = 1,

For all p ∈ P: E∗
[(

p(Zp)
q(Zp)

)η]
≤ 1, or equivalently, d∗η(q‖p) := −1

η
logE∗

[(
p(Zp)
q(Zp)

)η]
≥ 0,

(12)
as is seen by writing out the expectation in full and substituting q by p∗. Here d∗η is the generalized
Rényi divergence (Li, 1999); by a result of Li (1999), repeated as Proposition 5 in Section 5, if (12)
holds then d∗η/2 may be viewed as a proxy for the generalized KL divergence, since then, for all
p ∈ P, D∗(q‖p) ≤ Cηd

∗
η/2(q‖p) ≤ CηD

∗(q‖p), where Cη = 2 + 2η log V is a constant. This is a
key idea for our proofs. Classical theorems on two-part MDL inference for the well-specified case
(Barron and Cover, 1991, Zhang, 2006, Grünwald, 2007) invariably make use of (12) at some point
in the proofs; so do classical results on Bayesian consistency (Doob, 1949), in which (12) is used
to establish that {p(Znp )/q(Znp )}n=1,2... forms a martingale. It can be shown (Li, 1999, Kleijn and
van der Vaart, 2006) that (12) still holds for η = 1 if 〈P〉 is convex, or, more generally, if (4) holds.
This is the fundamental reason why the MDL and Bayesian convergence bounds still hold in that
setting. In fact, (4) with P(η) in the role of P is equivalent to (12), as follows from Lemma 2 in
Section 5 (proof sketch in Appendix). If (4) does not hold for η = 1, then (12) does not hold for
η = 1 and MDL and Bayes may not converge (Example 3 below). Luckily, for many types of P, one
can still show that (12) holds for some η < 1. Thus it makes sense to define the critical exponent
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ηcrit as the largest value of η such that, for all p ∈ P, (12) holds. It is useful to generalize the idea
slightly. We define, for u ≥ 0, the u-critical exponent ηcrit(u) as

ηcrit(u) := sup
{
η ≤ 1 : for all p ∈ P, logE∗

[(
p(Zp)
q(Zp)

)η]
≤ u

n

}
. (13)

ηcrit(0) is just the critical value as defined before. In Section 1 we cheated a little, writing ηcrit for
ηcrit(u) for the u which gives the best bounds; see below. Whenever we write “WHP” (‘with high
probability’), we really mean “for all K ≥ 0, with P ∗-probability at least 1− e−K , Zn satisfies...”.

Theorem 1 (Oracle Bound) Let (P, P ∗) and w satisfy conditions (A)-(D) of Section 2 with V
as in (5), q as in (11), ηcrit as in (13) and κmax as above (9). Let p̆ be an arbitrary estimator. Let
Zn ∼ P ∗. WHP, uniformly for all η ∈ {1, 1/2, 1/3, 1/4, . . . , 1/κmax}, all u ∈ {0, 1, . . . , nLmax}, we
have

D∗(q‖p̆) ≤ Cη
n

(
red(2/η, p̆) + conv-lack(η, p̆) + u

min{η,ηcrit(u)} +R
)
, (14)

where Cη = 2 + 2η log V . The term conv-lack is given by (8). The term red is given by

red(2/η, p̆) = − log w2/η(p̆)p̆(Znp )

q(Znp ) = − 2
η logw(p̆)− log p̆(Znp ) + log q(Znp ). (15)

The remainder term∗ is R = O
(
K+logn+log(2+d− logw(p̆)e)

min{η,ηcrit(u)}

)
.

red stands for ‘redundancy’. It can be interpreted as the extra number of nats needed to code the
data using a two-part code based on p̆ (with κ = 2/η), as compared to the code based on the best-
approximating q, and under mild conditions red/n will tend to 0, WHP (Example 1). For predictor
models as in (2), p̆ = pf̆ and q = pg, and then red/n can be thought of as the difference in empirical
risk between f̆ and the optimal g, ‘penalized’ by −(2/ηn) logw(p̆). The red and conv-lack terms
depend on the data; the third term in (14) becomes 0 if we set u = 0; for the possibility u > 0 see
Example 2. The fourth term is a remainder term which does not depend on the data except for the
term log(2− logw1/η(p̆)) which, by assumption (B), if p̆ is a 2-part or the safe estimator, is bounded
by O(log n).

We can now motivate the definition p̆safe: among all two-part estimators, it is the one minimizing
(14), ignoring the remainder term. To see this, note that the third term in (14) does not depend on
the data, and the redundancy term can be written as the sum of two terms plus a term log q(Znp )
that does not depend on our choice of estimator p̆. Thus, p̆safe minimizes an upper bound on the
KL divergence between p̆ and the best-approximating q.

Let us compare (14) to the bounds on the standard two-part MDL estimator as derived by Barron
and Cover (1991) under the assumption that q = p∗. One of their main results (Theorem 4, as later
strengthened by Zhang (2006) and (Grünwald, 2007, Section 15.3)) implies that, for all κ ≥ 1,

EZn∼P∗ [ D∗(p∗‖p̈2κ) ] ≤ C
nEZn∼P∗ [ red(2κ, p̈2κ) ], (16)

where C ≤ 2 + 2 log V as above. This provides a frequentist justification for the 2-part MDL
estimator p̈2κ with κ ≥ 1, since p̈2κ is in fact defined as the p ∈ P that minimizes red(2κ, p). Apart
from the ‘in-expectation’ rather than ‘in-probability’ formulation, the “only” relevant difference to
our result is the conv-lack term, which appears in (14) because we do not require a correct model.
In Section 4 we show that for many combinations of P ∗ and P, the conv-lack term will be small,
WHP, for p̆ = p̆safe. In such cases Theorem 1 states something similar to Barron and Cover’s result
(D∗(q‖p̆)→ 0), but without the often unrealistic requirement that p∗ ∈ 〈P〉.

Theorem 2 (Empirical Bound) Assume the notations and conditions of Theorem 1. WHP, uni-
formly for all η ∈ {1, 1/2, 1/3, . . . , 1/κmax}, we have,

E∗[− log p̆(Zp)] ≤ 1
n

(
− log p̆(Znp )− logw(p̆)2/η + 2conv-lack(η, p̆) +R

)
, (17)

with remainder term R = O
(√

n(K + log n+ log(2− logw(p̆)))
)

.

