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Preface

This graduation thesis is the result of nearly two years of research into various
aspects of Inductive Logic Programming (ILP), performed by my supervisor
Shan-Hwei Nienhuys-Cheng and myself. ILP is a very young field of research,
which can be seen as the intersection of Machine Learning and Logic Program-
ming. Accordingly, it is concerned with learning a general theory from given
examples, within the framework provided by (clausal) logic. Like so many other
young research communities, ILP is characterized by a mild form of chaos. Most
definitions and results are only available in widely scattered research papers.
As a consequence, concepts are not always uniformly defined, often vague, and
proofs are not always correct. Evidently, what ILP needs is a book collecting
these concepts and results in a self-contained, unified and rigorous manner.

Near the end of the spring of 1994, just at the moment when I started
worrying about a topic on which to graduate, Shan-Hwei came along and asked
me to join her in writing precisely such a book. The research presented in this
thesis is actually a spin-off of the research we have done for our book. This
book is by now nearly finished and is to be published early next year.

The research in this thesis can be divided into three parts: deduction, spe-
cialization of theories, and least generalizations and greatest specializations
of sets of clauses. These directions of research correspond to Chapters 2, 3
and 4, respectively, which form the main part of the thesis. Chapter 2 is
based on [NCW95a, NCW95d, NCW95e, NCW95f, NCW96d]', a number of
articles jointly written by Shan-Hwei and myself. Chapter 3 is based on our
papers [NCW95b, NCW95¢c, NCW96a, NCW96¢|, while Chapter 4 is a slightly
revised version of our article NCW96b]. These three chapters are preceded by
an introductory chapter which defines and discusses the basic problem setting
of ILP, gives a brief history of the field and outlines the thesis. Furthermore,
in order to make the thesis a self-contained text an appendix is added, which
gives the main definitions from logic that we need.

Let me finish this preface by expressing my gratitude to Shan-Hwei Nienhuys-
Cheng. During the past two years, as our book slowly took shape and the above-
mentioned articles were written, I have spent many hours discussing, chatting
and (sometimes) arguing with her. I would like to thank her very much for
introducing me to the world of scientific research, for giving me a feel of what a
good proof should look like, and for our pleasant, fruitful, and very stimulating
cooperation.

'Our paper [NCW95f] was awarded the Best Paper Award at NATC’95.

iii



Chapter 1

What is Inductive Logic
Programming?

1.1 The importance of learning

Him she found sweating with toil as he moved to and fro about his
bellows in eager haste; for he was fashioning tripods, twenty in all,
to stand around the wall of his well-builded hall, and golden wheels
had he set beneath the base of each that of themselves they might
enter the gathering of the gods at his wish and again return to his
house, a wonder to behold.

Iliad, XVIII, 372-377 (pp. 315-317 of [Hom24], second volume).

This quotation from Homer’s Iliad is perhaps the first ever reference in West-
ern literature to something like Artificial Intelligence: man-made (or in this
case, god-made) artifacts displaying intelligent behaviour. As Thetis, Achilles’
mother, enters Hephaestus’ house in order to fetch her son a new armour, she
finds Hephaestus constructing something we today would call robots. His twenty
tripods are of themselves to serve the gathering of the gods (bring them food,
etc.), whenever Hephaestus so desires.

Let us consider for a moment the kind of behaviour such a tripod should
display. Obviously, it should be able to recognise Hephaestus’ voice, and to
extract his wishes from his words. But furthermore, when serving the gods, the
tripod should “know” and act upon many requirements, such as the following:

1. If there is roasted owl for dinner, don’t give any to Pallas Athena.
2. Don’t come too close to Hera if Zeus has committed adultery again.
3. Stop fetching wine for Dionysus when he is too drunk.

It is clear that this list can be continued without end. Again and again, one
can think of new situations that the tripod should be able to adapt to properly.
It seems impossible to take all these requirements into account explicitly in the
construction of the intelligent tripod. The task of “coding” each of the infinite
number of requirements into the tripods may be considered too much, even for
Hephaestus, certainly one of the most industrious among the Greek gods.

1



2 CHAPTER 1. WHAT IS INDUCTIVE LOGIC PROGRAMMING?

One solution to this problem would be to initially endow the tripod with
a modest amount of general knowledge about what he should do, and to give
it the ability to learn from the way the environment reacts to its behaviour.
That is, if the tripod does something wrong, it can adjust its knowledge and its
behaviour accordingly, thus avoiding making the same mistake in the future.!
In that way, the tripod need not know everything beforehand. Instead, it can
build up most of the required knowledge along the way. Thus the tripod’s
ability to learn would save Hephaestus a lot of trouble.

The importance of learning is not restricted to artifacts built to serve divine
wishes. Also for many more earthly purposes, the need for learning can easily
be seen. For instance, constructing a knowledge base for some expert system by
interviewing experts and writing down the rules they give, is a very expensive
and time-consuming business. It would be much easier if the expert system were
able to learn its rules itself, from a number of given examples. Such learning
from examples will be the topic of this thesis.

1.2 Inductive learning

Learning a general theory from specific examples, commonly called induction,
has been a topic of inquiry for centuries. It is often seen as a main source of
scientific knowledge. Suppose we are given a large number of patient’s records
from a hospital, consisting of properties of each patient, including symptoms
and diseases. We want to find some general rules, concerning which symptoms
indicate which diseases. The hospital’s records provide examples from which
we can find clues as to what those rules are. Consider measles, a virus disease.
If every patient in the hospital who has a fever and has red spots suffers from
measles, we could infer the general rule

1. “If someone has a fever and red spots, he has measles.”
Moreover, if each patient with measles also has red spots, we can infer
2. “If someone has measles, he will get red spots.”

These inferences are cases of induction. Note that these rules not only tell
us something about the people in the hospital’s records, but are in fact about
everyone. Accordingly, they have predictive power: they can be used to make
predictions about future patients with the same symptoms or diseases.
Usually when we want to learn something, we do not start from scratch:
most often we already have some background knowledge relevant to the learning
task. For instance, in the hospital records we might find a case of a patient a
in an early fase of measles: he has a fever, but not yet red spots. Then the
previous rule no. 1 cannot be used. Now suppose in the records we see that
this person has the same address as another patient b suffering from measles.
Since we know that measles is a rather contagious disease, we can infer that a

LOf course, for this scheme to work, we have to assume that the tripod “survives” its initial
failures. If Zeus immediately smashes the tripod into pieces for bringing him white instead of
red wine, the tripod won’t be able to learn from its experience.
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also has measles. The fact that measles is contagious, is not something that is
expressed in the hospital records. Instead, it is a piece of knowledge that we
already had. Nevertheless, this piece of background knowledge combined with
the examples allows us to induce the general rule

3. “If = has a fever, y has measles, and z and y live in the same
house, then 2 has measles.”

This rule can then be combined with rule no. 2 to predict that = will get red
spots.

Induction is often viewed as the dual of deduction: in the latter case we
derive the special case from the general theory, while in the former, we construct
a general theory from a number of given particular cases, namely the examples.
One important difference between deduction and induction, is the fact that
deduction is truth-preserving: if the general theory is true, then the derived
particular cases are also true. Induction, on the other hand, is not truth-
preserving: the examples may be true, while the induced theory is false. For
instance, even if our rules on measles are true for all records of all the hospitals
in the world, they may still be false for people not in the records.

The study of induction can be approached from many angles. It used to be
mainly an issue for philosophers of science (see Section 1.5), but is nowadays
also often studied in relation to computer algorithms, within the field of Ar-
tificial Intelligence (AI). As Marvin Minsky, one of the founders of Al, wrote:
“Artificial Intelligence is the science of making machines do things that would
require intelligence if done by man” [Min68, p. v]. Given this view, the study of
induction is indeed part of Al, since learning from examples certainly requires
intelligence if done by man.

The branch of AT which studies learning is called Machine Learning. Some of
the main approaches in Machine Learning are learning in neural networks, deci-
sion trees, genetic algorithms and finally logic. The latter approach is nowadays
called Inductive Logic Programming (ILP). Stephen Muggleton, when introduc-
ing the name Inductive Logic Programming, defined this field as the intersection
of Machine Learning and Logic Programming. Thus ILP studies learning from
examples, within the framework provided by clausal logic. Here the examples
and background knowledge are given as clauses, and the theory that is to be
induced from these, is also to consist of clauses. Using logic has some important
advantages over other approaches used in Machine Learning:

e Logic provides a uniform and very expressive means of representation: the
background knowledge and the examples, as well as the induced theory,
can all be represented as formulas in a clausal language.

¢ Knowledge represented as rules and facts over certain predicates comes
much closer to natural language than any of the other approaches. Hence
the set of clauses that an ILP-system induces is much easier to interpret
for us humans than, for instance, a neural network.

e The use of background knowledge fits very naturally within a logical ap-
proach towards Machine Learning.
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The remainder of this chapter is organized as follows. In the next section, we
will define the problem setting of induction in the precise terms of clausal logic
and introduce some terminology. In Section 1.4 we discuss some alternatives
to this setting. Section 1.5 gives a brief survey of the history of induction in
general and ILP in particular. We end the chapter with an outline of the rest
of the thesis.

1.3 The problem setting for ILP

Inductive Logic Programming concerns learning a general theory from given
examples on the predicates that we want to learn, possibly taking background
knowledge into account. We can distinguish between two kinds of examples:
positive examples, which are true, and negative examples, which are false. Usu-
ally, the positive and negative examples are given as sets ET and E~, respec-
tively, of ground atoms. However, ground clauses are also sometimes used as
examples, for instance in a least generalization-approach. In fact, one might
even use non-ground clauses as examples, though this would be very unusual.
In ILP, both background knowledge and the induced theory are represented
as finite sets of clauses. After the learning is done, the theory together with
the background knowledge should imply all given positive examples (this is
called completeness) and should not contradict the given negative examples
(consistency). Completeness and consistency together form correctness.

Definition 1.1 Let ¥ be a finite set of clauses and ET and E~ = {e1,ea,...}
be sets of clauses. ¥ is complete w.r.t. ET if ¥ = E*. 3 is consistent w.r.t.
E~ if ¥ U {=e1,es,...} is satisfiable. ¥ is correct w.r.t. ET and E~, if ¥ is
complete w.r.t. ET and consistent w.r.t. . O

It follows from Proposition A.1 that if ¥ implies one of the clauses in E~, then
it is not consistent w.r.t. £~ . The converse need not hold. For instance, let
Y ={P(a)V P(b)} and E~ = {P(a), P(b)}. Then ¥ does not imply any of the
negative examples, but is still not consistent w.r.t. £~. However, if we restrict
the possible theories to definite programs and the negative examples to ground
atoms, then the converse does hold:

Proposition 1.1 Let Il be a definite program and E~ be a set of ground atoms.
Then 11 is consistent w.r.t. E~ iff Il %= e, for every e € E~.

Proof II is consistent w.r.t. E= = {ej,eg,...} iff

ITU {—ey,—ey,...} is satisfiable iff (by Proposition A.4)

ITU {—ey, —ey,...} has an Herbrand model iff

M does not contain any e € E~ iff (by Theorem A.6)

IT = e, for every e € E~. O

Several deviations from correctness are the following:
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Definition 1.2 Let ¥ be a finite set of clauses and ET and E~ be sets of
clauses. X is too strong w.r.t. E~, if X is not consistent w.r.t. E~. X is too
weak w.r.t. E*, if ¥ is not complete w.r.t. E™.

Y is overly general w.r.t. ET and E~, if ¥ is complete w.r.t. E* but not
consistent w.r.t. E~. ¥ is overly specific w.r.t. ET and E—, if ¥ is consistent
w.r.t. E~ but not complete w.r.t. ET. &

Note that 3 is correct iff it is neither too strong nor too weak.

Example 1.1 Suppose we have ET = {P(5(0)), P(s*(0)), P(s°(0)), P(s7(0))},
and E- = {P(0), P(s2(0)), P(s'(0))}. Then X = {(P(s%(x)) + P(x)), P(s(0))}
is correct w.r.t. ET and E~. Note that ¥ can be viewed as characterizing the
odd numbers.

Y = {P(s?(x))} is both too strong w.r.t. E~ and too weak w.r.t. E*. It is
too strong because it implies some negative examples and it is too weak because
it does not imply the positive example P(s(0)).

¥ = {P(s(z))} is overly general w.r.t. ET and E . <

Now the learning problem for ILP can be formally defined. This problem setting
sometimes goes under the names of normal setting, or ezplanatory setting (since
the theory should, in a sense, be an ezplanation of the examples).

Inductive Logic Programming: Problem Setting.

Given: A finite set of clauses B (background knowledge), and sets
of clauses ET and E~ (positive and negative ezamples).

Find: A finite set of clauses X (theory), such that ¥ U B is correct
w.r.t. ET and E~.

As we have emphasized above, E* and E~ are most often restricted to ground
atoms. We may sometimes be learning from scratch. In this case, no background
knowledge is present, and B (the empty set) can be dropped from the problem
setting.

Note that a solution Y does not always exist. The first reason for this is
rather trivial: B U ET may be inconsistent w.r.t. the negative examples, for
instance if P(a) is both a positive and a negative example at the same time.
To solve this, we have to require that B U E™T is consistent w.r.t. E~.

The second reason for the non-existence of a solution is more profound.
Note that our problem setting allows infinite sets of examples. One instance of
this is Shapiro’s setting for model inference [Sha81b]. Here the examples are
given in an enumeration, which may be infinite. Allowing an infinite number of
examples implies, roughly, that there are “more” possible sets of examples than
there are theories. Hence a correct theory does not always exist, even when the
examples can only be ground atoms and background knowledge is not used, as
proved in the next theorem.

The proof of this theorem employs two different “kinds of infinity”. The
first kind concerns sets containing the same number of elements as the set of
natural numbers. Such sets are called enumerably infinite. The second kind of
infinite set is called uncountable. An example of an uncountable set is the set of
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real numbers. It is well-known that the power set of an enumerably infinite set
S (the set of all subsets of S) is uncountable and that the latter is “larger” than
the former. A more extensive introduction into these matters can be found in
many mathematics books, for instance [BJ89].

Theorem 1.1 There exist sets ET and E~ of ground atoms, such that there
is no finite set of clauses which is correct w.r.t. ET and E~.

Proof Consider a clausal language C containing (possibly among others) a
function symbol of arity > 1 and a constant a. Let A be the set of ground
atoms in C. If ¥ is some finite set of clauses, let Ay = {A € A | 2 = A}

The number of clauses in C is enumerably infinite. Then because a theory
is a finite set of clauses, the number of theories is also enumerably infinite.
Thus the number of different Ay’s induced by all possible theories, is also only
enumerably infinite.

The power set of A is uncountable. Since an uncountable set is much larger
than an enumerably infinite one, there must be a set ET C A, such that there
is no finite . for which Ay, = ET. Define E~ = A\E™. Now for a theory ¥ to
be correct w.r.t. ET and E~, we must have Ay, = E*. Hence there is no such
3. O

If E* is finite, then ¥ = ET will be a correct theory, but a rather uninterest-
ing one. In this case, we would not have learned anything beyond the given
examples: the induced theory has no predictive power. To avoid this, we can
put some constraints on the theory. For instance, we might demand that %
contains less clauses than the number of given positive examples. In that case,
¥ = E7 is ruled out. Since constraints like these mainly depend on the partic-
ular application at hand, we will not devote much attention to them.

Anyhow, if one or more correct theories do exist, then they are “hidden”
somewhere in the set of clauses in the language we use. Accordingly, finding a
satisfactory theory means that we have to search among the available clauses:
learning is searching for a correct theory [Mit82]. Hence the set of available
clauses is called the search space.

The two basic steps in the search for a correct theory are specialization and
generalization. If the current theory (together with the background knowledge)
is too strong, it needs to be weakened. That is, we need to find a more specific
theory, such that the new theory and the background knowledge are consis-
tent w.r.t. the negative examples. This is called specialization. On the other
hand, if the current theory does not imply all positive examples, it needs to be
strengthened: we need to find a more general theory which (together with the
background knowledge) can imply all positive examples. This is generalization.
Note that a theory may be both too strong and too weak at the same time,
witness ¥’ in Example 1.1. In this case, both specialization and generalization
are called for. In general, finding a correct theory means repeatedly adjusting
the theory to the examples with these two technique (specialization and gener-
alization). Whether a particular theory is too weak or too strong, can be tested
using one of the proof procedures we will introduce in the next chapter.
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In general, most ILP-systems conform roughly to the following scheme:

Input: B, E* and E~.
Output: A theory ¥, such that ¥ U B is correct w.r.t. E* and E~.

Start with some initial (possibly empty?) theory X.
Repeat

1. If ¥ U B is too strong, specialize 3.
2. If ¥ U B is too weak, generalize 3.

until ¥ U B is correct w.r.t. ET and E—.
Output .

Thus the main operations an ILP-system should perform, are specialization
and generalization. The following chapters can be considered as an investigation
into a number of different approaches towards specialization and generalization,
which can be used when searching for a correct theory. We will now introduce
some terminology often used in ILP:

Top-down and bottom-up
One useful distinction among ILP-systems concerns the direction in which a
system searches. First, there is the top-down approach, which starts with a X
such that ¥ U B is overly general, and specializes this. Secondly, there is the
bottom-up approach which starts with a ¥ such that > U B is overly specific,
and generalizes this. Admittedly, a top-down system may sometimes locally
adapt itself to the examples by a generalization step. Such a generalization
step may be needed to correct a (large) earlier specialization step, which made
the theory too weak. After the correction, the system continues its general
top-down search.

Analogously, a bottom-up system may sometimes make a specialization step.
Nevertheless, a system can usually be classified in a natural way as top-down
or bottom-up, depending on the general direction of its search.

Example 1.2 Consider the sets ET and E~ of Example 1.1. Assume the
background knowledge is empty. A top-down approach may take the following
steps to reach a correct theory.

1. Start with ¥ = {P(z)}.

2. This is clearly overly general, since it implies all negative examples. Spe-
cialize it to ¥ = {P(s(z)), P(0)}.

3. X is still too general, for instance, it implies P(0) € E~. Specialize it to
5 = {P(2(x)), P(s(0))}.

4. Now ¥ no longer implies P(0), but it is still overly general. When we
specialize further to ¥ = {(P(s%(z)) + P(x)), P(s(0))}, we end up with
a theory that is correct w.r.t. ET and E—.

<

2If we start with a non-empty theory X, the learning task is sometimes called theory
revision.
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Single- and multiple-predicate learning

We can also distinguish between single-predicate learning and multiple-predicate
learning. In the former case, all given examples are instances of only one pred-
icate P and the aim of the learning task is to find a set of clauses which implies
P(z1,...,2y,) just for those tuples (x1,...,z,) whose denotation “belongs” to
the concept denoted by P. In other words, the set of clauses should “recognize”
the instances of P.

In multiple-predicate learning, the examples are instances of more than one
predicate. Note that multiple-predicate learning cannot always be split into
several single-predicate problems, because the different predicates in a multiple-
predicate learning task may be related.

Batch learning and incremental learning
The distinction between batch learning and incremental learning concerns the
way the examples are given. In batch learning, we are given all examples ET
and E~ right at the outset. This has the advantage that noise (errors in the
given examples) can be measured and dealt with by applying statistical tech-
niques to the set of all examples [LD94]. Since the treatment of noise is usually
application-dependent, we will not give much attention to noisy examples in
this thesis.

On the other hand, in incremental learning the examples are given one by
one, and the system each time adjusts its theory to the examples given so far,
before obtaining the next example.

Interactive and non-interactive

Interactive systems can interact with their user in order to obtain some ex-
tra information. For instance, they can ask the user whether some particular
ground atom is true or not. In this way, an interactive system generates some
of its own examples during the search. A non-interactive system does not have
the possibility to interact with the user.

Bias
Bias concerns anything which constrains the search for theories [UM82]. We
can distinguish two kinds of bias: language bias and search bias.

Language bias has to do with constraints on the clauses in the search space.
These may for instance be a restriction to Horn clauses, to clauses without
function symbols and constants, to clauses with at most n literals, etc. The
more restrictions we put on clauses, the smaller the search space, and hence
the faster a system will finish its search. On the other hand, restrictions on the
available clauses may cause many good theories to be overlooked. For example,
we may restrict the search space to clauses of at most 5 literals, but if the only
correct theory contains clauses of 6 or more literals, no solution will be found.
Thus there is in general a trade-off between the efficiency of an ILP-system and
the quality of the theory it comes up with.

One important matter concerning language bias, is the capability of a sys-
tem to introduce new predicates when needed. A restriction of the language
to the predicates already in use in the background theory and the examples
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may sometimes be too strict. In that case predicate invention (the automatic
introduction of new useful predicates) is called for. For example, if we are
learning about family relations and neither the examples nor the background
knowledge contain a predicate for parenthood, it would be nice if the system
could introduce such a useful predicate itself.

Search bias has to do with the way a system searches its space of available
clauses. One extreme is exhaustive search, which searches the search space
completely. However, usually exhaustive search would take far too much time,
so the search has to be guided by certain heuristics. These indicate which
parts of the space are searched and which are ignored. Again, this may cause
the system to overlook some good theories. So here we see another trade-off
between efficiency and the quality of the final theory.

If a system has found that a correct theory is not available using its present
language and search bias, it can try again using a more general language and/or
a more thorough search procedure. This is called shifting the bias.

1.4 Other problem settings

The normal problem setting that we introduced above, is used in some form
or other by the majority of ILP-researchers. However, in recent years a family
of other problem settings has appeared. These settings have in common that
the induced theory should no longer imply the positive examples, but should
be a general relation that is ¢rue for the examples. Examples are Helft’s non-
monotonic setting for induction [Hel89, DRD94], Flach’s weak induction [F1a92]
and confirmatory induction [Fla94, Fla95). These settings are well-suited for
the problem of data-mining or knowledge discovery: given a large amount of
data (usually only positive examples), find “interesting” regularities among the
data. However, since as yet there is not much consensus in ILP on one particular
setting for this problem, we restrict ourselves to the “normal” problem setting
defined in the previous section. Nevertheless, specialization and generalization
of clausal theories are the main operations not only for our setting, but also
within the alternative settings. Hence the techniques of the next chapters are
applicable within those alternative settings as well.

Apart from comparing our setting with alternative settings used within ILP,
we can also compare it with problem settings outside of ILP. One of these is
the problem of abduction, first introduced by the philosopher Charles Sanders
Peirce [Pei58]. The logical form of abduction is roughly the same as for induc-
tion [DK96, KKT93]. Both proceed from given examples and some background
knowledge. However, the theory that abduction produces should be a particu-
lar fact (often representable as one or more ground atoms) that together with
the background knowledge explains the examples, whereas induction should
produce a general theory.

For example, suppose you are Robinson Crusoe on his island and you see a
strange human footprint in the sand. Since you know that human footprints are
produced by human beings and the footprint is not your own, you can conclude
on the basis of your background knowledge that someone else has visited your
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island. Inferring this particular explanation of the example (the presence of the
footprint) is a case of abduction.

1.5 A brief history of the field

Like most other scientific disciplines, the study of induction started out as a
part of philosophy. Philosophers particularly focused on the role induction plays
in the empirical sciences. For instance, the ancient Greek philosopher Aristotle
characterized science roughly as deduction from first principles, which were to
be obtained by induction from experience [Ari60].

After the Middle Ages, the philosopher Francis Bacon [Bac20] again stressed
the importance of induction from experience as the main scientific activity. In
later centuries, induction was taken up by many philosophers. David Hume
[Hum56, Hum61] formulated what is nowadays called the ‘problem of induction’,
or ‘Hume’s problem’: how can induction from a finite number of cases result in
knowledge about the infinity of cases to which an induced general rule applies?
What justifies inferring a general rule (or “law of nature”) from a finite number
of cases? Surprisingly, Hume’s answer was that there is no such justification.
In his view, it is simply a psychological fact about humans beings that when
we observe some particular pattern recur in different cases (without observing
counterexamples to the pattern), we tend to expect this pattern to appear in all
similar cases. In Hume’s view, this inductive expectation is a habit, analogous to
the habit of a dog who runs to the door after hearing his master call, expecting
to be let out.

Later philosphers such as John Stuart Mill [Mil58] tried to answer Hume’s
problem by stating conditions under which an inductive inference is justified.
Other philosophers who made important comments on induction were Stanley
Jevons [Jev74] and Charles Sanders Peirce [Pei58].

In our century, induction was mainly discussed by philosophers and mathe-
maticians who were also involved in the development and application of formal
logic. Their treatment of induction was often in terms of the probability or
the “degree of confirmation” that a particular theory or hypothesis receives
from available empirical data. Some of the main contributors are Bertrand
Russell [Rus80, Rus48], Rudolf Carnap [Car52, Car50], Carl Hempel [Hem45a,
Hem45b, Hem66], Hans Reichenbach [Rei49], and Nelson Goodman [Goo83].
Particularly in Goodman’s work, an increasing number of unexpected concep-
tual problems appeared for induction.

