
Contributions toInductive Logic Programming

Afstudeerscriptie Bestuurlijke InformaticaR. M. de Wolf114903Erasmus Universiteit RotterdamDr. S.-H. Nienhuys-Cheng
Mei 1996

Contents
Preface iii1 What is Inductive Logic Programming? 11.1 The importance of learning : 11.2 Inductive learning : 21.3 The problem setting for ILP : 41.4 Other problem settings : 91.5 A brief history of the �eld : 101.6 An outline of the thesis : 122 The Subsumption Theorem for Several Forms of Resolution 132.1 Introduction : 132.2 Preliminaries : 162.3 The Subsumption Theorem : 182.3.1 The Subsumption Theorem for ground � and C : : : : : 192.3.2 The Subsumption Theorem when C is ground : : : : : : : 202.3.3 The Subsumption Theorem (general case) : : : : : : : : : 232.4 The refutation-completeness : 242.4.1 From Subsumption Theorem to refutation-completeness : 242.4.2 From refutation-completeness to Subsumption Theorem : 242.5 Linear resolution : 262.5.1 De�nitions : 272.5.2 The refutation-completeness : : : : : : : : : : : : : : : : : 272.5.3 The Subsumption Theorem : : : : : : : : : : : : : : : : : 302.6 Input resolution : 312.7 SLD-resolution : 342.7.1 The refutation-completeness : : : : : : : : : : : : : : : : : 342.7.2 The Subsumption Theorem : : : : : : : : : : : : : : : : : 362.8 Summary : 383 Unfolding 393.1 Introduction : 393.2 Unfolding : 413.3 UD1-specialization : 453.4 UD2-specialization : 473.5 UDS-specialization : 48i

ii CONTENTS3.6 Relation with inverse resolution : : : : : : : : : : : : : : : : : : : 503.7 Summary : 504 Least Generalizations and Greatest Specializations 534.1 Introduction : 534.2 Preliminaries : 574.3 Least generalizations and greatest specializations : : : : : : : : : 584.4 Subsumption : 604.5 Least generalizations under implication : : : : : : : : : : : : : : : 624.5.1 A su�cient condition for the existence of an LGI : : : : : 624.5.2 The LGI is computable : : : : : : : : : : : : : : : : : : : 684.6 Greatest specializations under implication : : : : : : : : : : : : : 694.7 Least generalizations under relative implication : : : : : : : : : : 704.8 Greatest specializations under relative implication : : : : : : : : 724.9 Summary : 72A De�nitions from Logic 75A.1 Syntax : 75A.2 Semantics : 76A.2.1 Interpretations : 76A.2.2 Models : 78A.2.3 Conventions to simplify notation : : : : : : : : : : : : : : 80A.3 Normal forms : 80A.3.1 Prenex conjunctive normal form : : : : : : : : : : : : : : 80A.3.2 Skolem standard form : 81A.4 Herbrand interpretations : 82A.5 Horn clauses : 83A.6 Substitution and uni�cation : 84A.6.1 Substitution : 84A.6.2 Uni�cation : 85Bibliography 87Author Index 96Subject Index 98

PrefaceThis graduation thesis is the result of nearly two years of research into variousaspects of Inductive Logic Programming (ILP), performed by my supervisorShan-Hwei Nienhuys-Cheng and myself. ILP is a very young �eld of research,which can be seen as the intersection of Machine Learning and Logic Program-ming. Accordingly, it is concerned with learning a general theory from givenexamples, within the framework provided by (clausal) logic. Like so many otheryoung research communities, ILP is characterized by a mild form of chaos. Mostde�nitions and results are only available in widely scattered research papers.As a consequence, concepts are not always uniformly de�ned, often vague, andproofs are not always correct. Evidently, what ILP needs is a book collectingthese concepts and results in a self-contained, uni�ed and rigorous manner.Near the end of the spring of 1994, just at the moment when I startedworrying about a topic on which to graduate, Shan-Hwei came along and askedme to join her in writing precisely such a book. The research presented in thisthesis is actually a spin-o� of the research we have done for our book. Thisbook is by now nearly �nished and is to be published early next year.The research in this thesis can be divided into three parts: deduction, spe-cialization of theories, and least generalizations and greatest specializationsof sets of clauses. These directions of research correspond to Chapters 2, 3and 4, respectively, which form the main part of the thesis. Chapter 2 isbased on [NCW95a, NCW95d, NCW95e, NCW95f, NCW96d]1, a number ofarticles jointly written by Shan-Hwei and myself. Chapter 3 is based on ourpapers [NCW95b, NCW95c, NCW96a, NCW96c], while Chapter 4 is a slightlyrevised version of our article [NCW96b]. These three chapters are preceded byan introductory chapter which de�nes and discusses the basic problem settingof ILP, gives a brief history of the �eld and outlines the thesis. Furthermore,in order to make the thesis a self-contained text an appendix is added, whichgives the main de�nitions from logic that we need.Let me �nish this preface by expressing my gratitude to Shan-Hwei Nienhuys-Cheng. During the past two years, as our book slowly took shape and the above-mentioned articles were written, I have spent many hours discussing, chattingand (sometimes) arguing with her. I would like to thank her very much forintroducing me to the world of scienti�c research, for giving me a feel of what agood proof should look like, and for our pleasant, fruitful, and very stimulatingcooperation.1Our paper [NCW95f] was awarded the Best Paper Award at NAIC'95.iii

Chapter 1What is Inductive LogicProgramming?1.1 The importance of learningHim she found sweating with toil as he moved to and fro about hisbellows in eager haste; for he was fashioning tripods, twenty in all,to stand around the wall of his well-builded hall, and golden wheelshad he set beneath the base of each that of themselves they mightenter the gathering of the gods at his wish and again return to hishouse, a wonder to behold.Iliad, XVIII, 372{377 (pp. 315{317 of [Hom24], second volume).This quotation from Homer's Iliad is perhaps the �rst ever reference in West-ern literature to something like Arti�cial Intelligence: man-made (or in thiscase, god-made) artifacts displaying intelligent behaviour. As Thetis, Achilles'mother, enters Hephaestus' house in order to fetch her son a new armour, she�nds Hephaestus constructing something we today would call robots. His twentytripods are of themselves to serve the gathering of the gods (bring them food,etc.), whenever Hephaestus so desires.Let us consider for a moment the kind of behaviour such a tripod shoulddisplay. Obviously, it should be able to recognise Hephaestus' voice, and toextract his wishes from his words. But furthermore, when serving the gods, thetripod should \know" and act upon many requirements, such as the following:1. If there is roasted owl for dinner, don't give any to Pallas Athena.2. Don't come too close to Hera if Zeus has committed adultery again.3. Stop fetching wine for Dionysus when he is too drunk.: : :It is clear that this list can be continued without end. Again and again, onecan think of new situations that the tripod should be able to adapt to properly.It seems impossible to take all these requirements into account explicitly in theconstruction of the intelligent tripod. The task of \coding" each of the in�nitenumber of requirements into the tripods may be considered too much, even forHephaestus, certainly one of the most industrious among the Greek gods.1

2 CHAPTER 1. WHAT IS INDUCTIVE LOGIC PROGRAMMING?One solution to this problem would be to initially endow the tripod witha modest amount of general knowledge about what he should do, and to giveit the ability to learn from the way the environment reacts to its behaviour.That is, if the tripod does something wrong, it can adjust its knowledge and itsbehaviour accordingly, thus avoiding making the same mistake in the future.1In that way, the tripod need not know everything beforehand. Instead, it canbuild up most of the required knowledge along the way. Thus the tripod'sability to learn would save Hephaestus a lot of trouble.The importance of learning is not restricted to artifacts built to serve divinewishes. Also for many more earthly purposes, the need for learning can easilybe seen. For instance, constructing a knowledge base for some expert system byinterviewing experts and writing down the rules they give, is a very expensiveand time-consuming business. It would be much easier if the expert system wereable to learn its rules itself, from a number of given examples. Such learningfrom examples will be the topic of this thesis.1.2 Inductive learningLearning a general theory from speci�c examples, commonly called induction,has been a topic of inquiry for centuries. It is often seen as a main source ofscienti�c knowledge. Suppose we are given a large number of patient's recordsfrom a hospital, consisting of properties of each patient, including symptomsand diseases. We want to �nd some general rules, concerning which symptomsindicate which diseases. The hospital's records provide examples from whichwe can �nd clues as to what those rules are. Consider measles, a virus disease.If every patient in the hospital who has a fever and has red spots su�ers frommeasles, we could infer the general rule1. \If someone has a fever and red spots, he has measles."Moreover, if each patient with measles also has red spots, we can infer2. \If someone has measles, he will get red spots."These inferences are cases of induction. Note that these rules not only tellus something about the people in the hospital's records, but are in fact abouteveryone. Accordingly, they have predictive power: they can be used to makepredictions about future patients with the same symptoms or diseases.Usually when we want to learn something, we do not start from scratch:most often we already have some background knowledge relevant to the learningtask. For instance, in the hospital records we might �nd a case of a patient ain an early fase of measles: he has a fever, but not yet red spots. Then theprevious rule no. 1 cannot be used. Now suppose in the records we see thatthis person has the same address as another patient b su�ering from measles.Since we know that measles is a rather contagious disease, we can infer that a1Of course, for this scheme to work, we have to assume that the tripod \survives" its initialfailures. If Zeus immediately smashes the tripod into pieces for bringing him white instead ofred wine, the tripod won't be able to learn from its experience.

1.2. INDUCTIVE LEARNING 3also has measles. The fact that measles is contagious, is not something that isexpressed in the hospital records. Instead, it is a piece of knowledge that wealready had. Nevertheless, this piece of background knowledge combined withthe examples allows us to induce the general rule3. \If x has a fever, y has measles, and x and y live in the samehouse, then x has measles."This rule can then be combined with rule no. 2 to predict that x will get redspots.Induction is often viewed as the dual of deduction: in the latter case wederive the special case from the general theory, while in the former, we constructa general theory from a number of given particular cases, namely the examples.One important di�erence between deduction and induction, is the fact thatdeduction is truth-preserving : if the general theory is true, then the derivedparticular cases are also true. Induction, on the other hand, is not truth-preserving: the examples may be true, while the induced theory is false. Forinstance, even if our rules on measles are true for all records of all the hospitalsin the world, they may still be false for people not in the records.The study of induction can be approached from many angles. It used to bemainly an issue for philosophers of science (see Section 1.5), but is nowadaysalso often studied in relation to computer algorithms, within the �eld of Ar-ti�cial Intelligence (AI). As Marvin Minsky, one of the founders of AI, wrote:\Arti�cial Intelligence is the science of making machines do things that wouldrequire intelligence if done by man" [Min68, p. v]. Given this view, the study ofinduction is indeed part of AI, since learning from examples certainly requiresintelligence if done by man.The branch of AI which studies learning is calledMachine Learning. Some ofthe main approaches in Machine Learning are learning in neural networks, deci-sion trees, genetic algorithms and �nally logic. The latter approach is nowadayscalled Inductive Logic Programming (ILP). Stephen Muggleton, when introduc-ing the name Inductive Logic Programming, de�ned this �eld as the intersectionof Machine Learning and Logic Programming. Thus ILP studies learning fromexamples, within the framework provided by clausal logic. Here the examplesand background knowledge are given as clauses, and the theory that is to beinduced from these, is also to consist of clauses. Using logic has some importantadvantages over other approaches used in Machine Learning:� Logic provides a uniform and very expressive means of representation: thebackground knowledge and the examples, as well as the induced theory,can all be represented as formulas in a clausal language.� Knowledge represented as rules and facts over certain predicates comesmuch closer to natural language than any of the other approaches. Hencethe set of clauses that an ILP-system induces is much easier to interpretfor us humans than, for instance, a neural network.� The use of background knowledge �ts very naturally within a logical ap-proach towards Machine Learning.

4 CHAPTER 1. WHAT IS INDUCTIVE LOGIC PROGRAMMING?The remainder of this chapter is organized as follows. In the next section, wewill de�ne the problem setting of induction in the precise terms of clausal logicand introduce some terminology. In Section 1.4 we discuss some alternativesto this setting. Section 1.5 gives a brief survey of the history of induction ingeneral and ILP in particular. We end the chapter with an outline of the restof the thesis.1.3 The problem setting for ILPInductive Logic Programming concerns learning a general theory from givenexamples on the predicates that we want to learn, possibly taking backgroundknowledge into account. We can distinguish between two kinds of examples:positive examples, which are true, and negative examples, which are false. Usu-ally, the positive and negative examples are given as sets E+ and E�, respec-tively, of ground atoms. However, ground clauses are also sometimes used asexamples, for instance in a least generalization-approach. In fact, one mighteven use non-ground clauses as examples, though this would be very unusual.In ILP, both background knowledge and the induced theory are representedas �nite sets of clauses. After the learning is done, the theory together withthe background knowledge should imply all given positive examples (this iscalled completeness) and should not contradict the given negative examples(consistency). Completeness and consistency together form correctness.De�nition 1.1 Let � be a �nite set of clauses and E+ and E� = fe1; e2; : : :gbe sets of clauses. � is complete w.r.t. E+ if � j= E+. � is consistent w.r.t.E� if � [f:e1;:e2; : : :g is satis�able. � is correct w.r.t. E+ and E�, if � iscomplete w.r.t. E+ and consistent w.r.t. E�. 3It follows from Proposition A.1 that if � implies one of the clauses in E�, thenit is not consistent w.r.t. E�. The converse need not hold. For instance, let� = fP (a) _ P (b)g and E� = fP (a); P (b)g. Then � does not imply any of thenegative examples, but is still not consistent w.r.t. E�. However, if we restrictthe possible theories to de�nite programs and the negative examples to groundatoms, then the converse does hold:Proposition 1.1 Let � be a de�nite program and E� be a set of ground atoms.Then � is consistent w.r.t. E� i� � 6j= e, for every e 2 E�.Proof � is consistent w.r.t. E� = fe1; e2; : : :g i�� [f:e1;:e2; : : :g is satis�able i� (by Proposition A.4)� [f:e1;:e2; : : :g has an Herbrand model i�M� does not contain any e 2 E� i� (by Theorem A.6)� 6j= e, for every e 2 E�. 2Several deviations from correctness are the following:

1.3. THE PROBLEM SETTING FOR ILP 5De�nition 1.2 Let � be a �nite set of clauses and E+ and E� be sets ofclauses. � is too strong w.r.t. E�, if � is not consistent w.r.t. E�. � is tooweak w.r.t. E+, if � is not complete w.r.t. E+.� is overly general w.r.t. E+ and E�, if � is complete w.r.t. E+ but notconsistent w.r.t. E�. � is overly speci�c w.r.t. E+ and E�, if � is consistentw.r.t. E� but not complete w.r.t. E+. 3Note that � is correct i� it is neither too strong nor too weak.Example 1.1 Suppose we have E+ = fP (s(0)); P (s3(0)); P (s5(0)); P (s7(0))g,andE� = fP (0); P (s2(0)); P (s4(0))g. Then � = f(P (s2(x)) P (x)); P (s(0))gis correct w.r.t. E+ and E�. Note that � can be viewed as characterizing theodd numbers.�0 = fP (s2(x))g is both too strong w.r.t. E� and too weak w.r.t. E+. It istoo strong because it implies some negative examples and it is too weak becauseit does not imply the positive example P (s(0)).�00 = fP (s(x))g is overly general w.r.t. E+ and E�. <Now the learning problem for ILP can be formally de�ned. This problem settingsometimes goes under the names of normal setting, or explanatory setting (sincethe theory should, in a sense, be an explanation of the examples).Inductive Logic Programming: Problem Setting.Given: A �nite set of clauses B (background knowledge), and setsof clauses E+ and E� (positive and negative examples).Find: A �nite set of clauses � (theory), such that � [B is correctw.r.t. E+ and E�.As we have emphasized above, E+ and E� are most often restricted to groundatoms. We may sometimes be learning from scratch. In this case, no backgroundknowledge is present, and B (the empty set) can be dropped from the problemsetting.Note that a solution � does not always exist. The �rst reason for this israther trivial: B [E+ may be inconsistent w.r.t. the negative examples, forinstance if P (a) is both a positive and a negative example at the same time.To solve this, we have to require that B [E+ is consistent w.r.t. E�.The second reason for the non-existence of a solution is more profound.Note that our problem setting allows in�nite sets of examples. One instance ofthis is Shapiro's setting for model inference [Sha81b]. Here the examples aregiven in an enumeration, which may be in�nite. Allowing an in�nite number ofexamples implies, roughly, that there are \more" possible sets of examples thanthere are theories. Hence a correct theory does not always exist, even when theexamples can only be ground atoms and background knowledge is not used, asproved in the next theorem.The proof of this theorem employs two di�erent \kinds of in�nity". The�rst kind concerns sets containing the same number of elements as the set ofnatural numbers. Such sets are called enumerably in�nite. The second kind ofin�nite set is called uncountable. An example of an uncountable set is the set of

6 CHAPTER 1. WHAT IS INDUCTIVE LOGIC PROGRAMMING?real numbers. It is well-known that the power set of an enumerably in�nite setS (the set of all subsets of S) is uncountable and that the latter is \larger" thanthe former. A more extensive introduction into these matters can be found inmany mathematics books, for instance [BJ89].Theorem 1.1 There exist sets E+ and E� of ground atoms, such that thereis no �nite set of clauses which is correct w.r.t. E+ and E�.Proof Consider a clausal language C containing (possibly among others) afunction symbol of arity � 1 and a constant a. Let A be the set of groundatoms in C. If � is some �nite set of clauses, let A� = fA 2 A j � j= Ag.The number of clauses in C is enumerably in�nite. Then because a theoryis a �nite set of clauses, the number of theories is also enumerably in�nite.Thus the number of di�erent A�'s induced by all possible theories, is also onlyenumerably in�nite.The power set of A is uncountable. Since an uncountable set is much largerthan an enumerably in�nite one, there must be a set E+ � A, such that thereis no �nite � for which A� = E+. De�ne E� = AnE+. Now for a theory � tobe correct w.r.t. E+ and E�, we must have A� = E+. Hence there is no such�. 2If E+ is �nite, then � = E+ will be a correct theory, but a rather uninterest-ing one. In this case, we would not have learned anything beyond the givenexamples: the induced theory has no predictive power. To avoid this, we canput some constraints on the theory. For instance, we might demand that �contains less clauses than the number of given positive examples. In that case,� = E+ is ruled out. Since constraints like these mainly depend on the partic-ular application at hand, we will not devote much attention to them.Anyhow, if one or more correct theories do exist, then they are \hidden"somewhere in the set of clauses in the language we use. Accordingly, �nding asatisfactory theory means that we have to search among the available clauses:learning is searching for a correct theory [Mit82]. Hence the set of availableclauses is called the search space.The two basic steps in the search for a correct theory are specialization andgeneralization. If the current theory (together with the background knowledge)is too strong, it needs to be weakened. That is, we need to �nd a more speci�ctheory, such that the new theory and the background knowledge are consis-tent w.r.t. the negative examples. This is called specialization. On the otherhand, if the current theory does not imply all positive examples, it needs to bestrengthened: we need to �nd a more general theory which (together with thebackground knowledge) can imply all positive examples. This is generalization.Note that a theory may be both too strong and too weak at the same time,witness �0 in Example 1.1. In this case, both specialization and generalizationare called for. In general, �nding a correct theory means repeatedly adjustingthe theory to the examples with these two technique (specialization and gener-alization). Whether a particular theory is too weak or too strong, can be testedusing one of the proof procedures we will introduce in the next chapter.

1.3. THE PROBLEM SETTING FOR ILP 7In general, most ILP-systems conform roughly to the following scheme:Input: B, E+ and E�.Output: A theory �, such that � [B is correct w.r.t. E+ and E�.Start with some initial (possibly empty2) theory �.Repeat1. If � [B is too strong, specialize �.2. If � [B is too weak, generalize �.until � [B is correct w.r.t. E+ and E�.Output �.Thus the main operations an ILP-system should perform, are specializationand generalization. The following chapters can be considered as an investigationinto a number of di�erent approaches towards specialization and generalization,which can be used when searching for a correct theory. We will now introducesome terminology often used in ILP:Top-down and bottom-upOne useful distinction among ILP-systems concerns the direction in which asystem searches. First, there is the top-down approach, which starts with a �such that � [B is overly general, and specializes this. Secondly, there is thebottom-up approach which starts with a � such that � [B is overly speci�c,and generalizes this. Admittedly, a top-down system may sometimes locallyadapt itself to the examples by a generalization step. Such a generalizationstep may be needed to correct a (large) earlier specialization step, which madethe theory too weak. After the correction, the system continues its generaltop-down search.Analogously, a bottom-up system may sometimes make a specialization step.Nevertheless, a system can usually be classi�ed in a natural way as top-downor bottom-up, depending on the general direction of its search.Example 1.2 Consider the sets E+ and E� of Example 1.1. Assume thebackground knowledge is empty. A top-down approach may take the followingsteps to reach a correct theory.1. Start with � = fP (x)g.2. This is clearly overly general, since it implies all negative examples. Spe-cialize it to � = fP (s(x)); P (0)g.3. � is still too general, for instance, it implies P (0) 2 E�. Specialize it to� = fP (s2(x)); P (s(0))g.4. Now � no longer implies P (0), but it is still overly general. When wespecialize further to � = f(P (s2(x)) P (x)); P (s(0))g, we end up witha theory that is correct w.r.t. E+ and E�. <2If we start with a non-empty theory �, the learning task is sometimes called theoryrevision.

8 CHAPTER 1. WHAT IS INDUCTIVE LOGIC PROGRAMMING?Single- and multiple-predicate learningWe can also distinguish between single-predicate learning and multiple-predicatelearning. In the former case, all given examples are instances of only one pred-icate P and the aim of the learning task is to �nd a set of clauses which impliesP (x1; : : : ; xn) just for those tuples hx1; : : : ; xni whose denotation \belongs" tothe concept denoted by P . In other words, the set of clauses should \recognize"the instances of P .In multiple-predicate learning, the examples are instances of more than onepredicate. Note that multiple-predicate learning cannot always be split intoseveral single-predicate problems, because the di�erent predicates in a multiple-predicate learning task may be related.Batch learning and incremental learningThe distinction between batch learning and incremental learning concerns theway the examples are given. In batch learning, we are given all examples E+and E� right at the outset. This has the advantage that noise (errors in thegiven examples) can be measured and dealt with by applying statistical tech-niques to the set of all examples [LD94]. Since the treatment of noise is usuallyapplication-dependent, we will not give much attention to noisy examples inthis thesis.On the other hand, in incremental learning the examples are given one byone, and the system each time adjusts its theory to the examples given so far,before obtaining the next example.Interactive and non-interactiveInteractive systems can interact with their user in order to obtain some ex-tra information. For instance, they can ask the user whether some particularground atom is true or not. In this way, an interactive system generates someof its own examples during the search. A non-interactive system does not havethe possibility to interact with the user.BiasBias concerns anything which constrains the search for theories [UM82]. Wecan distinguish two kinds of bias: language bias and search bias.Language bias has to do with constraints on the clauses in the search space.These may for instance be a restriction to Horn clauses, to clauses withoutfunction symbols and constants, to clauses with at most n literals, etc. Themore restrictions we put on clauses, the smaller the search space, and hencethe faster a system will �nish its search. On the other hand, restrictions on theavailable clauses may cause many good theories to be overlooked. For example,we may restrict the search space to clauses of at most 5 literals, but if the onlycorrect theory contains clauses of 6 or more literals, no solution will be found.Thus there is in general a trade-o� between the e�ciency of an ILP-system andthe quality of the theory it comes up with.One important matter concerning language bias, is the capability of a sys-tem to introduce new predicates when needed. A restriction of the languageto the predicates already in use in the background theory and the examples

1.4. OTHER PROBLEM SETTINGS 9may sometimes be too strict. In that case predicate invention (the automaticintroduction of new useful predicates) is called for. For example, if we arelearning about family relations and neither the examples nor the backgroundknowledge contain a predicate for parenthood, it would be nice if the systemcould introduce such a useful predicate itself.Search bias has to do with the way a system searches its space of availableclauses. One extreme is exhaustive search, which searches the search spacecompletely. However, usually exhaustive search would take far too much time,so the search has to be guided by certain heuristics. These indicate whichparts of the space are searched and which are ignored. Again, this may causethe system to overlook some good theories. So here we see another trade-o�between e�ciency and the quality of the �nal theory.If a system has found that a correct theory is not available using its presentlanguage and search bias, it can try again using a more general language and/ora more thorough search procedure. This is called shifting the bias.1.4 Other problem settingsThe normal problem setting that we introduced above, is used in some formor other by the majority of ILP-researchers. However, in recent years a familyof other problem settings has appeared. These settings have in common thatthe induced theory should no longer imply the positive examples, but shouldbe a general relation that is true for the examples. Examples are Helft's non-monotonic setting for induction [Hel89, DRD94], Flach's weak induction [Fla92]and con�rmatory induction [Fla94, Fla95]. These settings are well-suited forthe problem of data-mining or knowledge discovery : given a large amount ofdata (usually only positive examples), �nd \interesting" regularities among thedata. However, since as yet there is not much consensus in ILP on one particularsetting for this problem, we restrict ourselves to the \normal" problem settingde�ned in the previous section. Nevertheless, specialization and generalizationof clausal theories are the main operations not only for our setting, but alsowithin the alternative settings. Hence the techniques of the next chapters areapplicable within those alternative settings as well.Apart from comparing our setting with alternative settings used within ILP,we can also compare it with problem settings outside of ILP. One of these isthe problem of abduction, �rst introduced by the philosopher Charles SandersPeirce [Pei58]. The logical form of abduction is roughly the same as for induc-tion [DK96, KKT93]. Both proceed from given examples and some backgroundknowledge. However, the theory that abduction produces should be a particu-lar fact (often representable as one or more ground atoms) that together withthe background knowledge explains the examples, whereas induction shouldproduce a general theory.For example, suppose you are Robinson Crusoe on his island and you see astrange human footprint in the sand. Since you know that human footprints areproduced by human beings and the footprint is not your own, you can concludeon the basis of your background knowledge that someone else has visited your

10 CHAPTER 1. WHAT IS INDUCTIVE LOGIC PROGRAMMING?island. Inferring this particular explanation of the example (the presence of thefootprint) is a case of abduction.1.5 A brief history of the �eldLike most other scienti�c disciplines, the study of induction started out as apart of philosophy. Philosophers particularly focused on the role induction playsin the empirical sciences. For instance, the ancient Greek philosopher Aristotlecharacterized science roughly as deduction from �rst principles, which were tobe obtained by induction from experience [Ari60].After the Middle Ages, the philosopher Francis Bacon [Bac20] again stressedthe importance of induction from experience as the main scienti�c activity. Inlater centuries, induction was taken up by many philosophers. David Hume[Hum56, Hum61] formulated what is nowadays called the `problem of induction',or `Hume's problem': how can induction from a �nite number of cases result inknowledge about the in�nity of cases to which an induced general rule applies?What justi�es inferring a general rule (or \law of nature") from a �nite numberof cases? Surprisingly, Hume's answer was that there is no such justi�cation.In his view, it is simply a psychological fact about humans beings that whenwe observe some particular pattern recur in di�erent cases (without observingcounterexamples to the pattern), we tend to expect this pattern to appear in allsimilar cases. In Hume's view, this inductive expectation is a habit, analogous tothe habit of a dog who runs to the door after hearing his master call, expectingto be let out.Later philosphers such as John Stuart Mill [Mil58] tried to answer Hume'sproblem by stating conditions under which an inductive inference is justi�ed.Other philosophers who made important comments on induction were StanleyJevons [Jev74] and Charles Sanders Peirce [Pei58].In our century, induction was mainly discussed by philosophers and mathe-maticians who were also involved in the development and application of formallogic. Their treatment of induction was often in terms of the probability orthe \degree of con�rmation" that a particular theory or hypothesis receivesfrom available empirical data. Some of the main contributors are BertrandRussell [Rus80, Rus48], Rudolf Carnap [Car52, Car50], Carl Hempel [Hem45a,Hem45b, Hem66], Hans Reichenbach [Rei49], and Nelson Goodman [Goo83].Particularly in Goodman's work, an increasing number of unexpected concep-tual problems appeared for induction.In the 1950s and 1960s, induction was sworn o� by philosophers of sci-ence such as Karl Popper [Pop59].3 However, in roughly those same years, itwas recognised in the rapidly expanding �eld of Arti�cial Intelligence that theknowledge an AI-system needs to perform its tasks, should not all be hand-coded into the system beforehand. Instead, it is much more e�cient to providethe system with a relatively small amount of knowledge and with the ability to3Interestingly enough, Thomas Kuhn, Poppers antipode in the philosophy of science, laterbecame involved in computer models of (inductive) concept learning from examples. Seepp. 474{482 of [Kuh77].