The proof of this result is similar to the proof of Theorem 1 and will be provided in the full
paper. Note that the weights of the main terms on the right side in Theorem 2 and 1 are different.
In Theorem 2, the left term’s weight is reduced from Cη to 1, and the weight of the right term
(conv-lack) is reduced from Cη (which is always ≥ 2) to 2. Unlike the ‘oracle’ bound Theorem 1,
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the ‘empirical’ bound Theorem 2 gives useful information without knowledge of E∗[− log q(Zp)]. If
P = PF for a classification model F , then the first term on the right-hand side is the empirical
risk β−1n−1

∑n
i=1 loss(yi, f̆(xi)) and the bound becomes similar to the PAC-Bayesian and Occam’s

Razor (OR) bounds (McAllester, 2003, Blumer et al., 1987). Yet, by Condition (B), for p̆ = p̆safe,
the remaining error term R/n is of order O(log n/

√
n) rather than O

(√
− logw(p̆)/n

)
as it would

be for PAC-Bayes and OR-bounds. In this sense, for data Zn such that for some γ > 0 (say, γ = 0.1),
for all f ∈ F , the empirical loss of f on Zn is larger than γ, the bound of Theorem 2 will be stronger
than the best PAC-Bayesian or OR bounds. In other cases Theorem 2 gives weaker bounds than
PAC-Bayes, since unlike PAC-Bayes it does not improve if f̆ has empirical error ≈ 0; also it is not
suitable for randomized classifiers. Theorem 2 is thus a first step, to be improved in future work.

4 What Actually Happens

Theorem 3 Assume the notations and conditions of Theorem 1. Let cη be as in (8). Fix u ≥ 0

and let η ≤ ηcrit(u). WHP, we have conv-lack(η, p̆) ≤ cη
(

3red(2/η, p̆) + u
η

)
+R,

with remainder term R = O((log n+K + u)/η)

Applying Theorem 1 to the safe estimator p̆safe with η ≤ ηcrit(u), and using Theorem 3 to rewrite
conv-lack, and using the fact that, if two inequalities hold with high probability, the combined
inequality also holds with high probability (see Proposition 4 in Section 5), we see that for all
η ∈ {1, 1/2, 1/3, . . . , κmax} with η ≤ ηcrit(u), the safe estimator achieves, WHP,

D∗(q‖p̆safe) ≤ C
n

(
red(2/η, p̆safe) + u

η + cη3red(2/η, p̆safe) + cη
η u+R′

)
= C(1+3cη)

n

(
red(2/η, p̈2/η) +R′′

)
+ C(1+cη)

n · uη
≤ C′′

n

(
red(2/η, p̈2/η) + u

η +R′′
)
,

(18)

with constant C ′′ = C(1 + 3cη) and new remainder term R′′ = O((log n + K)/η). As long as we
use (18) with u = 0 (directly below) or u = 1 (in Lemma 1) and η ≤ ηcrit(u), then the terms u/η
and R′′ are at most of the same order as the first term (−2/η) logw(p̈2η) in red, and hence do not
affect the obtained convergence rates of p̆safe.

Example 1 [Best-Case: Model P correct or convex] Suppose that P ∗ is in the information
closure of P, i.e. q = p∗. Then ηcrit(0) = 1, and, using (18) with u = 0 and η = ηcrit(0), WHP,

D∗(p∗‖p̆safe) = D∗(q‖p̆safe) ≤ C ′′

n
(red(2, p̈2) +R′′) , (19)

where by Barron and Cover’s original analysis, we would get (16). Except for the in-probability
rather than in-expectation formulation, the only real difference is that the KL divergence is bounded
in terms of a larger constant factor. This is the price we pay for not knowing in advance that our
model was, in fact, correct, while using a procedure that still leads to good results if it is incorrect.

Barron and Cover (1991) show that, for a wide variety of probabilistic models M, there exist
countable discretizations P ⊂M and corresponding priors w on P such that 1

nEZn∼P∗ [red(2, p̈2)] is
equal to the minimax convergence rate in KL risk ifM is “nonparametric”, or equal to the minimax
rate up to a log n-factor ifM is “parametric”. Using Markov’s inequality∗, WHP red(2, p̈2) on the
data (as in (19)) is not larger than a constant factor times its expectation EZn∼P∗ [red(2, p̈2)]. This
implies that the standard MDL estimator also achieves the minimax rate in probability (up to a
logarithmic factor in the parametric case). Hence, by (19), so do we. A similar story∗ can be told if
〈P〉 is convex or if the weaker condition (4) holds; again, up to constant factors, the safe estimator
performs as well as the two-part estimator, which converges at near-optimal rates.

When the Model is Wrong Define D∗sq(q, p) = E∗[(log p(Zp)/q(Zp))2]. Such a variation of
generalized KL divergence was earlier considered by, e.g., Kleijn and van der Vaart (2006). The
lemma below shows that if the model is wrong, then the value of ηcrit(u) depends on the relation
between D∗sq and D∗. The lemma is not really new, being a direct translation of existing results of
e.g. Tsybakov (2004) from ‘F-space with loss function loss’ to ‘P-space with log-loss’.

Lemma 1 Assume the notations and conditions of Theorem 1. Suppose further (E) that for some
A > 0 and some 0 ≤ ν ≤ 1, for all p ∈ P, D∗sq(q, p) ≤ A(D∗(q‖p))ν . Then, for all u > 0, we have

ηcrit(u) ≥ min
{

1
2 log V

,B
(u
n

) 1−ν
2−ν
}

where B = (2/eA)
1

2−ν . (20)
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When P represents a classification model containg the Bayes classifier, condition (E) above specializes
to the celebrated condition of (Mammen and Tsybakov, 1999, Tsybakov, 2004); the κ in (Tsybakov,
2004) is equal to ν−1 in our notation. In particular, we automatically have D∗sq(q, p) ≤ (log V )2 so
(E) always holds for ν = 0 and A = (log V )2. Using (20) with these values, and using 1/2 <

√
2/e,

it follows that for all u ≥ 1,
ηcrit(u) ≥ 1

2 log V

√
u
n ≥ 1/κmax, (21)

which explains why we could restrict η to η > κmax; see Example 2. If (E) holds for some ν > 0
though, then ηcrit(u) is of larger order than

√
u/n and things get better; see below Example 2.