In the 1950s and 1960s, induction was sworn off by philosophers of sci-
ence such as Karl Popper [Pop59].> However, in roughly those same years, it
was recognised in the rapidly expanding field of Artificial Intelligence that the
knowledge an Al-system needs to perform its tasks, should not all be hand-
coded into the system beforehand. Instead, it is much more efficient to provide
the system with a relatively small amount of knowledge and with the ability to

®Interestingly enough, Thomas Kuhn, Poppers antipode in the philosophy of science, later
became involved in computer models of (inductive) concept learning from examples. See
pp- 474-482 of [Kuh77].
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adapt itself to the situations it encounters—to learn from its experience. Thus
the study of induction switched from philosophy to Artificial Intelligence.

Clause Sammut [Sam93] starts his article on the history of ILP with the
work of Bruner, Goodnow and Austin [BGA56] in cognitive psychology. They
analyzed the way human beings learn concepts from positive and negative in-
stances (examples) of that concept. In the early 1960s, Banerji [Ban64] used
first-order logic as a representational tool for such concept learning.

Around 1970, Gordon Plotkin [Plo70, Plo71b, Plo71a] was probably the first
to formalize induction in terms of clausal logic. His idea was to generalize given
ground clauses (positive examples) by computing their least generalization. This
generalization could be relative to background knowledge consisting of ground
literals. Plotkin’s work, which is related to that of John Reynolds [Rey70],
is still quite prominent within ILP. Clauses are still used by virtually every-
one for expressing theory, examples and background knowledge, and Plotkin’s
use of subsumption as a notion of generality is also widespread. During the
1970s, Plotkin’s work was continued by Steven Vere [Ver75, Ver77], while Brian
Cohen’s incremental system CONFUCIUS was inspired by Banerji.

In the early 1980s, Sammut’s MARVIN [Sam81, SB86] was a direct descen-
dant of CONFUCIUS. MARVIN is an interactive concept learner, which em-
ploys both generalization and specialization. At around the same time, Ehud
Shapiro [Sha81b, Sha81a] defined his setting for model inference and contructed
his model inference algorithm. This is a top-down algorithm aimed at finding
complete aziomatizations of given examples. Shapiro’s work contains many
seminal ideas, in particular the use of the Backtracing Algorithm for finding
false clauses in the theory, and the concept of a refinement operator, used for
specializing a theory. Shapiro implemented his algorithm, though only for Horn
clauses, in his model inference system Mis. He later incorporated this work in
his PhD thesis [Sha83], as part of a system for debugging definite programs.

Then in the second half of the 1980s—no doubt partly as a consequence of
the increasing popularity of Logic Programming and PROLOG—research con-
cerning machine learning within a clausal framework increased rapidly. Wray
Buntine [Bun86, Bun88| generalized subsumption, in order to overcome some
of its limitations. Stephen Muggleton built his system DUCE [Mug87], aimed at
generalizing given propositional clauses. It became clear that DUCE’s general-
ization operators could be seen as inversions of resolution steps. Thus in [MB88§]
Muggleton, together with Buntine, introduced inverse resolution. They imple-
mented inverse resolution, both as an operator for making generalization steps
and as a tool for predicate invention in CIGOL (‘logic’ backwards). In the
next years, inverse resolution drew a lot of attention and sparked off much new
research.

Some early alternatives to inverse resolution were implemented in FOIL,
LiNUs and GOLEM. FoIL [Qui90, QCJ93] is based on a downward refinement
operator guided by information-based search heuristics, in which J. R. Quinlan
generalized his earlier work on decision trees [Qui86] to Horn clauses. LINUS was
developed by Nada Lavra¢ and Saso Dzeroski [LDGY91, LD94]. It solves ILP-
problems by transforming them to a simpler attribute-value form, represented
as a set of objects with certain properties, and then applying one of several
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possible attribute-value learners to learn a general theory from this simpler
form. See [LD92a, LD92b, LD94] for a detailed comparison of FOIL and LINUS.
Muggleton and Feng’s GOLEM [MF92] is in a way a return to Plotkin: it is based
on Plotkin’s relative least generalization, though with additional restrictions for
the sake of efficiency.

In 1990, Stephen Muggleton first introduced the name Inductive Logic Pro-
gramming, and defined this field as the intersection of Machine Learning and
Logic Programming [Mug90, Mug91]. In the next year he organized, together
with Pavel Brazdil, the first International Workshop on Inductive Logic Pro-
gramming, bringing together for the first time a number of researchers involved
in learning from examples in a clausal framework. Since 1991 these International
Workshops have been repeated every year, establishing ILP as a flourishing field
of inquiry.

1.6 An outline of the thesis

In this section, we will give an outline of the remainder of the thesis. Three
topics are of particular concern in ILP: deduction, specialization, and general-
ization. Each of these will be addressed in later chapters.

Deduction allows us to find out whether the current theory is correct (com-
plete and consistent) w.r.t. the examples. This is clearly important, since it
determines the direction in which the theory has to be adapted: if the theory
is not complete, it has to be strengthened; if the theory is not consistent, it has
to be weakened. In the next chapter we will investigate four different deductive
procedures, each based on the resolution principle. For “unconstrained” resolu-
tion, linear resolution and SLD-resolution, we will prove a major completeness
result, called the Subsumption Theorem. Moreover, we will show that this the-
orem is equivalent to the refutation-completeness, for each of these kinds of
resolution. On the other hand, we will also show that both of these complete-
ness results do not hold for input resolution.

Specialization can be used to weaken a theory. In Chapter 3 we investi-
gate the use of unfolding as a specialization tool. We define three increas-
ingly strong specialization methods, UD;-specialization, UDs-specialization and
UDS-specialization, based on unfolding, clause deletion and subsumption. The
latter is a complete specialization technique for definite programs, while the
first two are not.

Finally, in Chapter 4 we discuss least generalizations and greatest special-
izations of sets of clauses. These can respectively be used to strengthen and
weaken a theory. Usually, least generalizations are only considered under the
subsumption order. We extend it here to the logical implication order, which is
more powerful than subsumption.

It is interesting to note that the proofs of both the completeness result given
in Chapter 3, as well as the main new result of Chapter 4 (the existence of a
least generalization under implication in the presence of a function-free clause),
depend on the Subsumption Theorem(s) of Chapter 2. This gives a kind of
unity and coherence to the thesis.



Chapter 2

The Subsumption Theorem
for Several Forms of
Resolution

2.1 Introduction
The Subsumption Theorem is the following statement:

If 3 is a set of clauses and C is a clause, then X logically implies
C (¥ E O) iff C is a tautology, or there exists a clause D which
subsumes C' and which can be derived from ¥ by some form of
resolution.

Different versions of the theorem exist, depending on the instantiation of “some
form of resolution.” We could allow arbitrary binary trees of resolution steps
(“unconstrained resolution”) as derivation, or we could allow only linear deriva-
tions, etc. This is similar to the refutation-completeness for proof by contradic-
tion: here we have the refutation-completeness of unconstrained resolution, the
refutation-completeness of linear resolution, etc.

The refutation-completeness is a form of completeness that is much bet-
ter known than the Subsumption Theorem. It states that a set of clauses is
unsatisfiable iff the set has a refutation (a derivation of the empty clause O,
which represents a contradiction). It can be used to prove any case of logi-
cal implication between clauses. For if we have a set X, a clause C, 6 is a
Skolem substitution for C' w.r.t. ¥ and C0 = Ly V...V Ly, then ¥ | C iff
Y U{-Ly,...,Ly,} is unsatisfiable iff ¥ U {—Ly,...,-L,} has a refutation.

However, the Subsumption Theorem is a more “direct” form of complete-
ness than the refutation-completeness. By the Subsumption Theorem, we can
straightforwardly prove C' from 3 by taking a number of resolution steps start-
ing from clauses in 3, and then taking a subsumption step leading to C'. There
is no need to use the detour which first negates C' and then applies proof by
refutation. In a derivation of a clause which subsumes C, the relation between
on one hand the premises in ¥ and on the other hand the conclusion C, is much

13
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easier to see than in a proof by refutation. Accordingly, the Subsumption The-
orem gives us a more clear view of the structure of logical implication than the
refutation-completeness. For this reason, the Subsumption Theorem is some-
times a more convenient result than the refutation-completeness, perhaps not
for efficient deduction, but certainly for theoretical analysis.

Examples of such theoretical analysis are the various ways the theorem
is applied in Inductive Logic Programming. The use of subsumption is very
popular in ILP, since it is decidable and machine-implementable. However,
subsumption is weaker than implication: if C' subsumes D then C' = D, but
not always the other way around, take for instance C = P(f(x)) + P(z) and
D = P(f?(x)) + P(z). So it is desirable to make the step from subsumption to
implication, and the Subsumption Theorem provides an excellent “bridge” for
those who want to make this step, since it states that implication = resolution +
subsumption. It is used for instance in [Mug92c, TA93, TA95, LNC94b, LNC94a].
The theorem is also an essential ingredient in the proofs of the main results in
later chapters of the present thesis. It is rather doubtful whether we would
have found those same results if we only had the refutation-completeness at our
disposal, but not the Subsumption Theorem.

As our survey later on in this section will show, in automated theorem
proving the Subsumption Theorem received most attention around 1970. In
ILP, the Subsumption Theorem was first rediscovered by Bain and Muggle-
ton [BM92].! A proof of the Subsumption Theorem for unconstrained resolu-
tion, based on the refutation-completeness, is given in the appendix of [BM92].
However, this proof seems not fully correct. For example, it does not take
factors into account, whereas factors are necessary for completeness. With-
out factors one cannot derive the empty clause O from the unsatisfiable set
{(P(z) V P(y)), (=P(u) V=P(v))} (see [GN8T7]). Furthermore, it is not always
clear how the concepts that are used in the proof are defined, and how the
Skolemization works.

Even though the proof in [BM92] is not quite correct, it is often quoted—
sometimes even incorrectly. The two main formulations of the Subsumption
Theorem that we have found in ILP-literature, are the following:

S Let X be a set of clauses and C' a clause which is not a tautology. Define
RY(¥) = ¥ and R*(%) = R® Y(X) U {C | C is a resolvent of Cy,Cy €
R"1(2)}. Also define R*(X) = RY(Z) URYE) U.... Then the Sub-
sumption Theorem is stated as follows:

Y = C iff there exists a clause D € R*(X) such that D subsumes C.

S’ Let X be a set of clauses and C a clause which is not a tautology. Define
L1(Z) =X and L*(X) = {C | C is a resolvent of C; € L* }(X) and C; €
¥}. Also define £*(X) = £}(X) U £L2(X) U.... Then the Subsumption
Theorem is stated as follows:

Y = C iff there exists a clause D € £*(X) such that D subsumes C.

'From personal communication with Stephen Muggleton, we know Bain and Muggleton
discovered the theorem themselves, independently of [Lee67]. Only afterwards did they found
out from references in other literature that their theorem was roughly the same as the theorem
in Lee’s thesis.
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S is given in [BM92], S’ is given in [Mug92c]. [Mug92¢c] does not include a
proof of §', but refers instead to [BM92]. In other work such as [IA93, NCLT93,
LNC94b, MDR94, BG96], the theorem is also given in the form of S’. These
texts do not give a proof of S', but refer instead to [BM92] or [Mug92c]. That
is, they refer to a proof of S assuming that this is also a proof of §’. But clearly
that is not the case, because S’ demands that at least one of the parent clauses
of a clause in £*(X) is a member of 3, so S’ is stronger than S. In fact, whereas
S is true, S’ is actually false! If S’ were true, then input resolution would be
refutation-complete which it is not, as we will see in Section 2.6.

The confusion about S’ is perhaps a consequence of the subtle distinction
between linear resolution and input resolution. S’ employs a form of input
resolution, which is a special case of linear resolution. Linear resolution is
complete, as is well-known, but input resolution is not.

However, the articles we mentioned do not always use S’ itself. [LNC94b,
NCLT93] are restricted to Horn clauses. In Section 2.7 we show that SLD-
resolution for Horn clauses has its own Subsumption Theorem, so for Horn
clauses there is no problem. If we examine [Mug92c, TA93, MDR94, BGY96],
carefully, then we see that the results of these articles (which are also about
non-Horn clauses) only depend on a special case of S’, namely the case where 2
consists of a single clause. Unfortunately, S’ does not even hold in this special
case. We give a counterexample in Section 2.6. This means that results which
are consequences of this special case of S’ need to be reconsidered.? These
particularly include results on nth powers and nth roots. It D € L"({C}), then
D is called an nth power of C, and C is called an nth root of D. Clearly,
the falsity of S’ renders false the completeness of powers and roots reported
in [Mug92c, MDR94, BG96].

This confusion in the ILP-community about various forms of the Subsump-
tion Theorem provided the motivation for the research we present in this chap-
ter. Our aim was to find out for which versions of resolution the Subsumption
Theorem holds, and for which it does not.

Let us first see what results have already been proved in the literature.
Surprisingly, the Subsumption Theorem is mentioned nowhere in the standard
reference books on resolution, such as [CL73, Lov78, L1o87]. Hence we have
to rely on journals, conference proceedings and theses. A weak form of the
Subsumption Theorem was first proved by Lee in 1967 in his PhD thesis [Lee67],
only 2 years after Robinson’s introduction of the resolution principle in [Rob65].
His result is the following: ¥ = C iff C' is a tautology, or there exists a clause
D which implies C (and thus not necessarily subsumes C) and which can be
derived from ¥ by unconstrained resolution.

The “real” Subsumption Theorem—i.e., where D subsumes C rather than
only implying it—appears to have been first proved in [SCL69]. Here the result
is proved for several forms of semantic resolution. Since semantic resolution
is a constrained form of resolution, their results immediately imply the Sub-

*Tdestam-Almquist has adjusted his results from [TA93] in [TA95], incorporating our findings
as published in [NCW95d].
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sumption Theorem for unconstrained resolution.? Kowalski [Kow70] explicitly
proved the result for unconstrained resolution, but his proof is rather sketchy
and presupposes knowledge of semantic trees. Minicozzi and Reiter [MRT72]
proved the Subsumption Theorem for linear resolution. After that, interest in
the Subsumption Theorem seems to have faded somewhat. However, recently
Inoue [Ino92] has developed SOL-resolution (Skip Ordered Linear resolution)
and proved a version of the Subsumption Theorem for it. He also gave an
overview of the results of [Lee67, SCL69, MR72].

In this chapter, we consider four kinds of resolution: “unconstrained” res-
olution, linear resolution, input resolution, and SLD-resolution, the latter only
for Horn clauses. We collect some of the results mentioned in the last paragraph
and contribute some results of our own.

The chapter is organized as follows. In the next section we start out with
our main definitions. In Section 2.3 we give a new, direct proof of the Subsump-
tion Theorem for unconstrained resolution. In our opinion, this proof is easier
to understand than earlier proofs of the same result [Kow70, BM92], which pre-
suppose the refutation-completeness of resolution. In Section 2.4, we then show
that the refutation-completeness of unconstrained resolution is an immediate
corollary of the Subsumption Theorem. Conversely, in the same section we
also give a second proof of the Subsumption Theorem, this time starting from
the refutation-completeness. Thus these two completeness results are actually
equivalent: the one can be proved from the other.

The Subsumption Theorem holds for linear resolution as well. In Section 2.5
we give a proof of this result which is similar to the proof given in [MRT72].
Moreover, we also show that the Subsumption Theorem for linear resolution is
equivalent to the refutation-completeness of linear resolution. In Section 2.6,
we show that the Subsumption Theorem does not hold for input resolution, not
even in case X contains only one clause, which is a new result.

Finally, in Section 2.7 we discuss SLD-resolution for Horn clauses. We first
give a proof of the well-known refutation-completeness of SLD-resolution. This
proof is easier to understand than the one given in [L1087], since our proof does
not require fixed-point theory. We then proceed to prove the Subsumption The-
orem for SLD-resolution. This new result generalizes Theorem 18 of [MP94],
which gives the result for the case where ¥ contains only one clause. Moreover,
as in the cases of unconstrained and linear resolution, we show that the Sub-
sumption Theorem is equivalent to the refutation-completeness also in case of
SLD-resolution.*

2.2 Preliminaries

In this section we define the main concepts concerning resolution.

3The name “completeness theorem for consequence finding” is also sometimes used. As far
as we know, the name “Subsumption Theorem” was introduced in [Kow?70].

“Though this equivalence holds for each of the forms of resolution that we discuss here,
it does not holds for every conceivable kind of resolution. [MR72] discusses m.c.l.-resolution.
This is refutation-complete, but the Subsumption Theorem does not hold for it.



2.2. PRELIMINARIES 17

Definition 2.1 Let C; and C5 be clauses. If (7 and Cy have no variables in
common, then they are said to be standardized apart. )

Definition 2.2 Let Cy = L1V...VL;V...VL;, and Cy = MV...VM;V.. VM,
be two clauses which are standardized apart. If the substitution 6 is an mgu
(most general unifier) of the set {L;,—M,}, then the clause

(L1 V...V Ly VL1 V...V L VMV ...V M1V My V...V M,)0

is called a binary resolvent of C; and Cy. The literals L; and M; are said to be
the literals resolved upon. O

Definition 2.3 Let C be a clause, Ly,..., L, (n > 1) some unifiable literals
from C and 6 an mgu for the set {Lq,...,L,}. Then the clause obtained by
deleting Lo6, ..., L,0 from C0 is called a factor of C. O

Note that every non-empty clause C is a factor of C itself, using the identity
substitution € as mgu for one literal in C'. Factors are sometimes built into the
resolution step itself—for instance in Robinson’s original paper [Rob65], where
sets of literals from both parent clauses are unified—but we have chosen to
separate the definitions of a factor and a binary resolvent. The reason for this
is that binary resolution without factors is sufficient in case of SLD-resolution
for Horn clauses.

Definition 2.4 Let Cy and Cy be two clauses. A resolvent R of C; and Cs is a
binary resolvent of a factor of C1 and a factor of Cy, where the literals resolved
upon are the literals unified by the respective factors. C; and Cy are called the
parent clauses of R. )

It is easy to show that resolution is sound: if R is a resolvent of Cy and Cs,
then {C1,Cy} = R.

Below we define a derivation. In later sections, we will put some constraints
on this concept, yielding, respectively, linear, input and SLD-derivations. The
kind of derivation defined in this section, will sometimes be referred to as “un-
constrained” resolution.

Definition 2.5 Let X be a set of clauses and C a clause. A derivation of C
from X is a finite sequence of clauses Ry,...,R; = C, such that each R; is
either in 3 or a resolvent of two clauses in {Ry,..., R;_1}. If such a derivation
exists, we write X -, C.

A derivation of the empty clause O from X is called a refutation of ¥. <O

A derivation of a clause C from a set Y. can be represented as a binary tree of
resolution steps, with clauses from X as leaves and C' as root.
If we add a subsumption step to a derivation, we get a deduction.

Definition 2.6 Let C' and D be clauses. We say C subsumes D if there exists
a substitution @ such that C0 C D. O
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If C subsumes D, then C |= D. Subsumption is also sometimes called 6-
subsumption.

Example 2.1 C = P(z) V Q(z,y) subsumes D = P(a) V Q(a,y) V R(z). <

Definition 2.7 Let X be a set of clauses and C' a clause. We say there exists a
deduction of C from 3, written as X 4 C, if C is a tautology, or if there exists
a clause D such that ¥ -, D and D subsumes C. If ¥ F; C', we say C can be
deduced from 3. O

Example 2.2 To illustrate these definitions, we will give an example of a de-
duction of the clause C = R(a) V S(a) from the set ¥ = {(P(z) V Q(z) V
R(z)),(=P(z) V Q(a)), (-P(z) V =Q(z)), (P(z) V -Q(x))}. Figure 2.1 shows a
derivation of the clause D = R(a) V R(a) from ¥. Note that we use the factor
Q(a) V R(a) of the parent clause Cs = Q(z) V R(z) V Q(a) in the last step of
the derivation, and also the factor P(y) V R(y) of Cs = P(y) V P(y) V R(y) in
the step leading to C7. Since D subsumes C, we have . -, C.

It is not very difficult to see the equivalence between our definition of a
derivation and the definition of R"(3) we gave in Section 2.1. For instance, in
figure 2.1, Cy, Cy, C3,Cy, O} are variants of clauses in R%(X) (C; and C] are
variants of the same clause). Cs, Cgs are in R!(X), C7 is in R?*(X) and D is in
R3(D).

Cs=P(z)V-Q(z) C]=Py)VQy) Vv R(y)

\;Jbsumption

C = R(a) V S(a)

Figure 2.1: A deduction of C' from X

2.3 The Subsumption Theorem

In this section, we prove the Subsumption Theorem for (unconstrained) reso-
lution: ¥ = C iff ¥ k4 C. Thus any clause which is a logical consequence of
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3, can be deduced from . We prove this in a number of successive steps in
the following subsections. First we prove the result in case both 3 and C are
ground, then we prove it in case 3 consists of arbitrary clauses but C' is ground,
and finally we prove the theorem when neither 3 nor C' need be ground.

2.3.1 The Subsumption Theorem for ground X and C

Lemma 2.1 Let ¥ be a set of ground clauses and C be a ground clause. If
Y =C, then ¥ 4 C.

Proof By Theorem A.3, we can assume ¥ is finite. Assume C' is not a tautology.
Then we need to find a clause D such that ¥ . D and D C C (for ground
clauses D and C, D subsumes C iff D C C'). The proof is by induction on the
number of clauses in X.

1. Suppose ¥ = {Cy}. We will show that C; C C. Suppose C; € C.
Then there exists a literal L such that L € C; but L ¢ C. Let I be an
interpretation which makes L true and all literals in C false (such an I
exists, since C' is not a tautology). Then I is a model of C;, but not of
C. But that contradicts ¥ = C. So Cy C C, and £ 4 C.

2. (See figure 2.2 for illustration of this case). Suppose the theorem holds if
'¥| < m. We will prove that this implies that the theorem also holds if
‘2| =m+1. Let ¥ = {Cl, Cee ,Cm+1} and ¥/ = {Cl, .. .,Cm}. If Croga
subsumes C or ¥ |= C, then the theorem holds. So assume Cj, 41 does
not subsume C and X' £ C.

The idea is to derive, using the induction hypothesis, a number of clauses
from which a derivation of a subset of C' can be constructed. First note
that since X' U {Cp11} = C, it follows from Theorem A.1 that ¥/ =
(Cmt1 — C), hence X' = C V =Cpyi1.
Let Ly,..., Ly be all the literals in C),; which are not in C' (k > 1 since
Cint1 does not subsume C'). Then we can write Cpi1 = L1 V...V LV,
where C' C C. Since C does not contain L; (1 < i < k), the clause
C Vv =L; is not a tautology. Also, since X' = C V =Cy11 and Cpypq is
ground, we have that X' = C' V —L;, for each i. Then by the induction
hypothesis there exists for each i a ground clause D; such that ¥/, D;
and D; C (C V —|Li).
We will use Cj,11 and the derivations from X' of these D; to construct
a derivation of a subset of C from X. For each i, =L; € D;, otherwise
D; CC and ¥’ = C. So we can write each D; as ~L; V D}, and D} C C
(the case where some D; contains —L; more than once can be solved by
taking a factor of D;).
Now we can construct a derivation of the ground clause defined as D =
C'VDiV...VDj from X, using Cy,1 and the derivations of Dy, ..., Dy
from Y. See figure 2.2 for a schematic representation of this derivation.
In this tree, the derivations of D;,..., D; are indicated by the vertical
dots. So we have that ¥ F, D. Since C' C C, and D} C C for each i, we
have that D C C'. Hence X 4 C.

O



20 THE SUBSUMPTION THEOREM

Cmt1=L1V...VLyVvC D1:—|Ll\/D’1

LQ\/...va\/Cl\/Dll D2:_|L2\/D’2

N/

L3V...VL,vC'VD|VvD,

LyvC'VD{V...vD|_, Dy ==Ly Vv D

N/

D=C'VD,V...vD,

Figure 2.2: The tree for the derivation of D from X

2.3.2 The Subsumption Theorem when C is ground

In this section, we will prove the Subsumption Theorem in case C' is ground and
¥ is a set of arbitrary clauses. The idea is to “translate” ¥ |= C to ¥, = C,
where X, is a set of ground instances of clauses of ¥. Then by Lemma 2.1
there is a clause D such that ¥, F, D and D subsumes C. Finally, we “lift”
this derivation to a derivation from 3. The next two results show that logical
implication between clauses can be translated to logical implication between
ground clauses. The first of these is Herbrand’s Theorem.