1.5. A BRIEF HISTORY OF THE FIELD 11adapt itself to the situations it encounters|to learn from its experience. Thusthe study of induction switched from philosophy to Arti�cial Intelligence.Clause Sammut [Sam93] starts his article on the history of ILP with thework of Bruner, Goodnow and Austin [BGA56] in cognitive psychology. Theyanalyzed the way human beings learn concepts from positive and negative in-stances (examples) of that concept. In the early 1960s, Banerji [Ban64] used�rst-order logic as a representational tool for such concept learning.Around 1970, Gordon Plotkin [Plo70, Plo71b, Plo71a] was probably the �rstto formalize induction in terms of clausal logic. His idea was to generalize givenground clauses (positive examples) by computing their least generalization. Thisgeneralization could be relative to background knowledge consisting of groundliterals. Plotkin's work, which is related to that of John Reynolds [Rey70],is still quite prominent within ILP. Clauses are still used by virtually every-one for expressing theory, examples and background knowledge, and Plotkin'suse of subsumption as a notion of generality is also widespread. During the1970s, Plotkin's work was continued by Steven Vere [Ver75, Ver77], while BrianCohen's incremental system Confucius was inspired by Banerji.In the early 1980s, Sammut's Marvin [Sam81, SB86] was a direct descen-dant of Confucius. Marvin is an interactive concept learner, which em-ploys both generalization and specialization. At around the same time, EhudShapiro [Sha81b, Sha81a] de�ned his setting for model inference and contructedhis model inference algorithm. This is a top-down algorithm aimed at �ndingcomplete axiomatizations of given examples. Shapiro's work contains manyseminal ideas, in particular the use of the Backtracing Algorithm for �ndingfalse clauses in the theory, and the concept of a re�nement operator, used forspecializing a theory. Shapiro implemented his algorithm, though only for Hornclauses, in his model inference system Mis. He later incorporated this work inhis PhD thesis [Sha83], as part of a system for debugging de�nite programs.Then in the second half of the 1980s|no doubt partly as a consequence ofthe increasing popularity of Logic Programming and Prolog|research con-cerning machine learning within a clausal framework increased rapidly. WrayBuntine [Bun86, Bun88] generalized subsumption, in order to overcome someof its limitations. Stephen Muggleton built his system Duce [Mug87], aimed atgeneralizing given propositional clauses. It became clear that Duce's general-ization operators could be seen as inversions of resolution steps. Thus in [MB88]Muggleton, together with Buntine, introduced inverse resolution. They imple-mented inverse resolution, both as an operator for making generalization stepsand as a tool for predicate invention in Cigol (`logic' backwards). In thenext years, inverse resolution drew a lot of attention and sparked o� much newresearch.Some early alternatives to inverse resolution were implemented in Foil,Linus and Golem. Foil [Qui90, QCJ93] is based on a downward re�nementoperator guided by information-based search heuristics, in which J. R. Quinlangeneralized his earlier work on decision trees [Qui86] to Horn clauses. Linus wasdeveloped by Nada Lavra�c and Sa�so D�zeroski [LDG91, LD94]. It solves ILP-problems by transforming them to a simpler attribute-value form, representedas a set of objects with certain properties, and then applying one of several

12 CHAPTER 1. WHAT IS INDUCTIVE LOGIC PROGRAMMING?possible attribute-value learners to learn a general theory from this simplerform. See [LD92a, LD92b, LD94] for a detailed comparison of Foil and Linus.Muggleton and Feng's Golem [MF92] is in a way a return to Plotkin: it is basedon Plotkin's relative least generalization, though with additional restrictions forthe sake of e�ciency.In 1990, Stephen Muggleton �rst introduced the name Inductive Logic Pro-gramming, and de�ned this �eld as the intersection of Machine Learning andLogic Programming [Mug90, Mug91]. In the next year he organized, togetherwith Pavel Brazdil, the �rst International Workshop on Inductive Logic Pro-gramming, bringing together for the �rst time a number of researchers involvedin learning from examples in a clausal framework. Since 1991 these InternationalWorkshops have been repeated every year, establishing ILP as a
ourishing �eldof inquiry.1.6 An outline of the thesisIn this section, we will give an outline of the remainder of the thesis. Threetopics are of particular concern in ILP: deduction, specialization, and general-ization. Each of these will be addressed in later chapters.Deduction allows us to �nd out whether the current theory is correct (com-plete and consistent) w.r.t. the examples. This is clearly important, since itdetermines the direction in which the theory has to be adapted: if the theoryis not complete, it has to be strengthened; if the theory is not consistent, it hasto be weakened. In the next chapter we will investigate four di�erent deductiveprocedures, each based on the resolution principle. For \unconstrained" resolu-tion, linear resolution and SLD-resolution, we will prove a major completenessresult, called the Subsumption Theorem. Moreover, we will show that this the-orem is equivalent to the refutation-completeness, for each of these kinds ofresolution. On the other hand, we will also show that both of these complete-ness results do not hold for input resolution.Specialization can be used to weaken a theory. In Chapter 3 we investi-gate the use of unfolding as a specialization tool. We de�ne three increas-ingly strong specialization methods, UD1-specialization, UD2-specialization andUDS-specialization, based on unfolding, clause deletion and subsumption. Thelatter is a complete specialization technique for de�nite programs, while the�rst two are not.Finally, in Chapter 4 we discuss least generalizations and greatest special-izations of sets of clauses. These can respectively be used to strengthen andweaken a theory. Usually, least generalizations are only considered under thesubsumption order. We extend it here to the logical implication order, which ismore powerful than subsumption.It is interesting to note that the proofs of both the completeness result givenin Chapter 3, as well as the main new result of Chapter 4 (the existence of aleast generalization under implication in the presence of a function-free clause),depend on the Subsumption Theorem(s) of Chapter 2. This gives a kind ofunity and coherence to the thesis.

Chapter 2The Subsumption Theoremfor Several Forms ofResolution2.1 IntroductionThe Subsumption Theorem is the following statement:If � is a set of clauses and C is a clause, then � logically impliesC (� j= C) i� C is a tautology, or there exists a clause D whichsubsumes C and which can be derived from � by some form ofresolution.Di�erent versions of the theorem exist, depending on the instantiation of \someform of resolution." We could allow arbitrary binary trees of resolution steps(\unconstrained resolution") as derivation, or we could allow only linear deriva-tions, etc. This is similar to the refutation-completeness for proof by contradic-tion: here we have the refutation-completeness of unconstrained resolution, therefutation-completeness of linear resolution, etc.The refutation-completeness is a form of completeness that is much bet-ter known than the Subsumption Theorem. It states that a set of clauses isunsatis�able i� the set has a refutation (a derivation of the empty clause 2,which represents a contradiction). It can be used to prove any case of logi-cal implication between clauses. For if we have a set �, a clause C, � is aSkolem substitution for C w.r.t. � and C� = L1 _ : : : _ Ln, then � j= C i�� [f:L1; : : : ;:Lng is unsatis�able i� � [f:L1; : : : ;:Lng has a refutation.However, the Subsumption Theorem is a more \direct" form of complete-ness than the refutation-completeness. By the Subsumption Theorem, we canstraightforwardly prove C from � by taking a number of resolution steps start-ing from clauses in �, and then taking a subsumption step leading to C. Thereis no need to use the detour which �rst negates C and then applies proof byrefutation. In a derivation of a clause which subsumes C, the relation betweenon one hand the premises in � and on the other hand the conclusion C, is much13

14 THE SUBSUMPTION THEOREMeasier to see than in a proof by refutation. Accordingly, the Subsumption The-orem gives us a more clear view of the structure of logical implication than therefutation-completeness. For this reason, the Subsumption Theorem is some-times a more convenient result than the refutation-completeness, perhaps notfor e�cient deduction, but certainly for theoretical analysis.Examples of such theoretical analysis are the various ways the theoremis applied in Inductive Logic Programming. The use of subsumption is verypopular in ILP, since it is decidable and machine-implementable. However,subsumption is weaker than implication: if C subsumes D then C j= D, butnot always the other way around, take for instance C = P (f(x)) P (x) andD = P (f2(x)) P (x). So it is desirable to make the step from subsumption toimplication, and the Subsumption Theorem provides an excellent \bridge" forthose who want to make this step, since it states that implication = resolution +subsumption. It is used for instance in [Mug92c, IA93, IA95, LNC94b, LNC94a].The theorem is also an essential ingredient in the proofs of the main results inlater chapters of the present thesis. It is rather doubtful whether we wouldhave found those same results if we only had the refutation-completeness at ourdisposal, but not the Subsumption Theorem.As our survey later on in this section will show, in automated theoremproving the Subsumption Theorem received most attention around 1970. InILP, the Subsumption Theorem was �rst rediscovered by Bain and Muggle-ton [BM92].1 A proof of the Subsumption Theorem for unconstrained resolu-tion, based on the refutation-completeness, is given in the appendix of [BM92].However, this proof seems not fully correct. For example, it does not takefactors into account, whereas factors are necessary for completeness. With-out factors one cannot derive the empty clause 2 from the unsatis�able setf(P (x) _ P (y)); (:P (u) _ :P (v))g (see [GN87]). Furthermore, it is not alwaysclear how the concepts that are used in the proof are de�ned, and how theSkolemization works.Even though the proof in [BM92] is not quite correct, it is often quoted|sometimes even incorrectly. The two main formulations of the SubsumptionTheorem that we have found in ILP-literature, are the following:S Let � be a set of clauses and C a clause which is not a tautology. De�neR0(�) = � and Rn(�) = Rn�1(�) [fC j C is a resolvent of C1; C2 2Rn�1(�)g. Also de�ne R�(�) = R0(�) [R1(�) [: : :. Then the Sub-sumption Theorem is stated as follows:� j= C i� there exists a clause D 2 R�(�) such that D subsumes C.S0 Let � be a set of clauses and C a clause which is not a tautology. De�neL1(�) = � and Ln(�) = fC j C is a resolvent of C1 2 Ln�1(�) and C2 2�g. Also de�ne L�(�) = L1(�) [L2(�) [: : :. Then the SubsumptionTheorem is stated as follows:� j= C i� there exists a clause D 2 L�(�) such that D subsumes C.1From personal communication with Stephen Muggleton, we know Bain and Muggletondiscovered the theorem themselves, independently of [Lee67]. Only afterwards did they foundout from references in other literature that their theorem was roughly the same as the theoremin Lee's thesis.

2.1. INTRODUCTION 15S is given in [BM92], S0 is given in [Mug92c]. [Mug92c] does not include aproof of S0, but refers instead to [BM92]. In other work such as [IA93, NCLT93,LNC94b, MDR94, BG96], the theorem is also given in the form of S0. Thesetexts do not give a proof of S0, but refer instead to [BM92] or [Mug92c]. Thatis, they refer to a proof of S assuming that this is also a proof of S0. But clearlythat is not the case, because S0 demands that at least one of the parent clausesof a clause in L�(�) is a member of �, so S0 is stronger than S. In fact, whereasS is true, S0 is actually false! If S0 were true, then input resolution would berefutation-complete which it is not, as we will see in Section 2.6.The confusion about S0 is perhaps a consequence of the subtle distinctionbetween linear resolution and input resolution. S0 employs a form of inputresolution, which is a special case of linear resolution. Linear resolution iscomplete, as is well-known, but input resolution is not.However, the articles we mentioned do not always use S0 itself. [LNC94b,NCLT93] are restricted to Horn clauses. In Section 2.7 we show that SLD-resolution for Horn clauses has its own Subsumption Theorem, so for Hornclauses there is no problem. If we examine [Mug92c, IA93, MDR94, BG96],carefully, then we see that the results of these articles (which are also aboutnon-Horn clauses) only depend on a special case of S0, namely the case where �consists of a single clause. Unfortunately, S0 does not even hold in this specialcase. We give a counterexample in Section 2.6. This means that results whichare consequences of this special case of S0 need to be reconsidered.2 Theseparticularly include results on nth powers and nth roots. If D 2 Ln(fCg), thenD is called an nth power of C, and C is called an nth root of D. Clearly,the falsity of S0 renders false the completeness of powers and roots reportedin [Mug92c, MDR94, BG96].This confusion in the ILP-community about various forms of the Subsump-tion Theorem provided the motivation for the research we present in this chap-ter. Our aim was to �nd out for which versions of resolution the SubsumptionTheorem holds, and for which it does not.Let us �rst see what results have already been proved in the literature.Surprisingly, the Subsumption Theorem is mentioned nowhere in the standardreference books on resolution, such as [CL73, Lov78, Llo87]. Hence we haveto rely on journals, conference proceedings and theses. A weak form of theSubsumption Theorem was �rst proved by Lee in 1967 in his PhD thesis [Lee67],only 2 years after Robinson's introduction of the resolution principle in [Rob65].His result is the following: � j= C i� C is a tautology, or there exists a clauseD which implies C (and thus not necessarily subsumes C) and which can bederived from � by unconstrained resolution.The \real" Subsumption Theorem|i.e., where D subsumes C rather thanonly implying it|appears to have been �rst proved in [SCL69]. Here the resultis proved for several forms of semantic resolution. Since semantic resolutionis a constrained form of resolution, their results immediately imply the Sub-2Idestam-Almquist has adjusted his results from [IA93] in [IA95], incorporating our �ndingsas published in [NCW95d].