Example 2 [Worst-Case] Let u ≥ 1 and let η = ηcrit(u). Using (18), and (21), we see that WHP,

D∗(q‖p̆safe) ≤ C′′

n

(
red(2/η, p̈2/η) + u

η +R′′
)

= C′′

n

(
−2c

√
n
u logw(p̈2/η)− log p̈2/η(Znp )

q(Znp ) + c
√
u · n+R′′

)
for some constant c = 2 log V . Differentiating with respect to u shows that a minimum is achieved∗
for u ≈ −2 logw(p̈2/η). The resulting expression becomes

C ′′ · 2c
√
− logw(p̈2/η)

n + C ′′
(
− 1
n log p̈2/η(Znp )

q(Znp ) +R′′
)
. (22)

For classification models, this bound is familiar from the computational learning literature. Now
suppose that (E) holds for some ν > 0. Then we can achieve better bounds: by the reasoning below
Theorem 3, p̆safe converges at the same rate as the κ-MDL estimator with κ = ηcrit(1)−1 = O(n

1−ν
2−ν ).

From (18) we see that in the special case that q ∈ P, w(q) > 0, (18) gives a rate in probability of
(log n)/n1/(2−ν), which, for classification models, is equal to the minimax optimal rate in expectation
(Tsybakov, 2004) up to a log factor. The next example illustrates this for ν = 1; in the full paper∗
we will also provide examples involving regression and classification with 0 < ν < 1.

Example 3 [Bayesian inconsistency and Tsybakov’s Condition] Grünwald and Langford
(2007) showed that standard MDL and Bayesian inference can be inconsistent in various ways if
P ∗ 6∈ 〈P〉, for countable models P = {p0, p1, . . .} that are really classification models, i.e. P = PF
with F = {f0, f1, . . .} with pj = pfj as given by (2), where Y = {0, 1} and loss is the 0/1-loss.
In these examples, p0 has positive prior w(p0) > 0 independent of the sample size, and for some
δ > 0, for all j > 0, it holds D∗(p0‖pj) > δ, i.e. risk(pj) > risk(p0) + β−1δ. In the examples
Tsybakov’s condition (E) holds with ν = 1 but only for very large A. Since thus q = p0 and, by
Lemma 1, ηcrit(1) > 1/C for some very large constant independent of n, it follows from (18) that
the safe estimator converges WHP at rate O((− logw(p0) +R′′)/n) = O(log n/n), much faster than
the worst-case O(1/

√
n). However, explicit calculation of ηcrit(1) shows that it is indeed very small,

and since standard MDL and Bayesian MAP use an η equal to 1 or 2, it comes as no surprise that
in this scenario they do not converge at all, i.e. with probability 1, for all large n, they select a
distribution/classifier p 6= p0, as was shown formally by Grünwald and Langford (2007).

5 The Proofs

Preliminary Results Our main tool is Proposition 1 below, a bound for ratios of probability
densities, similar to earlier inequalities by Barron and Cover (1991), Li (1999), Zhang (2006). Below
tr is a function mapping distributions to other distributions (we use notation as in (6)).

Proposition 1 Let Zn be i.i.d. ∼ P ∗. Let P be a countable set of (possibly defective) conditional
densities for Zn and let p̆ be an arbitrary estimator. Let Q be another set of (possibly defective) con-
ditional densities for Zn. Let tr : P → Q be a function mapping distributions in P to distributions
in Q. Let w be a (potentially defective) probability mass function on P. Let η > 0. Then WHP,

d∗η(tr(p̆)‖p̆) ≤ 1
n

(
− log w(p̆)p̆(Znp )

tr(p̆)(Znp ) + K
η + 1

η log
∑
p∈P̆ w(p)η

)
. (23)

Proof: We bound the probability that (23) does not hold:

P ∗
(
ηd∗η(tr(p̆)‖p̆) > 1

n

(
−η log w(p̆)p̆(Znp )

tr(p̆)(Znp ) +K + log
∑
p∈P̆ w(p)η

))
=

P ∗
(

log
(

p̆(Znp )

tr(p̆)(Znp )

)η
> − log wη(p̆)P

wη(p) +K + n logE∗
(

p̆(Zp)
tr(p̆)(Zp)

)η )
≤

P ∗
(

There exists p ∈ P with
(

p(Znp )

tr(p)(Znp )

)η
> eK

(P
w(p)η

wη(p)

)
E∗
(

p(Zn)
tr(p)(Zn)

)η )
≤∑

p∈P P
∗
( (

p(Znp )

tr(p)(Znp )

)η
> eK

(P
w(p)η

wη(p)

)
E∗
(

p(Zn)
tr(p)(Zn)

)η )
≤ e−K ,
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where the equality is basic rewriting, the first inequality follows from exponentiating both sides,
absorbing n into the expectation E∗ (which can be done since the Zi are i.i.d.) and weakening, the
second is the union bound, and the third is an instance of Markov’s inequality. 2

In some applications we set, for all p ∈ P, tr(p) equal to the best approximating density q, and
then the first term on the right in (23) is equal to red(1/η, p̆); the inequality is then a weakening
of Zhang’s, who provides an expectation rather than an in-probability form. In other applications
(e.g. below Eq. (37)), tr(p) actually varies with p, and in this form, the inequality is new. We
will apply this proposition in two different ways. In the first type of application, the goal is to get
a (high-probability) upper bound on the left-hand side of (23). In the second type of application,
the goal is to upper bound − log tr(p̆)(Znp ). Thus, we rewrite (23) equivalently as:

− 1
n

log tr(p̆)(Znp ) ≤ − 1
n

logw(p̆)p̆(Znp ) +R, with R = −d∗η(tr(p̆)‖p̆) +
K + log

∑
p∈P̆ w(p)η

nη
. (24)

In such applications, we take a value of η guaranteeing d∗η(tr(p̆)‖p̆) ≥ 0 or (as e.g. in Lemma 4),
we allow d∗η(tr(p̆)‖p̆) to be negative but not too negative, so that the bound remains useful.

Let p, p′ ∈ P such that D∗(p‖p′) ≥ 0, and let∗ λ◦ := arg minλ∈[0,1]D
∗(p∗‖mix(p, p′, λ)) =

arg maxλ∈[0,1]D
∗(mix(p, p′, λ)‖p)) (if more than one λ achieves the extremum, we take the smallest).

Our second key result states that if D∗(mix(p, p′, λ◦)‖p) is small, then E∗[mix(p, p′, λ◦)(Zp)/p(Zp)]
cannot be much larger than 1; equivalently d∗1(p‖mix(p, p′, λ◦)) cannot be much smaller than 0:

Lemma 2 Let (P, P ∗) be as on page 4, V = V (P, P ∗) be as in (5), and let p, p′ ∈ P be such
that D∗(p‖p′) ≥ 0, and λ◦ be as above. (a) If λ◦ = 0 (p is closer to p∗ than any mixture of
p and p′) then for all λ ∈ [0, 1], d∗1(p‖mix(p, p′, λ)) ≥ 0; otherwise, (b), −d∗1(p‖mix(p, p′, λ◦)) ≤
2V 2D∗(mix(p, p′, λ◦)‖p).