Theorem 2.1 (Herbrand) A set of clauses ¥ is unsatisfiable iff there exists
a finite unsatisfiable set X, of ground instances of clauses in X.

Proof

<: 3, is a finite set of ground instances of clauses in ¥, so ¥ = X,. Hence
if ¥, is unsatisfiable, then X is unsatisfiable.

=: Let X’ be the (possibly infinite) set of all ground instances of clauses in
3. Let I be an Herbrand interpretation. It is not very difficult to see that I is
an Herbrand model of a clause C iff I is an Herbrand model of the set of all
ground instances of C. Therefore I is a model of X iff T is a model of ¥'. Now
we have the following:

Y is unsatisfiable iff (by Proposition A.4)

¥ has no Herbrand models iff

Y" has no Herbrand models iff (by Proposition A.4)
¥’ is unsatisfiable.

Finally, by the Compactness Theorem (Theorem A.2) there is a finite unsatis-
fiable subset ¥, of X'. O
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Theorem 2.2 Let ¥ be a set of clauses and C be a ground clause. If ¥ = C
then there exists a finite set ¥, of ground instances of clauses in X, such that

Z]g ‘:

Proof Let C =Ly V...V L; (k> 0). If ¥ is unsatisfiable then the lemma
follows immediately from Theorem 2.1, so suppose Y. is satisfiable. Note that
since C' is ground, =C' is equivalent to =Ly A ... A =Lj. Then:

Y |= C iff (by Proposition A.1)

Y U {=C} is unsatisfiable iff

Y U{-Ly,...,L} is unsatisfiable iff (by Theorem 2.1)

there exists a finite unsatisfiable set X', consisting of ground in-
stances of clauses from ¥ U {—Ly,..., L}

Since ¥ is satisfiable, the unsatisfiable set ¥’ must contain one or more members
of the set {—Ly,..., =Ly}, ie. ¥' =¥ U{-L;,...,~L; }, where ¥/ is a finite
non-empty set of ground instances of clauses in ¥. So:

¥ is unsatisfiable iff

YgU{=Lj, ..., L;;} is unsatisfiable iff

¥gU{=(Li, V...V L;)} is unsatisfiable iff (by Proposition A.1)
Zg |= (Ll1 V...V Lz])

Since {L;,, ..., L;;} € C, it follows that ¥, = C. O

Example 2.3 Let ¥ = {(P(f ( )V —P(x)),
N =0 5 ={(P(f(f(a)) Vv ((%)(

)
ground instances of clauses of Z and X, |

(z)} and C = P(f(f(a))). Then

P
(f(a)) V=P(a)),P(a)} is a set of
C. q

The following two lemmas are sufficient to “lift” a derivation, that is, to turn a
derivation from instances of certain clauses into a derivation from those clauses
themselves.

Lemma 2.2 Let Cy and Cy be two clauses and C| and C4 be instances of Cy
and Cy, respectively. If R' is a resolvent of C| and C%, then there exists a
resolvent R of C1 and Cy, such that R’ is an instance of R.

Proof We assume without loss of generality that C; and Cy, and C] and C,
are standardized apart. Let C; = L1 V...V Ly,, Co = M1 V...V M,, C; = Cyo1
and C) = Cy09. Suppose R’ is a resolvent of C] and C}. Then R’ is a binary
resolvent of a factor of C] and a factor of Cj. See the figure for illustration.
For notational convenience, we assume without loss of generality that the
factor of Cf is (L1 V ...V Lg)o161, where 6y is an mgu for Lyoy,..., Lyoy.
Similarly, the factor of C% that is used, is (M7 V ...V Mj)o96s, where 65 is
an mgu for Myoo, ..., M,09. Let L;o16; and M;o260> be the literals resolved
upon, with mgu p. Abbreviate Ly V...V L; 1V L1 V...V L, to Dy and
My V...V Mj—l \% Mj_|_1 V...V M, to Dy. Then R = (D10101 V DQO'QHQ),U.
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By our assumption of standardizing apart, this can be written as R' = (D V

D2)0'1910'292u.
Let vy be an mgu for Ly V...V Ly,. Then (L1 V...V L)y, is a factor of C;.
Note that ¢16; is a unifier for L,..., Ly,. Since 7 is an mgu for L, ..., Ly,

there exists a substitution d; such that o160 = 71d1. Similarly, (M V...V M)vys
is a factor of Cy, with 9 as mgu for M V...V M, and there is a dy such that
020y = 720.

Since L;o160; and —M;o26, can be unified (they have p as mgu) and v; is
more general than 0;0; (i =1,2), L;yv1 and =M;~, can be unified. Let 6 be an
mgu for L;y1 and =M;vy,. Define R = (D17, V D272)#, which can be written
as R = (D1 V Dy)y1y20. Since R is a binary resolvent of the above-mentioned
factors of Cq and Cy, it is a resolvent of C; and Cj.

C1

5 /L
\ factor L factor

It remains to show that R’ is an instance of R. Since L;y;d10ou = Lio10102p =
Lio101pp = ~Mjoolop = = Mjyadop = ~M;jy20102p, the substitution ddap is a
unifier for L;y; and -Mjvs. 6 is an mgu for L;y; and —M;~vs, so there exists
a substitution 0 such that §;do4 = 6. Therefore R’ = (D1 V Dy)o16010905u =
(D1 \% Dg)*ylél’ygég,u = (Dl \% Dg)*yl’ygdlég,u = (Dl \% D2)717206 = RJ. Hence R’
is an instance of R. O

Lemma 2.3 (Derivation lifting) Let 3 be a set of clauses and X' a set of
instances of clauses in ¥. Suppose R),..., R} is a derivation of the clause R),
from X!. Then there exists a derivation Ry,..., Ry of the clause Ry from X,
such that R} is an instance of R;, for each i.

Proof The proof is by induction on k.

1. Suppose k = 1. R} € ¥, so there exists a clause Ry € X such that R} is
an instance of R;.

2. Suppose the lemma holds if £ < m. Let R,..., R, R}, be a derivation
of Ry, from X'. By the induction hypothesis, there exists a derivation
Ry,...,Ry of Ry, from X, such that R} is an instance of R; for all i,
1 <i<m IfR),, €Y, the lemma is obvious. Otherwise, R, is
a resolvent of two clauses C’l and C) in {R},..., R }. Then there exist
two clauses C; and Cy in {Ry, ..., Ry} such that C] is an instance of C;
and (Y is an instance of Cy. It follows from Lemma 2.2 that there is a
resolvent R,,+1 of Cy and Cy, such that R;n_l_l is an instance of Ry, 11. So
the lemma holds for &k = m + 1.
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The previous lemmas are sufficient to prove the Subsumption Theorem for the
case where C' is ground.

Lemma 2.4 Let X be a set of clauses and C be a ground clause. If ¥ |= C,
then ¥ 4 C.

Proof Assume C is not a tautology. We want to find a clause D such that
Yk, D and D subsumes C. From ¥ |= C and Theorem 2.2, there exists a finite
set 3, such that each clause in X, is a ground instance of a clause in X, and
¥4 = C. Then from Lemma 2.1 there exists a clause D’ such that X, -, D',
and D' subsumes C. Let R},...,R) = D' be a derivation of D’ from X,. It

follows from Lemma 2.3 that we can lift this to a derivation Ry,..., Ry of Ry
from Y, where D' is an instance of R;. Let D = R;,. Then ¥ +, D and D
subsumes C (since D’ subsumes C'). O

2.3.3 The Subsumption Theorem (general case)

Finally we prove the Subsumption Theorem for arbitrary 3 and C. The follow-
ing lemma shows that if we have derived some clause D from ¥ which subsumes
CO—where 0 is a Skolem substitution for C' w.r.t. ¥—then D also subsumes
C. For instance, suppose D = P(z), C = P(y) V Q(z) and 0 = {y/a,z/b}. D
subsumes C0, but since 6 replaces each variable by a constant that does not
appear in Y, C' or D, D also subsumes C itself.

Lemma 2.5 Let C and D be clauses. Let 0 = {z1/ay,...,zn/an} be a Skolem
substitution for C w.r.t. D. If D subsumes CO, then D also subsumes C.

Proof Since D subsumes C#, there exists a substitution o such that Do C
Co. Let o be the substitution {y1/t1,...,ym/tm}. Let ¢’ be the substitution
obtained from o by replacing each a; by z; in every ¢;. Note that ¢ = o’6.
Since 0 only replaces each z; by a; (1 < i < n), it follows that Do’ C C, so D
subsumes C. O

Finally we can prove the general case of the Subsumption Theorem:

Theorem 2.3 (Subsumption Theorem) Let ¥ be a set of clauses and C' be
a clause. Then ¥ |=C iff ¥4 C.

Proof

<: By the soundness of resolution and subsumption.

=: Assume C' is not a tautology. Let 6 be a Skolem substitution for C
w.r.t. 3. Then C#6 is a ground clause which is not a tautology, and ¥ |= C6. So
by Lemma 2.4 there is a clause D such that ¥ -, D and D subsumes C'f. Since
D is derived from X, D does not contain any of the constants in . Therefore 6

is also a Skolem substitution for C w.r.t. D. Then by Lemma 2.5, D subsumes
C. Hence X, C. O
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2.4 The refutation-completeness

2.4.1 From Subsumption Theorem to refutation-completeness

The Subsumption Theorem actually tells us that resolution and subsumption
form a complete set of derivation-rules for clauses. Though the resolution rule
by itself is not complete for clauses in general, for instance, P(z) = P(a) but
P(z) t/, P(a), resolution is complete w.r.t. unsatisfiable sets of clauses. This
refutation-completeness is an easy consequence of the Subsumption Theorem:

Theorem 2.4 (Refutation-completeness) Let X be a set of clauses. Then
Y is unsatisfiable iff ¥ F, O.

Proof

<: By the soundness of resolution.

=: Suppose ¥ is unsatisfiable. Then ¥ = O. So by Theorem 2.3 there
exists a clause D, such that X . D and D subsumes the empty clause O. But
O is the only clause which subsumes O, so D = O. O

2.4.2 From refutation-completeness to Subsumption Theorem

In the previous subsection, we showed that the refutation-completeness is a
direct consequence of the Subsumption Theorem. Here we will show the con-
verse: that we can obtain the Subsumption Theorem from the refutation-
completeness. This establishes the equivalence of the Subsumption Theorem
and the refutation-completeness: the one can be proved from the other.

To prove the Subsumption Theorem from the refutation-completeness, we
will first show how to turn a refutation of ¥ U {—Ly,...,—Lx} into a deduc-
tion of Ly V ...V Ly from 3. Thus our proof is constructive, and some-
what similar to the approach in [BM92]. We start with an example. Sup-
pose X = {(P(z) vV ~R(f(f (b)), (R(f(x)) V ~R(z))} and C' = P(z) V Q(z) V
—R(b). First we note that § = {z/a} is a Skolem substitution for C w.r.t.
Y. Now -CH & {-P(a),~Q(a),R(b)}. Figure 2.3 shows a refutation of
% U {~P(a),~Q(a), R(b)}.

Now by omitting the leaves of the refutation-tree which come from —-C¥6
(the framed literals) and by making appropriate changes in the tree, we get a
derivation of the clause D = P(z) V —R(b) (figure 2.4). D subsumes C, so we
have turned the refutation of figure 2.3 into a deduction of C' from ¥.

This approach also works in the general case. The following lemma does
most of the work.

Lemma 2.6 Let Y be a set of clauses and C = Ly1V...V Ly be a non-tautologous
ground clause. If SU{~Lq,...,~ Ly}, O, then ¥ 4 C.

Proof Suppose ¥ U {—=Ly,...,—~Lg} F, O. Then there exists a refutation
Ry,...,R, = O of S U {-Ly,...,mLg}. Let r be the number of resolvents
in this sequence (r = n— the number of members of ¥ U {-Ly,...,—=L;} in
Ry,...,R,). We prove the lemma by induction on r.
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P(z) vV =R(f(f(b))) R(f(z)) V ~R(z
o

Figure 2.3: A refutation of ¥ U {-P(a), ~Q(a), R(b)}

)V —R(z )V -R(y

P(z) V -R(f(f( )V —R(y)

NS

P(z) VvV —R(b
subsumption
C= Q(z) VvV —R(b

Figure 2.4: A deduction of C' from X, obtained from the previous figure

1. Suppose r = 0. Then R,, = O € ¥, so the lemma holds.

2. Suppose the lemma holds for » < m. We will prove that this implies
that the lemma also holds for r = m + 1. Let R;,...,R, = O be a
refutation of ¥ U {—Ly,...,-Lx} containing m + 1 resolvents. Let R; be
the first resolvent. Then Ry,..., R, = O is a refutation of ¥ U {R;} U
{=Ly,...,~L;} containing only m resolvents, since R; is now one of the
original premises. Hence by the induction hypothesis, there is a clause D,
such that ¥ U{R;} F, D and D subsumes C.

Suppose R; is itself a resolvent of two members of 3. Then we also have
> k. D, so the lemma holds in this case. Note that R; cannot be a
resolvent of two members of {—Lq,...,—~L;} because this set does not
contain a complementary pair, since C' is not a tautology.

The only remaining case we have to check, is where R; is a resolvent of
C' € ¥ and some Ly (1 <s<k). Let C" =M V...VM;V...VM,,.
Suppose R; is a binary resolvent of (M; V...V M;)o (a factor of C', using
o as an mgu for {M;, ..., My}) and —Lg, with § as mgu for M;o and L.
Then R; = (M1 V...V M;_1)o0 and C'00 = R;V LsV ...V Ls (h—j+1
copies of L), since Mj,..., M), are all unified to L, by o#.

Now replace each time R; appears as leaf in the derivation-tree of D by
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C'of = R;VLgV ...V L, and add Ly V...V Lg to all decendants of
such an R;-leaf. Then we obtain a derivation of DV Ly V ...V Lg from
Y U {C'06}. Since C'cf is an instance of a clause from X, we can lift
(by Lemma 2.3) this derivation to a derivation from ¥ of a clause D',
which has DV Ly V...V Lg as an instance. Since D subsumes C, D’ also
subsumes C. Hence ¥ 4 C.

Now we can prove the Subsumption Theorem (Theorem 2.3) once more, this
time starting from Theorem 2.4.

Theorem 2.3 (Subsumption Theorem) Let ¥ be a set of clauses and C be
a clause. Then ¥ |=C iff ¥4 C.

Proof

<: By the soundness of resolution and subsumption.

= If C is a tautology, the theorem is obvious. Assume C'is not a tautology.
Let 6 be a Skolem substitution for C' w.r.t. ¥. Suppose C0 = Ly V...V L.
Since C' is not a tautology, C# is not a tautology. C#@ is ground and ¥ |= C9,
so by Proposition A.1 the set of clauses ¥ U {—L1,...,L;} is unsatisfiable.
Then it follows from Theorem 2.4 that ¥ U {=Li,...,—Ly} F, O. Therefore
by Lemma 2.6, there exists a clause D such that ¥ -, D and D subsumes C#.
Finally, from Lemma 2.5, D also subsumes C itself. Hence ¥ -4 C. O

Now that we have shown that the Subsumption Theorem can be proved from
the refutation-completeness, and vice versa, we also have the following:

Theorem 2.5 For unconstrained resolution, the Subsumption Theorem and the
refutation-completeness are equivalent.

2.5 Linear resolution

Linear resolution is characterized by the linear shape of its derivations. It is
more efficient than unconstrained resolution, because the number of possible
derivations is significantly decreased by the linear constraint on the shape of
a derivation. It was independently introduced by Loveland [Lov70] and Luck-
ham [Luc70]. An important further restriction called SL-resolution (Linear res-
olution with a Selection function) was introduced and shown to be refutation-
complete by Kowalski and Kuehner [KK71]. Minicozzi and Reiter proved the
Subsumption Theorem for linear resolution in [MR72]. More recently, In-
oue [Ino92] developed SOL-resolution (Skip Ordered Linear resolution) and
proved a version of the Subsumption Theorem for it.
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2.5.1 Definitions

For the sake of transparency, we will define a very simple form of linear res-
olution here. Many features and restrictions could be added on to improve
efficiency (see the references given above). We will prove the Subsumption
Theorem and the refutation-completeness for this form of linear resolution.
After that, we will define a further restriction of linear resolution called input
resolution and show that this is not complete for general clauses, not even when
the set of premises contains only one clause.

Definition 2.8 Let X be a set of clauses and C be a clause. A linear derivation
of C' from X is a finite sequence of clauses Ry,...,R; = C, such that Ry € ¥
and each R; with 1 < ¢ < k is a resolvent of R;_1 and a clause C; € ¥ U
{RU, - ,Ri,Q}.

Ry is called the top clause, Ry,..., Ry the center clauses, and Cy,...,C}
are called the side clauses of this linear derivation. If a linear derivation of C'
from X exists, we write X F,. C.

A linear derivation of O from X is called a linear refutation of X. <

Linear derivations are characterized by the “linear” shape of their corresponding
derivation-trees. See figure 2.5. Such a tree can be turned into a derivation-tree
for unconstrained resolution by adding the derivations of each side clause C;

which is not in ¥.
Ro C1
R1 CQ
R>
Rk.—l Ck
Ry,

Figure 2.5: The characteristic shape of a linear derivation

Linear deductions are defined as follows:

Definition 2.9 Let X be a set of clauses and C a clause. There exists a linear
deduction of C from X, written as X )4 C, if C is a tautology, or if there exists
a clause D such that X ;. D and D subsumes C. O

2.5.2 The refutation-completeness

A proof of the refutation-completeness of a form of linear resolution called
OL-resolution (Ordered Linear resolution), is given in Theorem 7.2 of [CLT73].
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However, this proof contains an error. In fact, OL-resolution is not refutation-
complete, as described on pp. 324-325 of [Ino92]. Nevertheless, we can adapt
the proof of [CLT73] to yield a correct proof for our own definition of linear
resolution. First we prove the case for ground clauses, which is then lifted. The
proof of the following lifting lemma is similar to Lemma 2.3.

Lemma 2.7 (Linear derivation lifting) Let X be a set of clauses and X' be
a set of instances of clauses in X. Suppose Ry, ..., R} is a linear derivation of
the clause R), from X'. Then there ezists a linear derivation Ry, ..., Ry of the
clause Ry, from X, such that R} is an instance of R;, for each i.

The next lemma is the refutation-completeness of linear resolution for ground
clauses.

Lemma 2.8 If ¥ is an unsatisfiable set of ground clauses and C' € 3 such that
Y\{C} is satisfiable, then there is a linear refutation of ¥ with C as top clause.

Proof By the Compactness Theorem (Theorem A.2), we can assume ¥ is

finite. Let n be the number of distinct ground atoms appearing in literals in

clauses in . We prove the lemma by induction on n.

1. If n =0, then ¥ = {O}. Since X\{C'} is satisfiable, C = O
2. Suppose the lemma holds for n < m and suppose m + 1 distinct atoms

appear in Y. We distinguish two cases.
Case 1: Suppose C' = L, where L is a literal. We first delete all clauses
from ¥ which contain the literal L (so we also delete C itself from X).
Then we replace clauses which contain the literal =L by clauses con-
structed by deleting these =L (so for example, Ly V =L V Ly will be
replaced by L; V Ls). Call the finite set obtained in this way 7. Note
that the literal L, nor its negation, appears in clauses in 7. If M were a
Herbrand model of 7, then M U {L} would be a Herbrand model of 3.
Thus since X is unsatisfiable, 7 must be unsatisfiable.
Now let Y be an unsatisfiable subset of 7, such that every proper subset
of ¥/ is satisfiable. 3’ must contain a clause D’ obtained from a member
of ¥ which contained —L, for otherwise the unsatisfiable set ¥’ would be a
subset of 3\{C}, contradicting the assumption that 3\{C} is satisfiable.
By construction of ¥/, we have that X'\{D’} is satisfiable. Furthermore,
¥ contains at most m distinct atoms, so by the induction hypothesis
there exists a linear refutation of ¥’ with top clause D’. See the left of
figure 2.6 for illustration.
The side clauses in this refutation that are not previous center clauses,
are either members of ¥ or obtained from members of ¥ by the deletion
of —=L. In the latter kind of side clauses, put back the deleted —L literals,
and add these =L to all later center clauses. Note that afterwards, these
center clauses may contain multiple copies of —=L. In particular, the last
center clause changes from O to =L V...V =L. Since D’ is a resolvent
of Cand D = =LV D' € 3, we can add C and D as parent clauses on
top of the previous top clause D'. That way, we get a linear derivation
of =LV ...V L from %, with top clause C. Finally, the literals in
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C=LeXx D=-LvD e¥x
D' ey’ Cr ey D' CivaLeX
Ry Cr ey Ry V —L Co €%

—

O -1

Figure 2.6: Case 1 of the proof

=LV ...V =L can be resolved away using the top clause C = L as side
clause. This yields a linear refutation of X with top clause C (see the
right of figure 2.6).

Case 2: Suppose C = L V C', where C’' is a non-empty clause. C’
cannot contain —L, for otherwise C would be a tautology, contradicting
the assumption that ¥ is unsatisfiable while £\ {C'} is satisfiable.

Obtain ¥’ from ¥ by deleting clauses containing =L, and by removing the
literal L from the remaining clauses. Note that C' € X'. If M were an
Herbrand model of ¥, then M U {—=L} would be an Herbrand model of
Y. Thus since ¥ is unsatisfiable, Y’ is unsatisfiable.

Furthermore, because £\ {C'} is satisfiable, by Proposition A.4 there is an
Herbrand model M’ of ¥\{C'}. Since ¥ is unsatisfiable, M’ is not a model
of C. L is a literal in C, hence L must be false under M'. Every clause in
Y\{C"} is obtained from a clause in X\{C'} by deleting L from it. Since
M’ is a model of every clause in ¥\{C} and L is false under M’, every
clause in ¥'\{C'} is true under M'. Therefore M’ is a model of X'\{C'},
which shows that X'\{C"} is satisfiable.

Then by the induction hypothesis, there exists a linear refutation of ¥’
with top clause C’. Now similar to case 1, put back previously deleted L
literals to the top and side clauses, and to the appropriate center clauses.
This gives a linear derivation of LV ...V L from ¥ with top clause C.
Note that {L} U (X\{C}) is unsatisfiable, because L is false in any Her-
brand model of ¥\{C}, as shown above. On the other hand, ¥\{C} is
satisfiable. Thus by case 1 of this proof, there exists a linear refutation of
{L}U(E\{C}) with top clause L. Since L is a factor of LV...V L, we can
put our linear derivation of L'V ...V L “on top” of this linear refutation
of {L} U (E\{C?}) with top clause L, thus obtaining a linear refutation of
>} with top clause C.

a

Theorem 2.6 (Refutation-completeness of linear resolution) Let ¥ be
a set of clauses. Then Y is unsatisfiable iff 3 by, O.
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Proof

<: By the soundness of resolution.

=-: Suppose X is unsatisfiable. Then by Theorem 2.1, there is a finite unsat-
isfiable set X, of ground instances of clauses in X'. Let 2; be an unsatisfiable
subset of ¥y and C' € % such that ¥ \{C'} is satisfiable. From Lemma 2.8, we
have E; ki O. Hence ¥ ;. O by Lemma, 2.7. O

2.5.3 The Subsumption Theorem

Starting from the refutation-completeness, it is now possible to prove also the
Subsumption Theorem for linear resolution. Our proof is similar to the one
given in [MR72]. We use the refutation-completeness and then turn a linear
refutation into a linear deduction, using the following lemma:

Lemma 2.9 Let Y be a set of clauses and C = Ly V...V Ly be a non-tautologous
ground clause. If XU {=Lq,...,—Lg} k. O, then ¥ 4 C.

Proof Suppose XU{—Ly,...,—Lg} ;- O. Then there exists a linear refutation

Ry,...,R, =0 of ¥U{~Ly,...,L;}. Notice that the top clause and the first

side clause in this linear refutation cannot both be members of {—=Ly,..., =Ly},

because C' is not a tautology. Thus we can assume Ry € X. It is then possible

to prove by induction on n that this linear refutation can be transformed into

a linear deduction of C' from ¥ with top clause Ry:

1. If n =0, then Ry = 0O € ..
2. Suppose the lemma holds for n < m. Let Ry,...,Ryy1 = O be a linear

refutation of XU{—Lq,...,—Lg}. Then Ry,..., Ry+1 is a linear refutation
of YU {R1} U{—=Ly,...,~L}. By the induction hypothesis, there is a
linear derivation of a clause D from ¥ U {R;}, with top clause Ry, such
that D subsumes C.
Suppose R is itself a resolvent of two members of ¥. Then we also have
¥ ki D, so the lemma holds in this case.
The only remaining case we have to check, is where R; is a resolvent of
Ry € ¥ and some =L, (1 <s<k). Let Rp =M V...VM;V...VM,.
Suppose R; is a binary resolvent of (M; V...V M;)o (a factor of Ry, using
o as an mgu for {M;, ..., M}}) and —Lg, with § as mgu for M;o and Lj,.
Then R1 = (Mlv...VMj,1)0'9 and R[)O'e = R1 VLS\/...\/LS (h—j+1
copies of L), since Mj,..., M), are all unified to L, by o#.
Now replace each time Ry appears as leaf (i.e., top or side clause) in the
derivation-tree of D by Ryo@ = RV Ls;V ...V Ls, and add Ly V...V Ly
to all decendants of such an Rj-leaf. This gives a new derivation, in
which each resolvent is the corresponding resolvent in the old derivation
of D plus some extra copies of L;. Thus we obtain a linear derivation of
DV LgV...VLsfrom XU{Ryof}. Since Ryof is an instance of a clause
from ¥, we can lift (by Lemma 2.7) this derivation to a derivation from
Y of a clause D', which has DV Ly V ...V Ly as an instance. Since D
subsumes C, D' also subsumes C. Hence X ;4 C. |
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Theorem 2.7 (Subsumption Theorem for linear resolution) Let ¥ be
a set of clauses and C be a clause. Then ¥ = C iff ¥ g C.