16 THE SUBSUMPTION THEOREMsumption Theorem for unconstrained resolution.3 Kowalski [Kow70] explicitlyproved the result for unconstrained resolution, but his proof is rather sketchyand presupposes knowledge of semantic trees. Minicozzi and Reiter [MR72]proved the Subsumption Theorem for linear resolution. After that, interest inthe Subsumption Theorem seems to have faded somewhat. However, recentlyInoue [Ino92] has developed SOL-resolution (Skip Ordered Linear resolution)and proved a version of the Subsumption Theorem for it. He also gave anoverview of the results of [Lee67, SCL69, MR72].In this chapter, we consider four kinds of resolution: \unconstrained" res-olution, linear resolution, input resolution, and SLD-resolution, the latter onlyfor Horn clauses. We collect some of the results mentioned in the last paragraphand contribute some results of our own.The chapter is organized as follows. In the next section we start out withour main de�nitions. In Section 2.3 we give a new, direct proof of the Subsump-tion Theorem for unconstrained resolution. In our opinion, this proof is easierto understand than earlier proofs of the same result [Kow70, BM92], which pre-suppose the refutation-completeness of resolution. In Section 2.4, we then showthat the refutation-completeness of unconstrained resolution is an immediatecorollary of the Subsumption Theorem. Conversely, in the same section wealso give a second proof of the Subsumption Theorem, this time starting fromthe refutation-completeness. Thus these two completeness results are actuallyequivalent: the one can be proved from the other.The Subsumption Theorem holds for linear resolution as well. In Section 2.5we give a proof of this result which is similar to the proof given in [MR72].Moreover, we also show that the Subsumption Theorem for linear resolution isequivalent to the refutation-completeness of linear resolution. In Section 2.6,we show that the Subsumption Theorem does not hold for input resolution, noteven in case � contains only one clause, which is a new result.Finally, in Section 2.7 we discuss SLD-resolution for Horn clauses. We �rstgive a proof of the well-known refutation-completeness of SLD-resolution. Thisproof is easier to understand than the one given in [Llo87], since our proof doesnot require �xed-point theory. We then proceed to prove the Subsumption The-orem for SLD-resolution. This new result generalizes Theorem 18 of [MP94],which gives the result for the case where � contains only one clause. Moreover,as in the cases of unconstrained and linear resolution, we show that the Sub-sumption Theorem is equivalent to the refutation-completeness also in case ofSLD-resolution.42.2 PreliminariesIn this section we de�ne the main concepts concerning resolution.3The name \completeness theorem for consequence �nding" is also sometimes used. As faras we know, the name \Subsumption Theorem" was introduced in [Kow70].4Though this equivalence holds for each of the forms of resolution that we discuss here,it does not holds for every conceivable kind of resolution. [MR72] discusses m.c.l.-resolution.This is refutation-complete, but the Subsumption Theorem does not hold for it.

2.2. PRELIMINARIES 17De�nition 2.1 Let C1 and C2 be clauses. If C1 and C2 have no variables incommon, then they are said to be standardized apart. 3De�nition 2.2 Let C1 = L1_: : :_Li_: : :_Lm and C2 =M1_: : :_Mj_: : :_Mnbe two clauses which are standardized apart. If the substitution � is an mgu(most general uni�er) of the set fLi;:Mjg, then the clause(L1 _ : : : _ Li�1 _ Li+1 _ : : : _ Lm _M1 _ : : : _Mj�1 _Mj+1 _ : : : _Mn)�is called a binary resolvent of C1 and C2. The literals Li and Mj are said to bethe literals resolved upon. 3De�nition 2.3 Let C be a clause, L1; : : : ; Ln (n � 1) some uni�able literalsfrom C and � an mgu for the set fL1; : : : ; Lng. Then the clause obtained bydeleting L2�; : : : ; Ln� from C� is called a factor of C. 3Note that every non-empty clause C is a factor of C itself, using the identitysubstitution " as mgu for one literal in C. Factors are sometimes built into theresolution step itself|for instance in Robinson's original paper [Rob65], wheresets of literals from both parent clauses are uni�ed|but we have chosen toseparate the de�nitions of a factor and a binary resolvent. The reason for thisis that binary resolution without factors is su�cient in case of SLD-resolutionfor Horn clauses.De�nition 2.4 Let C1 and C2 be two clauses. A resolvent R of C1 and C2 is abinary resolvent of a factor of C1 and a factor of C2, where the literals resolvedupon are the literals uni�ed by the respective factors. C1 and C2 are called theparent clauses of R. 3It is easy to show that resolution is sound: if R is a resolvent of C1 and C2,then fC1; C2g j= R.Below we de�ne a derivation. In later sections, we will put some constraintson this concept, yielding, respectively, linear, input and SLD-derivations. Thekind of derivation de�ned in this section, will sometimes be referred to as \un-constrained" resolution.De�nition 2.5 Let � be a set of clauses and C a clause. A derivation of Cfrom � is a �nite sequence of clauses R1; : : : ; Rk = C, such that each Ri iseither in � or a resolvent of two clauses in fR1; : : : ; Ri�1g. If such a derivationexists, we write � `r C.A derivation of the empty clause 2 from � is called a refutation of �. 3A derivation of a clause C from a set � can be represented as a binary tree ofresolution steps, with clauses from � as leaves and C as root.If we add a subsumption step to a derivation, we get a deduction.De�nition 2.6 Let C and D be clauses. We say C subsumes D if there existsa substitution � such that C� � D. 3

18 THE SUBSUMPTION THEOREMIf C subsumes D, then C j= D. Subsumption is also sometimes called �-subsumption.Example 2.1 C = P (x) _Q(x; y) subsumes D = P (a) _Q(a; y) _R(x). <De�nition 2.7 Let � be a set of clauses and C a clause. We say there exists adeduction of C from �, written as � `d C, if C is a tautology, or if there existsa clause D such that � `r D and D subsumes C. If � `d C, we say C can bededuced from �. 3Example 2.2 To illustrate these de�nitions, we will give an example of a de-duction of the clause C = R(a) _ S(a) from the set � = f(P (x) _ Q(x) _R(x)); (:P (x) _Q(a)); (:P (x) _ :Q(x)); (P (x) _ :Q(x))g. Figure 2.1 shows aderivation of the clause D = R(a) _ R(a) from �. Note that we use the factorQ(a) _ R(a) of the parent clause C6 = Q(x) _ R(x) _ Q(a) in the last step ofthe derivation, and also the factor P (y) _R(y) of C5 = P (y) _ P (y) _R(y) inthe step leading to C7. Since D subsumes C, we have � `d C.It is not very di�cult to see the equivalence between our de�nition of aderivation and the de�nition of Rn(�) we gave in Section 2.1. For instance, in�gure 2.1, C1; C2; C3; C4; C 01 are variants of clauses in R0(�) (C1 and C 01 arevariants of the same clause). C5; C6 are in R1(�), C7 is in R2(�) and D is inR3(�).
C1 = P (x) _Q(x) _ R(x) C2 = :P (y) _Q(a)@@@@R ����	C6 = Q(x) _R(x) _Q(a)

C4 = P (x) _ :Q(x) C01 = P (y) _Q(y) _R(y)C3 = :P (x) _ :Q(x) @@@@R ����	C5 = P (y) _ P (y) _ R(y)@@@@R ����	C7 = :Q(y) _ R(y)@@@@R ����	D = R(a) _ R(a)?subsumptionC = R(a) _ S(a)Figure 2.1: A deduction of C from � <2.3 The Subsumption TheoremIn this section, we prove the Subsumption Theorem for (unconstrained) reso-lution: � j= C i� � `d C. Thus any clause which is a logical consequence of

2.3. THE SUBSUMPTION THEOREM 19�, can be deduced from �. We prove this in a number of successive steps inthe following subsections. First we prove the result in case both � and C areground, then we prove it in case � consists of arbitrary clauses but C is ground,and �nally we prove the theorem when neither � nor C need be ground.2.3.1 The Subsumption Theorem for ground � and CLemma 2.1 Let � be a set of ground clauses and C be a ground clause. If� j= C, then � `d C.Proof By Theorem A.3, we can assume � is �nite. Assume C is not a tautology.Then we need to �nd a clause D such that � `r D and D � C (for groundclauses D and C, D subsumes C i� D � C). The proof is by induction on thenumber of clauses in �.1. Suppose � = fC1g. We will show that C1 � C. Suppose C1 6� C.Then there exists a literal L such that L 2 C1 but L 62 C. Let I be aninterpretation which makes L true and all literals in C false (such an Iexists, since C is not a tautology). Then I is a model of C1, but not ofC. But that contradicts � j= C. So C1 � C, and � `d C.2. (See �gure 2.2 for illustration of this case). Suppose the theorem holds ifj�j � m. We will prove that this implies that the theorem also holds ifj�j = m + 1. Let � = fC1; : : : ; Cm+1g and �0 = fC1; : : : ; Cmg. If Cm+1subsumes C or �0 j= C, then the theorem holds. So assume Cm+1 doesnot subsume C and �0 6j= C.The idea is to derive, using the induction hypothesis, a number of clausesfrom which a derivation of a subset of C can be constructed. First notethat since �0 [fCm+1g j= C, it follows from Theorem A.1 that �0 j=(Cm+1 ! C), hence �0 j= C _ :Cm+1.Let L1; : : : ; Lk be all the literals in Cm+1 which are not in C (k � 1 sinceCm+1 does not subsume C). Then we can write Cm+1 = L1_ : : :_Lk_C 0,where C 0 � C. Since C does not contain Li (1 � i � k), the clauseC _ :Li is not a tautology. Also, since �0 j= C _ :Cm+1 and Cm+1 isground, we have that �0 j= C _ :Li, for each i. Then by the inductionhypothesis there exists for each i a ground clause Di such that �0 `r Diand Di � (C _ :Li).We will use Cm+1 and the derivations from �0 of these Di to constructa derivation of a subset of C from �. For each i, :Li 2 Di, otherwiseDi � C and �0 j= C. So we can write each Di as :Li _D0i, and D0i � C(the case where some Di contains :Li more than once can be solved bytaking a factor of Di).Now we can construct a derivation of the ground clause de�ned as D =C 0 _D01 _ : : :_D0k from �, using Cm+1 and the derivations of D1; : : : ;Dkfrom �0. See �gure 2.2 for a schematic representation of this derivation.In this tree, the derivations of D1; : : : ;Dk are indicated by the verticaldots. So we have that � `r D. Since C 0 � C, and D0i � C for each i, wehave that D � C. Hence � `d C. 2

20 THE SUBSUMPTION THEOREMCm+1 = L1 _ : : : _ Lk _ C0 ...D1 = :L1 _D01@@@@R ����	L2 _ : : : _ Lk _ C0 _D01 ...D2 = :L2 _D02@@@@R ����	L3 _ : : : _ Lk _C0 _D01 _D02. . .Lk _C0 _D01 _ : : : _D0k�1 ...Dk = :Lk _D0k@@@@R ����	D = C0 _D01 _ : : : _D0kFigure 2.2: The tree for the derivation of D from �2.3.2 The Subsumption Theorem when C is groundIn this section, we will prove the Subsumption Theorem in case C is ground and� is a set of arbitrary clauses. The idea is to \translate" � j= C to �g j= C,where �g is a set of ground instances of clauses of �. Then by Lemma 2.1there is a clause D such that �g `r D and D subsumes C. Finally, we \lift"this derivation to a derivation from �. The next two results show that logicalimplication between clauses can be translated to logical implication betweenground clauses. The �rst of these is Herbrand's Theorem.Theorem 2.1 (Herbrand) A set of clauses � is unsatis�able i� there existsa �nite unsatis�able set �g of ground instances of clauses in �.Proof(: �g is a �nite set of ground instances of clauses in �, so � j= �g. Henceif �g is unsatis�able, then � is unsatis�able.): Let �0 be the (possibly in�nite) set of all ground instances of clauses in�. Let I be an Herbrand interpretation. It is not very di�cult to see that I isan Herbrand model of a clause C i� I is an Herbrand model of the set of allground instances of C. Therefore I is a model of � i� I is a model of �0. Nowwe have the following:� is unsatis�able i� (by Proposition A.4)� has no Herbrand models i��0 has no Herbrand models i� (by Proposition A.4)�0 is unsatis�able.Finally, by the Compactness Theorem (Theorem A.2) there is a �nite unsatis-�able subset �g of �0. 2

2.3. THE SUBSUMPTION THEOREM 21Theorem 2.2 Let � be a set of clauses and C be a ground clause. If � j= C,then there exists a �nite set �g of ground instances of clauses in �, such that�g j= C.Proof Let C = L1 _ : : : _ Lk (k � 0). If � is unsatis�able then the lemmafollows immediately from Theorem 2.1, so suppose � is satis�able. Note thatsince C is ground, :C is equivalent to :L1 ^ : : : ^ :Lk. Then:� j= C i� (by Proposition A.1)� [f:Cg is unsatis�able i�� [f:L1; : : : ;:Lkg is unsatis�able i� (by Theorem 2.1)there exists a �nite unsatis�able set �0, consisting of ground in-stances of clauses from � [f:L1; : : : ;:Lkg.Since � is satis�able, the unsatis�able set �0 must contain one or more membersof the set f:L1; : : : ;:Lkg, i.e. �0 = �g [f:Li1 ; : : : ;:Lijg, where �g is a �nitenon-empty set of ground instances of clauses in �. So:�0 is unsatis�able i��g [f:Li1 ; : : : ;:Lijg is unsatis�able i��g [f:(Li1 _ : : : _ Lij)g is unsatis�able i� (by Proposition A.1)�g j= (Li1 _ : : : _ Lij).Since fLi1 ; : : : ; Lijg � C, it follows that �g j= C. 2Example 2.3 Let � = f(P (f(x))_:P (x)); P (x)g and C = P (f(f(a))). Then� j= C. �g = f(P (f(f(a))) _ :P (f(a))); (P (f(a)) _ :P (a)); P (a)g is a set ofground instances of clauses of �, and �g j= C. <The following two lemmas are su�cient to \lift" a derivation, that is, to turn aderivation from instances of certain clauses into a derivation from those clausesthemselves.Lemma 2.2 Let C1 and C2 be two clauses and C 01 and C 02 be instances of C1and C2, respectively. If R0 is a resolvent of C 01 and C 02, then there exists aresolvent R of C1 and C2, such that R0 is an instance of R.Proof We assume without loss of generality that C1 and C2, and C 01 and C 02are standardized apart. Let C1 = L1_ : : :_Lm, C2 =M1_ : : :_Mn, C 01 = C1�1and C 02 = C2�2. Suppose R0 is a resolvent of C 01 and C 02. Then R0 is a binaryresolvent of a factor of C 01 and a factor of C 02. See the �gure for illustration.For notational convenience, we assume without loss of generality that thefactor of C 01 is (L1 _ : : : _ La)�1�1, where �1 is an mgu for La�1; : : : ; Lm�1.Similarly, the factor of C 02 that is used, is (M1 _ : : : _Mb)�2�2, where �2 isan mgu for Mb�2; : : : ;Mn�2. Let Li�1�1 and Mj�2�2 be the literals resolvedupon, with mgu �. Abbreviate L1 _ : : : _ Li�1 _ Li+1 _ : : : _ La to D1 andM1 _ : : : _Mj�1 _Mj+1 _ : : : _Mb to D2. Then R0 = (D1�1�1 _ D2�2�2)�.