Proof: Let g(λ) = D∗(mix(p, p′, λ)‖p). Then g(0) = 0, g(1) ≤ 0. We first need the following (proof
straightforward by differentiation, see appendix):

Proposition 2 1. g′(0) = E∗
(
p′(Zp)
p(Zp)

)
−1; if λ◦ = 0 then (1a) g′(0) ≤ 0; if λ◦ > 0 then (1b) g′(0) >

0, g′(λ◦) = 0 and g′(1) ≤ 0; 2. if p(Zp) = p′(Zp) P ∗-almost surely, then (2a) g′(λ) = g′′(λ) = 0 on
λ ∈ [0, 1]. Otherwise (2b) g′′(λ) < 0 on [0, 1] and maxλ∈[0,1] |g′′(λ)| ≤ minλ∈[0,1] V

2|g′′(λ)|.

Abbreviate d∗1(p‖mix(p, p′, λ)) to d∗(λ) and g(λ◦) = D∗(mix(p, p′, λ◦)‖p) to D∗, and note that

−d∗(λ) = logE∗
(

(1−λ)p(Zp)+λp
′(Zp)

p(Zp)

)
≤ E∗

(
(1−λ)p(Zp)+λp

′(Zp)
p(Zp)

)
− 1 = λg′(0). (25)

In case (1a) and (2a) the result is now immediate, so assume (1b) and (2b). Then by a first-order
Taylor approximation of g′, for some 0 ≤ λ1 ≤ λ◦, g′(0) = g′(λ◦) − λ◦g′′(λ1) = λ◦|g′′(λ1)|, so that
(25) gives −d∗(λ◦) ≤ (λ◦)2|g′′(λ1)|. Also, by a 2nd-order Taylor expansion of g around λ◦ we find,
for some 0 ≤ λ2 ≤ λ◦, that 0 = g(0) = (1/2)(λ◦)2g′′(λ2) + g(λ◦), so D∗ = (1/2)(λ◦)2|g′′(λ2)|.
Combining with our expression for d∗(λ◦), we get −d

∗(λ◦)
D∗ ≤ 2 |g

′′(λ1)|
|g′′(λ2)| . The result now follows by

part (2b) of Proposition 2. 2

The next proposition is about varying exponents rather than mixture coefficients:

Proposition 3 Let P = {p, p′} be such that V (P, P ∗) < ∞ and D∗(p‖p′) > 0. Then (a): letting
g(η) = logE∗(p′(Zp)/p(Zp))η = −ηd∗η(p‖p′), we have g(0) = 0, g(η) is decreasing at η = 0 and
exp(g(η)) is strictly convex, so that there exists at most one η′ > 0 with g(η′) = 0, and g(η) is
increasing for η ≥ η′. (b) Define λ◦ as in Lemma 2. If λ◦ = 0 (p is closer to p∗ than any mixture
of p and p′) then ∀η ∈ (0, 1), d∗η(p‖p′) > 0.

Proof: (a) is just differentiation of E∗(p′(Zp)/p(Zp))η (see proof of Lemma 1); details omitted. (b)
is immediate from (a) because by Lemma 2, part (a), d∗1(p‖p′) = d∗1(p‖mix(p, p′, 1)) = −g(1) ≥ 0. 2

The following proposition provides the glue that ties all our inequalities together:

Proposition 4 (log-Bonferroni) Let J be a finite or countably infinite set. Let {Yj}j∈J be a
collection of random variables, let {aj}j∈J be a collection of constants in R and let {fj}j∈J be a
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collection of increasing functions R → R. Suppose that for all j ∈ J , WHP, Yj ≤ aj + fj(K).
Then, for any collection of positive numbers {wj}j∈J such that

∑
j∈J wj = 1, we have, WHP,

For all j ∈ J , Yj ≤ aj + fj(K − logwj).

This result is a straightforward consequence of the union bound that appears in one form or other
in many COLT papers; for convenience there is a proof in the appendix.

Notation common to the Proofs In all proofs below we make use of the following concepts:
let w be a prior for a countable set of densities P. Let p ∈ P. Relative to w and P ∗, we define∗ the
optimal density at p’s description length as

opt(p) := arg min
p′∈P:− logw(p′)≤d− logw(p)e

D∗(p∗‖p) (26)

For an estimator p̆, opt(p̆) is itself a random variable, representing the best distribution (closest
in KL divergence to p∗) with prior no smaller (up to rounding) (or “complexity” no larger, up to
rounding) than the p̆ selected for the given data Znp . We further define

opt(P) = {p ∈ P : p = opt(p′) for some p′ ∈ P}. (27)

Now define for p ∈ P, optmix(p) := mix(opt(p), p, λ◦), where λ◦ ∈ [0, 1] minimizes∗

E∗[− log mix(opt(p), p, λ)(Zp)] = E∗[− log ((1− λ)opt(p)(Zp) + λp(Zp))]. (28)

Note that D∗(optmix(p̆η)‖p̆η) = maxλ∈[0,1]D
∗(mix(opt(p̆η), p̆η, λ)‖p̆η) ≥ D∗(opt(p̆η)‖p̆η). (29)

5.1 Proofs of Main Results
Proof of Theorem 1 We first consider an arbitrary fixed η and a fixed u. We have:

D∗(q‖p̆) = D∗(q‖opt(p̆)) +
1
η
D∗(opt(p̆η)‖p̆η) ≤ D∗(q‖opt(p̆)) +

1
η
D∗(optmix(p̆η)‖p̆η), (30)

where the equality is straightforward from the definition of D∗ and the inequality follows from (29).
By Lemma 4, we can bound the term D∗(q‖opt(p̆)) from above and rewrite (30) to get, WHP,

D∗(q‖p̆) ≤ Cη
n

(
−1
η

log
w(p̆)optmix(p̆η)(Znp )

qη(Znp )
+
u

η′
+R1

)
+ T (31)

with Cη = 2 + 2η log V , η′ = min{η, ηcrit(u)}, R1 as in Lemma 4 and

T = −Cη
η
d∗1(opt(p̆η)‖optmix(p̆η)) +

1
η
D∗(optmix(p̆η)‖p̆η), (32)