Proof

<: By the soundness of resolution and subsumption.

= If C is a tautology, the theorem is obvious. Assume C'is not a tautology.
Let 0 be a Skolem substitution for C' w.r.t. 3. Let C8 be the clause L1 V...V L.
Since C is not a tautology, C6 is not a tautology. C# is ground and ¥ | C0,
so the set of clauses ¥ U {—Ly,...,— Ly} is unsatisfiable by Proposition A.1.
Then it follows from Theorem 2.6 that ¥ U {—Ly,...,-Lg} k. O. Therefore
by Lemma 2.9, there exists a clause D such that X ;. D and D subsumes C6.
From Lemma, 2.5, D also subsumes C itself. Hence X ;4 C. O

We have now proved the Subsumption Theorem of linear resolution starting
from the refutation-completeness of linear resolution. Conversely, the latter also
follows immediately from the former, in the same way as Theorem 2.4 followed
from Theorem 2.3 in the previous section. Hence also for linear resolution we
have the equivalence between these two completeness results.

Theorem 2.8 For linear resolution, the Subsumption Theorem and the refu-
tation-completeness are equivalent.

2.6 Input resolution

Linear resolution is a restriction of unconstrained resolution. Linear resolution
can itself be further restricted to input resolution, by stipulating that each side
clause should be a member of 3. Contrary to linear resolution, input resolution
is not complete, not even when the set of premises 3 contains only one clause.
Before we give our counterexample, we will first formally define input resolution:

Definition 2.10 Let X be a set of clauses and C' be a clause. An input deriva-
tion of C from X is a linear derivation in which each side clause C; is a member

of 3. The side clauses C,...,C) in an input derivation are also called input
clauses. If an input derivation of C' from ¥ exists, we write ¥ ;. C.
An input derivation of O from X is called an input refutation of X. <

Definition 2.11 Let X be a set of clauses and C a clause. There exists an
input deduction of C' from %, written as X ;4 C, if C is a tautology, or if there
exists a clause D such that X F;. D and D subsumes C. O

It is well-known that input resolution is not refutation-complete. A simple
propositional example suffices to show this. Let ¥ = {(PV Q),(PV-Q), (=P V
Q), (=P V —Q)}. Figure 2.7 shows a refutation by unconstrained resolution of
3. This proves that X is unsatisfiable.

Unfortunately, there does not exist an input refutation of X. It is easy to
see the reason for this. To reach the empty clause O, the last input clause in an
input refutation of ¥ should contain only one literal, or have a factor containing
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PVQ PV-Q -PVQ —PV-Q
PV P PV -P
[m}

Figure 2.7: An unconstrained refutation of ¥

only one literal. However, each clause in ¥ contains two distinct literals. Hence
there is no input refutation of X.

So input resolution is not refutation-complete. This implies also that the
Subsumption Theorem does not hold either for input resolution, since the
refutation-completeness would be a direct consequence of it. We can in fact
prove a stronger negative result, namely that the Subsumption Theorem for
input resolution is not even true in the simple case where ¥ contains only a
single clause. In our counterexample we let ¥ = {C'}, where C is the following
clause:
C = P(z1,22) V Q(12,73) V ~Q(x3,24) V =P (24, 71).

Figure 2.8 shows that clause D (see below) can be derived from C by uncon-
strained resolution. This also shows that C' = D.

Figure 2.8: The derivation of D from C by unconstrained resolution

Figure 2.8 makes use of the clauses listed below. Cy, Co, C3, Cy are variants
of C. Dy is a binary resolvent of C; and Cs, D> is a binary resolvent of C5 and Cy
(the underlined literals are the literals resolved upon). D] is a factor of Dy, using
the substitution {z5/z1,z¢/z2}. D} is a factor of Dy, using {z11/z12,213/29}.
Finally, D is a binary resolvent of D} and Dj.

Cy = P(Z‘l,xg) V Q(:EQ,ZL'3) \% —IQ($3,$4) V —IP(£E4,$1).
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Cy = P(z5,76) V Q(z6,27) V ~Q(77,78) V =P (28, 5).

C3 = P(z9,210) V Q(z10,211) V =Q(211, %12) V = P(x12, 29).

Cy = P(z13,714) V Q(z14,T15) V =Q(215, T16) V ~P (216, 213).

Dy = P(z1,29) V =Q(x3,24) V = P(x4,21) V P(x5,76) V Q(26,22) V - P(x3,25).
Dy = P(zg,210) V ~Q(x11,212) V ~P(z12,29) V P(213,214) V Q(@14, T10)V

—|P($11,ZE13).
Dy = P(z1,22) V =Q(23,24) V = P(4,21) V Q(2,22) V = P(x3,21).
Dy = P(zg,z10) V -Q(z12,212) V 2P (z12,29) V P(x9, 214) V Q(14, Z10).
D = —=Q(z3,24) V = P(x4,21) V Q(x2,29) V =P (23,21) V P(x9,210)V
=Q(z1,21) V P(x2,214) V Q(214, T10).

Thus D can be derived from C' using unconstrained resolution. However, neither
D nor a clause which subsumes D can be derived from C using only input
resolution. We prove this in Proposition 2.1. This shows that input resolution
is not complete, not even if 3 contains only one clause.

The following lemma shows that each clause which can be derived from C
by input resolution contains an instance of P(z1, z2)V—P(z4, 1) or an instance

of Q(z2,x3) V—-Q(x3,24).

Lemma 2.10 Let C be as defined above. If C' &y E, then E contains an
instance of P(x1,z9)V = P(z4,21) or an instance of Q(x2,x3) V —Q(x3,24).

Proof Let Ry,...,Rr = E be an input derivation of E from C. We prove the
lemma by induction on k:

1. Ry = C, so the lemma is obvious if k£ = 0.

2. Suppose the lemma holds for £ < n. Let Ry,...,R,+1 = F be an input
derivation of E from C'. Note that the only factor of C is C itself. There-
fore E is a binary resolvent of C and a factor of R,,,. Let 6 be the mgu used
in obtaining this binary resolvent. If P(z1,z2) or =P(z4,21) is the lit-
eral resolved upon in C, then E must contain (Q(z2,z3) V =Q(z3,z4))0.
Otherwise Q(z2,23) or =Q(z3,z4) is the literal resolved upon in C, so
then E contains (P(z1,z2) V =P(z4,71))0. Hence the lemma also holds
for k=n+1.

a

Proposition 2.1 Let C and D be as defined above. Then C tf;q D.

Proof Suppose C ;4 D. Then since D is not a tautology, there exists a clause
E such that C' +;, E and E subsumes D. From Lemma 2.10 we know that
E contains an instance of P(z1,2z2) V —=P(z4,21) or an instance of Q(z2,z3) V
—Q(x3,z4). It is easy to see that neither P(x1,z2)V - P(z4, 1) nor Q(za,z3)V
-Q(z3,z4) subsumes D. But then E does not subsume D, so we found a
contradiction. Hence C V4 D. |
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So we see that input resolution is not complete: C' = D, but C /;4 D. This
is unfortunate, since input resolution is more efficient than unconstrained res-
olution or linear resolution. However, if we restrict ourselves to Horn clauses,
a special case of input resolution called SLD-resolution can be shown to be
complete. This will be the topic of the next section.

2.7 SLD-resolution

SLD-resolution for Horn clauses was introduced by Kowalski [Kow74]. It is
simpler than the unconstrained or linear resolution that we need for general
clauses.

Definition 2.12 Let X be a set of Horn clauses and C' be a Horn-clause. An
SLD-derivation of C from X is a finite sequence of Horn clauses Ry, ..., Ry = C,
such that Ry € ¥ and each R; (1 < i < k) is a binary resolvent of R; 1 and a
definite program clause C; € %, using the head of C; and a selected atom in the
body of R; 1 as the literals resolved upon.

Ry is called the top clause and the C; are the input clauses of this SLD-
derivation. If an SLD-derivation of C' from X exists, we write ¥ . C. An
SLD-derivation of O from ¥ is called an SLD-refutation of X. O

Note that either each R; in an SLD-derivation is a goal, or each R; is a definite
program clause. Also note that each resolvent in an SLD-derivation is a binary
resolvent, so no factors are used here. The selected atom can be selected by a so-
called computation rule, and it can be shown that the refutation-completeness
of SLD-resolution is independent of the computation rule that is used. We will
not go into that here (see [L1087]).

Definition 2.13 Let X be a set of Horn clauses and C' a Horn clause. There
exists an SLD-deduction of C from X, written as ¥ k44 C, if C' is a tautology,
or if there is a Horn clause D, such that ¥ . D and D subsumes C. O

Example 2.4 Consider ¥ = {P(0,z,z), (P(s(z),y, s(z)) < P(z,y,2))}, a set
of clauses which formalizes addition. Let us see how we can prove C' = P(52(0),
5(0),53(0)) (that is, 2 4+ 1 = 3) from this set by SLD-resolution. Figure 2.9
shows an SLD-derivation of Ry = P(52(0),%,5%(y)) from Y. Here the selected
atoms are underlined. Since Ry subsumes C, we have ¥ 44 C.

<

2.7.1 The refutation-completeness

In this subsection, we will prove the well-know result that SLD-resolution is
refutation-complete: a set of Horn clauses is unsatisfiable iff it has an SLD-
refutation. QOur proof is similar to the proof for the refutation-completeness
of linear resolution that we gave in Section 2.5. It is different from the proof
given in [L1087], since our proof does not require fixed-point theory. Instead, it
only uses the basic definitions of resolution. First we establish the refutation-
completeness for ground Horn clauses:
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Ro = P(s(x),y,5(2)) < P(%,y,2) C1 = P(s(u),v,s(w)) + P(u,v,w)

\

R = P(s*(x),y,s%(z)) + P(z,y,2) C> = P(0,v,v)

\

Ry = P(SQ(O),y,SQ(y))

subsumes

C = P(s*(0),5(0),5%(0))

Figure 2.9: An SLD-deduction of C' from 3

Lemma 2.11 If X is a finite unsatisfiable set of ground Horn clauses, then
¥k O.

Proof Let n be the number of atomic clauses (clauses which consist of a single
positive literal) in 3. The proof is by induction on n.

1.

2.

If n =0, then O € %, for otherwise the empty set would be an Herbrand
model of 3.

Suppose the lemma holds for 0 < n < m. Suppose 3 contains m + 1
atomic clauses. If O € ¥ the lemma is obvious, so suppose O ¢ 3.

Let A be an atomic clause in 3. We first delete all clauses from > which
have A as head (so we also delete the atomic clause A from X). Then
we replace clauses which have A in their body by clauses constructed by
deleting these atoms A from the body (so for example, B < A, By, ..., By
will be replaced by B < Bjy,...,By). Call the set obtained in this way
Y.

If M were a Herbrand model of X', then M U {A} would be a Herbrand
model of ¥. Thus since ¥ is unsatisfiable, ¥’ must be unsatisfiable. ¥’
only contains m atomic clauses, so by the induction hypothesis, there is
an SLD-refutation of 3. If this refutation only uses clauses from 3’ which
were also in X, then this is also an SLD-refutation of 3, so then we are
done.

Otherwise, if C' is the top clause or an input clause in this refutation and
C ¢ X, then C was obtained from some C’ € ¥ by deleting all atoms
A from the body of C'. For all such C, do the following: restore the
previously deleted copies of A to the body of C' (which turns C' into C’
again), and add these atoms A to all later resolvents. This way, we can
turn the SLD-refutation of ¥/ into an SLD-derivation of < A, ..., A from
3. (See figure 2.10 for illustration, where we add previously deleted atoms
A to the bodies of Ry and Cy.) Since also A € ¥, we can construct an
SLD-refutation of ¥, using A a number of times as input clause to resolve
away all members of the goal + A,...  A.

a
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Ro ¢ % Ciex (RoV—-A) €S C1€X
R Cy g% RiV-A CyV-AEY
Ry =10 — A A AeXx
/
«— A AeX
/
O

Figure 2.10: The SLD-refutations of X' (left) and X (right)

The proof of the lifting lemma for SLD-resolution is similar to Lemma 2.3.

Lemma 2.12 (SLD-derivation lifting) Let X be a set of Horn clauses and
¥ be a set of instances of clauses in X. Suppose Ry....,Rj is an SLD-
derivation of the clause Rj from X'. Then there ezists an SLD-derivation
Ry,..., Ry of the clause Ry from X, such that R} is an instance of R;, for
each 1.

The previous lemmas allow us to prove the refutation-completeness of SLD-
resolution:

Theorem 2.9 (Refutation-completeness of SLD-resolution) Let ¥ be a
set of Horn clauses. Then X is unsatisfiable iff ¥ g, O.

Proof

<: By the soundness of resolution.

=-: Suppose X is unsatisfiable. By Theorem 2.1, there is a finite unsatisfiable
set X' of ground instances of clauses in ¥. From Lemma 2.11, we have ¥’ I, O.
Using Lemma 2.12, we can lift this to X . O. O

2.7.2 The Subsumption Theorem

Here we will prove the Subsumption Theorem for SLD-resolution. As in the
case of linear resolution, we establish this result by translating a refutation to
a deduction, using the following lemma:

Lemma 2.13 Let ¥ be a set of Horn clauses and C = Ly V ...V L be a non-
tautologous ground Horn clause. If X U{—=Lq,...,—~Li} g O, then X gq C.

Proof Suppose ¥ U {—-Lq,...,7Li} Fs O, that is, there exists an SLD-refu-
tation Ry,...,R, =0 of XU {—=Ly,...,—Li}. By induction on n:

1. If n =0, then Ry = O € X, so then the lemma is obvious.
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2. Suppose the lemma holds for n < m. Let Ry,...,Rn+1 = O be an
SLD-refutation of ¥ U {—Lqy,...,—Lg}. Then Ry,...,Rp4+1 is an SLD-
refutation of ¥ U {R1} U {-L4,...,~L;}. By the induction hypothesis,
there is an SLD-derivation R}, R5, ..., R; from ¥ U {R;}, where R] sub-
sumes C. Note that R; must be a definite goal, so R; can only be used
as top clause in this derivation.

If R} # Ry, then R} € X. Moreover, in that case R is used nowhere in
the SLD-derivation of R}, so then this is an SLD-derivation of R; from X,
and hence X ¢y C. In case R} = Ry, we distinguish three possibilities:

1. R; is a binary resolvent of a goal G € ¥ and a definite clause C; € 3.
Then G, R}, R5,...,R), with C; as first input clause, is an SLD-
derivation from 3. R] subsumes C, so then X k44 C.

2. R; is a binary resolvent of a negative literal =L € {=Ly,..., Ly}
and a definite clause C; € ¥ (note that this means that C is a
definite program clause, with L as head). Let 6 be the mgu used in
this resolution-step, so C10 = LV R;. Then C16,LV R, ..., LV R}
is an SLD-derivation of L V R} from ¥ U {C16}. (See Figure 2.11 for
illustration.) C16 is an instance of a clause in 3, so by Lemma 2.12,
we can find an SLD-derivation from ¥ of a clause D, of which LV R;
is an instance. Since R; subsumes C' and L € C, LV R subsumes
C, and hence D also subsumes C'. Therefore X 4 C.

L

Ciex

R’1=R1 Cor e X Ci10 =LV Ry CyreX

LV R}

Figure 2.11: Ilustration of case 2 of the proof

3. Ry is a binary resolvent of a goal G € ¥ and a positive literal L €
{=Lq,...,—Lg}. Let 0 be the mgu used in this resolution step, so
GO = =LV Ry. Then G# = =LV R|,-LV R),...,—~LV Ry is an
SLD-derivation of =L V R; from ¥ U {G#}. GO is an instance of a
clause in 3, so by Lemma 2.12, we can find an SLD-derivation from
¥ of a clause D, of which =LV R; is an instance. Since R; subsumes
C and —L € C, =LV R} subsumes C, and hence D also subsumes C.
Therefore X 4 C.

a

Now we can prove the Subsumption Theorem for SLD-resolution. This result
generalizes Theorem 18 of [MP94], which gives the theorem for the case where
Y. contains only one clause (though ignoring that C' may be a tautology).

Theorem 2.10 (Subsumption Theorem for SLD-resolution) Let X be a
set of Horn clauses and C be a Horn clause. Then ¥ |= C iff ¥ by C.
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Proof

<: By the soundness of resolution and subsumption.

= If C is a tautology, the theorem is obvious. Assume C'is not a tautology.
Let 6 be a Skolem substitution for C' w.r.t. 3. Let C8 be the clause L1 V...V L.
Since C is not a tautology, C6 is not a tautology. C# is ground and ¥ | C0,
so by Proposition A.1 the set of clauses ¥ U {—L1,...,L;} is unsatisfiable.
Then it follows from Theorem 2.9 that YU{—L;,..., =L} Fg O. Therefore by
Lemma 2.13, there exists a clause D such that ¥ ;. D and D subsumes C6.
From Lemma 2.5, D also subsumes C' itself. Hence X ;4 C. O

Note the following special case of this result: if II is a definite program and A
is an atom such that IT |= A, then there exists an atom B such that II F,, B
and A is an instance of B.

Furthermore, analogous to the case of linear resolution, we also have the
following equivalence:

Theorem 2.11 For SLD-resolution, the refutation-completeness and the Sub-
sumption Theorem are equivalent.

2.8 Summary

The Subsumption Theorem is the following statement:

If ¥ is a set of clauses and C is a clause, then ¥ = C iff C is a
tautology, or there exists a clause D which subsumes C' and which
can be derived from ¥ by some form of resolution.

This theorem is a more direct form of completeness than the better-known
refutation-completeness of resolution and hence sometimes more useful, partic-
ularly for theoretical analysis.

Different versions of the theorem exist, depending on the instantiation of
“some form of resolution.” We have proved here that the Subsumption Theo-
rem holds for unconstrained resolution and linear resolution for general clauses.
Moreover, for each of these two forms of resolution, the Subsumption Theorem
is equivalent to the refutation-completeness of that form of resolution: the one
can be proved from the other. On the other hand, the Subsumption Theorem
does not hold for input resolution, not even in the simple case where ¥ con-
tains only one clause. For SLD-resolution for Horn clauses, the Subsumption
Theorem does hold, and is again equivalent to the refutation-completeness of
SLD-resolution.



Chapter 3

Unfolding

3.1 Introduction

In an ILP-problem, it is sometimes the case that we initially start with a theory
that is overly general: it is complete, but not consistent. The problem of finding
a correct theory then becomes the problem of specializing the initial theory to
a correct one. In this chapter we will investigate how such specialization can be
done using unfolding. This is a specialization-operator which constructs resol-
vents from given parent clauses. We will restrict attention to definite program
clauses, so the theories should be definite programs. Furthermore, we will also
assume that the given examples Et and E~ consist of ground atoms (ground
instances of one or more predicates).
Let us first formally define the specialization problem:

Given: A definite program IT and two disjoint sets of ground atoms
E*T and E~, such that II is overly general w.r.t. ET and E~, and
suppose there exists a definite program IT" such that IT = TI' and TI'
is correct w.r.t. ET and E~.

Find: One such a IT'.

Clearly, this is a special case of the general problem setting of Chapter 1. We
need to presuppose the existence of a correct specialization I’ of II, because a
correct program does not always exist, as proved in Theorem 1.1. Hence trying
to solve a specialization problem only makes sense when a correct specialization
exists. Note that background knowledge can be included in II, so we will not
mention background knowledge separately in this chapter.

A natural way to specialize II is, first, to replace a clause in II by all its
resolvents upon some body-atom in this clause. Constructing these resolvents is
called unfolding. The new program obtained in this way after unfolding a clause
in I1, is clearly implied by II. The function of the replaced clause is taken over by
the set of resolvents produced by unfolding. We can then, secondly, delete some
new clauses from the program that have to do with the negative examples, thus
specializing the program. Hopefully, after repeating these two steps a number
of times, we can get rid of all negative examples. This method was introduced
in [BTA94].

39
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For simplicity, let all examples be ground instances of P(z1,...,z,), for
some predicate P. The motivation for the method described above, is the
fact that it can be used to prune negative examples from the SLD-tree for
MU {+ P(z1,...,7,)}.} We will illustrate this by an example. Consider the
program II, consisting of the following clauses:

Ci = P(z,y) < Q(=z,y)
Cy = Q(ba b) A Q(ava’)
Cs = Q(aaa)

and Et = {P(b,b)}, E- = {P(a,a)}. The SLD-tree for 11 U {+ P(z,y)} is
shown on the left of figure 3.1. The success branches corresponding to refuta-

tions of positive examples are marked with a ‘+’, for negative examples with a
(0

+— P(z,y) +— P(z,y) +— P(z,y)
1 1,2 1,3 1,2
— Q(z,y) « Q(a,a) o « Q(a,a)
{x/as y/a}s -
2 3 3\/ 3
+— Q(a,a) o | O
{I/a’y/a}’f {I/bay/b}’+ {I/bay/b}’+
3
O
{z/b,y/b},+

Figure 3.1: The SLD-trees for TI, II" and 1"

P(a,a) is a negative example, so we would like to remove this by weakening
the program. This could be done by deleting C'y or C5 from II. However, this
would also make the positive example P (b, b) no longer derivable, thus rendering
the program too weak. Another way to specialize is, first, to unfold C; upon
Q(z,y). The following C; 2 and C) 3 are the two clauses produced by unfolding
C1.

Cio = P(b,b) < Q(a,a) (resolvent of C; and Cy)
C13 = P(a,a) (resolvent of C; and Cj)

Now we replace the unfolded clause Cy by its resolvents C; 2 and C; 3. This
results in II' = {Cy,C3,C12,C13}. The SLD-tree for I' U {+- P(z,y)} is
shown in the middle of figure 3.1. In this tree, the negative example is directly
connected to the root, via the branch that uses € 3. Now the negative example
can be pruned from the tree by deleting C 3 from IT', which does not affect the

! An SLD-tree for TTU {G} is a tree containing all SLD-derivations from IT U {G} with the
goal G as top clause, in which the selected atoms are selected by some computation rule.
See [L1087] for more information on SLD-trees.
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positive example. Then we obtain II” = {Cy, C3, C1 2}, which is correct w.r.t.
E* and E~. The SLD-tree for 11" U {«+ P(z,y)} is simply the tree for II', after
the rightmost branch has been pruned (right of figure 3.1).

The idea behind this method is the following:

1. Unfolding removes some internal nodes from the SLD-tree, for instance,
the internal node < Q(z,y) in the tree on the left of figure 3.1. This
tends to separate the positive from the negative examples and also brings
them closer to the root of the tree.

2. If a negative example hangs directly from the root and its input clause C'
is not used elsewhere in the tree for a positive example, then the program
can be specialized by deleting C.

In other words: unfolding can transform the SLD-tree in such a way that neg-
ative examples can be pruned by deleting clauses from the program, without
also pruning positive examples.? Thus the use of unfolding as a specialization
tool can be motivated by looking at SLD-trees and the SLD-refutations those
trees contain.

In this chapter we first define UD;-specialization and UDs-specialization,
which employ unfolding (each in their own way) and clause deletion. It will be
seen from some examples that we give later on, that both of these specializa-
tion methods are incomplete: some specialization problems cannot be solved
in this way. However, if we look at program specialization through the per-
spective of SLD-derivations rather than refutations, then we can see from the
Subsumption Theorem for SLD-resolution that subsumption is what we need
to make our specialization technique complete. Thus in Section 3.5, we de-
fine UDS-specialization, a specialization technique based on Unfolding, clause
Deletion and Subsumption. We prove that UDS-specialization is complete: ev-
ery specialization problem has a UDS-specialization as a solution. Finally, in
Section 3.6 we go into the relation between program specialization by unfolding
and program generalization by inverse resolution.