22 THE SUBSUMPTION THEOREMBy our assumption of standardizing apart, this can be written as R0 = (D1 _D2)�1�1�2�2�.Let
1 be an mgu for La_ : : :_Lm. Then (L1_ : : :_La)
1 is a factor of C1.Note that �1�1 is a uni�er for La; : : : ; Lm. Since
1 is an mgu for La; : : : ; Lm,there exists a substitution �1 such that �1�1 =
1�1. Similarly, (M1_: : :_Mb)
2is a factor of C2, with
2 as mgu for Mb _ : : : _Mn, and there is a �2 such that�2�2 =
2�2.Since Li�1�1 and :Mj�2�2 can be uni�ed (they have � as mgu) and
i ismore general than �i�i (i = 1; 2), Li
1 and :Mj
2 can be uni�ed. Let � be anmgu for Li
1 and :Mj
2. De�ne R = (D1
1 _ D2
2)�, which can be writtenas R = (D1 _D2)
1
2�. Since R is a binary resolvent of the above-mentionedfactors of C1 and C2, it is a resolvent of C1 and C2.C1HHHHj
1 C2�����
2factor factorHHHHj ������ �R�1 ? �1 ? � ? �2? �2?C01HHHHj�1 C02������2factor factorHHHHj ������ �R0It remains to show that R0 is an instance of R. Since Li
1�1�2� = Li�1�1�2� =Li�1�1� = :Mj�2�2� = :Mj
2�2� = :Mj
2�1�2�, the substitution �1�2� is auni�er for Li
1 and :Mj
2. � is an mgu for Li
1 and :Mj
2, so there existsa substitution � such that �1�2� = ��. Therefore R0 = (D1 _D2)�1�1�2�2� =(D1 _D2)
1�1
2�2� = (D1 _D2)
1
2�1�2� = (D1 _D2)
1
2�� = R�. Hence R0is an instance of R. 2Lemma 2.3 (Derivation lifting) Let � be a set of clauses and �0 a set ofinstances of clauses in �. Suppose R01; : : : ; R0k is a derivation of the clause R0kfrom �0. Then there exists a derivation R1; : : : ; Rk of the clause Rk from �,such that R0i is an instance of Ri, for each i.Proof The proof is by induction on k.1. Suppose k = 1. R01 2 �0, so there exists a clause R1 2 � such that R01 isan instance of R1.2. Suppose the lemma holds if k � m. Let R01; : : : ; R0m; R0m+1 be a derivationof R0m+1 from �0. By the induction hypothesis, there exists a derivationR1; : : : ; Rm of Rm from �, such that R0i is an instance of Ri for all i,1 � i � m. If R0m+1 2 �0, the lemma is obvious. Otherwise, R0m+1 isa resolvent of two clauses C 01 and C 02 in fR01; : : : ; R0mg. Then there existtwo clauses C1 and C2 in fR1; : : : ; Rmg such that C 01 is an instance of C1and C 02 is an instance of C2. It follows from Lemma 2.2 that there is aresolvent Rm+1 of C1 and C2, such that R0m+1 is an instance of Rm+1. Sothe lemma holds for k = m+ 1.

2.3. THE SUBSUMPTION THEOREM 232The previous lemmas are su�cient to prove the Subsumption Theorem for thecase where C is ground.Lemma 2.4 Let � be a set of clauses and C be a ground clause. If � j= C,then � `d C.Proof Assume C is not a tautology. We want to �nd a clause D such that� `r D and D subsumes C. From � j= C and Theorem 2.2, there exists a �niteset �g such that each clause in �g is a ground instance of a clause in �, and�g j= C. Then from Lemma 2.1 there exists a clause D0 such that �g `r D0,and D0 subsumes C. Let R01; : : : ; R0k = D0 be a derivation of D0 from �g. Itfollows from Lemma 2.3 that we can lift this to a derivation R1; : : : ; Rk of Rkfrom �, where D0 is an instance of Rk. Let D = Rk. Then � `r D and Dsubsumes C (since D0 subsumes C). 22.3.3 The Subsumption Theorem (general case)Finally we prove the Subsumption Theorem for arbitrary � and C. The follow-ing lemma shows that if we have derived some clause D from � which subsumesC�|where � is a Skolem substitution for C w.r.t. �|then D also subsumesC. For instance, suppose D = P (x), C = P (y) _ Q(z) and � = fy=a; z=bg. Dsubsumes C�, but since � replaces each variable by a constant that does notappear in �, C or D, D also subsumes C itself.Lemma 2.5 Let C and D be clauses. Let � = fx1=a1; : : : ; xn=ang be a Skolemsubstitution for C w.r.t. D. If D subsumes C�, then D also subsumes C.Proof Since D subsumes C�, there exists a substitution � such that D� �C�. Let � be the substitution fy1=t1; : : : ; ym=tmg. Let �0 be the substitutionobtained from � by replacing each ai by xi in every tj . Note that � = �0�.Since � only replaces each xi by ai (1 � i � n), it follows that D�0 � C, so Dsubsumes C. 2Finally we can prove the general case of the Subsumption Theorem:Theorem 2.3 (Subsumption Theorem) Let � be a set of clauses and C bea clause. Then � j= C i� � `d C.Proof(: By the soundness of resolution and subsumption.): Assume C is not a tautology. Let � be a Skolem substitution for Cw.r.t. �. Then C� is a ground clause which is not a tautology, and � j= C�. Soby Lemma 2.4 there is a clause D such that � `r D and D subsumes C�. SinceD is derived from �, D does not contain any of the constants in �. Therefore �is also a Skolem substitution for C w.r.t. D. Then by Lemma 2.5, D subsumesC. Hence � `d C. 2

24 THE SUBSUMPTION THEOREM2.4 The refutation-completeness2.4.1 From Subsumption Theorem to refutation-completenessThe Subsumption Theorem actually tells us that resolution and subsumptionform a complete set of derivation-rules for clauses. Though the resolution ruleby itself is not complete for clauses in general, for instance, P (x) j= P (a) butP (x) 6`r P (a), resolution is complete w.r.t. unsatis�able sets of clauses. Thisrefutation-completeness is an easy consequence of the Subsumption Theorem:Theorem 2.4 (Refutation-completeness) Let � be a set of clauses. Then� is unsatis�able i� � `r 2.Proof(: By the soundness of resolution.): Suppose � is unsatis�able. Then � j= 2. So by Theorem 2.3 thereexists a clause D, such that � `r D and D subsumes the empty clause 2. But2 is the only clause which subsumes 2, so D = 2. 22.4.2 From refutation-completeness to Subsumption TheoremIn the previous subsection, we showed that the refutation-completeness is adirect consequence of the Subsumption Theorem. Here we will show the con-verse: that we can obtain the Subsumption Theorem from the refutation-completeness. This establishes the equivalence of the Subsumption Theoremand the refutation-completeness: the one can be proved from the other.To prove the Subsumption Theorem from the refutation-completeness, wewill �rst show how to turn a refutation of � [f:L1; : : : ;:Lkg into a deduc-tion of L1 _ : : : _ Lk from �. Thus our proof is constructive, and some-what similar to the approach in [BM92]. We start with an example. Sup-pose � = f(P (x) _ :R(f(f(b)))); (R(f(x)) _ :R(x))g and C = P (x) _Q(x) _:R(b). First we note that � = fx=ag is a Skolem substitution for C w.r.t.�. Now :C� , f:P (a);:Q(a); R(b)g. Figure 2.3 shows a refutation of� [f:P (a);:Q(a); R(b)g.Now by omitting the leaves of the refutation-tree which come from :C�(the framed literals) and by making appropriate changes in the tree, we get aderivation of the clause D = P (x) _ :R(b) (�gure 2.4). D subsumes C, so wehave turned the refutation of �gure 2.3 into a deduction of C from �.This approach also works in the general case. The following lemma doesmost of the work.Lemma 2.6 Let � be a set of clauses and C = L1_: : :_Lk be a non-tautologousground clause. If � [f:L1; : : : ;:Lkg `r 2, then � `d C.Proof Suppose � [f:L1; : : : ;:Lkg `r 2. Then there exists a refutationR1; : : : ; Rn = 2 of � [f:L1; : : : ;:Lkg. Let r be the number of resolventsin this sequence (r = n� the number of members of � [f:L1; : : : ;:Lkg inR1; : : : ; Rn). We prove the lemma by induction on r.

2.4. THE REFUTATION-COMPLETENESS 25R(f(x)) _ :R(x) R(b)@@@@R ����	R(f(b))R(f(x)) _ :R(x)@@@@R ����	R(f(f(b)))P (x) _ :R(f(f(b))) :P (a)@@@@R ����	:R(f(f(b)))@@@@R ����	2Figure 2.3: A refutation of � [f:P (a);:Q(a); R(b)gR(f(y)) _ :R(y)R(f(x)) _ :R(x)@@@@R ����	R(f(f(y))) _ :R(y)P (x) _ :R(f(f(b)))@@@@R ����	D = P (x) _ :R(b)?subsumptionC = P (x) _Q(x) _ :R(b)Figure 2.4: A deduction of C from �, obtained from the previous �gure1. Suppose r = 0. Then Rn = 2 2 �, so the lemma holds.2. Suppose the lemma holds for r � m. We will prove that this impliesthat the lemma also holds for r = m + 1. Let R1; : : : ; Rn = 2 be arefutation of � [f:L1; : : : ;:Lkg containing m+ 1 resolvents. Let Ri bethe �rst resolvent. Then R1; : : : ; Rn = 2 is a refutation of � [fRig [f:L1; : : : ;:Lkg containing only m resolvents, since Ri is now one of theoriginal premises. Hence by the induction hypothesis, there is a clause D,such that � [fRig `r D and D subsumes C.Suppose Ri is itself a resolvent of two members of �. Then we also have� `r D, so the lemma holds in this case. Note that Ri cannot be aresolvent of two members of f:L1; : : : ;:Lkg because this set does notcontain a complementary pair, since C is not a tautology.The only remaining case we have to check, is where Ri is a resolvent ofC 0 2 � and some :Ls (1 � s � k). Let C 0 = M1 _ : : : _Mj _ : : : _Mh.Suppose Ri is a binary resolvent of (M1_ : : :_Mj)� (a factor of C 0, using� as an mgu for fMj ; : : : ;Mhg) and :Ls, with � as mgu for Mj� and Ls.Then Ri = (M1 _ : : : _Mj�1)�� and C 0�� = Ri _Ls _ : : : _Ls (h� j + 1copies of Ls), since Mj ; : : : ;Mh are all uni�ed to Ls by ��.Now replace each time Ri appears as leaf in the derivation-tree of D by

26 THE SUBSUMPTION THEOREMC 0�� = Ri _ Ls _ : : : _ Ls, and add Ls _ : : : _ Ls to all decendants ofsuch an Ri-leaf. Then we obtain a derivation of D _ Ls _ : : : _ Ls from� [fC 0��g. Since C 0�� is an instance of a clause from �, we can lift(by Lemma 2.3) this derivation to a derivation from � of a clause D0,which has D _Ls _ : : :_Ls as an instance. Since D subsumes C, D0 alsosubsumes C. Hence � `d C. 2Now we can prove the Subsumption Theorem (Theorem 2.3) once more, thistime starting from Theorem 2.4.Theorem 2.3 (Subsumption Theorem) Let � be a set of clauses and C bea clause. Then � j= C i� � `d C.Proof(: By the soundness of resolution and subsumption.): If C is a tautology, the theorem is obvious. Assume C is not a tautology.Let � be a Skolem substitution for C w.r.t. �. Suppose C� = L1 _ : : : _ Lk.Since C is not a tautology, C� is not a tautology. C� is ground and � j= C�,so by Proposition A.1 the set of clauses � [f:L1; : : : ;:Lkg is unsatis�able.Then it follows from Theorem 2.4 that � [f:L1; : : : ;:Lkg `r 2. Thereforeby Lemma 2.6, there exists a clause D such that � `r D and D subsumes C�.Finally, from Lemma 2.5, D also subsumes C itself. Hence � `d C. 2Now that we have shown that the Subsumption Theorem can be proved fromthe refutation-completeness, and vice versa, we also have the following:Theorem 2.5 For unconstrained resolution, the Subsumption Theorem and therefutation-completeness are equivalent.2.5 Linear resolutionLinear resolution is characterized by the linear shape of its derivations. It ismore e�cient than unconstrained resolution, because the number of possiblederivations is signi�cantly decreased by the linear constraint on the shape ofa derivation. It was independently introduced by Loveland [Lov70] and Luck-ham [Luc70]. An important further restriction called SL-resolution (Linear res-olution with a Selection function) was introduced and shown to be refutation-complete by Kowalski and Kuehner [KK71]. Minicozzi and Reiter proved theSubsumption Theorem for linear resolution in [MR72]. More recently, In-oue [Ino92] developed SOL-resolution (Skip Ordered Linear resolution) andproved a version of the Subsumption Theorem for it.