We proceed to rewrite T . −d∗1(opt(p̆η)‖optmix(p̆η)) may very well be positive, but by Lemma 2,
applied with (P, p, p′)← (P(η),opt(p̆)η, p̆η) (the notation indicates that e.g. P in Lemma 2 is instan-
tiated to P(η) as used above), we can bound (32) to get: T ≤ η−1(CηC ′η + 1)D∗(optmix(p̆η)‖p̆η),
where we used D∗(optmix(p̆η)‖opt(p̆)η) ≤ D∗(optmix(p̆η)‖p̆η), and C ′η = 2V 2η. Letting w′(pη) :=
w(p), this can be further bounded using Lemma 3 below, with (p̆,P, w) ← (p̆η,P(η), w′) (notation
as explained above). This gives, WHP:

T ≤ Cη
n

(
−cη
η

log
p̆η(Znp )w(p̆)2

supmix(p̆η)(Znp )
+R′1

)
=
Cη
n

(conv-lack(η, p̆) +R′1) , (33)

where R′1 = η−1cη2K and cη = CηC
′
η + 1 and we used the definition of conv-lack. Now apply

Proposition 1 in the form (24), applied with (P, p̆,Q,tr(·), w, η) ← (P(η), p̆η,Q,optmix(·), w′, 1),
where Q = {optmix(pη) | p ∈ P} and w′ as above. Since, by Lemma 2, part (b),
d∗1(optmix(pη)‖opt(p)η) ≥ 0, we find that WHP,− log optmix(p̆η)(Znp ) ≤ − logw(p̆)p̆η(Znp ) + K.
Substituting this and (33) into (31), we get with Proposition 4 (with |J | = 3, wj = 1/3) that WHP,

D∗(q‖p̆) ≤ Cη
n

(
−1
η

log
w(p̆)2p̆η(Znp )
qη(Znp )

+
u

η′
+ conv-lack(η, p̆) +R2 +R′2

)
, (34)

where R2 = (4(K+ log 3) + 4 log(2 + d− logw(p̆)e))/η′ and R′2 = cη(2(K+ log 3))/η. The result now
follows for a fixed value of u and η. To prove that it holds uniformly for u ∈ {0, 1, 2, . . . , nLmax},
η ∈ {1, 1/2, 1/3, . . . , 1/κmax}, we use Proposition 4; details omitted∗.
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Lemma 3 Let (P, P ∗) and w be as on page 4. We have WHP,

D∗(optmix(p̆)‖p̆) ≤ C1
n

(
− log p̆(Znp )w2(p̆)

supmix(p̆)(Znp ) + 2K
)

where C1 = 2 + 2 log V is a constant and supmix is defined as in (7) above.

Proof: By Proposition 5, applied with η = 1, we get

D∗(optmix(p̆)‖p̆) ≤ C1d
∗
1/2(optmix(p̆)‖p̆)− (C1 − 1)d∗1(optmix(p̆)‖p̆) ≤ C1d

∗
1/2(optmix(p̆)‖p̆),

where C1 = 2+2 log V and the final inequality follows because by Proposition 3, d∗1(optmix(p̆)‖p̆) ≥
0. We now let Q = {mix(p0, p1, λ) : p0, p1 ∈ P, λ ∈ [0, 1]} be the set of two-component mixtures of
elements of P, and apply Proposition 1, with (P, p̆,Q,tr(·), w, η) ← (P, p̆,Q,optmix(·), w2, 1/2)
(notation as below (32)). We get that, WHP,

d∗1/2(optmix(p̆)‖p̆) ≤ − 1
n log w2(p̆)p̆(Znp )

optmix(p̆)(Znp ) + 2K
n ≤ −

1
n log w2(p̆)p̆(Znp )

supmix(p̆)(Znp ) + 2K
n . 2

Lemma 4 Assume the conditions and notation of Theorem 1. For all 0 < η ≤ 1, WHP,

D∗(q‖opt(p̆)) ≤ Cη
n

(
−1
η

log
w(p̆)optmix(p̆η)(Znp )

qη(Znp )
+
u

η′
+R1

)
− Cη

η
d∗1(opt(p̆η)‖optmix(p̆η)),

where Cη = 2+2η log V , η′ = min{η, ηcrit(u)} and remainder R1 = (3K+4 log(2+d− logw(p̆)e))/η′.
(Note that d∗1(opt(p̆η)‖p̆η) may be negative).

Proof: We apply Proposition 5 with η set to η′. This gives D∗(q‖opt(p̆)) ≤ Cη′d
∗
η′/2(q‖opt(p̆)) +

(Cη′ − 1)R, where R = −d∗η′(q‖opt(p̆)). By Proposition 3, part(a), if η′R ≥ 0 then, since η′ ≤
ηcrit(u), we have η′R ≤ −ηcrit(u)d∗ηcrit(u)(q‖opt(p̆)) ≤ u/n. It follows that R ≤ u/(η′n), so we have

D∗(q‖opt(p̆)) ≤ Cη′d∗η′/2(q‖opt(p̆)) + 1
η′ (Cη′ − 1)un . (35)

Now fix some p0 ∈ P. Set w′(p0) = 1, tr(p0) = q and apply Proposition 1 with (P, p̆,Q,tr(·), w, η)←
(P, p0, {q},tr(·), η′/2). The p̆ in the proposition is a degenerate estimator that is always equal to
the fixed p0 and does not depend on the data, and tr(p̆) is always equal to q. We get that WHP,

d∗η′/2(q‖p0) ≤ 1
n

(
− log p0(Znp )

q(Znp ) + 2K
η′

)
. (36)

Note that we can enumerate the elements of opt(P) as given by (27) as {p1, p2, . . .} where, for
all j, it holds j − 1 ≤ d− logw(pj)e ≤ j. Using the log-Bonferroni Proposition 4 with |J | = N,
wj = 1/j(j + 1) and fj(K) = 2K/η′(u), we get that, WHP, uniformly for all pj ∈ opt(P ),

d∗η′/2(q‖pj) ≤ 1
n

(
− log pj(Z

n
p )

q(Znp ) + 2
η′ (K + 2 log(j + 1))

)
≤ 1

n

(
− log pj(Z

n
p )

q(Znp ) + 2
η′ (K + 2 log(2− d− logw(pj)e))

)
.