3.2 Unfolding

In this section, we define unfolding, which will be used in the next sections to
solve specialization problems.

Definition 3.1 Let IT be a definite program, C' = A « By,..., B, a definite
program clause in IT and B; the i-th atom in the body of C. Let {Cy,...,Cy,}
be the set of clauses in IT whose head can be unified with B;. Then unfolding

C upon B; in Il means constructing the set Uc; = {D1,..., Dp}, where each
D;j is the resolvent of C; and C, using B; and the head of C; as the literals
resolved upon. e

’In [BIA94, Bos95a], Bostrom and Idestam-Almquist present the algorithm SPECTRE,
which implements this specialization technique for single-predicate learning. In [Bos95b],
SPECTRE 1I is presented, which overcomes some difficulties of SPECTRE concerning recursive
clauses and which can be applied to multiple-predicate learning. Unfolding was also imple-
mented in [AGB95], combined with a version of Shapiro’s Backtracing Algorithm [Sha81b].



42 CHAPTER 3. UNFOLDING

Example 3.1 Let I consist of the following clauses:

Ci = P(f(z)) < P(z),Q(z)

Gy = Q(x) « R(z,a)

C3 = P(f(a))

Cy = Q(b)
Suppose we want to unfold C; upon Q(z) in the program II. {Cy, C4} is the set
of clauses in IT whose head can be unified with Q(z), so Ug, 2 = {(P(f(z))
P(z), R(z,a)), (P(f(b)) « P(b))}. <

Note that Uc; may be the empty set. This is the case if there is no program
clause whose head unifies with the i-th atom in the body of C'. Note also that
an atom cannot be unfolded, since it has no body-atoms.

Using the set Uc,;, we can construct a new program from II in two ways.
The first way, used in [BIA94], replaces C by Uc,;, thus obtaining the program
(IN\{C})UUc,;. The second way adds Uc; to II, without deleting the unfolded
clause C' from the program.

Definition 3.2 Let II be a definite program and Uc; the set of clauses con-
structed by unfolding C' upon B; in II. Then Il ¢, = (II\{C}) UUg, is called
the type 1 program resulting from unfolding C' upon B; in II. 11,5 ¢; = HUUg,;
is called the type 2 program resulting from unfolding C' upon B; in II. <

In the next sections, we will see how these two types of unfolding can be used
for program specialization. Here we will first show that constructing the type 1
program preserves the least Herbrand model of the program, while constructing
the type 2 program preserves logical equivalence, which is stronger.

Proposition 3.1 Let II be a definite program, G a definite goal and Il c; the
type 1 program resulting from unfolding C' upon B; in II. Then I1U{G} k4 O
Z.ﬁ Hul,C,i U {G} l_sr a.

Proof

<: Suppose II,;.c; U{G} s O. Then by the soundness of resolution,
1,0, U{G} is unsatisfiable. It is easy to see that IT |= 1,1 ¢ ;. Hence ITU{G}
is unsatisfiable, and by Theorem 2.9, we have [T U {G} I, O.

=: Suppose IIU {G} k4, O and C (the unfolded clause) is A « By, ..., B;,
..., By, which we abbreviate to A < By, B;, By (where By = By,...,B;_;
and By = Bj,1,...,B,). B; is the atom unfolded upon. If there is an SLD-
refutation of ITU{G} in which C isn’t used as an input clause, then this is also
an SLD-refutation of II,; ¢; U {G}. But suppose C is used as input clause in
all SLD-refutations of ITU {G}. We will prove that from such a refutation, a
refutation of IL,;,c; U {G} can be constructed.

Suppose we have a refutation of I U {G} with goals Gy,...,G, and input
clauses C,...,C,, which uses C at least once as input clause. By the indepen-
dence of the computation rule (Theorem 9.2 of [L1087]), we can assume that for
any k, if C is the input clause in the step leading from Gy_1 to Gy, then the
instance of B; that is inserted in G by C, is the selected atom in Gy.

Suppose the j-th input clause is C. We picture this part of the refutation
on the left of figure 3.2. Here we make the following notational conventions:
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o G;_1, the (j — 1)-th goal, is the goal «+ Ay,..., Ai,.... Ay, which we
abbreviate to « A, Ay, As.

e The input clause used in the (j + 1)-th step is Cj; = A’ < B’, where B’
is an abbreviation of B],..., B}.

e 0; is an mgu for A and A (used in the j-th resolution step).

e 0;1 is an mgu for B;0; and A’ (used in the (j + 1)-th resolution step).

Gj_1 =« Ay, Ay, Ay Cj=C=A« By,B;,By,0; Gj_1 =« A1, Ay, Ay ' = (A« By, B, By)o, o
e (AT.B1.B:. By Ay A B . - =
Gj =« (A1, B1, Bi, By, 42)0; Cjg1 =A< B0 Gy =+ (A1, (B1, B!, By)o, A3)o’

,

Gjp1 =+ (A1.B1, B/, By, A3)0,0; 41

Figure 3.2: From the tree on the left, we can construct the tree on the right,
using C' instead of C.

Since the (j + 1)-th step of the tree on the left of figure 3.2 shows that B;
and A’ can be unified (say, with mgu o), the clause C' = (A + By, B’, Bo)o
(the result of resolving C' with Cj 1 = A" + B’) must be in Uc,i. We assume
without loss of generality that G;_1, C; = C, Cj;1, and C’ are standardized
apart.

What we want is to construct a tree which, instead of using C in the j-th
step, uses C’. For this, we will show that G, is a variant of the goal GJH,
which can be derived from G;_; and C’. Then we can replace the j-th step
(which uses C') and the (5 + 1)-th step by one single step which doesn’t need C
anymore, but instead uses C'.

641 is an mgu for A" and B;0; and A'6; = A’ (because of the standard-
izing apart), so 6;0;,1 is a unifier for A’ and B;. o is an mgu for A’ and B;,
so there exists a substitution vy such that oy = 0;0;11. Aoy = A0;0;41 =
Apb;0; 1 = Agoy = Ay, so v is a unifier for Ao and Aj;. This shows
that Ao and Aj can be unified. Let o' be an mgu for Ao and Aj. Let
G’Jrl =+ (Ay, (B, B, By)o, Ay)o’ be the goal derived from Gj—1 and C'. We
will show that Gj1 and G, are variants.

1. We have already shown that + is a unifier for Ao and A;. Furthermore, o’
is an mgu for Ao and Ay, so there exists a substitution § such that o’d = ~

Now G]+1 (Al,Bl,B BQ,A2)9 9]+1 (Al,Bl,B BQ,AQ)O”}/ =<

(A1, B, B', By, A3)00'6 =« (Ay,(B1, B', By)o, A3)0'd = G, |6

2. ¢’ is an mgu for A, and Ao and Ayo = Ay (because of the standardizing
apart), so oo’ is a unifier for A, and A. Furthermore, #; is an mgu for
Ay and A, so there exists a substitution 4’ such that ;4 = oo’.
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Ay = A0y = Aloo’ = Bjoo' = Bifjv', so 4 is a unifier for A’
and B;f;. Furthermore, 6;,; is an mgu for A" and B;0;, so there ex-
ists a substitution ¢’ such that 6,16’ = 4'. Now we have G, =+

A3)0iy' = (A1, (B1,B', By)o, A2)00 118" = G410’

We have shown that G;1 = G, 10 and G}y = G416, so Gj41 and G are
variants.

Since Gjj+1 and G}, are variants, we have shown that the two resolution
steps leading from G; 1 to G411 can be replaced by a single resolution step,
which uses C’ as input clause. In the same way, we can eliminate all other
uses of C as input clause in the rest of the tree, by constructing a refutation
which uses some clause in Ug; to replace a usage of C, each time replacing two
resolution steps by one single resolution step. Finally we get an SLD-refutation
of TU U¢,; U {G} which doesn’t use C at all. This means that we have in fact
found an SLD-refutation of I, ¢,; U {G}. O

A direct consequence of the proof given above, is the following:

Corollary 3.1 Let Il be a definite program, G a definite goal and Il c; the
type 1 program resulting from unfolding C upon B; in Il. Suppose there exists
an SLD-refutation of length n of IU{G}, which uses C r times as input clause.
Then there ezists an SLD-refutation of length n —r of Il ¢ U {G}.

Intuitively, this corollary shows that unfolding makes refutations shorter. So
unfolding has the potential of improving the efficiency of an SLD-based theorem
prover. Especially unfolding often-used clauses is worthwhile, since then the
value 7 mentioned in the corollary is highest. On the other hand, unfolding
usually increases the number of clauses. So what we see here is an interesting
trade-off between the number of clauses and the average length of a refutation:
unfolding usually decreases the average length of a refutation, but also usually
increases the number of clauses in the program.

We now proceed to prove that constructing the type 1 program preserves
the least Herbrand model My of the program. This is also proved in [TS84],
though differently from our proof.

Theorem 3.1 Let Il be a definite program, C € II and IL, c,; the type 1
program resulting from unfolding C' upon B; in I1. Then My = Mp

ul,C,i°

Proof Let A be some ground atom. Then:

A € My iff (by Theorem A.6)

IT = A iff (by Proposition A.1)

ITU {« A} is unsatisfiable iff (by Theorem 2.9)

MU {« A} -, O iff (by Proposition 3.1)

1,0 U{+ A} kg O iff (by Theorem 2.9)

1,0 U {« A} is unsatisfiable iff (by Proposition A.1)
IIy1,0, = A iff (by Theorem A.6)

A € Mp

ul,Ci*
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Hence My = My O

ul,Ci*

Thus constructing the type 1 program preserves the least Herbrand model.
However, it does not preserve logical equivalence. Take for instance II = {C =
P(f(x)) + P(z)}. Then Ty c1 = {P(f*(z)) < P(2)}. Now My = M, ., =
0, but II ¢ II,; 1 since IL,; 1 ¥ II. Note that this means that a specialization
of IT need not be a specialization of II,,; ¢ ;. This is actually one of the reasons for
the fact that type 1 unfolding and clause deletion cannot solve all specialization
problems (see Section 3.3).

On the other hand, constructing the type 2 program does preserve logical
equivalence. Since II C Il ¢; we have II,2 ¢; = II; and because II,2 ¢ ;\II is
a set of resolvents of clauses in I, we also have IT |= T2 ;.

Proposition 3.2 Let II be a definite program, C € Il and 1,2 ¢, the type 2
program resulting from unfolding C upon B; in II. Then II < Il c;.

3.3 UD;-specialization

As we have seen in the introduction, unfolding together with clause deletion can
be used to solve some specialization problems. In this section we formalize this
in a method called UDj-specialization. The name is an acronym for Unfolding
and clause Deletion, the ‘1’ indicates that we use the type 1 program resulting
from unfolding here. UDj-specialization corresponds to the approach taken
in [BIA94].

Definition 3.3 Let IT and II' be definite programs. We say II' is a UD;-
specialization of T1, if there exists a sequence Ty = I, Ty, ..., II, =TI’ (n > 1)
of definite programs, such that for each 7 =1,...,n — 1, either

L. Hj+1 = Hjul,(/',i'
2. Hj+1 = H]\{C} for some C € Hj.

&

If 41 =11, o, then each clause in I, is either in II;, or a resolvent of two
clauses in II;. Hence II; |= I in this case. If II;;; = II;\{C}, then clearly
IT; = 11;11. Thus we have the following:

Proposition 3.3 Let 11 be a definite program and II' a UD;-specialization of
II. Then II |= 11"

For a solution II' to a specialization problem, we have two conditions: II |= II'
and TI' should be correct w.r.t. ET and E~. The previous proposition shows
that a UDq-specialization of Il always satisfies the first condition.

However, the second condition cannot always be satisfied by UDq-specializa-
tion. Two kinds of steps can be taken here: II;;; can be the result of un-
folding a clause in II;, or by deleting a clause from II;. The first kind of
step preserves the least Herbrand model, the second kind possibly reduces it.
In fact, not only deleting a clause, but also the unfolding step may weaken
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the program. For instance, suppose Il = {P(a),(P(z) + P(f(z)))}. Then
II' = {P(a), (P(x) < P(f?(x)))} is the result of unfolding P(z) + P(f(z)) in
IT. Whereas this unfolding step has not affected the least Herbrand model—
My = My = {P(a)}—it has indeed made the program weaker: II |= II'; but
I j 1.

Actually, even if a correct program II' is implied by the original program
I1, this II' need no longer be implied by a program II” obtained from II by
UD;-specialization. Since further UDy-specializations of TT” can only yield pro-
grams which are implied by II"” (and hence do not imply the solution IT'), UD;-
specialization will not reach a solution of the specialization problem in this case.

Consider TT = {(P(f(x)) « P(x)), P(a)}. Let My = {P(a), P(f(a)), P(f*(a)),
P(f3(a))...}, and let E* = Mp\{P(f?(a))} and E- = {P(f%(a))}. See fig-

ure 3.3.
/\ {m/a} +
/\ {x/fz

{x/f3
Figure 3.3: The SLD-tree for ITU {« P(z)}

Let II; = II. The only clause that can be unfolded is P(f(z)) « P(z).
Unfolding this clause results in

Iy = {(P(f*(2)) « P(2)), P(f(a)), P(a)}.
Then unfolding P(f%(z)) < P(z) gives

I3 = {(P(f*(x)) + P(2)), P(f*(a)), P(f*(a)). P(f(a)), P(a)}.

Notice that My, = M, = Mn,, but unfolding has nevertheless weakened the
program: II; = IIy = II3, but IIy W II; and I3 £ . In II3, P(f*(z)) <
P(z) can be unfolded, etc. It is not difficult to see that in general, any UD;-
specialization of II is a subset of

{P(f*" (2)) + P(2)), P(f*"~'(a)), P(f* "*(a)),.... P(f*(a), P(f(a)), P(a)},

for some n. In order to specialize this program such that P(f?(a)) is no longer
derivable, we must in any case remove P(f2(a)). However, this would also
prune some of the positive examples (such as P(f?"*%(a))) from the program
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via the clause P(f2?"(z)) < P(x). Hence there is no UD;-specialization that
solves this particular specialization problem. Note that

" = {(P(f*(z)) + P(2)). (P(f’(2)) + P(z)), P(f(a)), P(a)}

is a solution for this particular specialization problem. II |= 1", but the spe-
cializations Ily, IT3, . .. no longer imply this correct program I1”. So in this case,
UD;-specialization has “skipped” over the right solution. In the next section,
we will show how this can be solved by UDs-specialization.

3.4 UDs-specialization

The previous example showed the incompleteness of UD;-specialization. But
suppose we change our strategy, such that the unfolded clause is not removed
immediately from the program. That is, suppose we use type 2 instead of
type 1 unfolding. This increases the number of clauses that can later on be
used in unfolding. In this case, we can find a correct specialization w.r.t. the
examples given in Section 3.3, as follows. We start with IT) = TI, and unfold
P(f(z)) « P(z) without removing the unfolded clause. This gives IT}:

Iy = {(P(f*(x)) + P(2)), (P(f(z)) + P(2)), P(f(a)), P(a)}.

Now we unfold P(f2(x)) + P(x), again without removing the unfolded clause.
This gives IIf:

M= {(P(f* )) < P(z)),
(a)}.

If we remove (P(f*(z)) = P(z)), (P(f(z)) + P(z)), P(f*(a)) and P(f*(a))
from TIf, we obtain TI":

" = {(P(f*(z)) ¢ P(x)). (P(f*(2)) + P(x)), P(f(a)), P(a)}.

This is a correct specialization of Il w.r.t. ET and E~: 11" = E* and 1" #
P(f2(a).

This example induces a second kind of specialization, UDs-specialization,
which differs from UDq-specialization in the use of type 2 unfolding instead of
type 1 unfolding.?

R

Definition 3.4 Let I and TI' be definite programs. We say II' is a UDs-
specialization of T1, if there exists a sequence Iy = I, I, ..., II, =TI’ (n > 1)
of definite programs, such that for each 7 = 1,...,n — 1, either

1. M, =11

Ju2,0,i"

*Henrik Bostrém (personal communication) made us aware of the fact that the covering
algorithm of [Bos95a], with which his unfolding-algorithm SPECTRE is compared, is in fact
equivalent to our UDs-specialization. He also gave an example of a solution of a specialization
problem which could be found by the covering algorithm, though not by SPECTRE, because
the hypothesis-space of SPECTRE is a proper subset of the hypothesis-space of the covering
algorithm.
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2. H]‘+1 = H]\{C} for some C € Hj.
O

Note that any UD;-specialization is also a UDy-specialization, since obtaining
the type 2 program and then removing the unfolded clause in the next step
is equivalent to obtaining the type 1 program. The following proposition is
obvious:

Proposition 3.4 Let 1 be a definite program and II' a UDy-specialization of
II. Then 11 |= 11"

Since any UDj-specialization is a UDy-specialization, while some UD»-specia-
lizations cannot be found with UD;-specialization (see the example above),
UDs-specialization is “more complete” than UD;-specialization. Unfortunately,
UDs-specialization is still not sufficiently strong to provide a solution for all
specialization problems. Consider the following: I1 = {P(z)}, E* = {P(f(a)),
P(f?(a))} and E- = {P(a)}. ' = {P(f(x))} is a solution for this specializa-
tion problem. However, no solution can be found by UDs-specialization. Since
IT contains only a single atom, no unfolding can take place here. Hence the
only UDs-specializations of IT are II itself and the empty set, neither of which
is correct. So some specialization problems do not have a UDs-specialization
as a solution.

3.5 UDS-specialization

In order to extend UDs-specialization to a method which can solve all spe-
cialization problems, we have to allow the possibility of taking a subsumption
step.* In general, we can define UDS-specialization (Unfolding, clause Deletion,
Subsumption) as follows:

Definition 3.5 Let IT and IT' be definite programs. We say II' is a UDS-
specialization of T1, if there exists a sequence Iy = I, Iy, ..., I, =TI’ (n > 1)

of definite programs, such that for each j = 1,...,n — 1, one of the following
holds:
LIy =1L, -

2. H]‘+1 = H]\{C} for some C € Hj.
3. IIj11 =1I; U{C} for a C that is subsumed by a clause in II;.

O
UDS-specialization is indeed complete: any specialization problem has a UDS-

specialization as solution. For the proof of completeness, we use the Subsump-
tion Theorem for SLD-resolution (Theorem 2.10).

Theorem 3.2 Let I1 and II' be definite programs, such that II' contains no
tautologies. Then T |= 11" iff TI' is a UDS-specialization of TI.

4Subsumption can be seen as a solution to the problem of ambivalent leaves in an SLD-tree
[BIA94, Bos95b].
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Proof

<: By the soundness of resolution and subsumption.

= Suppose II = II'. Then for every C € II', we have Il E C. Let C
be some particular clause in TI' that is not in II. Then by the Subsumption
Theorem for SLD-resolution, there exists an SLD-derivation from II of a clause
D which subsumes C, as shown in figure 3.4.

Rp eIl Crell

[~
T

n:D

blbsumes

C

C, eIl

Figure 3.4: An SLD-deduction of C from II

Since R; is a resolvent of Ry and C (upon the selected atom B; in Ry), if we
unfold Ry in IT upon B; we get the program II,s r,; which contains R;. Now
when we unfold Ry in I, g, i, we get a program which contains Ry, etc. Thus
after n applications of (type 2) unfolding, we can produce a UDS-specialization
(a superset of TT) containing the clause R, = D. Since D subsumes C, we can
add C to the program, by the third item in the definition of UDS-specialization.

If we do this for every C € IT' that is not in II, we get a program IT"” which
contains every clause in II'. Since IT1” is obtained from II by a finite number
of applications of unfolding and subsumption, IT” is a UDS-specialization of II.
Now delete from IT” all those clauses that are not in II'. Then we obtain IT' as
a UDS-specialization of II. Thus if IT = I, then IT" is a UDS-specialization of
II1. O

Now suppose we have II, II', ET and E~, such that II |= II' and II' is correct
w.r.t. ET and E~. We can assume II' contains no tautologies. Then it follows
from the previous theorem that IT' is a UDS-specialization of II. This shows
that UDS-specialization is complete:®

Corollary 3.2 (Completeness of UDS-specialization) FEuvery specializa-
tion problem with 11 as initial program has a UDS-specialization of I1 as solution.

PUDS-specialization need not specialize minimally in the sense advocated in [Wro93]: a
UDS-specialization of an initial IT may be considerably different from II. On the other hand,
the approach of [Wro93] has the disadvantage that each clause in a specialized theory should
be equal to or subsumed by a clause in the initial II (p. 71, postulate 1), which is quite
restrictive.
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Efficiency:

Note that if we want to unfold some particular clause C, we actually only need
to consider the resolvents of C' and clauses from the original II. This is clear
from figure 3.4, since in order to produce R;; 1, we only need to resolve R; with
Ci+1, which is a member of the original II. In other words, we only need to add
a subset of Uc; to the program. We might define U/ ; as the set of resolvents
upon B; of C' and clauses from the original II and then use IIj, =1I; U UIC',’i
instead of IT; 11 = II;,, ., = II; UUc,;. This reduces the number of clauses that
unfolding produces, and hence improves efficiency.

3.6 Relation with inverse resolution

As we have already seen in Chapter 1, there are basically two possible ap-
proaches in ILP. We have the top-down approach (of which UDS-specialization
is an example) which starts with an overly general program and specializes this,
and the bottom-up approach, which starts with an overly specific program and
generalizes this. There is an interesting relation between our previous analysis
of program specialization on the one hand, and program generalization by in-
verse resolution (see for instance [MB88, Mug92a, Rou92, SA93]) on the other
hand. The inversion of resolution is a well-known approach towards generaliza-
tion in ILP. Here the inversion of a resolution step can be viewed as the dual
of unfolding.

However, in the same way as specialization by unfolding is not complete
without subsumption, its dual also needs (the inversion of) subsumption. Most
research in inverse resolution has focused on inverting resolution steps, mostly
ignoring the inversion of the final subsumption step. By the previous analysis,
inverting a subsumption step will be necessary for completeness. For example,
we cannot generalize IT = {P(f(z))} to II' = {P(z)} just by inverting resolution
steps.

3.7 Summary

The specialization problem, a special case of the general problem setting for
ILP, can be stated as follows:

Given: A definite program IT and two disjoint sets of ground atoms
E*T and E~, such that II is overly general w.r.t. ET and E~, and
suppose there exists a definite program IT" such that IT = TI' and TI'
is correct w.r.t. ET and E~.

Find: One such a IT'.

Unfolding, constructing the set Uc; of resolvents of a clause C' € II with clauses
in II, can be used as a tool for solving such problems. The type 1 program is
obtained by replacing C' in II by Ug,;, while the type 2 program is ITU U¢,;.
Constructing the type 1 program preserves the least Herband model, while the
type 2 program preserves logical equivalence with the original program.
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We defined three increasingly strong specialization techniques here. UDj-
and UDgs-specialization employ clause deletion and, respectively, the type 1 and
type 2 programs resulting from unfolding. Both are incomplete. If we add to
UDs-specialization the possibility of taking a subsumption step, we obtain UDS-
specialization. This is a complete specialization method: every specialization
problem with IT as initial program has a UDS-specialization of II as solution.
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Chapter 4

Least Generalizations and
Greatest Specializations

4.1 Introduction

Inductive Logic Programming is concerned with learning from examples. Learn-
ing from examples means adjusting a theory to the examples. As we have seen
in Chapter 1, the two main operations in ILP for adjustment of a theory, are
generalization and specialization. Generalization strengthens a theory that is
too weak, while specialization weakens a theory that is too strong. These op-
erations only make sense within a generality order, which is a relation stating
when some clause is more general than some other clause.

The three most important generality orders used in ILP are subsumption
(also called #-subsumption), logical implication and implication relative to back-
ground knowledge.! In the subsumption order, we say that clause C is more
general than D—or, equivalently, D is more specific than C—in case C sub-
sumes D. In the implication order, we say that C' is more general than D if C
logically implies D. Finally, C' is more general than D relative to background
knowledge ¥ (X is a set of clauses), if {C'} U X logically implies D.

Of these three orders, subsumption is the most tractable. In particular,
subsumption is decidable, whereas logical implication is not decidable, not even
for Horn clauses, as established in [MP92]. In turn, relative implication is harder
than implication: both are undecidable, but proof procedures for implication
need to take only derivations from C' into account, whereas a proof procedure
for relative implication should check all derivations from {C'} U X.

Within a generality order, there are two approaches to generalization or
specialization. The first approach generalizes or specializes individual clauses.
We will not discuss this in any detail in this chapter, and only mention it for
completeness’ sake. This approach can be traced back to Reynolds’ concept of a
cover [Rey70]. It was implemented for example by Shapiro in the subsumption
order, in the form of refinement operators [Sha81b]. However, a clause C which
implies another clause D need not subsume this D. For instance, take C' =
P(f(z)) + P(z) and D = P(f?(z)) + P(z). Then C does not subsume D,

'There is also relative subsumption [Plo71b], which will be briefly touched in Section 4.4.