2.5. LINEAR RESOLUTION 272.5.1 De�nitionsFor the sake of transparency, we will de�ne a very simple form of linear res-olution here. Many features and restrictions could be added on to improvee�ciency (see the references given above). We will prove the SubsumptionTheorem and the refutation-completeness for this form of linear resolution.After that, we will de�ne a further restriction of linear resolution called inputresolution and show that this is not complete for general clauses, not even whenthe set of premises contains only one clause.De�nition 2.8 Let � be a set of clauses and C be a clause. A linear derivationof C from � is a �nite sequence of clauses R0; : : : ; Rk = C, such that R0 2 �and each Ri with 1 � i � k is a resolvent of Ri�1 and a clause Ci 2 � [fR0; : : : ; Ri�2g.R0 is called the top clause, R0; : : : ; Rk the center clauses, and C1; : : : ; Ckare called the side clauses of this linear derivation. If a linear derivation of Cfrom � exists, we write � `lr C.A linear derivation of 2 from � is called a linear refutation of �. 3Linear derivations are characterized by the \linear" shape of their correspondingderivation-trees. See �gure 2.5. Such a tree can be turned into a derivation-treefor unconstrained resolution by adding the derivations of each side clause Ciwhich is not in �. R0? C1�������R1? C2�������R2...Rk�1? Ck�������RkFigure 2.5: The characteristic shape of a linear derivationLinear deductions are de�ned as follows:De�nition 2.9 Let � be a set of clauses and C a clause. There exists a lineardeduction of C from �, written as � `ld C, if C is a tautology, or if there existsa clause D such that � `lr D and D subsumes C. 32.5.2 The refutation-completenessA proof of the refutation-completeness of a form of linear resolution calledOL-resolution (Ordered Linear resolution), is given in Theorem 7.2 of [CL73].

28 THE SUBSUMPTION THEOREMHowever, this proof contains an error. In fact, OL-resolution is not refutation-complete, as described on pp. 324{325 of [Ino92]. Nevertheless, we can adaptthe proof of [CL73] to yield a correct proof for our own de�nition of linearresolution. First we prove the case for ground clauses, which is then lifted. Theproof of the following lifting lemma is similar to Lemma 2.3.Lemma 2.7 (Linear derivation lifting) Let � be a set of clauses and �0 bea set of instances of clauses in �. Suppose R00; : : : ; R0k is a linear derivation ofthe clause R0k from �0. Then there exists a linear derivation R0; : : : ; Rk of theclause Rk from �, such that R0i is an instance of Ri, for each i.The next lemma is the refutation-completeness of linear resolution for groundclauses.Lemma 2.8 If � is an unsatis�able set of ground clauses and C 2 � such that�nfCg is satis�able, then there is a linear refutation of � with C as top clause.Proof By the Compactness Theorem (Theorem A.2), we can assume � is�nite. Let n be the number of distinct ground atoms appearing in literals inclauses in �. We prove the lemma by induction on n.1. If n = 0, then � = f2g. Since �nfCg is satis�able, C = 22. Suppose the lemma holds for n � m and suppose m + 1 distinct atomsappear in �. We distinguish two cases.Case 1: Suppose C = L, where L is a literal. We �rst delete all clausesfrom � which contain the literal L (so we also delete C itself from �).Then we replace clauses which contain the literal :L by clauses con-structed by deleting these :L (so for example, L1 _ :L _ L2 will bereplaced by L1 _ L2). Call the �nite set obtained in this way �. Notethat the literal L, nor its negation, appears in clauses in �. If M were aHerbrand model of �, then M [fLg would be a Herbrand model of �.Thus since � is unsatis�able, � must be unsatis�able.Now let �0 be an unsatis�able subset of �, such that every proper subsetof �0 is satis�able. �0 must contain a clause D0 obtained from a memberof � which contained :L, for otherwise the unsatis�able set �0 would be asubset of �nfCg, contradicting the assumption that �nfCg is satis�able.By construction of �0, we have that �0nfD0g is satis�able. Furthermore,�0 contains at most m distinct atoms, so by the induction hypothesisthere exists a linear refutation of �0 with top clause D0. See the left of�gure 2.6 for illustration.The side clauses in this refutation that are not previous center clauses,are either members of � or obtained from members of � by the deletionof :L. In the latter kind of side clauses, put back the deleted :L literals,and add these :L to all later center clauses. Note that afterwards, thesecenter clauses may contain multiple copies of :L. In particular, the lastcenter clause changes from 2 to :L _ : : : _ :L. Since D0 is a resolventof C and D = :L _ D0 2 �, we can add C and D as parent clauses ontop of the previous top clause D0. That way, we get a linear derivationof :L _ : : : _ :L from �, with top clause C. Finally, the literals in

2.5. LINEAR RESOLUTION 29D0 2 �0? C1 2 �0������R1? C2 2 �0������2
C = L 2 �? D = :L _D0 2 �������D0? C1 _ :L 2 �������R1 _ :L? C2 2 �������:L? L������2Figure 2.6: Case 1 of the proof:L _ : : : _ :L can be resolved away using the top clause C = L as sideclause. This yields a linear refutation of � with top clause C (see theright of �gure 2.6).Case 2: Suppose C = L _ C 0, where C 0 is a non-empty clause. C 0cannot contain :L, for otherwise C would be a tautology, contradictingthe assumption that � is unsatis�able while �nfCg is satis�able.Obtain �0 from � by deleting clauses containing :L, and by removing theliteral L from the remaining clauses. Note that C 0 2 �0. If M were anHerbrand model of �0, then M [f:Lg would be an Herbrand model of�. Thus since � is unsatis�able, �0 is unsatis�able.Furthermore, because �nfCg is satis�able, by Proposition A.4 there is anHerbrand modelM 0 of �nfCg. Since � is unsatis�able,M 0 is not a modelof C. L is a literal in C, hence L must be false underM 0. Every clause in�0nfC 0g is obtained from a clause in �nfCg by deleting L from it. SinceM 0 is a model of every clause in �nfCg and L is false under M 0, everyclause in �0nfC 0g is true under M 0. Therefore M 0 is a model of �0nfC 0g,which shows that �0nfC 0g is satis�able.Then by the induction hypothesis, there exists a linear refutation of �0with top clause C 0. Now similar to case 1, put back previously deleted Lliterals to the top and side clauses, and to the appropriate center clauses.This gives a linear derivation of L _ : : : _ L from � with top clause C.Note that fLg [(�nfCg) is unsatis�able, because L is false in any Her-brand model of �nfCg, as shown above. On the other hand, �nfCg issatis�able. Thus by case 1 of this proof, there exists a linear refutation offLg[(�nfCg) with top clause L. Since L is a factor of L_ : : :_L, we canput our linear derivation of L _ : : : _ L \on top" of this linear refutationof fLg [(�nfCg) with top clause L, thus obtaining a linear refutation of� with top clause C. 2Theorem 2.6 (Refutation-completeness of linear resolution) Let � bea set of clauses. Then � is unsatis�able i� � `lr 2.

30 THE SUBSUMPTION THEOREMProof(: By the soundness of resolution.): Suppose � is unsatis�able. Then by Theorem 2.1, there is a �nite unsat-is�able set �g of ground instances of clauses in �0. Let �0g be an unsatis�ablesubset of �g and C 2 �0g such that �0gnfCg is satis�able. From Lemma 2.8, wehave �0g `lr 2. Hence � `lr 2 by Lemma 2.7. 22.5.3 The Subsumption TheoremStarting from the refutation-completeness, it is now possible to prove also theSubsumption Theorem for linear resolution. Our proof is similar to the onegiven in [MR72]. We use the refutation-completeness and then turn a linearrefutation into a linear deduction, using the following lemma:Lemma 2.9 Let � be a set of clauses and C = L1_: : :_Lk be a non-tautologousground clause. If � [f:L1; : : : ;:Lkg `lr 2, then � `ld C.Proof Suppose �[f:L1; : : : ;:Lkg `lr 2. Then there exists a linear refutationR0; : : : ; Rn = 2 of �[f:L1; : : : ;:Lkg. Notice that the top clause and the �rstside clause in this linear refutation cannot both be members of f:L1; : : : ;:Lkg,because C is not a tautology. Thus we can assume R0 2 �. It is then possibleto prove by induction on n that this linear refutation can be transformed intoa linear deduction of C from � with top clause R0:1. If n = 0, then R0 = 2 2 �.2. Suppose the lemma holds for n � m. Let R0; : : : ; Rm+1 = 2 be a linearrefutation of �[f:L1; : : : ;:Lkg. ThenR1; : : : ; Rm+1 is a linear refutationof � [fR1g [f:L1; : : : ;:Lkg. By the induction hypothesis, there is alinear derivation of a clause D from � [fR1g, with top clause R1, suchthat D subsumes C.Suppose R1 is itself a resolvent of two members of �. Then we also have� `lr D, so the lemma holds in this case.The only remaining case we have to check, is where R1 is a resolvent ofR0 2 � and some :Ls (1 � s � k). Let R0 = M1 _ : : : _Mj _ : : : _Mh.Suppose R1 is a binary resolvent of (M1_ : : :_Mj)� (a factor of R0, using� as an mgu for fMj ; : : : ;Mhg) and :Ls, with � as mgu for Mj� and Ls.Then R1 = (M1 _ : : :_Mj�1)�� and R0�� = R1 _Ls _ : : :_Ls (h� j+1copies of Ls), since Mj ; : : : ;Mh are all uni�ed to Ls by ��.Now replace each time R1 appears as leaf (i.e., top or side clause) in thederivation-tree of D by R0�� = R1 _ Ls _ : : : _Ls, and add Ls _ : : : _Lsto all decendants of such an R1-leaf. This gives a new derivation, inwhich each resolvent is the corresponding resolvent in the old derivationof D plus some extra copies of Ls. Thus we obtain a linear derivation ofD _Ls _ : : :_Ls from �[fR0��g. Since R0�� is an instance of a clausefrom �, we can lift (by Lemma 2.7) this derivation to a derivation from� of a clause D0, which has D _ Ls _ : : : _ Ls as an instance. Since Dsubsumes C, D0 also subsumes C. Hence � `ld C. 2

2.6. INPUT RESOLUTION 31Theorem 2.7 (Subsumption Theorem for linear resolution) Let � bea set of clauses and C be a clause. Then � j= C i� � `ld C.Proof(: By the soundness of resolution and subsumption.): If C is a tautology, the theorem is obvious. Assume C is not a tautology.Let � be a Skolem substitution for C w.r.t. �. Let C� be the clause L1_: : :_Lk.Since C is not a tautology, C� is not a tautology. C� is ground and � j= C�,so the set of clauses � [f:L1; : : : ;:Lkg is unsatis�able by Proposition A.1.Then it follows from Theorem 2.6 that � [f:L1; : : : ;:Lkg `lr 2. Thereforeby Lemma 2.9, there exists a clause D such that � `lr D and D subsumes C�.From Lemma 2.5, D also subsumes C itself. Hence � `ld C. 2We have now proved the Subsumption Theorem of linear resolution startingfrom the refutation-completeness of linear resolution. Conversely, the latter alsofollows immediately from the former, in the same way as Theorem 2.4 followedfrom Theorem 2.3 in the previous section. Hence also for linear resolution wehave the equivalence between these two completeness results.Theorem 2.8 For linear resolution, the Subsumption Theorem and the refu-tation-completeness are equivalent.2.6 Input resolutionLinear resolution is a restriction of unconstrained resolution. Linear resolutioncan itself be further restricted to input resolution, by stipulating that each sideclause should be a member of �. Contrary to linear resolution, input resolutionis not complete, not even when the set of premises � contains only one clause.Before we give our counterexample, we will �rst formally de�ne input resolution:De�nition 2.10 Let � be a set of clauses and C be a clause. An input deriva-tion of C from � is a linear derivation in which each side clause Ci is a memberof �. The side clauses C1; : : : ; Ck in an input derivation are also called inputclauses. If an input derivation of C from � exists, we write � `ir C.An input derivation of 2 from � is called an input refutation of �. 3De�nition 2.11 Let � be a set of clauses and C a clause. There exists aninput deduction of C from �, written as � `id C, if C is a tautology, or if thereexists a clause D such that � `ir D and D subsumes C. 3It is well-known that input resolution is not refutation-complete. A simplepropositional example su�ces to show this. Let � = f(P _Q); (P _:Q); (:P _Q); (:P _ :Q)g. Figure 2.7 shows a refutation by unconstrained resolution of�. This proves that � is unsatis�able.Unfortunately, there does not exist an input refutation of �. It is easy tosee the reason for this. To reach the empty clause 2, the last input clause in aninput refutation of � should contain only one literal, or have a factor containing

32 THE SUBSUMPTION THEOREMP _Q P _ :Q :P _Q :P _ :Q@@@@R ����	P _ P @@@@R ����	:P _ :P@@@@R ����	2Figure 2.7: An unconstrained refutation of �only one literal. However, each clause in � contains two distinct literals. Hencethere is no input refutation of �.So input resolution is not refutation-complete. This implies also that theSubsumption Theorem does not hold either for input resolution, since therefutation-completeness would be a direct consequence of it. We can in factprove a stronger negative result, namely that the Subsumption Theorem forinput resolution is not even true in the simple case where � contains only asingle clause. In our counterexample we let � = fCg, where C is the followingclause: C = P (x1; x2) _Q(x2; x3) _ :Q(x3; x4) _ :P (x4; x1):Figure 2.8 shows that clause D (see below) can be derived from C by uncon-strained resolution. This also shows that C j= D.C1 C2 C3 C4@@@@R ����	D1 @@@@R ����	D2?factor ?factorD01 D02@@@@R ����	DFigure 2.8: The derivation of D from C by unconstrained resolutionFigure 2.8 makes use of the clauses listed below. C1, C2, C3, C4 are variantsof C. D1 is a binary resolvent of C1 and C2, D2 is a binary resolvent of C3 and C4(the underlined literals are the literals resolved upon). D01 is a factor ofD1, usingthe substitution fx5=x1; x6=x2g. D02 is a factor of D2, using fx11=x12; x13=x9g.Finally, D is a binary resolvent of D01 and D02.C1 = P (x1; x2) _Q(x2; x3) _ :Q(x3; x4) _ :P (x4; x1).