(37)

We now let R = {optmix(pη) | p ∈ P}, and define a prior w′ on R with, for r ∈ R, w′(r) := w(p)
for the p such that r = optmix(pη). We set tr(p′) := opt(p̆η). We now use Proposition 1 again
(in the form (24)) with (P, p̆,Q,tr(·), w, η)← (R,optmix(p̆η),opt(P)η,tr(·), w′, 1). (notation as
below (32); effectively we use optmix(p̆η) as an estimator here. ). We get, WHP,

− 1
n

log opt(p̆η)(Znp ) ≤ − 1
n

logw(p̆)optmix(p̆η)(Znp )− d∗1(opt(p̆η)‖optmix(p̆η)) +
K

n
. (38)

Dividing (38) by η, using η−1 log opt(p̆η) = log opt(p̆), and then combining with (35) and (37),
with pj set to opt(p̆), we get, WHP,

D∗(q‖opt(p̆)) ≤ Cη′ ·(
1
n

(
−1
η

log
w(p̆)optmix(p̆η)(Znp )

qη(Znp )
+R

)
− 1
η
d∗1(opt(p̆η)‖optmix(p̆η)) +

1
η′
u

n

)
, (39)

where R = (2/η′)(K + 2 log(2 − d− logw(pj)e)) + (1/η)K, which is no greater than R1 in the
statement of the lemma. This proves the result for η ≤ ηcrit(u) (for then η′ = η). For the case that
η > ηcrit(u), note that then Cη > Cη′ . Because by definition of q the left-hand side of (39) must
be nonnegative, we have WHP that both (39) holds and its right-hand side is nonnegative, so that
with the same probability, (39) holds with Cη′ replaced by Cη. The result follows. 2
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Proposition 5 Let P ∗ be a distribution on Z, let p an q be conditional distributions for Y given
X, and let V = V ({p, q}, P ∗) defined as in (5). For all η ≤ 1 and all Cη ≥ 2 + 2η log V , we have

D∗(q‖p) ≤ Cη · d∗η/2(q‖p)− (Cη − 1)d∗η(q‖p).

In particular, if d∗η(q‖p) ≥ 0, then D∗(q‖p) ≤ Cηd
∗
η/2(q‖p), i.e. the generalized KL divergence is

upper bounded by a constant times the generalized Rényi divergence of order 1/2η.

Proof: This result is a straightforward extension of a result due to Andrew Barron and Jonathan
Li, published in Li’s (1999) thesis. See Lemma 5.11, page 67 and Lemma 5.12, page 73 of (Li,
1999). d∗η corresponds to log c = log

∫
fg/f∗ in Li’s notation; p∗ corresponds to f in Li’s notation,

p(· | x)η corresponds to g in Li, and q(· | x)η corresponds to f∗. Our argument is slightly more
involved than Li’s since we allow conditioning on x; this also accounts for the extra η log V term in
the constant Cη. For convience, we provide a full proof in the appendix. 2

Proof of Theorem 3 We fix a p̂ and λ̂ be such that supmix(p̆η) = mix(p̂η, p̆η, λ̂), i.e. p̂ and λ̂
achieve∗ the supremum in (7) applied with estimator p̆η.
Let λ̇ = arg minλ∈{0,1/n,2/n,...,1} − log mix(p̂η, p̆η, λ)(Znp ) be a discretized version of λ̂. We have:

− log p̆η(Znp )w2(p̆)

supmix(p̆η)(Znp ) ≤ − log qη(Znp )

supmix(p̆η)(Znp ) − log p̆η(Znp )w2(p̆)

qη(Znp )

≤ − log qη(Znp )

mix(p̂η,p̆η,λ̇)(Znp )
+ V η + ηred(2/η, p̆),

(40)

where in the second inequality we used a simple first-order Taylor approximation, showing that
− log mix(p̂η, p̆η, λ̇)(Znp ) ≤ − log mix(p̂η, p̆η, λ̂)(Znp ) + V η (details omitted). We now come to the
crucial step: we will prove that WHP, we have

− log qη(Znp )

mix(p̂η,p̆η,λ̇)(Znp )
≤ − logw2(p̆) + log(n+ 1) +K + u. (41)

This result follows by applying Proposition 1 to an extended model P ′ with a prior w′ defined,
at sample size n, as follows: P ′ = {mix(pη0 , p

η
1 , λ) : pη0 , p

η
1 ∈ P, λ ∈ [0, 1]}; and, for λ ∈ Λ :=

{0, 1/n, . . . , 1}, w′(mix(pη0 , p
η
1 , λ)) := w(pη0)·w(pη1)(n+1)−1. Thus, P ′ is the set of all two-component

mixtures of P(η); and w′ has its support on all two-component mixtures with λ ∈ Λ, and puts mass
0 on all other mixtures. Note that w′ is indeed a prior, i.e.

∑
p0,p1∈P,λ∈Λ w

′(mix(pη0 , p
η
1 , λ)) ≤ 1. We

now apply Proposition 1 in the form (24) with, for all p′ ∈ P ′, tr(p′) := qη, and η in the proposition
set to 1, and with the estimator that, for data zn, chooses mix(p̂η, p̆η, λ̇). That is, we set
(P, p̆,Q,tr(·), w, η)← (P ′,mix(p̂η, p̆η, λ̇), {qη},tr(·), w′, 1). This gives (41), where we also used (a),
by definition, − logw′(mix(p̂η0 , p̆

η
1 , λ̇)) ≤ − logw(p̆)2 + log(n + 1); and (b): since η ≤ ηcrit(u), we

have that d∗1(qη‖pη) ≥ −u/n for both p = p̆ and p = p̂, which implies, from the definition of d∗1, that
d∗1(qη‖(1− λ)p̂η + λp̆η) ≥ −u/n for all λ ∈ [0, 1], in particular for λ̇.
Combining (40) and (41), using the definition of conv-lack, it follows that, WHP,

conv-lack ≤ cηred(2/η, p̆) + cη
η

(
− logw2(p̆) + log(n+ 1) +K + u+ V η

)
= cηred(4/η, p̆) + cη

η (log(n+ 1) +K + u+ V η) .

Now with some relatively straightforward manipulations∗ we get that we get,WHP, red(4/η, p̆) ≤
3red(2/η, p̆) + 2K+2u+2 log 2

η , so that, using the log-Bonferroni Proposition 4 with J = 2, the above
becomes conv-lack ≤ 3cηred(2/η, p̆) +R, and the result follows.