93
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but C' = D. Thus subsumption is weaker than implication. A further sign of
this weakness is the fact that tautologies need not be subsume-equivalent, even
though they are logically equivalent.

The second approach generalizes or specializes sets of clauses. This is the
approach we will be concerned with in this chapter. Here the concept of a least
generalization® is important. The use of such least generalizations allows us to
generalize cautiously, avoiding over-generalization. Least generalizations of sets
of clauses were first discussed by Plotkin [Plo70, Plo71a, Plo71b]. He proved
that any finite set S of clauses has a least generalization under subsumption
(LGS). This is a clause which subsumes all clauses in S and which is subsumed
by all other clauses that also subsume all clauses in S. Positive examples can
be generalized by taking their LGS.? Of course, we need not take an LGS of
all positive examples, which would yield a theory consisting of only one clause.
Instead, we might divide the positive examples into subsets, and take a separate
LGS of each subset. That way we obtain a theory containing more than one
clause.

For this second approach, subsumption is again not fully satisfactory. For
example, if S consists of the clauses D; = P(f?(a)) < P(a) and Dy =
P(f(b)) « P(b), then the LGS of S is P(f(y)) + P(z). The clause P(f(x)) +
P(z), which seems more appropriate as a least generalization of S, cannot be
found by Plotkin’s approach, because it does not subsume D;. As this exam-
ple also shows, the subsumption order is particularly unsatisfactory when we
consider recursive clauses: clauses which can be resolved with themselves.

Because of the weakness of subsumption, it is desirable to make the step
from the subsumption order to the more powerful implication order. Accord-
ingly, it is important to find out whether Plotkin’s positive result on the exis-
tence of LGS’s also holds for implication. Thus the question whether any finite
set of clauses has a least generalization under implication (LGI), has been de-
voted quite a lot of attention recently. Sofar, this question has only been partly
answered. For instance, Idestam-Almquist [TA93, TA95] studies least general-
izations under T-implication as an approximation to LGI’s. Muggleton and
Page [MP94] investigate self-saturated clauses. A clause is self-saturated if it is
subsumed by any clause which implies it. A clause D is a self-saturation of C, if
C and D are logically equivalent and D is self-saturated. As stated in [MP94],
if two clauses C7 and Cy have self-saturations D1 and Doy, then an LGS of D,
and Ds is also an LGI of €y and (5. This answers our question concerning the
existence of LGI’s for clauses which have a self-saturation. However, Muggleton
and Page also show that there exist clauses which have no self-saturation. So
the concept of self-saturation cannot solve our question in general.

Use of the third generality order, relative implication, is even more desirable
than the use of “plain” implication. Relative implication allows us to take
background knowledge into account, which can be used to formalize many useful
properties and relations of the domain of application. For this reason, least

?Least generalizations are often called least general generalizations, for instance in [Plo71b,
MP94, TA93, TA95, Nib88], though not in [Plo70], but we feel this ‘general’ is redundant.

3There is also a relation between least generalization under subsumption and inverse res-
olution [Mug92a].
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generalizations under implication relative to background knowledge also deserve
attention.

Apart from the least generalization, there is also its dual: the greatest spe-
cialization. Greatest specializations have been accorded much less attention in
ILP than least generalizations, but the concept of a greatest specialization may
nevertheless be useful (see the beginning of Section 4.6).

In this chapter, we give a systematic treatment of the existence and non-
existence of least generalizations and greatest specializations, applied to each
of these three generality orders. Apart from distinguishing between these
three orders, we also distinguish between languages of general clauses and
more restricted languages of Horn clauses. Though most researchers in ILP
restrict attention to Horn clauses, general clauses are also sometimes used
[Plo70, Plo71b, Sha81b, DRB93, TA93, TA95]. Moreover, many researchers who
do not use general clauses actually allow negative literals to appear in the body
of a clause. That is, they use clauses of the form A < L4,...,L,, where A
is an atom and each L; is a literal. These are called program clauses [Llo87].
Program clauses are in fact logically equivalent to general clauses. For instance,
the program clause P(z) < Q(z),—R(z) is equivalent to the non-Horn clause
P(z) V-Q(z)V R(z). For these two reasons, we consider not only languages of
Horn clauses, but also pay attention to languages of general clauses.

The combination of three generality orders and two different possible lan-
guages of clauses gives a total of six different ordered languages. For each of
these, we can ask whether least generalizations (LG’s) and greatest specializa-
tions (GS’s) always exist. We survey results already obtained by others and also
contribute some answers of our own. For the sake of clarity, we will summarize
the results of our survey right at the outset. In the following table ‘4’ signifies

a positive answer, ‘—’ means a negative answer.
Horn clauses General clauses
Quasi-order LG GS LG GS
Subsumption (>) + + + +
Implication (=) - - + for function-free | +
Relative implication (Fyx) || — - - +

Table 4.1: Existence of LG’s and GS’s

Our own contributions to this table are threefold. First and foremost, we
prove that if S is a finite set of clauses containing at least one non-tautologous
function-free clause? (apart from this non-tautologous function-free clause, S
may contain an arbitrary finite number of other clauses, including clauses which
contain functions), then there exists a computable LGI of S. This result is on
the one hand based on the Subsumption Theorem, which allows us to restrict
attention to finite sets of ground instances of clauses and on the other hand
on a modification of some proofs concerning T-implication which can be found
in [TA93, TA95]. An immediate corollary of this result is the existence and
computability of an LGI of any finite set of function-free clauses. As far as we

*A clause which only contains constants and variables as terms.
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know, both our general LGI-result and this particular corollary are new results.

Niblett [Nib88, p. 135] claims that “it is simple to show that there are lggs if
the language is restricted to a fixed set of constant symbols since all Herbrand
interpretations are finite.” Yet even for this special case of our general result,
it appears that no proof has been published. Initially, we found a direct proof
of this case, but this was not really any simpler than the proof of the more
general result that we give in this chapter. Niblett’s idea that the proof is
simple may be due to some confusion about the relation between Herbrand
models and logical implication (which is defined in terms of all models, not just
Herbrand models). We will describe this at the end of Subsection 4.5.1. Or
perhaps one might think that the decidability of implication for function-free
clauses immediately implies the existence of an LGI. But in fact, decidability
is not a sufficient condition for the existence of a least generalization. For
example, it is decidable whether one function-free clause C' implies another
function-free clause D relative to function-free background knowledge. Yet least
generalizations relative to function-free background knowledge do not always
exist, as we will show in Section 4.7.

Our LGI-result does not solve the general question of the existence of LGI’s,
but it does provide a positive answer for a large class of cases: the presence
of one non-tautologous function-free clause in a finite S already guarantees the
existence and computability of an LGI of S, no matter what other clauses S
contains.® Because of the prominence of function-free clauses in ILP, this case
may be of great practical signifcance. Often, in particular in implementations of
ILP-systems, the language is required to be function-free, or function symbols
are removed from clauses and put in the background knowledge by techniques
such as flattening [Rou92]. Well-known ILP-systems such as FoiL [QCJ93],
LiNnus [LD94] and MoBAL [MWKE93] all use only function-free clauses. More
than one half of the ILP-systems surveyed by David Aha [Aha92] is restricted
to function-free clauses. Function-free clauses are also sufficient for most appli-
cations concerning databases.

Our second contribution shows that a set S need not have a least general-
ization relative to some background knowledge X, not even when S and X are
both function-free.

Thirdly, we contribute a complete discussion of existence and non-existence
of greatest specializations in each of the six ordered languages. In particular,
we show that any finite set of clauses has a greatest specialization under impli-
cation. Combining this with the corollary of our result on LGI’s, it follows that
a function-free clausal language is a lattice.

®Note that even for function-free clauses, the subsumption order is still not enough. Con-
sider D1 = P(wz,y,z) + P(y,z,x) and D> = P(x,y,z) < P(z,z,y). D: is a resolvent of
D, and D» and D is a resolvent of D; and D;. Hence D; and D are logically equivalent.
This means that D, is an LGI of the set {D;, D>}. However, the LGS of these two clauses is
P(z,y,z) < P(u,v,w), which is clearly an over-generalization.
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4.2 Preliminaries

In this chapter, it will be convenient to ignore the order and possible duplication
of literals in a clause. Clearly, this order and duplication does not affect the
truth-value of a clause. Thus P(z) V Q(z) V P(z) and Q(z) V Q(z) V P(z) can
both be considered as the same clause P(z) V Q(z). The union C'U D of two
clauses denotes a clause which contains every literal in C' and D.

The two languages of clauses that will be considered in this chapter are the
following;:

Definition 4.1 Let A be an alphabet of the first-order logic. Then the clausal
language C by A is the set of all clauses which can be constructed from the
symbols in A. The Horn language H by A is the set of all Horn clauses which
can be constructed from the symbols in A. O

Here we just presuppose some arbitrary alphabet A, and consider the clausal
language C and Horn language H based on this A.

Three increasingly strong generality orders on clauses are subsumption, im-
plication and relative implication. Below we repeat the definitions of subsump-
tion and implication, and introduce the definition of relative implication.

Definition 4.2 Let C' and D be clauses and X be a set of clauses. We say that
C subsumes D, denoted as C' = D, if there exists a substitution 6 such that
CO C D.5 C and D are subsume-equivalent if C = D and D = C.

Y (logically) implies C, denoted as ¥ = C, if every model of ¥ is also a
model of C. C (logically) implies D, denoted as C' = D, if {C'} = D. C and D
are (logically) equivalent if C =D and D = C.

C implies D relative to ¥, denoted as C =y D, if X U{C} = D. C and D
are equivalent relative to 3 if both C' |=x, D and D |=x, C. O

If C = D, then C |= D. The converse does not hold, as the examples in
the Introduction showed. Similarly, if C' = D, then C |=x D, and again the
converse need not hold. Consider the clauses C = P(a) V= P(b), D = P(a) and
Y. ={P(b)}: then C =5 D, but C }~= D.

The next lemma was first proved by Gottlob [Got87]. Actually, it is an
immediate corollary of the Subsumption Theorem:

Lemma 4.1 (Gottlob) Let C and D be non-tautologous clauses. If C |= D,
then Ct > D%t and C~ = D~.

Proof Since C* = C, if C = D, then we have C* |= D. Since C" cannot
be resolved with itself, it follows from the Subsumption Theorem that C* >
D. But then CT must subsume the positive literals in D, hence C* = DT.
Similarly C~ = D~. O

An important consequence of this lemma concerns the depth of clauses, defined
as follows:

®Right from the very first applications of subsumption in ILP, there has been some con-
troversy about the symbol used for subsumption: Plotkin [Plo70] used ‘<’, while Reynolds
[Rey70] used ‘>’. We use ‘>’ here, similar to Reynolds’ ‘>’, because we feel it serves the
intuition to view C as somehow “bigger” or “stronger” than D, if C' > D holds.
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Definition 4.3 Let ¢ be a term. If ¢ is a variable or constant, then the depth
of tis 1. If t = f(t1,...,tn), n > 1, then the depth of ¢ is 1 plus the depth of
the ¢; with largest depth. The depth of a clause C' is the depth of the term with
largest depth in C. &

Example 4.1 Theterm ¢ = f(a,x) hasdepth 2. C = P(f(z)) + P(g(f(x),a))
has depth 3, since g(f(z),a) has depth 3. <

It follows from Gottlob’s lemma that if C' |= D, then the depth of C' is smaller
than or equal to the depth of D, for otherwise C cannot subsume D* or C~
cannot subsume D~. For instance, take D = P(x, f(z,g9(y))) < P(g(a),b),
which has depth 3. Then a clause C containing a term f(z,¢%(y)) (depth 4)
cannot imply D.

Lemma 4.2 Let Y2 be a set of clauses, C be a clause, and o be a Skolem
substitution for C w.r.t. ¥. Then ¥ = C iff ¥ |= Co.

Proof

=: Obvious.

<: Suppose C is not a tautology and let 0 = {z1/a1,...,zn/an}. If ¥ =
Co, it follows from the Subsumption Theorem that there is a D such that
> F, D and D > Co. Thus there is a 6, such that DO C Co. Note that
since ¥ F, D and none of the constants ay,...,a, appears in X, none of these
constants appears in D. Now let ' be obtained by replacing in 6 all occurrences
of a; by z;, for every 1 < i < n. Then D' C C, hence D = C. Therefore
Y 4 C, and hence ¥ = C. O

4.3 Least generalizations and greatest specializa-
tions

In this section, we will define the concepts we need concerning least generaliza-
tions and greatest specializations.

Definition 4.4 Let ? be a set and R be a binary relationon 7 (i.e., RC 7?7 x7).

R is reflexive on 7, if xRz for every x € 7.

R is transitive on 7, if for every x,y,2z € 7, xRy and yRz implies zRz.
R is symmetric on 7, if for every z,y € 7, xRy implies yRzx.

R is anti-symmetric on 7, if for every z,y,z € 7, xRy and yRz implies
x=y.

=W =

If R is both reflexive and transitive on 7, we say R is a quasi-order on 7. If
R is both reflexive, transitive and anti-symmetric on 7, we say R is a partial
order on 7. If R is reflexive, transitive and symmetric on 7, R is an equivalence
relation on 7. e
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A quasi-order R on 7 induces an equivalence-relation ~ on ?, as follows: we
say z,y € 7 are equivalent induced by R (denoted z ~ y) if both x Ry and yRz.
Using this equivalence relation, a quasi-order R on 7 induces a partial order
R’ on the set of equivalence classes in 7, defined as follows: if [x] denotes the
equivalence class of z (i.e., [z] = {y | z ~ y}), then [z]R'[y] iff zRy.

We first give a general definition of least generalizations and greatest spe-
cializations for sets of clauses ordered by some quasi-order, which we then in-
stantiate in different ways.

Definition 4.5 Let ? be a set of clauses, > be a quasi-order on 7, S C ? be a
finite set of clauses and C' € 7. If C > D for every D € S, then we say C is a
generalization of S under >. Such a C' is called a least generalization (LG) of
S under > in ?, if we have C' > C for every generalization C' € 7 of S under
>.

Dually, C' is a specialization of S under >, if D > C for every D € S. Such
a C is called a greatest specialization (GS) of S under > in 7, if we have C' > C'

for every specialization C' € 7 of S under >. O

It is easy to see that if some set S has an LG or GS under > in 7, then this
LG or GS will be unique up to the equivalence induced by > in 7. That is, if
C and D are both LG’s or GS’s of some set S, then we have C' ~ D.

The concepts defined above are instances of the mathematical concepts of
(least) upper bounds and (greatest) lower bounds. Thus we can speak of lattice-
properties of a quasi- or partially ordered set of clauses:

Definition 4.6 Let 7 be a set of clauses and > a quasi-order on 7. If for
every finite subset S of 7 there exist both a least generalization and a greatest
specialization of S under > in 7, then 7 ordered by > is called a lattice. )

It should be noted that usually in mathematics, a lattice is defined for a partial
order instead of a quasi-order. However, since in ILP we usually have to deal
with individual clauses rather than with equivalence classes of clauses, it is
convenient for us to define ‘lattice’ for a quasi-order here. Anyhow, if a quasi-
order > is a lattice on 7, then the partial order induced by > is a lattice on the
set of equivalence classes in 7.

In ILP, there are two main instantiations for the set of clauses 7: either
we take a clausal language C, or we take a Horn language 7. Similarly, there
are three interesting choices for the quasi-order >: we can use either > (sub-
sumption), = (implication), or =y (relative implication) for some background
knowledge ¥. It is easy to see that each of these is indeed a quasi-order on a
set of clauses. In the >-order, we will sometimes abbreviate the terms ‘least
generalization of S under subsumption’ and ‘greatest specialization of S un-
der subsumption’ to ‘LGS of S’ and ‘GSS of S°, respectively. Similarly, in the
=-order we will sometimes speak of an LGI (least generalization under implica-
tion) and a GSI. In the =x-order, we will use LGR (least generalization under
relative implication) and GSR.

These two different languages and three different quasi-orders give a to-
tal of six combinations. For each combination, we can ask whether an LG or
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GS of every finite set S exists. In the next section, we will review the an-
swers for subsumption given by others or by ourselves. Then we devote two
sections to least generalizations and greatest specializations under implication,
respectively. Finally, we discuss least generalizations and greatest specializa-
tions under relative implication. The results of this survey have already been
summarized in Table 4.1 in the Introduction.

4.4 Subsumption

First we devote some attention to subsumption. Least generalizations under
subsumption have been discussed extensively by Plotkin [Plo70]. The main
result in his framework is the following:

Theorem 4.1 (Existence of LGS in C) Let C be a clausal language. Then
for every finite S C C, there exists an LGS of S in C.

If S only contains Horn clauses, then it can be shown that the LGS of S is itself
also a Horn clause. Thus the question for the existence of an LGS of every
finite set S of clauses is answered positively for both clausal languages and for
Horn languages.

Plotkin established the existence of an LGS, but he seems to have ignored
the GSS in [P1o70, Plo71b], possibly because it is a very straightforward result.
It is in fact fairly easy to show that the GSS of some finite set S of clauses
is simply the union of all clauses in S after they are standardized apart.” We
include the proof here.

Theorem 4.2 (Existence of GSS in C) Let C be a clausal language. Then
for every finite S C C, there exists a GSS of S in C.

Proof Suppose S ={D;,...,D,} CC. Without loss of generality, we assume
the clauses in S are standardized apart. Let D = Dy U...U D,, then D; > D,
for every 1 <4 <n. Now let C € C be such that D; = C, for every 1 <i < n.
Then for every 1 < i < n, there is a 6; such that D;0; C C and 6; only acts on
variables in D;. If welet 6 =6, U...U#6,, then DO = D161 U...UD,0, C C.
Hence D = C, so D is a GSS of S in C. O

This establishes that a clausal language C ordered by = is a lattice.

Proving the existence of a GSS of every finite set of Horn clauses in H
requires a little more work, but here also the result is positive. For example,
D = P(a) «+ P(f(a)),Q(y) is a GSS of D; = P(z) < P(f(x)) and Dy =
P(a) + Q(y). Note that D can be obtained by applying o = {z/a} (the mgu
for the heads of Dy and D3) to D1 U Do, the GSS of Dy and Dy in C. This idea

"Note that this has nothing to do with unification. For instance, if S = {P(a, z), P(y,b)},
then the GSS of S in C would be P(a,z) V P(y,b). However, if we would instantiate I' in
Definition 4.5 to the set of atoms, then the greatest specialization of two atoms in the set
of atoms should itself also be an atom. The GSS of two atoms is then their most general
unification [Rey70]. For instance, the GSS of S would in this case be P(a,b).
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will be used in the following proof. Here we assume H contains an artificial
bottom element (True) —, such that C' > — for every C' € H, and — % C for
every C' # —. Note that — is not subsume-equivalent with other tautologies.

Theorem 4.3 (Existence of GSS in H) Let H be a Horn language, with
— € H. Then for every finite S C H, there exists a GSS of S in H.

Proof Suppose S ={Di,...,D,} C H. Without loss of generality we assume
the clauses in S are standardized apart, Dq,..., Dy are the definite program
clauses in S and Djy1,..., D, are the definite goals in S. If k = 0 (i.e., if §
only contains goals), then it is easy to show that Dy U...U D, is a GSS of S in
H. If k> 1 and the set {D{",..., D;'} is not unifiable, then — is a GSS of S in
H. Otherwise, let o be an mgu for {Dj,... ,D]j'}, and let D = DioU...UDy0o
(note that actually D;o = D; for k + 1 < i < n, since the clauses in S are
standardized apart). Since D has exactly one literal in its head, it is a definite
program clause. Furthermore, we have D; > D for every 1 < i < n, since
Dia g D.

To show that D is a GSS of S in H, suppose C' € H is some clause such that
D; = C for every 1 < i <mn. For every 1 < <mn, let §; be such that D;6; C C
and 6; only acts on variables in D;. Let 0 =0, U...U#6,. For every 1 <1 <k,
D0 = D6, = C*, so 0 is a unifier of {D},...,D;}. But o is an mgu for
this set, so there is a y such that 8 = oy. Now Dy = DyoyU...U Dyoy =
DU...UD,0=D601U...UD,0, CC. Hence D > C, so D is a GSS of S

in H. See figure 4.1 for illustration of the case where n = 2. O
D D
g a
D
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C

Figure 4.1: D is a GSS of Dy and Dy

Thus a Horn language H ordered by > is also a lattice.

We end this section by briefly discussing Plotkin’s relative subsumption
[Plo71b]. This is an extension of subsumption which takes background knowl-
edge into account. This background knowledge is rather restricted: it must
be a finite set ¥ of ground literals. Because of its restrictiveness, we have not
included relative subsumption in Table 4.1. Nevertheless, we mention it here,
because least generalization under relative subsumption forms the basis of the
well-known ILP system GOLEM [MF92].

Definition 4.7 Let C, D be clauses, ¥ = {Lq,..., L,,} be a finite set of ground
literals. Then C subsumes D relative to >, denoted by C =y D, if C' >
(DU{-Ly,...,~Ly}). )

It is easy to see that >y is reflexive and transitive, so it imposes a quasi-order
on a set of clauses.
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Suppose S = {D,..., Dy} and ¥ = {Ly,..., Ly }. It is easy to see that an
LGS of {(Dy U{=Ly,...,~Lp}),...,(DpU{=Ly,...,—~Ly})} is a least gener-
alization of S under >, so every finite set of clauses has a least generalization
under =y in C. Moreover, if each D; is a Horn clause and each L; is a positive
ground literal (i.e., a ground atom), then this least generalization will itself also
be a Horn clause. Accordingly, if ¥ is a finite set of positive ground literals,
then every finite set of Horn clauses has a least generalization under >y in H.

4.5 Least generalizations under implication

Now we turn from subsumption to the implication order. In this section we
will discuss LGI’s, in the next section we handle GSS’s. For Horn clauses, the
LGI-question has already been answered negatively in [MDR94].

Let Dy = P(f*(z)) + P(z), D2 = P(f*(z)) + P(x), C1 = P(f(z)) «
P(z) and Cy = P(f?(y)) + P(x). Then we have both C; | {D1,Ds} and
Cy = {D1,Dy}. Tt is not very difficult to see that there are no more specific
Horn clauses than Cy and 5 that imply both D; and Dy. For C7: no resolvent
of C} with itself implies Dy and no clause that is properly subsumed by C still
implies D1 and Dy. For Cy: every resolvent of Cy with itself is a variant of Cs,
and no clause that is properly subsumed by Cj still implies D; and Dy. Thus
C: and Cj are both “minimal” generalizations under implication of {Dy, Ds}.
Since C; and Cs are not logically equivalent under implication, there is no LGI
of {Dl, DQ} in H.

However, the fact that there is no LGI of { D1, D2} in H, does not mean that
Dy and D5 have no LGI in C, since a Horn language is a more restricted space
than a clausal language. In fact, it is shown in [MP94] that C' = P(f(z)) V
P(f?(y)) < P(z) is an LGI of Dy and D, in C. For this reason, it may be
worthwhile for the LGI to consider a clausal language instead of only Horn
clauses.

In the next subsection, we show that any finite set of clauses which con-
tains at least one non-tautologous function-free clause, has an LGI in C. An
immediate corollary of this result is the existence of an LGI of any finite set
of function-free clauses. In our usage of the word, a ‘function-free’ clause may
contain constants, even though constants are sometimes seen as functions of
arity O.

Definition 4.8 A clause is function-free if it does not contain function symbols
of arity 1 or more. )

Note that a clause is function-free iff it has depth 1. In case of sets of clauses

which all contain function symbols, the LGI-question remains open.

4.5.1 A sufficient condition for the existence of an LGI

In this subsection, we will show that any finite set .S of clauses containing at
least one non-tautologous function-free clause, has an LGI in C.
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Definition 4.9 Let C' be a clause, z1,...,x, all distinct variables in C, and
K a set of terms. Then the instance set of C w.r.t. K is Z(C,K) = {C0 | § =
{z1/t1,...,zn/tn}, where t; € K, for every 1 <i <n}. ¥ ={Cy,...,Cr} is
a set of clauses, then the instance set of ¥ wrt. K is Z(3, K) = Z(C1, K) U
. UZ(Cy, K). o

Example 4.2 If C = P(z) VQ(y) and T = {a, f(2)}, then Z(C,T) = {(P(a) V
Q(a)), (P(a) vV Q(f(2))), (P(f(2)) V Q(a)), (P(f(2)) V Q(f(2)))}- <

Definition 4.10 Let S be a finite set of clauses, and o be a Skolem substitution
for S. Then the term set of S by o is the set of all terms (including subterms)
occurring in So. O

A term set of S by some o is a finite set of ground terms.