2.6. INPUT RESOLUTION 33C2 = P (x5; x6) _Q(x6; x7) _ :Q(x7; x8) _ :P (x8; x5).C3 = P (x9; x10) _Q(x10; x11) _ :Q(x11; x12) _ :P (x12; x9).C4 = P (x13; x14) _Q(x14; x15) _ :Q(x15; x16) _ :P (x16; x13).D1 = P (x1; x2) _ :Q(x3; x4) _ :P (x4; x1) _ P (x5; x6) _Q(x6; x2) _ :P (x3; x5).D2 = P (x9; x10) _ :Q(x11; x12) _ :P (x12; x9) _ P (x13; x14) _Q(x14; x10)_:P (x11; x13).D01 = P (x1; x2) _ :Q(x3; x4) _ :P (x4; x1) _Q(x2; x2) _ :P (x3; x1).D02 = P (x9; x10) _ :Q(x12; x12) _ :P (x12; x9) _ P (x9; x14) _Q(x14; x10).D = :Q(x3; x4) _ :P (x4; x1) _Q(x2; x2) _ :P (x3; x1) _ P (x2; x10)_:Q(x1; x1) _ P (x2; x14) _Q(x14; x10):ThusD can be derived from C using unconstrained resolution. However, neitherD nor a clause which subsumes D can be derived from C using only inputresolution. We prove this in Proposition 2.1. This shows that input resolutionis not complete, not even if � contains only one clause.The following lemma shows that each clause which can be derived from Cby input resolution contains an instance of P (x1; x2)_:P (x4; x1) or an instanceof Q(x2; x3) _ :Q(x3; x4).Lemma 2.10 Let C be as de�ned above. If C `ir E, then E contains aninstance of P (x1; x2) _ :P (x4; x1) or an instance of Q(x2; x3) _ :Q(x3; x4).Proof Let R0; : : : ; Rk = E be an input derivation of E from C. We prove thelemma by induction on k:1. R0 = C, so the lemma is obvious if k = 0.2. Suppose the lemma holds for k � n. Let R0; : : : ; Rn+1 = E be an inputderivation of E from C. Note that the only factor of C is C itself. There-fore E is a binary resolvent of C and a factor of Rm. Let � be the mgu usedin obtaining this binary resolvent. If P (x1; x2) or :P (x4; x1) is the lit-eral resolved upon in C, then E must contain (Q(x2; x3) _ :Q(x3; x4))�.Otherwise Q(x2; x3) or :Q(x3; x4) is the literal resolved upon in C, sothen E contains (P (x1; x2) _ :P (x4; x1))�. Hence the lemma also holdsfor k = n+ 1. 2Proposition 2.1 Let C and D be as de�ned above. Then C 6`id D.Proof Suppose C `id D. Then since D is not a tautology, there exists a clauseE such that C `ir E and E subsumes D. From Lemma 2.10 we know thatE contains an instance of P (x1; x2) _ :P (x4; x1) or an instance of Q(x2; x3) _:Q(x3; x4). It is easy to see that neither P (x1; x2)_:P (x4; x1) nor Q(x2; x3)_:Q(x3; x4) subsumes D. But then E does not subsume D, so we found acontradiction. Hence C 6`id D. 2

34 THE SUBSUMPTION THEOREMSo we see that input resolution is not complete: C j= D, but C 6`id D. Thisis unfortunate, since input resolution is more e�cient than unconstrained res-olution or linear resolution. However, if we restrict ourselves to Horn clauses,a special case of input resolution called SLD-resolution can be shown to becomplete. This will be the topic of the next section.2.7 SLD-resolutionSLD-resolution for Horn clauses was introduced by Kowalski [Kow74]. It issimpler than the unconstrained or linear resolution that we need for generalclauses.De�nition 2.12 Let � be a set of Horn clauses and C be a Horn-clause. AnSLD-derivation of C from � is a �nite sequence of Horn clauses R0; : : : ; Rk = C,such that R0 2 � and each Ri (1 � i � k) is a binary resolvent of Ri�1 and ade�nite program clause Ci 2 �, using the head of Ci and a selected atom in thebody of Ri�1 as the literals resolved upon.R0 is called the top clause and the Ci are the input clauses of this SLD-derivation. If an SLD-derivation of C from � exists, we write � `sr C. AnSLD-derivation of 2 from � is called an SLD-refutation of �. 3Note that either each Ri in an SLD-derivation is a goal, or each Ri is a de�niteprogram clause. Also note that each resolvent in an SLD-derivation is a binaryresolvent, so no factors are used here. The selected atom can be selected by a so-called computation rule, and it can be shown that the refutation-completenessof SLD-resolution is independent of the computation rule that is used. We willnot go into that here (see [Llo87]).De�nition 2.13 Let � be a set of Horn clauses and C a Horn clause. Thereexists an SLD-deduction of C from �, written as � `sd C, if C is a tautology,or if there is a Horn clause D, such that � `sr D and D subsumes C. 3Example 2.4 Consider � = fP (0; x; x); (P (s(x); y; s(z)) P (x; y; z))g, a setof clauses which formalizes addition. Let us see how we can prove C = P (s2(0);s(0); s3(0)) (that is, 2 + 1 = 3) from this set by SLD-resolution. Figure 2.9shows an SLD-derivation of R2 = P (s2(0); y; s2(y)) from �. Here the selectedatoms are underlined. Since R2 subsumes C, we have � `sd C. <2.7.1 The refutation-completenessIn this subsection, we will prove the well-know result that SLD-resolution isrefutation-complete: a set of Horn clauses is unsatis�able i� it has an SLD-refutation. Our proof is similar to the proof for the refutation-completenessof linear resolution that we gave in Section 2.5. It is di�erent from the proofgiven in [Llo87], since our proof does not require �xed-point theory. Instead, itonly uses the basic de�nitions of resolution. First we establish the refutation-completeness for ground Horn clauses:

2.7. SLD-RESOLUTION 35R0 = P (s(x); y; s(z)) P (x; y; z)? C1 = P (s(u); v; s(w)) P (u; v; w)�������R1 = P (s2(x); y; s2(z)) P (x; y; z)? C2 = P (0; v; v)�������R2 = P (s2(0); y; s2(y))?subsumesC = P (s2(0); s(0); s3(0))Figure 2.9: An SLD-deduction of C from �Lemma 2.11 If � is a �nite unsatis�able set of ground Horn clauses, then� `sr 2.Proof Let n be the number of atomic clauses (clauses which consist of a singlepositive literal) in �. The proof is by induction on n.1. If n = 0, then 2 2 �, for otherwise the empty set would be an Herbrandmodel of �.2. Suppose the lemma holds for 0 � n � m. Suppose � contains m + 1atomic clauses. If 2 2 � the lemma is obvious, so suppose 2 62 �.Let A be an atomic clause in �. We �rst delete all clauses from � whichhave A as head (so we also delete the atomic clause A from �). Thenwe replace clauses which have A in their body by clauses constructed bydeleting these atoms A from the body (so for example, B A;B1; : : : ; Bkwill be replaced by B B1; : : : ; Bk). Call the set obtained in this way�0.If M were a Herbrand model of �0, then M [fAg would be a Herbrandmodel of �. Thus since � is unsatis�able, �0 must be unsatis�able. �0only contains m atomic clauses, so by the induction hypothesis, there isan SLD-refutation of �0. If this refutation only uses clauses from �0 whichwere also in �, then this is also an SLD-refutation of �, so then we aredone.Otherwise, if C is the top clause or an input clause in this refutation andC 62 �, then C was obtained from some C 0 2 � by deleting all atomsA from the body of C 0. For all such C, do the following: restore thepreviously deleted copies of A to the body of C (which turns C into C 0again), and add these atoms A to all later resolvents. This way, we canturn the SLD-refutation of �0 into an SLD-derivation of A; : : : ; A from�. (See �gure 2.10 for illustration, where we add previously deleted atomsA to the bodies of R0 and C2.) Since also A 2 �, we can construct anSLD-refutation of �, using A a number of times as input clause to resolveaway all members of the goal A; : : : ; A. 2

36 THE SUBSUMPTION THEOREMR0 62 �? C1 2 ��������R1? C2 62 ��������R2 = 2
(R0 _ :A) 2 �? C1 2 ��������R1 _ :A? C2 _ :A 2 �������� A;A? A 2 �������� A? A 2 ��������2Figure 2.10: The SLD-refutations of �0 (left) and � (right)The proof of the lifting lemma for SLD-resolution is similar to Lemma 2.3.Lemma 2.12 (SLD-derivation lifting) Let � be a set of Horn clauses and�0 be a set of instances of clauses in �. Suppose R00; : : : ; R0k is an SLD-derivation of the clause R0k from �0. Then there exists an SLD-derivationR0; : : : ; Rk of the clause Rk from �, such that R0i is an instance of Ri, foreach i.The previous lemmas allow us to prove the refutation-completeness of SLD-resolution:Theorem 2.9 (Refutation-completeness of SLD-resolution) Let � be aset of Horn clauses. Then � is unsatis�able i� � `sr 2.Proof(: By the soundness of resolution.): Suppose � is unsatis�able. By Theorem 2.1, there is a �nite unsatis�ableset �0 of ground instances of clauses in �. From Lemma 2.11, we have �0 `sr 2.Using Lemma 2.12, we can lift this to � `sr 2. 22.7.2 The Subsumption TheoremHere we will prove the Subsumption Theorem for SLD-resolution. As in thecase of linear resolution, we establish this result by translating a refutation toa deduction, using the following lemma:Lemma 2.13 Let � be a set of Horn clauses and C = L1 _ : : : _Lk be a non-tautologous ground Horn clause. If � [f:L1; : : : ;:Lkg `sr 2, then � `sd C.Proof Suppose � [f:L1; : : : ;:Lkg `sr 2, that is, there exists an SLD-refu-tation R0; : : : ; Rn = 2 of � [f:L1; : : : ;:Lkg. By induction on n:1. If n = 0, then R0 = 2 2 �, so then the lemma is obvious.

2.7. SLD-RESOLUTION 372. Suppose the lemma holds for n � m. Let R0; : : : ; Rm+1 = 2 be anSLD-refutation of � [f:L1; : : : ;:Lkg. Then R1; : : : ; Rm+1 is an SLD-refutation of � [fR1g [f:L1; : : : ;:Lkg. By the induction hypothesis,there is an SLD-derivation R01; R02; : : : ; R0l from � [fR1g, where R0l sub-sumes C. Note that R1 must be a de�nite goal, so R1 can only be usedas top clause in this derivation.If R01 6= R1, then R01 2 �. Moreover, in that case R1 is used nowhere inthe SLD-derivation of R0l, so then this is an SLD-derivation of R0l from �,and hence � `sd C. In case R01 = R1, we distinguish three possibilities:1. R1 is a binary resolvent of a goal G 2 � and a de�nite clause C1 2 �.Then G;R01; R02; : : : ; R0l, with C1 as �rst input clause, is an SLD-derivation from �. R0l subsumes C, so then � `sd C.2. R1 is a binary resolvent of a negative literal :L 2 f:L1; : : : ;:Lkgand a de�nite clause C1 2 � (note that this means that C is ade�nite program clause, with L as head). Let � be the mgu used inthis resolution-step, so C1� = L _R1. Then C1�; L _R02; : : : ; L _R0lis an SLD-derivation of L_R0l from �[fC1�g. (See Figure 2.11 forillustration.) C1� is an instance of a clause in �, so by Lemma 2.12,we can �nd an SLD-derivation from � of a clause D, of which L_R0lis an instance. Since R0l subsumes C and L 2 C, L _ R0l subsumesC, and hence D also subsumes C. Therefore � `sd C.:L? C1 2 ��������R01 = R1? C2 2 ��������R02... C1� = L _ R1? C2 2 ��������L _ R02...Figure 2.11: Illustration of case 2 of the proof3. R1 is a binary resolvent of a goal G 2 � and a positive literal L 2f:L1; : : : ;:Lkg. Let � be the mgu used in this resolution step, soG� = :L _ R1. Then G� = :L _ R01;:L _ R02; : : : ;:L _ R0l is anSLD-derivation of :L _ R0l from � [fG�g. G� is an instance of aclause in �, so by Lemma 2.12, we can �nd an SLD-derivation from� of a clause D, of which :L_R0l is an instance. Since R0l subsumesC and :L 2 C, :L_R0l subsumes C, and hence D also subsumes C.Therefore � `sd C. 2Now we can prove the Subsumption Theorem for SLD-resolution. This resultgeneralizes Theorem 18 of [MP94], which gives the theorem for the case where� contains only one clause (though ignoring that C may be a tautology).Theorem 2.10 (Subsumption Theorem for SLD-resolution) Let � be aset of Horn clauses and C be a Horn clause. Then � j= C i� � `sd C.