Proof of Lemma 1 A second-order Taylor expansion of E∗(p(Zp)/q(Zp))η = E∗(eη log p(Zp)/q(Zp))
around η = 0 shows that, for all η > 0, for some 0 ≤ η′ ≤ η, we have:

E∗
(
p(Zp)
q(Zp)

)η
= 1−ηE∗[− log p(Zp)/q(Zp)]+

1
2
η2E∗

(
p(Zp)
q(Zp)

)2η′ (
log

p(Zp)
q(Zp)

)2

≤ 1−ηD∗+1
2
η2V 2ηD∗sq,

where we abbreviate D∗(q‖p) to D∗ and D∗sq(q, p) to D∗sq, and we replaced all factors in the ex-
pectation in the second order by their maximum. From now on we repeatedly use D∗(q‖p) ≥ 0
which holds because q is best-approximating, It is sufficient to show that the right-hand side of this
expression is bounded by 1+u/n if we plug in η ≤ ηcrit(u) as defined above. Dividing the inequality
by η and using assumption (E), it is thus sufficient if we can show that

−D∗ + η(D∗)ν · b ≤ η−1(u/n) (42)

12



where we set b = A
2 V

2η. We may further assume (D∗)1−ν ≤ ηb, (43)
for if this does not hold, then −D∗ = −(D∗)ν(D∗)1−ν ≤ −(D∗)νηb and then (42) holds trivially.
Now first consider the case 0 < ν < 1. From (43) it follows that D∗ ≤ (ηb)1/(1−ν). By (42), it is thus
sufficient if we can show that η · (ηb)ν/(1−ν)b ≤ η−1u/n. Solving for η gives η2+ ν

1−ν ≤ u
nb
−1/(1−ν),

which can be rewritten to η ≤ C, where C =
(
u
n

) 1−ν
2−ν b−1/(2−ν). Thus, weakening the requirement,

it is sufficient if η ≤ min{1/(2 log V ), C}. But if η ≤ 1/(2 log V ), then b−1 ≥ 2/(eA), so it is also

sufficient if η ≤ min
{

1
2 log V , B

(
u
n

) 1−ν
2−ν
}

. (20) now follows for the case 0 < ν < 1. The limiting cases
ν = 0 and ν = 1 can be handled similarly; we omit details.

6 Discussion and Future Work

The great advances we made were already summarized on page 3; but currently, our work also has
at least two major restrictions : (a) V = V (P, P ∗) as in (5) must be bounded; and (b) V occurs
in the definition of conv-lack, so that it must be known in order to apply the safe estimator.
Neither restriction is problematic for classification models, as long we used a fixed β in (2); both are
problematic for e.g. standard regression models though. As to (a), currently our results only hold
for such models if P ∗ has bounded support. In future work, we hope to replace the strong V < ∞
condition with a weaker condition on moments of P ∗. As to (b), we do have a version of all our
results in which V is replaced by its empirical counterpart V̄ = supi∈{1,...,n} supp,p′∈P p(Zip)/p′(Zip),
but with worse constants. We hope to refine this in future work.

Another issue is that, even if known, V or V̄ , appearing in conv-lack, may be so large as to make
the approach useless in practice (even aside from computational issues, which, in this preliminary
study, we decided not to deal with at all). We should note though that our current results hold
for arbitrary priors w, in particular, priors with very heavy tails. Most priors used in practice have
lighter tails, i.e.

∑
p∈P w

ρ(p) < ∞ for some ρ < 1. For such priors, the theorems still hold for the
prior w′ defined as w′(p) ∝ wρ(p) rather than the original w. As a result, the safe estimator p̆safe

defined relative to w′ rather than w will effectively choose simpler distributions (with higher w(p))
for the same data, but all occurrences of V in our theorems can be replaced by V ρ, which can lead
to a serious improvement in the size of conv-lack. A related idea is to consider the β in predictor
models F as in (2) as an additional parameter, to be equipped with a prior and fitted to the data.
Since q and p̆ in Theorem 1 may then refer to different predictors with different β’s, β will act as
a ‘local’ learning rate whereas η, shared by all distributions, is a ‘global’ learning rate. Preliminary
investigations suggest that this leads to better bounds in some cases.
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A Additional Proofs

1. Condition (B) can be made to hold by adding one or a few distributions to P For
example, in the classification case, it suffices to include the trivial distribution p0 into P, where, for
all x ∈ X , p0(Y = 1 | X = x) = p0(Y = 0 | X = x) = 1/2, and assign it some prior mass w0(p0) > 0.
Then for all sequences zn, for all κ ≥ 1,

− logw(p̈κ) ≤ − logw(p̈1) ≤ − logw(p̈1)− log p̈1(znp )
≤ − logw0 − log p0(znp ) = − logw0 + n log 2 ≤ nLmax,

(44)

for suitably chosen Lmax. Clearly, this approach extends to all Z = X × Y with finite or compact
Y. If Y is not compact, then, by our assumption (D) that V (P, P ∗) < ∞, the interval [a, b] with
a = ess infZ∈Z,p∈P p(Zp) and b = ess supp∈P,Z∈Z p(Zp), is bounded. It then suffices to include a
density pa,b with prior w0 such that, for all x ∈ X , pa,b(Y = · | X = x) is uniform on [a, b]. If the
end points on the interval are not known, we can discretize candidate end points to integers and put
a prior v on these end points satisfying, for both end points c ∈ {a, b}, − log v(c) ≈ 2 log min{|c|, 1}
(Grünwald, 2007). We can define the defective distribution p0(y | x) := maxa,b pa,b(y | x)v(a)v(b)
and repeat the reasoning in (44).

2. Equivalence of (4) and (12) We will only show that equivalence holds in the idealized case
in which the best-approximating q is actually a member of P. This should be sufficient, since the
goal of establishing equivalence is merely to give some intuition about the meaning of (12) (that’s
why we only put it in the appendix); the equivalence is not needed in any of our results, whose
proofs invariably rely on (12) rather than (4). Assume then that D(p∗‖q) = infp∈P D(p∗‖p) and
that q ∈ P. We only show equivalence for η = 1; extension to other η is immediate. We first prove
(4)⇒ (12). If (4) holds, then for all p ∈ P, D∗(q‖mix(q, p, λ)) has its minimum λ◦ (as defined above
Lemma 2) at λ◦ = 0. It then follows by Lemma 2 that d∗1(q‖p) = d∗1(q‖mix(q, p, 1)) ≥ 0, and we see
that (12) holds.

We next prove (12)⇒ (4). Suppose that (12) holds for all p ∈ P. Without loss of generality let
P = {p1, p2, . . .}. Then for any p′ in the convex hull of P, say p′ =

∑∞
j=1 αjpj with all αj ≥ 0 and∑

αj = 1, we have E∗(p′(Zp)/q(Zp)) =
∑∞
j=1 αjE

∗(pj(Zp)/q(Zp)) ≤ 1. Thus E∗(p′(Zp)/q(Zp))−1 ≤ 0
and hence, by Proposition 2, part (1), the derivative of the concave function D∗(mix(q, p′, λ)‖q)
is ≤ 0 at λ = 0. This implies that D(p∗‖q) ≤ D(p∗‖mix(q, p′, λ)) for all λ > 0, in particular
D(p∗‖q) ≤ D(p∗‖p′); this shows that (4) holds.