Example 4.3 The term set of D = P(f%(z),y,2) + P(y,z f?(z)) by 0 =
{z/a,y/b,z/c} is T = {a, f(a), f*(a), b, c}. <

Our definition of a term set corresponds to what Idestam-Almquist [TA93,
TA95] calls a ‘minimal term set’. In his definition, if o is a Skolem substitution
for a set of clauses S = {D1,...,D,} w.r.t. some other set of clauses S’, then
a term set of S is a finite set of terms which contains the minimal term set of
S by o as a subset.

Using his notion of term set, he defines T-implication as follows: if C' and
D are clauses and T' is a term set of {D} by some Skolem substitution o w.r.t.
{C}, then C T-implies D w.r.t. T,if Z(C,T) |= Do. T-implication is decidable,
weaker than logical implication and stronger than subsumption. [IA93, TA95]
gives the result that any finite set of clauses has a least generalization under
T-implication w.r.t. any term set 7. However, as he also notes, T-implication
is not transitive and hence not a quasi-order. Therefore it does not fit into our
general framework here. For this reason, we will not discuss it fully here, and
for the same reason we have not included a row for T-implication in Table 4.1.

Let us now begin with the proof of our result concerning the existence of
LGTI’s. Consider C = P(x,y,z) + P(z,z,y), and D, 0 and T as above. Then
C = D and also Z(C,T) = Do, since Do is a resolvent of P(f?(a),b,c) +
P(c, f*(a),b) and P(c, f?(a),b) < P(b,c, f?(a)), which are in Z(C,T). As we
will show in the next lemma, this holds in general: if C = D and C is function-
free, then we can restrict attention to the ground instances of C' instantiated
to terms in the term set of D by some o.

The proof of Lemma 4.3 uses the following idea. Consider a derivation of
a clause F from a set X of ground clauses. Suppose some of the clauses in X
contain terms not appearing in E. Then any literals containing these terms in
> must be resolved away in the derivation. This means that if we replace all
the terms in the derivation that are not in ., by some other term ¢, then the
result will be another derivation of E. For example, the left of figure 4.2 shows
a derivation of length 1 of E. The term f2(b) in the parent clauses does not
appear in F. If we replace this term by the constant a, the result is another
derivation of E (right of the figure).
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P(b) < P(f2(b))  P(f*(b)) « Q(a, f(a)) P(b) < P(a)  P(a) « Q(b, f(a))

E = P(b) < Q(a, f(a)) E = P(b) «+ Q(a, f(a))

Figure 4.2: Transforming the left derivation yields the right derivation

Lemma 4.3 Let C be a function-free clause, D be a clause, o be a Skolem
substitution for D w.r.t. {C'} and T be the term set of D by o. Then C = D
if Z(C,T) = Do.

Proof

<: Since C =Z(C,T) and Z(C,T) = Do, we have C = Do. Now C = D
by Lemma 4.2.

=: If D is a tautology, then D¢ is a tautology, so this case is obvious.
Suppose D is not a tautology, then Do is not a tautology. Since C' = Do, it
follows from Theorem 2.2 that there exists a finite set 3 of ground instances of
C, such that ¥ = Do. By the Subsumption Theorem, there exists a derivation
from ¥ of a clause FE, such that £ > Do. Since X is ground, £ must also be
ground, so we have ¥ C Do. This implies that E only contains terms from T'.

Let ¢ be an arbitrary term in T and let ¥’ be obtained from ¥ by replacing
every term in clauses in 3 which is not in 7', by ¢. Note that since each clause
in ¥ is a ground instance of the function-free clause C, every clause in X' is
also a ground instance of C'. Now it is easy to see that the same replacement
of terms in the derivation of F from X results in a derivation of E from X'
(1) each resolution step in the derivation from ¥ can also be carried out in the
derivation from X', since the same terms in 3 are replaced by the same terms
in X' and (2) the terms in X that are not in 7' (and hence are replaced by t),
do not appear in the conclusion F of the derivation.

Since there is a derivation of E from ¥, we have ¥/ |= E, and hence ¥’ |= Do.
¥/ is a set of ground instances of C' and all terms in X' are terms in T, so
¥ CZ(C,T). Hence Z(C,T) E Do. O

Lemma 4.3 cannot be generalized to the case where C contains function symbols
of arity > 1, take C = P(f(x),y) < P(z,z) and D = P(f(a),a) < P(a, f(a))
(from the example given on p. 25 of [IA93]). Then T' = {a, f(a)} is the term set
of D, and we have C |= D, yet it can be seen that Z(C,T) = D. The argument
used in the previous lemma does not work here, because different terms in
some ground instance need not relate to different variables. For example, in the
ground instance P(f%(a),a) + P(a, f(a)) of C, we cannot just replace f2(a)
by some other term, for then the resulting clause would not be an instance of
C.

On the other hand, Lemma 4.3 can be generalized to a set of clauses instead
of a single clause. If X is a finite set of function-free clauses, C' is an arbitrary
clause and o is a Skolem substitution for C' w.r.t. ¥, then we have that ¥ = C
iff Z(3,T) |= Co. The proof is almost literally the same as above.
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This result implies that ¥ |= C is reducible to an implication Z(3,T) = Co
between ground clauses. Since, by the next lemma, implication between ground
clauses is decidable, it follows that ¥ |= C is decidable in case ¥ is function-free.

Lemma 4.4 The problem whether ¥ = C, where ¥ is a finite set of ground
clauses and C is a ground clause, is decidable.

Proof Let C =LyV ...V L, and A be the set of all ground atoms occurring
in ¥ and C. Now:

¥ = C iff (by Proposition A.1)

Y U{-Ly,...,~Ly} is unsatisfiable iff (by Proposition A.4)

Y U{-Ly,...,~Ly} has no Herbrand model iff

no subset of A is an Herbrand model of ¥ U {=Ly,...,-L,}.

Since A is finite, the last statement is decidable. O

Corollary 4.1 The problem whether ¥ |= C, where ¥ is a finite set of function-
free clauses and C is a clause, is decidable.

The following sequence of results more or less follows the pattern of Lemma 11
to Theorem 14 of Idestam-Almquist’s [TA95] (similar to Lemma 3.10 to Theorem
3.14 of [IA93]). There he gives a proof of the existence of a least generalization
under T-implication of any finite set of (not necessarily function-free) clauses.
We can adjust the proof in such a way that we can use it to establish the
existence of an LGI of any finite set of clauses containing at least one non-
tautologous and function-free clause.

Lemma 4.5 Let S be a finite set of non-tautologous clauses, V.= {z1,...,xm}

be a set of variables and let G = {C1,Cy,...} be a (possibly infinite) set of

generalizations of S under implication. Then the set G' = T(Cy,V)UZ(Cy, VU
. 18 a finite set of clauses.

Proof Let d be the maximal depth of the terms in clauses in S. It follows from
Lemma 4.1 that G (and hence also G') cannot contain terms of depth greater
than d, nor predicates, functions or constants other than those in S. The set
of literals which can be constructed from predicates in S, and from terms of
depth at most d consisting of functions and constants in S and variables in V',
is finite. Hence the set of clauses which can be constructed from those literals
is also finite. G’ is a subset of this set, so G’ is a finite set of clauses. O

Lemma 4.6 Let D be a clause, C be a function-free clause such that C = D,
T = {t1,...,tn} be the term set of D by o, V. = {x1,...,2m} be a set of
variables and m > n. If E is an LGS of Z(C,V'), then E |= D.

Proof Let v = {z1/t1,...,2n/tn, Tnt1/tn,-..,Tm/tn} (it does not matter to
which terms the variables x,1,..., 2z, are mapped by v, as long as they are
mapped to terms in T'). Suppose Z(C,V) = {Cp1,...,Cpr}. Then Z(C,T) =
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{Cp17,...,Cprv}. Let E be an LGS of Z(C, V') (note that E must be function-
free). Then for every 1 < i < k, there are 0; such that E6; C Cp;. This means
that Ef;y C Cp;y and hence Ef;y |= Cp;vy, for every 1 < i < k. Therefore
EEZICT).

Since C' |= D, we know from Lemma 4.1 that constants appearing in C' must
also appear in D. This means that o is a Skolem substitution for D w.r.t. {C}.
Then from Lemma 4.3 we know Z(C,T') |= Do, hence E = Do. Furthermore,
since E is an LGS of Z(C,V), all constants in E also appear in C, hence all
constants in £ must appear in D. Thus ¢ is also a Skolem substitution for D
w.r.t. {E}. Therefore E = D by Lemma 4.2. O

Consider C = P(z,y,2) « P(y,z,2) and D =+ Q(w). Both C and D im-
ply the clause E = P(z,y,z) < P(z,z,y),Q(b). Now note that C U D =
P(z,y,z) + P(y,z,2),Q(w) also implies E. This holds for clauses in general,
even in the presence of background knowledge 3. The next lemma is very
general, but in this section we only need the special case where C' and D are
function-free and ¥ is empty. We need the general case to prove the existence
of a GSR in Section 4.8.

Lemma 4.7 Let C, D and E be clauses such that C and D are standardized
apart, and let ¥ be a set of clauses. If C' =2, E and D =y, E, then CUD |=x, E.

Proof Suppose C |=x E and D =5 E, and let M be a model of XU {C U D}.
Since C' and D are standardized apart, the clause C' U D is equivalent to the
formula V(C) V V(D) (where V(C) denotes the universally quantified clause C).
This means that M is a model of C' or a model of D. Furthermore, M is also a
model of ¥, so it follows from XU {C} = E or XU{D} = E that M is a model
of E. Therefore ¥ U{C UD} |= E, hence CUD =5 E. O

Now we can prove the existence of an LGI of any finite set S of clauses which
contains at least one non-tautologous and function-free clause. In fact we can
prove something stronger, namely that this LGI is a special LGI. This is an LGI
that is not only implied, but actually subsumed by any other generalization of

S

Definition 4.11 Let C be a clausal language and S be a finite subset of C.

An LGI C of S in C is called a special LGI of S in C, if C' = C for every
generalization C' € C of S under implication. O

Note that if D is an LGI of a set containing at least one non-tautologous
function-free clause, then by Lemma 4.1 D is itself function-free, because it
should imply the function-free clause(s) in S. For instance, C = P(z,y,2) +
P(y,z,z),Q(w) is an LGI of Dy = P(z,y,2) + P(y,z,z),Q(f(a)) and Dy =
P(z,y,z) « P(z,z,y),Q(b). Note that this LGI is properly subsumed by
the LGS of {Dy, Dy}, which is P(z,y,2) + P(2',y',2"),Q(w). An LGI may
sometimes be the empty clause O, for example if S = {P(a), Q(a)}.
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Theorem 4.4 (Existence of special LGI in C) LetC be a clausal language.
If S is a finite set of clauses from C, and S contains at least one non-tautologous
function-free clause, then there exists a special LGI of S in C.

Proof Let S = {Dy,...,D,} be a finite set of clauses from C, such that
S contains at least one non-tautologous function-free clause. We can assume
without loss of generality that S contains no tautologies. Let o be a Skolem
substitution for S, T = {t1,...,t,} be the term set of Sby o, V = {z1,...,2m}
be a set of variables and G = {C1,Cy,...} be the set of all generalizations
of S under implication in C. Note that O € G, so G is not empty. Since
each clause in G must imply the function-free clause(s) in S, it follows from
Lemma 4.1 that all members of G are function-free. By Lemma 4.5, the set
G =Z(C,V)UZ(Cy, V) U... is a finite set of clauses. Since G’ is finite, the
set of Z(C;,V)’s is also finite. For simplicity, let {Z(C1,V),...,Z(Cy,V)} be
the set of all distinct Z(C;, V)’s.

Let E; be an LGS of Z(C;, V), for every 1 < i < k, such that Ey, ..., Ej are
standardized apart. For every 1 < j < n, the term set of D; by o is some set
{tj;,...,t;;} €T, such that m > j,. From Lemma 4.6, we have that E; = Dj,
for every 1 <i<kand1<j<mn, hence E; =S. Now let F = E; U...U F,
then we have F' =S from Lemma 4.7 (applying the case of Lemma 4.7 where
¥ is empty).

To prove that F' is a special LGI of S, it remains to show that C; = F,
for every j > 1. For every j > 1, there is an ¢ (1 < 7 < k), such that
Z(C;,V) =TI(C;, V). So for this i, E; is an LGS of Z(C;, V). Cj is itself also
a generalization of Z(C}, V) under subsumption, hence C; > E;. Then finally
C; = F,since E; C F. O

As a consequence, we also immediately have the following:

Corollary 4.2 (Existence of LGI for function-free clauses) LetC be a
clausal language. Then for every finite set of function-free clauses S C C, there
exists an LGI of S in C.

Proof Let S be a finite set of function-free clauses in C. If S only contains
tautologies, any tautology will be an LGI of S. Otherwise, let S’ be obtained
by deleting all tautologies from S. By the previous theorem, there is a special
LGI of §'. Clearly, this is also a special LGI of S itself in C. O

This corollary is not trivial, since even though the number of Herbrand inter-
pretations of a language without function symbols is finite (due to the fact that
the number of all possible ground atoms is finite in this case), S may never-
theless be implied by an infinite number of non-equivalent clauses. This may
seem like a paradox, since there are only finitely many categories of clauses
that can “behave differently” in a finite number of finite Herbrand interpre-
tations. Thus it would seem that the number of non-equivalent function-free
clauses should also be finite. This is a misunderstanding, since logical implica-
tion (and hence also logical equivalence) is defined in terms of all interpreta-
tions, not just Herbrand interpretations. For instance, define D1 = P(a,a) and
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P(b.b), C, = {P(zi,z;) | i # j.1 < 4,5 <n}. Then we have C,, = {D1, D1},
Cn E Cpy1 and Cpqq [ Cy, for every n > 1, see [LNC94a).

Another interesting consequence of Theorem 4.4 concerns self-saturation
(see the Introduction to this chapter for the definition of self-saturation). If C
is a special LGI of some set S, then it is clear that C' is self-saturated: any
clause which implies C' also implies S and hence must subsume C, since C is
a special LGI of S. Now consider S = {D}, where D is some non-tautologous
function-free clause. Then a special LGI C of S will be logically equivalent to
D. Moreover, since this C' will be self-saturated, it is a self-saturation of D.

Corollary 4.3 If D is a non-tautologous function-free clause, then there exists
a self-saturation of D.

4.5.2 The LGI is computable

In the previous subsection we proved the ezistence of an LGI in C of every finite
set S of clauses containing at least one non-tautologous function-free clause. In
this subsection, we will establish the computability of such an LGI. The next
algorithm, extracted from the proof of the previous section, computes this LGI
of S.

Algorithm 4.1 (LGI-Algorithm)
Input: A finite set S of clauses, containing at least one non-tautologous
function-free clause.

Output: An LGI of S in C.

1. Remove all tautologies from S (a clause is a tautology iff it contains literals
A and —A), call the remaining set S’.

2. Let m be the number of distinct terms (including subterms) in S’ let
V ={z1,...,2zm}. (Notice that this m is the same number as the number
of terms in the term set 7" used in the proof of Theorem 4.4.)

3. Let G be the (finite) set of all clauses which can be constructed from
predicates and constants in S’ and variables in V.

4. Let {Uy,...,Uy} be the set of all subsets of G.

5. Let H; be an LGS of U;, for every 1 < i < n. These H; can be computed
by Plotkin’s algorithm [Plo70].

6. Remove from {Hy,..., H,} all clauses which do not imply S’ (since each
H; is function-free, by Corollary 4.1 this implication is decidable), and
standardize the remaining clauses {Hy,..., Hy} apart.

7. Return the clause H = H; U... U H,.

The correctness of this algorithm follows from the proof of Theorem 4.4. First
notice that H |= S by Lemma 4.7. Furthermore, note that all Z(C;, V')’s men-
tioned in the proof of Theorem 4.4, are elements of the set {Uy,...,U,}. This
means that for every E; in the set {F1,..., Ex} mentioned in that proof, there
is a clause H; in {Hy,..., Hy} such that E; and H; are subsume-equivalent.
Then it follows that the LGI FF = Eq U... U E; of that proof subsumes the
clause H = H; U...U H, that our algorithm returns. On the other hand, F' is
a special LGI, so F' and H must be subsume-equivalent.
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Suppose the number of distinct constants in S’ is ¢ and the number of
distinct variables in step 2 of the algorithm is m. Furthermore, suppose there
are p distinct predicate symbols in S’, with respective arities ai,...,ay. Then
the number of distinct atoms that can be formed from these constants, variables
and predicates, is [ = 3! (c + m)%, and the number of distinct literals that
can be formed, is 2 - 1. The set G of distinct clauses which can be formed from
these literals is the power set of this set of literals, so |G| = 2%!. Then the set
{U1,...,U,} of all subsets of G contains 2/¢/ = 22" members.

Thus the algorithm outlined above is not very efficient (to say the least).
A more efficient algorithm may exist, but since implication is harder than sub-
sumption and the computation of an LGS is already quite expensive, we should
not put our hopes too high. Nevertheless, the existence of the LGI-algorithm
does establish the theoretical point that the LGI of any finite set of clauses
containing at least one non-tautologous function-free clause, is effectively com-
putable.

Theorem 4.5 (Computability of LGI) Let C be a clausal language. If S
is a finite set of clauses from C, and S contains at least one non-tautologous
function-free clause, then the LGI of S in C is computable.

4.6 Greatest specializations under implication

Now we turn from least generalizations under implication to greatest special-
izations. Finding least generalizations of sets of clauses is common practice in
ILP. On the other hand, the greatest specialization, which is the dual of the
least generalization, is used hardly ever. Nevertheless, the GSI of two clauses
Dy and D, might be useful. Suppose that we have one positive example e™
and two negative examples e] and e; , and suppose that D implies et and e],
while Dy implies e™ and e; . Then it might very well be that the GSI of D,
and Ds still implies e™, but is consistent w.r.t. {e]’,e; }. Then we could obtain
a correct specialization by taking the GSI of D and Ds.

It is obvious from the previous sections that the existence of an LGI of S is
quite hard to establish. For clauses which all contain functions, the existence
of an LGI is still an open question and even for the case where S contains at
least one non-tautologous function-free clause, the proof was far from trivial.
However, the existence of a GSI in C is much easier to prove. In fact, a GSI of
a finite set S is the same as the GSS of S, namely the union of the clauses in
S after these are standardized apart.

To see the reason for this dissymmetry, let us take a step back from the
clausal framework and consider full first-order logic for a moment. If ¢; and
@9 are two arbitrary first-order formulas, then it can be easily shown that their
least generalization is just ¢; A ¢o: this conjunction implies ¢; and ¢;, and
must be implied by any other formula which implies both ¢; and ¢5. Dually,
the greatest specialization is just ¢; V ¢! this is implied by both ¢ and ¢ and
must imply any other formula that is implied by both ¢1 and ¢s. See figure 4.3.

Now suppose ¢1 and ¢o are clauses. Then why do we have a problem in
finding the LGI of ¢ and ¢27 The reason for this is that ¢1 A ¢9 is not a clause.
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Figure 4.3: Least generalization and greatest specialization in first-order logic

Instead of using ¢1 A ¢2, we have to find some least clause which implies both
clauses ¢1 and ¢2. Such a clause appears quite hard to find sometimes.

On the other hand, in case of specialization there is no problem. Here we
can take ¢1 V ¢ as GSI, since ¢ V ¢o is equivalent to a clause, if we handle the
universal quantifiers in front of a clause properly. If ¢ and ¢9 are standardized
apart, then the formula ¢; V ¢5 is equivalent to the clause which is the union
of ¢1 and ¢o. This fact was used in the proof of Lemma 4.7.

Suppose S = {D1,...,D,}, and D),..., D] are variants of these clauses
which are standardized apart. Then clearly D = D] U ... U D], is a GSI of S,
since it follows from Lemma 4.7 that any specialization of S under implication
is implied by D. Thus we have the following result:

Theorem 4.6 (Existence of GSI in C) Let C be a clausal language. Then
for every finite S C C, there exists a GSI of S in C.

The previous theorem holds for clauses in general, so in particular also for
function-free clauses. Furthermore, Corollary 4.2 guarantees us that in a func-
tion-free clausal language, an LGI of every finite S exists. This means that
the set of function-free clauses quasi-ordered by logical implication, is in fact a
lattice.

Corollary 4.4 (Lattice-structure of function-free clauses under =)
A function-free clausal language ordered by implication is a lattice.

In case of a Horn language H, we cannot apply the same proof method as in the
case of a clausal language, since the union of two Horn clauses need not be a
Horn clause itself. In fact, we can show that not every finite set of Horn clauses
has a GSI in H. Here we can use the same clauses that we used to show that
sets of Horn clauses need not have an LGI in H, this time from the perspective
of specialization instead of generalization.

Again, let Dy = P(f?(x)) + P(z), Dy = P(f?(x)) + P(x),Cy = P(f(z)) +
P(z) and Cy = P(f?(y)) < P(x). Then C; |= {D;, D3} and C5 |= {D1, D5},
and there is no Horn clause D such that D |= Dy, D = Dy, C; = D and
Cs |= D. Hence there is no GSI of {C,C5} in H.

4.7 Least generalizations under relative implication

Implication is stronger than subsumption, but relative implication is even more
powerful, because background knowledge can be used to model all sorts of useful
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properties and relations. In this section, we will discuss least generalizations
under implication relative to some given background knowledge ¥ (LGR’s). In
the next section, we treat greatest specializations under relative implication.

First, we will prove the equivalence between our definition of relative impli-
cation and a definition given by Niblett [Nib88, p. 133]. He gives the following
definition of subsumption relative to a background knowledge ¥ (to distinguish
it from our notion of subsumption, we will call this ‘N-subsumption’):®

Definition 4.12 Clause C N-subsumes clause D with respect to background
knowledge ¥ if there is a substitution 6 such that ¥+ (C6 — D) (here ‘=’ is
the implication-connective, and ‘+’ is an arbitrary sound and complete proof
procedure). O

Proposition 4.1 Let C' and D be clauses and 3 be a set of clauses. Then C
N-subsumes D with respect to ¥ iff C s D.

Proof C N-subsumes D with respect to X iff

There is a 6 such that ¥ F (C# — D) iff (by sound- and completeness of ‘F’)
There is a 6 such that ¥ = (C8 — D) iff (by Theorem A.1)

There is a 6 such that ¥ U {C#} = D iff (for the ‘if’, put 6 = ¢)

YU{C}E Diff

C =x D. O

Since |= is the special case of =5 where ¥ is empty, our counterexamples to
the existence of LGI's or GSI’s in ‘H are also counterexamples to the existence
of LGR’s or GSR’s in H. In other words, the ‘—’-entries in the second row of
Table 4.1 carry over to the third row.

For general clauses, the LGR-question also has a negative answer. We will
show here that even if S and 3 are both finite sets of function-free clauses,
an LGR of S relative to ¥ need not exist. Let Dy = P(a), Dy = P(b), S =
{D1, D5}, and ¥ = {(P(a) V =Q(x)), (P(b) V -Q(z))}. We will show that this
S has no LGR relative to ¥ in C.

Suppose C' is an LGR of S relative to X. Note that if C contains the literal
P(a), then the Herbrand interpretation which makes P(a) true and which makes
all other ground literals false, would be a model of ¥ U {C'} but not of Ds, so
then we would have C [£s Dy. Similarly, if C' contains P(b) then C s D;.
Hence C cannot contain P(a) or P(b).

Now let d be a constant not appearing in C. Let D = P(z) V Q(d), then
D =5 S. By the definition of an LGR, we should have D =5 C. Then by the
Subsumption Theorem, there must be a derivation from X U{D} of a clause E,
which subsumes C. The set of all clauses which can be derived (in 0 or more
resolution-steps) from X U{D} is SU{D}U{(P(a)V P(z)), (P(b)V P(z))}. But
none of these clauses subsumes C, because C does not contain the constant d,
nor the literals P(a) or P(b). Hence D [#yx, C, contradicting the assumption
that C is an LGR of S relative to X in C.

8Niblett attributes this definition to Plotkin, though Plotkin gives a rather different defi-
nition of relative subsumption, as we have seen in Section 4.4.
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As we have seen, in general the LGR of S relative to ¥ need not exist.
However, we can identify a special case in which the LGR does exist. This
case might be of practical interest. Suppose ¥ = {Ly,..., L} is a finite set of
function-free ground literals. We can assume . does not contain complementary
literals (i.e., A and —A), for otherwise ¥ would be inconsistent. Also, suppose
S ={Dq,...,Dy,} is a set of clauses, at least one of which is non-tautologous
and function-free. Then C |=x D; iff {C}UY = D; if C = D;V—(L1A...ALp,)
if C = D;V—LiV...V~Ly. This means that an LGI of the set of clauses
{DyV—=LyV...V=Lp,...,DyV—=LiV...V~Ly} is also an LGR of S relative
to 3. If some Dy V =Ly V...V —L,, is non-tautologous and function-free, this
LGI exists and is computable. Hence in this special case, the LGR of S relative
to ¥ exists and is computable.