3. Lemma 2 – proof of Proposition 2 Differentiation gives:

g′(γ) =
d

dγ
g(γ) = −E∗

(
p(Z)− p′(Z)

(1− γ)p(Z) + γp′(Z)

)
, in particular g′(0) = E∗

(
p′(Z)
p(Z)

)
− 1, (45)

which shows the first part of 1. We now first show part 2(a) and (b). Note that

g′′(γ) = −E∗
(

p(Z)− p′(Z)
(1− γ)p(Z) + γp′(Z)

)2

.

For all γ ∈ [0, 1] and all Z, the denominator inside the expectation must be bounded from below
by p := ess infZ,p∈P p(Z) and from above by p := ess supZ,p∈P p(Z). We thus have, for all γ ∈ [0, 1],
1/p2E∗(p′− p)2 ≤ |g′′(γ)| ≤ 1/p2E∗(p′− p)2. Now suppose first that E∗(p′(Zp)− p(Zp))2 = 0. Then
p′(Zp) = p(Zp) almost surely, and g′(λ) = g′′(λ) = 0 on [0, 1], almost surely, and part (2a) follows.
If E∗(p′(Zp)− p(Zp))2 > 0, then p′(Zp) 6= p(Zp) with positive probability, and part (2b) immediately
follows. Having now established that g′′(λ) ≤ 0 on [0, 1], it follows by definition of λ◦ that g′(0) > 0
iff λ◦ > 0. And since we assume D∗(p‖p′) ≥ 0, we have g(1) ≤ g(0), which implies that if λ◦ > 0,
then g′(λ◦) = 0 and g′(1) ≤ 0.

4. Proof of Proposition 4 (log-Bonferroni) Let Xj := e−Yj and bj = e−aj . The assumption
implies that, for any collection {Kj}j∈J of positive real numbers, for all j ∈ J ,

P ∗
(
Xj ≥ bje−fj(Kj)

)
≥ 1− e−Kj ,

or equivalently,
P ∗
(
Xj < bje

−fj(Kj)
)
< e−Kj .

Now, for fixed K ≥ 0, define Kj = K − logwj . By the union bound, we have

P ∗ (A) <
∑
j∈J

e−K+logwj =
∑
j∈J

wje
−K .
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where A is the event that for some j ∈ J , Xj < bje
−fj(K−logwj). This implies that for Ā, the

complement of A, we have
P ∗
(
Ā
)
≥ 1−

∑
j∈J

wje
−K .

The result now follows by noting that the event whose probability is bounded in the statement of
the proposition is just Ā.

5. Proof of Proposition 5 (Barron and Li’s (1999) result) Define, for given η, p∗, p and q,

the affinity relative to x as Ax =
∫
y∈Y p

∗(y | x) ·
(
p(y|x)
q(y|x)

)η
and let

pnew(y | x) =
1

A(x)
p∗(y | x) ·

(
p(y | x)
q(y | x)

)η
.

Next, recall that the squared Hellinger distance, between densities p and q on Y, denoted by us as
H2(q, p), is defined as

H2(q, p) :=
∫
y

(
√
q(y)−

√
p(y))2 = 2

(
1−

∫
y

√
q(y)p(y)

)
.

Also recall that the ordinary (nongeneralized) Rényi divergence of order 1/2 is given by d1/2(q, p) =
−2 log

∫
y

√
q(y)p(y)dy. Now, for u ≥ 0, we have 1 − u ≤ − log u (this follows from log(1 + z) ≥ z

and substituting z = u−1). This implies the following well-known general relation between squared
Hellinger distance and Rényi divergence:

H2(q, p) ≤ d1/2(q‖p). (46)

Moreover (Barron and Cover, 1991), when the ratio between p and q is bounded, then the standard
(nongeneralized) KL divergence is upper-bounded by a multiple of the squared Hellinger distance.
Yang and Barron (1999) proved the following precise relation:

D(q‖p) ≤ (2 + log V )H2(q, p). (47)

We will now use (46) and (47) to prove our result. We first need to clarify notation: for given x,
the generalized Rényi divergence between p and q, given x is denoted as d∗|xη (q(· | x)‖p(· | x)) and
defined as

d∗|xη (q(· | x)‖p(· | x)) = −1
η

logE∗
[(

p(Y | x)
q(Y | x)

)η
| X = x

]
.

We have for all Cη ≥ 2 + 2η log V , for each x ∈ X , each η ≤ 1,

E∗
[
− log p(Y |x)

q(Y |x) | X = x
]

= 1
η · E

∗
[
log p∗(Y | x)− log

(
p∗(Y | x)

(
q(Y |x)
p(Y |x)

)η)
| X = x

]
+ 1
η (logAx − logAx)

= 1
ηD(p∗(·|x)‖pnew(·|x))− 1

η logAx
≤ 1

ηCηH
2(p∗(·|x), pnew(·|x))− 1

η logAx
≤ 1

ηCηd1/2(p∗(·|x), pnew(·|x))− 1
η logAx

= Cη

(
d
∗|x
η/2(q(·|x)‖p(·|x)) + 1

η logAx
)
− 1

η logAx

= Cηd
∗|x
η/2(q(·|x)‖p(·|x)) + 1

η (Cη − 1) logAx.

Here the first two equalities are just rewriting. In the first inequality we used (47), the fact that
P ∗-almost surely, supX,Y pnew(Y |X)/p∗(Y |X) ≤ V 2η, and the fact that D(·‖·) ≥ 0, and the second
inequality is just (46). In the fifth line we used some basic rewriting. Using the notation E∗X to
denote expectation of X under P ∗X , the marginal distribution of X, we thus get:

D∗(q‖p) ≤ CηE
∗
X [d∗|Xη/2 (q(· | X)‖p(· | X))] + (Cη − 1)

1
η
E∗X [logAX ]

≤ Cηd
∗
2/η(q‖p) + (Cη − 1)

1
η

logE∗X [AX ]

= Cηd
∗
η/2(q‖p)− (Cη − 1)d∗η(q‖p).

where the second inequality is Jensen’s and the final equality is just the definition of Rényi diver-
gence.
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