4.8 Greatest specializations under relative implica-
tion

Since the counterexample to the existence of GSI'’s in H is also a counterexample
to the existence of GSR’s in H, the only remaining question in the =x-order is
the existence of GSR’s in C. The answer to this question is positive. In fact,
like the GSS and the GSI, the GSR of some finite set S in C is just the union
of the (standardized apart) clauses in S.

Theorem 4.7 (Existence of GSR in C) LetC be a clausal language and Y2 C
C. Then for every finite S C C, there exists a GSR of S relative to 3 in C.

Proof Suppose S = {D1,...,D,} CC. Without loss of generality, we assume
the clauses in S are standardized apart. Let D = Dy U...UD,, then D; =5 D,
for every 1 < i < n. Now let C € C be such that D; =5 C, for every 1 <i <mn.
Then from Lemma 4.7, we have D |=x C. Hence D is a GSR of S relative to 2
in C. O

4.9 Summary

In ILP, the three main generality orders are subsumption, implication and rel-
ative implication. The two main languages are clausal languages and Horn
languages. This gives a total of six different ordered sets. In this chapter, we
have given a systematic treatment of the existence or non-existence of least gen-
eralizations and greatest specializations in each of these six ordered sets. The
outcome of this investigation has been summarized in Table 4.1 on p. 55. The
only remaining open question is the existence or non-existence of a least gen-
eralization under implication in C for sets of clauses which all contain function
symbols.

Table 4.1 makes explicit the trade-off between different generality orders.
On the one hand, implication is better suited as a generality order than sub-
sumption, particularly in case of recursive clauses. Relative implication is still
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better, because it allows us to take background knowledge into account. On
the other hand, we can see from the table that as far as the existence of least
generalizations goes, subsumption is more attractive than logical implication,
and logical implication is in turn more attractive than relative implication. For
subsumption, least generalizations always exist. For logical implication, we can
only prove the existence of least generalizations in the presence of a function-
free clause. And finally, for relative implication, least generalizations need not
even exist in a function-free language. In practice this means that we cannot
have it all: if we choose to use a very strong generality order, we have few
positive results to go on, whereas if we want to guarantee the existence of least
generalizations, we are committed to the weakest generality order: subsump-
tion.



74

GENERALIZATIONS AND SPECIALIZATIONS



Appendix A

Definitions from Logic

First-order logic was initially conceived by Gottlob Frege [Fre79], and further
developed by Alfred North Whitehead and Bertrand Russell [WR27]. Its se-
mantics was developed by Alfred Tarski [Tar36, Tar56].

In this appendix, we include the definitions from first-order logic that are
used in this thesis. The appendix is mainly intended to make the thesis self-
contained, it does not contain a full discussion with examples. For a more
extensive introduction, we refer to [CL73, L1087, Men87, BJ89].

A.1 Syntax

The syntax of first-order logic defines what constitutes a well-formed formula.

Definition A.1 An alphabet consists of the following symbols:

1. A set of constants: a,b,..., which may be subscripted.

2. A set of variables: u,v,w,z,y, ..., which may be subscripted.

3. A set of function symbols: f,g,..., which may be subscripted. Each
function symbol has a natural number (its arity) assigned to it.

4. A non-empty set of predicate symbols: P, (), ..., which may be subscripted.
Each predicate symbol has a natural number (its arity) assigned to it.

5. The following five connectives: =, A, V, — and <.

6. Two quantifiers: 3 (called the existential quantifier) and V (called the
universal quantifier).

7. Three punctuation symbols: ‘(’, ©)" and *,.

O
The arity of a function or predicate symbol is the number of its arguments.
Definition A.2 Terms are defined as follows:
1. A constant is a term.
2. A variable is a term.
3. If f is an m-ary function symbol and ¢, ..., ¢, are terms, then f(¢1,...,t,)
is a term.
O
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Definition A.3 Well-formed formulas (or just formulas) are defined as follows:

1. If P is an n-ary predicate symbol and ¢y, ..., t, are terms, then P(t1,...,t,)
is a formula, called an atom.

2. If ¢ is a formula, then —¢ is a formula.

3. If ¢ and 1 are formulas, then (¢ A1), (¢ V1)), (¢ — 1) and (¢ <> 1)) are
formulas.

4. If ¢ is a formula and z is a variable, then 3z ¢ and Vz ¢ are formulas.

A formula which is not an atom is called a composite formula. O

Definition A.4 The first-order language given by an alphabet is the set of all
formulas which can be constructed from the symbols of the alphabet. O

Definition A.5 The scope of Vz (respectively 3x) in Vz ¢ (resp. Iz ¢) is ¢.

Definition A.6 A bound occurrence of a variable in a formula is an occurrence
of this variable immediately following a quantifier or an occurrence within the
scope of a quantifier which has the same variable immediately after the quan-
tifier. An occurrence of a variable which is not bound, is called free. O

Definition A.7 A closed formula is a formula which does not contain any free
occurrences of variables. O

Definition A.8 A ground term is a term which does not contain any variables.
A ground formula is a formula which does not contain any variables. )

A.2 Semantics

The semantics of first-order logic is concerned with interpretations, which give
meaning to the formulas in a language.

A.2.1 Interpretations

A pre-interpretation is a mapping from terms in the language to objects in a
domain.

Definition A.9 A pre-interpretation J of a first-order language L consists of
the following:

1. A non-empty set D, called the domain of the pre-interpretation.

2. Each constant in L is assigned an element of D.

3. Each n-ary function symbol f in L is assigned a mapping J; from D" to
D.

O
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The domain D may be either finite or infinite. Here D" = {(d4,...,dy) | d; €
D, for every 1 <i < mn}. The mapping from variables to objects in the domain
is done by a wvariable assignment:

Definition A.10 Let J be a pre-interpretation with domain D of a first-order
language L. A wariable assignment V with respect to L, is a mapping from
the set of variables in L to the domain D of J. We use V(z/d) to denote the
variable assignment which maps the variable z to d € D and maps the other
variables according to V. <

The combination of a pre-interpretation and a variable assignment assigns an
object in the domain to each term in the language:

Definition A.11 Let J be a pre-interpretation with domain D of a first-order
language L, and let V be a variable assignment w.r.t. L. The term assignment
w.r.t. J and V of the terms in L is the following mapping from the set of terms
in L to the domain D:

1. Each constant is mapped to an element in D by J.

2. Each variable is mapped to an element in D by V.

3. If dy,...,d, are the elements of the domain to which the terms ¢y,...,t,
are mapped, respectively, and J; is the function from D" to D assigned
to the function symbol f by J, then the term f(¢1,...,¢,) is mapped to
Je(dy, ... dy).

O

Given a pre-interpretation, an interpretation is a mapping from formulas to
truth-values:

Definition A.12 An interpretation I of a first-order language L consists of
the following:

1. A pre-interpretation J, with some domain D, of L. I is based on J.
2. Each n-ary predicate symbol P in L is assigned a mapping Ip from D"
to {T,F}.
O

Definition A.13 Let I be an interpretation, based on the pre-interpretation .J
with domain D, of the first-order language L, and let V be a variable assignment
w.r.t. L. Let Z be the term assignment w.r.t. J and V. Then a formula ¢ in L
has a truth-value under I and V', as follows:

1. If ¢ is the atom P(ty,...,t,) and d; is the domain-element assigned to ¢; by
Z (i =1,...,n), then the truth-value of ¢ under I and V' is Ip(dy,...,d,).

2. If ¢ is a formula of the form —p, (¥ A x), (¢ V x), (b = x) or (¥ < X),
then the truth-value of ¢ is determined by the following truth-table for
the five connectives:!

1 As can be seen from this table, the connective ‘=’ is to be interpreted as ‘not’, ‘A’ as ‘and’,
‘V’ as ‘or’, ‘=’ as ‘if...then’ and ‘4’ as ‘if, and only if’.
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[ x[ % ][WA) ][ @V [ Wox]@ex)]
TIT]| F T T T T
T|F| F F T F F
FlT| T F T T F
FIF| T F F T T

Table A.1: The truth-table for the five connectives

3. If ¢ is a formula of the form Jx 1, then ¢ has truth-value T under I and
V if there exists an element d € D for which 1 has truth-value 7' under
and V(z/d). Otherwise, ¢ has truth-value F' under I and V.

4. If ¢ is a formula of the form Vz v, then ¢ has truth-value T under I and
V if for all elements d € D, 1) has truth-value T under I and V(z/d).
Otherwise, ¢ has truth-value F' under I and V.

O

It is not very difficult to see that the truth-value under some I and V of a closed
formula does not depend on the variable assignment V. In this thesis, we are
only interested in closed formulas, so we can leave out the variable assignment
V and speak of “truth-value under I” instead of “truth-value under I and V.
Also, when we use the word ‘formula’ later on, we mean ‘closed formula’.

Definition A.14 Let ¢ be a formula in the first-order language L and I an
interpretation of L. Then ¢ is said to be true under I if its truth-value under
Iis T. I is then said to satisfy ¢, or to make ¢ true.

Similarly, ¢ is said to be false under I if its truth-value is F' under I. I is
then said to falsify ¢, or to make ¢ false. )

A.2.2 Models

An interpretation is a model of a formula, if it makes that formula true:

Definition A.15 Let ¢ be a formula and I an interpretation. I is said to be
a model of ¢ if I satisfies ¢. ¢ is then said to have I as a model. )

Definition A.16 Let X be a set of formulas and I an interpretation. I is said
to be a model of X if I is a model of all formulas ¢ € ¥. ¥ is then said to have
I as a model. O

Definition A.17 Let X be a set of formulas and ¢ a formula. Then ¢ is said
to be a logical consequence of ¥ (written as ¥ = ¢), if every model of ¥ is also
a model of ¢. We also sometimes say ¥ (logically) implies ¢. If ¥ = {4}, this
can also be written as ¢ = ¢. O

Definition A.18 Let ¥ and 7 be sets of formulas. Then ? is said to be a
logical consequence of ¥ (written as ¥ = 7), if ¥ |= ¢, for every ¢ € 7. O
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If ¢ is not a logical consequence of ¥, we write ¥ % ¢, and similarly ¥ [= 7 if
not ¥ = 7.

Definition A.19 Two formulas ¢ and 1 are said to be (logically) equivalent,
denoted by ¢ < v, if both ¢ = ¢ and ¥ = ¢ (so ¢ and ¢ have exactly the
same models). Similarly, two sets of formulas ¥ and ? are said to be (logically)
equivalent, if both ¥ =7 and 7 = X. &

Definition A.20 Let ¢ be a formula. Then:

1. ¢ is called walid, or a tautology, if every interpretation is a model of ¢.
This can be written as = ¢. ¢ is called invalid otherwise.

2. ¢ is called satisfiable, or consistent, if some interpretation is a model of ¢.

3. ¢ is called inconsistent, or unsatisfiable, or a contradiction, if no inter-
pretation is a model of ¢. In other words, ¢ is inconsistent if it has no
models.

4. ¢ is called contingent if it is satisfiable, but invalid.

<

The above definition subdivides the set of all formulas as pictured in figure A.1.

All foEmulas

Tautology Contingent Inconsistent
Always Sometimes true, Always
true sometimes false false
Satisfiable Unsatisfiable

Figure A.1: The class of tautologies, contingent formulas, etc.

These concepts can be defined similarly for a set 3 of formulas. 3 is a tautology
if every interpretation is a model of 33, 3 is satisfiable if it has at least one model,
etc. Note that an unsatisfiable set of formulas logically implies anything, since
it has no models.

We now state a number of results, whose easy proofs are omitted.

Theorem A.1 (Deduction Theorem) Let X be a set of formulas and ¢ and
Y be formulas. Then SU{¢} = ¢ iff & = (¢ — ).

Proposition A.1 Let ¥ be a set of formulas and ¢ a formula. Then ¥ = ¢
iff LU {~¢} is unsatisfiable.

Proposition A.2 If ¢ and ¢ are formulas, then ¢ < ¢ iff = (¢ < ).

Proposition A.3 The following assertions hold.
1. ¢ & ¢
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(= V1) & (P A1)

(= A=) & =(dVY))
(pVP)Ax) & (BAX)V (P AX))
(pAP)VX) & (VX)) APV X))
(¢ =) & (= V)

(e P) e (0= ) AW — ¢))
Ve ¢ & —dz —¢

dr ¢ & -V —¢

© % RS> O o

For a proof of the following Compactness Theorem, see [BJ89].

Theorem A.2 (Compactness) If ¥ is an infinite, unsatisfiable set of formu-
las, then there exists a finite, unsatisfiable subset of 3.

Note the following consequence of this theorem:

Theorem A.3 Let ¥ be an infinite set of formulas and ¢ be a formula. If
Y. = ¢, then there is a finite subset X' of &, such that X' = ¢.

Proof If ¥ = ¢, then by Proposition A.1, ¥ U {—¢} is unsatisfiable. By the
Compactness Theorem, there is a finite unsatisfiable set 7 C ¥ U {—¢}. Put
¥ = ?\{-¢}. Then X' C ¥, and since ¥/ U {—¢} is unsatisfiable, we have
¥ E ¢ by Proposition A.1. O

A.2.3 Conventions to simplify notation

In order to avoid an overload of brackets, we can make a number of simplifying
conventions. Firstly, we can omit the outer brackets around a formula. Sec-
ondly, since ¢V (1p V x) and (¢ V1))V x are equivalent, they can both be written
as ¢ VY V x. Such a formula is called a disjunction. Similarly, we can write
d N A x (a conjunction) instead of ¢ A (1p A x) and (¢ A ) A x. Finally, we
will sometimes abbreviate iterated function symbols in the following manner:

f?(a) denotes f(f(a)), f3(a) denotes f(f(f(a))), etc.

A.3 Normal forms

In this section we will define two normal forms: prenex conjunctive normal form
and Skolem standard form.

A.3.1 Prenex conjunctive normal form

Definition A.21 A [iteral is an atom or the negation of an atom. A positive
literal is an atom, a negative literal is the negation of an atom. )

Here we adopt the notational convention that the negation of a negative literal
is the atom in that literal: if L = - A, then -L = A.

Definition A.22 A clause is a finite disjunction of zero or more literals. <
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A disjunction of zero literals is called the empty clause, denoted by O. Tt
represents a contradiction.

Clauses are important, because sets of clauses are commonly used to express
theories in Inductive Logic Programming.

Definition A.23 A formula is in prenex conjunctive normal form if it has the
following form:
QT qnx@SCl Ao A C’m)j

Prenex Matrix
where each g¢; is either 3 or V, z1,...,z, are all the variables occurring in the

formula, and each Cj; is a clause. The first part of the formula (the sequence
of quantifiers with variables) is called the prenez of the formula. The second
part is called the matriz of the formula?, which we sometimes abbreviate to
Mz, ..., xm]. &

In fact, any formula ¢ can be transformed into an equivalent formula 1 in
prenex conjunctive normal form (see pp. 35-39 of [CL73] or Proposition 3.4
of [L1087]):

Theorem A.4 Let ¢ be a formula. Then there exists a formula i in prenex
conjunctive normal form, such that ¢ and 1) are equivalent.

A.3.2 Skolem standard form

This section discusses the Skolem standard form of a formula. It is obtained
from the prenex conjunctive normal form by replacing existentially quantified
variables by functional terms.

Definition A.24 Let ¢ = q1z1...gnzpM|z1,..., 2] be a formula in prenex
conjunctive normal form. Then a Skolemized form of ¢ is a formula ¢’ obtained
by applying the following procedure to ¢:

1. Set ¢’ to ¢.

2. If the prenex of ¢/ contains only universal quantifiers, then stop.

3. Let g; be the first (from the left) existential quantifier in ¢'. Let z;,,..., z;,
be the variables on the left of z; (that is, those variables from x1, ..., 2; 1
that have not been deleted).

4. Add a new j-ary function symbol, which we denote here by f, to the
alphabet. Replace each occurrence of z; in the matrix of ¢’ by the term
f(@iy, ..., @i;). If there are no universal quantifiers to the left of z; in ¢,
then replace each occurrence of x; by a new constant which is added to
the alphabet.

5. Delete 3z; from the prenex of ¢'.

6. Goto step number 2.

The new function symbols and constants which are added to the alphabet are
called Skolem functions and Skolem constants, respectively. )

2This term ‘matrix’ is just a name we use, it does not have very much in common with the
mathematical concept of a matrix.
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For example, VoVy P(z,y, f(z,y)) is a Skolemized form of VzVy3z P(z,y, z),
obtained by replacing the existentially quantified variable z by the term f(z,y).
The standard form of a formula is a conjunction of universally quantified clauses.

Definition A.25 Let ¢ be a (not necessarily closed) formula and z1, ..., z, be
all distinct variables that occur free in ¢. Then V(¢) denotes the closed formula
Vzi...YVz, ¢ O

Definition A.26 Let ¢ be a formula, ¢' be a prenex conjunctive normal form
of ¢ and ¢" =V(Cy A ... A C,) be a Skolemized form of ¢'. Then ¢ = V(Cq) A
... AY(Cy) is called a Skolem standard form (or just a standard form) of ¢. We
say ¢ has 1) as a standard form. )

The standard form of a set {¢1,..., ¢, } of formulas is simply the standard form
of the formula ¢1 A ... A ¢y.

A standard form V(C1)A...AV(C,) can also be written as a set {C1,...,Cy}
of clauses. When we are dealing with clauses, we will assume each clause to be
universally quantified. So for instance, if ¥ = {C,...,C,} is a set of clauses
and C is a clause, we use ¥ = C to abbreviate V(Cy) A ... AV(Cy) = V(O).

Putting a formula in standard from does not preserve logical equivalence.
For instance, P(a) is a standard form of 3z P(x), but 3z P(x) ¢4 P(a), because
dz P(x) [~ P(a). However, by the following theorem (Theorem 4.1 of [CL73]),
standard form does preserve unsatisfiability.

Theorem A.5 Let ¢ be a formula and ¢ be a standard form of ¢. Then ¢ is
unsatisfiable iff 1 is unsatisfiable.

A.4 Herbrand interpretations

Herbrand interpretations are interpretations which have the set of ground terms
as domain and which interpret each ground term in the language as that same
ground term in the domain.

Definition A.27 Let L be a first-order language. The Herbrand universe Uy,
for L is the set of all ground terms which can be formed out of the constants
and function symbols in L. In case L does not contain any constants, we add
one arbitrary constant to the alphabet to be able to form ground terms. &

Definition A.28 Let L be a first-order language. The Herbrand base By, for L
is the set of all ground atoms which can be formed out of the predicate symbols
in L and the terms in the Herbrand universe Uy,. O

Definition A.29 Let L be a first-order language. The Herbrand pre-inter-
pretation for L is the pre-interpretation consisting of the following:

1. The domain of the pre-interpretation is the Herbrand universe Uy,.
2. Constants in L are assigned themselves in Uf..
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3. Each n-ary function symbol f in L is assigned the mapping J; from U}
to Uz, defined by J¢(t1,...,t,) = f(t1,...,tn).

<

Definition A.30 Let L be a first-order language and J an Herbrand pre-
interpretation. Any interpretation based on J is called an Herbrand inter-
pretation. O

An Herbrand interpretation I can be identified with the set of ground atoms
that are true under I.

Definition A.31 Let I be an Herbrand interpretation of a first-order language
L. If I is a model of X, it is called an Herbrand model of 3. )

In this thesis, we will simply assume some fixed language L, and speak of
interpretations, instead of interpretations of L.

The following result (see [CL73, Theorem 4.2] or [L1o87, Proposition 3.3])
shows that when we are dealing with clauses, we can restrict attention to Her-
brand models.

Proposition A.4 A set of clauses 3 has a model iff 2 has an Herbrand model.

A.5 Horn clauses

Horn clauses are a restricted, but very useful kind of clauses.

Definition A.32 A definite program clause is a clause containing one positive,
and zero or more negative literals. A (definite) goal is a clause containing only
negative literals. A Horn clause is either a definite program clause, or a definite

goal. O
If a definite program clause consists of the positive literal A and the nega-
tive literals —Bjy,... By, then such a clause can be written as the following
implication:

(BiAN...\By) = A.
In most papers and books about Logic Programming, this is written as:
A(—Bl,...,Bn.

A is called the head of the clause, By,..., B, is called the body of the clause.
It will be convenient to denote the head of a clause C' by C* and the body by
C~. In case of an atom A (that is, if n = 0), we can omit the ‘<—’-symbol. A
definite goal can be written as

< By,...,B,.

The empty clause O is also considered to be a goal.
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Definition A.33 A definite program is a finite set of definite program clauses.
&

Proposition A.5 (Proposition 6.1 of [L1087]) LetII be a definite program.
If {My, My, ... ,My,...} is a (possibly infinite) set of Herbrand models of II,
then their intersection M = N;M; is also an Herbrand model of 1.

It follows from the previous proposition that the intersection of all Herbrand
models of I, which will be called the least Herbrand model, is itself also an
Herbrand model of II.

Definition A.34 Let Il be a definite program. The intersection of all Herbrand
models of II is called the least Herbrand model of 11, and is denoted by Mp. <

Theorem A.6 (Theorem 6.2 of [L1087]) If Il is a definite program, then
MH:{AEBH | H‘:A}.

A.6 Substitution and unification

A.6.1 Substitution

A substitution replaces variables by terms.

Definition A.35 A substitution 6 is a finite set {z1/t1,...,zn/th}, n > 0,
where the z; are distinct variables and the ¢; are terms. We say ¢; is substituted
for x;. x;/t; is called a binding for x;. The substitution 6 is called a ground
substitution if every t; is ground.

The substitution given by the empty set (n = 0) is called the identity sub-
stitution, or the empty substitution, and is denoted by e¢. O

Definition A.36 An ezpression is either a term, a literal, or a conjunction or
disjunction of literals. A simple expression is a term or a literal. O

Definition A.37 Let 0 = {x1/t1,...,z,/ty} be a substitution, and E an ex-
pression. Then E6, the instance of E by 6, is the expression obtained from FE
by simultaneously replacing each occurrence of z; by ¢;, 1 <14 < n. E#f is called
a ground instance of E if Ef is ground. O

Definition A.38 Let 6 = {z1/s1,...,Zm/sm} and o = {y1/t1,...,yn/tn}
be substitutions. Then the composition 6o is the substitution obtained from
{z1/(510), ..., 2m/(Sm0),y1/t1,- .., Yn/tn} by deleting any binding z;/(s;0) for
which z; = (s;0), and any binding y;/t; for which y; € {z1,..., 2z} O

Definition A.39 Let 6 and o be substitutions. We say 6 is an instance of o if
there exists a substitution v such that oy = 6. O
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Proposition A.6 (Proposition 4.1 of [L1087]) Let E be an expression and
0, o and vy be substitutions. Then the following hold:

1. 0 =0 =¢0.
2. (Ef)o = E(00).
3. (Bo)y = 0(o7).
Since (6o)y = 0(07y), we can omit brackets between substitutions.

Definition A.40 Let E be an expression and 0 = {x1/y1,...,2,/yn} be a
substitution. We say 6 is a renaming substitution for FE if each x; occurs in E,
and y1,...,y, are distinct variables such that each y; is either equal to some x;
in 0, or y; does not occur in FE. <

Definition A.41 Let E and F be expressions. We say E and F' are variants,
or F is a variant of F, if there exist substitutions § and ¢ such that £ = F6
and F = Fo. )

It is easy to show that if F and F' are variants, then there are renaming sub-
stitutions 6 and ¢ such that £ = F'6 and F = Fo.

We will sometimes need a Skolem substitution, which substitutes new con-
stants for the variables in a clause.

Definition A.42 Let X be a set of clauses, C' be a clause, z1,...,z, be all the

variables appearing in C' and aq, . .., a, be distinct constants not appearing in 3
or C. Then the substitution {z;/a1,...,zn/a,} is called a Skolem substitution
for C' w.r.t. X. )

A.6.2 Unification

A wunifier for the set of expressions {E1, Fs,..., E,} is a substitution € such
that E19 = E29 =...= En9

Definition A.43 Let X be a finite set of expressions. A substitution 6 is called
a unifier for ¥ if 30 is a singleton (a set containing exactly one element). If
there exists a unifier for X, we say X is unifiable. )

Definition A.44 If 6 is a unifier for > and if for any unifier o for ¥ there
exists a substitution v such that o = 0+, then 0 is called a most general unifier
(abbreviated to mgu) for . &

It can be shown that any finite unifiable set of simple expressions has an mgu
(see Theorem 4.3 of [L1o87] or Theorem 5.2 of [CL73]).
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