38 THE SUBSUMPTION THEOREMProof(: By the soundness of resolution and subsumption.): If C is a tautology, the theorem is obvious. Assume C is not a tautology.Let � be a Skolem substitution for C w.r.t. �. Let C� be the clause L1_: : :_Lk.Since C is not a tautology, C� is not a tautology. C� is ground and � j= C�,so by Proposition A.1 the set of clauses � [f:L1; : : : ;:Lkg is unsatis�able.Then it follows from Theorem 2.9 that �[f:L1; : : : ;:Lkg `sr 2. Therefore byLemma 2.13, there exists a clause D such that � `sr D and D subsumes C�.From Lemma 2.5, D also subsumes C itself. Hence � `sd C. 2Note the following special case of this result: if � is a de�nite program and Ais an atom such that � j= A, then there exists an atom B such that � `sr Band A is an instance of B.Furthermore, analogous to the case of linear resolution, we also have thefollowing equivalence:Theorem 2.11 For SLD-resolution, the refutation-completeness and the Sub-sumption Theorem are equivalent.2.8 SummaryThe Subsumption Theorem is the following statement:If � is a set of clauses and C is a clause, then � j= C i� C is atautology, or there exists a clause D which subsumes C and whichcan be derived from � by some form of resolution.This theorem is a more direct form of completeness than the better-knownrefutation-completeness of resolution and hence sometimes more useful, partic-ularly for theoretical analysis.Di�erent versions of the theorem exist, depending on the instantiation of\some form of resolution." We have proved here that the Subsumption Theo-rem holds for unconstrained resolution and linear resolution for general clauses.Moreover, for each of these two forms of resolution, the Subsumption Theoremis equivalent to the refutation-completeness of that form of resolution: the onecan be proved from the other. On the other hand, the Subsumption Theoremdoes not hold for input resolution, not even in the simple case where � con-tains only one clause. For SLD-resolution for Horn clauses, the SubsumptionTheorem does hold, and is again equivalent to the refutation-completeness ofSLD-resolution.

Chapter 3Unfolding3.1 IntroductionIn an ILP-problem, it is sometimes the case that we initially start with a theorythat is overly general: it is complete, but not consistent. The problem of �ndinga correct theory then becomes the problem of specializing the initial theory toa correct one. In this chapter we will investigate how such specialization can bedone using unfolding. This is a specialization-operator which constructs resol-vents from given parent clauses. We will restrict attention to de�nite programclauses, so the theories should be de�nite programs. Furthermore, we will alsoassume that the given examples E+ and E� consist of ground atoms (groundinstances of one or more predicates).Let us �rst formally de�ne the specialization problem:Given: A de�nite program � and two disjoint sets of ground atomsE+ and E�, such that � is overly general w.r.t. E+ and E�, andsuppose there exists a de�nite program �0 such that � j= �0 and �0is correct w.r.t. E+ and E�.Find: One such a �0.Clearly, this is a special case of the general problem setting of Chapter 1. Weneed to presuppose the existence of a correct specialization �0 of �, because acorrect program does not always exist, as proved in Theorem 1.1. Hence tryingto solve a specialization problem only makes sense when a correct specializationexists. Note that background knowledge can be included in �, so we will notmention background knowledge separately in this chapter.A natural way to specialize � is, �rst, to replace a clause in � by all itsresolvents upon some body-atom in this clause. Constructing these resolvents iscalled unfolding. The new program obtained in this way after unfolding a clausein �, is clearly implied by �. The function of the replaced clause is taken over bythe set of resolvents produced by unfolding. We can then, secondly, delete somenew clauses from the program that have to do with the negative examples, thusspecializing the program. Hopefully, after repeating these two steps a numberof times, we can get rid of all negative examples. This method was introducedin [BIA94]. 39

40 CHAPTER 3. UNFOLDINGFor simplicity, let all examples be ground instances of P (x1; : : : ; xn), forsome predicate P . The motivation for the method described above, is thefact that it can be used to prune negative examples from the SLD-tree for� [f P (x1; : : : ; xn)g.1 We will illustrate this by an example. Consider theprogram �, consisting of the following clauses:C1 = P (x; y) Q(x; y)C2 = Q(b; b) Q(a; a)C3 = Q(a; a)and E+ = fP (b; b)g, E� = fP (a; a)g. The SLD-tree for � [f P (x; y)g isshown on the left of �gure 3.1. The success branches corresponding to refuta-tions of positive examples are marked with a `+', for negative examples with a`�'. P (x; y)?1 Q(x; y)����	2 @@@@R3 2fx=a; y=ag;� Q(a; a)?32fx=b; y=bg;+

 P (x; y)����	1,2 @@@@R1,3 2fx=a; y=ag;� Q(a; a)?32fx=b; y=bg;+
 P (x; y)?1,2 Q(a; a)?32fx=b; y=bg;+

Figure 3.1: The SLD-trees for �, �0 and �00P (a; a) is a negative example, so we would like to remove this by weakeningthe program. This could be done by deleting C1 or C3 from �. However, thiswould also make the positive example P (b; b) no longer derivable, thus renderingthe program too weak. Another way to specialize is, �rst, to unfold C1 uponQ(x; y). The following C1;2 and C1;3 are the two clauses produced by unfoldingC1. C1;2 = P (b; b) Q(a; a) (resolvent of C1 and C2)C1;3 = P (a; a) (resolvent of C1 and C3)Now we replace the unfolded clause C1 by its resolvents C1;2 and C1;3. Thisresults in �0 = fC2; C3; C1;2; C1;3g. The SLD-tree for �0 [f P (x; y)g isshown in the middle of �gure 3.1. In this tree, the negative example is directlyconnected to the root, via the branch that uses C1;3. Now the negative examplecan be pruned from the tree by deleting C1;3 from �0, which does not a�ect the1An SLD-tree for � [fGg is a tree containing all SLD-derivations from � [fGg with thegoal G as top clause, in which the selected atoms are selected by some computation rule.See [Llo87] for more information on SLD-trees.

3.2. UNFOLDING 41positive example. Then we obtain �00 = fC2; C3; C1;2g, which is correct w.r.t.E+ and E�. The SLD-tree for �00[f P (x; y)g is simply the tree for �0, afterthe rightmost branch has been pruned (right of �gure 3.1).The idea behind this method is the following:1. Unfolding removes some internal nodes from the SLD-tree, for instance,the internal node Q(x; y) in the tree on the left of �gure 3.1. Thistends to separate the positive from the negative examples and also bringsthem closer to the root of the tree.2. If a negative example hangs directly from the root and its input clause Cis not used elsewhere in the tree for a positive example, then the programcan be specialized by deleting C.In other words: unfolding can transform the SLD-tree in such a way that neg-ative examples can be pruned by deleting clauses from the program, withoutalso pruning positive examples.2 Thus the use of unfolding as a specializationtool can be motivated by looking at SLD-trees and the SLD-refutations thosetrees contain.In this chapter we �rst de�ne UD1-specialization and UD2-specialization,which employ unfolding (each in their own way) and clause deletion. It will beseen from some examples that we give later on, that both of these specializa-tion methods are incomplete: some specialization problems cannot be solvedin this way. However, if we look at program specialization through the per-spective of SLD-derivations rather than refutations, then we can see from theSubsumption Theorem for SLD-resolution that subsumption is what we needto make our specialization technique complete. Thus in Section 3.5, we de-�ne UDS-specialization, a specialization technique based on Unfolding, clauseDeletion and Subsumption. We prove that UDS-specialization is complete: ev-ery specialization problem has a UDS-specialization as a solution. Finally, inSection 3.6 we go into the relation between program specialization by unfoldingand program generalization by inverse resolution.3.2 UnfoldingIn this section, we de�ne unfolding, which will be used in the next sections tosolve specialization problems.De�nition 3.1 Let � be a de�nite program, C = A B1; : : : ; Bn a de�niteprogram clause in � and Bi the i-th atom in the body of C. Let fC1; : : : ; Cmgbe the set of clauses in � whose head can be uni�ed with Bi. Then unfoldingC upon Bi in � means constructing the set UC;i = fD1; : : : ;Dmg, where eachDj is the resolvent of Cj and C, using Bi and the head of Cj as the literalsresolved upon. 32In [BIA94, Bos95a], Bostr�om and Idestam-Almquist present the algorithm Spectre,which implements this specialization technique for single-predicate learning. In [Bos95b],Spectre ii is presented, which overcomes some di�culties of Spectre concerning recursiveclauses and which can be applied to multiple-predicate learning. Unfolding was also imple-mented in [AGB95], combined with a version of Shapiro's Backtracing Algorithm [Sha81b].

42 CHAPTER 3. UNFOLDINGExample 3.1 Let � consist of the following clauses:C1 = P (f(x)) P (x); Q(x)C2 = Q(x) R(x; a)C3 = P (f(a))C4 = Q(b)Suppose we want to unfold C1 upon Q(x) in the program �. fC2; C4g is the setof clauses in � whose head can be uni�ed with Q(x), so UC1;2 = f(P (f(x)) P (x); R(x; a)); (P (f(b)) P (b))g. <Note that UC;i may be the empty set. This is the case if there is no programclause whose head uni�es with the i-th atom in the body of C. Note also thatan atom cannot be unfolded, since it has no body-atoms.Using the set UC;i, we can construct a new program from � in two ways.The �rst way, used in [BIA94], replaces C by UC;i, thus obtaining the program(�nfCg)[UC;i. The second way adds UC;i to �, without deleting the unfoldedclause C from the program.De�nition 3.2 Let � be a de�nite program and UC;i the set of clauses con-structed by unfolding C upon Bi in �. Then �u1;C;i = (�nfCg)[UC;i is calledthe type 1 program resulting from unfolding C upon Bi in �. �u2;C;i = �[UC;iis called the type 2 program resulting from unfolding C upon Bi in �. 3In the next sections, we will see how these two types of unfolding can be usedfor program specialization. Here we will �rst show that constructing the type 1program preserves the least Herbrand model of the program, while constructingthe type 2 program preserves logical equivalence, which is stronger.Proposition 3.1 Let � be a de�nite program, G a de�nite goal and �u1;C;i thetype 1 program resulting from unfolding C upon Bi in �. Then � [fGg `sr 2i� �u1;C;i [fGg `sr 2.Proof(: Suppose �u1;C;i [fGg `sr 2. Then by the soundness of resolution,�u1;C;i[fGg is unsatis�able. It is easy to see that � j= �u1;C;i. Hence �[fGgis unsatis�able, and by Theorem 2.9, we have � [fGg `sr 2.): Suppose � [fGg `sr 2 and C (the unfolded clause) is A B1; : : : ; Bi;: : : ; Bn, which we abbreviate to A B1; Bi; B2 (where B1 = B1; : : : ; Bi�1and B2 = Bi+1; : : : ; Bn). Bi is the atom unfolded upon. If there is an SLD-refutation of �[fGg in which C isn't used as an input clause, then this is alsoan SLD-refutation of �u1;C;i [fGg. But suppose C is used as input clause inall SLD-refutations of � [fGg. We will prove that from such a refutation, arefutation of �u1;C;i [fGg can be constructed.Suppose we have a refutation of � [fGg with goals G0; : : : ; Gn and inputclauses C1; : : : ; Cn, which uses C at least once as input clause. By the indepen-dence of the computation rule (Theorem 9.2 of [Llo87]), we can assume that forany k, if C is the input clause in the step leading from Gk�1 to Gk, then theinstance of Bi that is inserted in Gk by C, is the selected atom in Gk.Suppose the j-th input clause is C. We picture this part of the refutationon the left of �gure 3.2. Here we make the following notational conventions:

3.2. UNFOLDING 43� Gj�1, the (j � 1)-th goal, is the goal A1; : : : ; Ak; : : : ; Am, which weabbreviate to A1; Ak; A2.� The input clause used in the (j+1)-th step is Cj+1 = A0 B0, where B0is an abbreviation of B01; : : : ; B0r.� �j is an mgu for Ak and A (used in the j-th resolution step).� �j+1 is an mgu for Bi�j and A0 (used in the (j + 1)-th resolution step)....Gj�1 = A1; Ak;A2? Cj = C = A B1; Bi;B2; �j�������Gj = (A1; B1; Bi; B2; A2)�j? Cj+1 = A0 B0; �j+1�������Gj+1 = (A1; B1; B0; B2; A2)�j�j+1...
...Gj�1 = A1; Ak;A2? C0 = (A B1; B0; B2)�; �0�������G0j+1 = (A1; (B1; B0; B2)�;A2)�0...Figure 3.2: From the tree on the left, we can construct the tree on the right,using C 0 instead of C.Since the (j + 1)-th step of the tree on the left of �gure 3.2 shows that Biand A0 can be uni�ed (say, with mgu �), the clause C 0 = (A B1; B0; B2)�(the result of resolving C with Cj+1 = A0 B0) must be in UC;i. We assumewithout loss of generality that Gj�1, Cj = C, Cj+1, and C 0 are standardizedapart.What we want is to construct a tree which, instead of using C in the j-thstep, uses C 0. For this, we will show that Gj+1 is a variant of the goal G0j+1,which can be derived from Gj�1 and C 0. Then we can replace the j-th step(which uses C) and the (j+1)-th step by one single step which doesn't need Canymore, but instead uses C 0.�j+1 is an mgu for A0 and Bi�j and A0�j = A0 (because of the standard-izing apart), so �j�j+1 is a uni�er for A0 and Bi. � is an mgu for A0 and Bi,so there exists a substitution
 such that �
 = �j�j+1. A�
 = A�j�j+1 =Ak�j�j+1 = Ak�
 = Ak
, so
 is a uni�er for A� and Ak. This showsthat A� and Ak can be uni�ed. Let �0 be an mgu for A� and Ak. LetG0j+1 = (A1; (B1; B0; B2)�;A2)�0 be the goal derived from Gj�1 and C 0. Wewill show that Gj+1 and G0j+1 are variants.1. We have already shown that
 is a uni�er for A� and Ak. Furthermore, �0is an mgu for A� and Ak, so there exists a substitution � such that �0� =
.Now Gj+1 = (A1; B1; B0; B2; A2)�j�j+1 = (A1; B1; B0; B2; A2)�
 = (A1; B1; B0; B2; A2)��0� = (A1; (B1; B0; B2)�;A2)�0� = G0j+1�2. �0 is an mgu for Ak and A� and Ak� = Ak (because of the standardizingapart), so ��0 is a uni�er for Ak and A. Furthermore, �j is an mgu forAk and A, so there exists a substitution
0 such that �j
0 = ��0.

44 CHAPTER 3. UNFOLDINGA0
0 = A0�j
0 = A0��0 = Bi��0 = Bi�j
0, so
0 is a uni�er for A0and Bi�j. Furthermore, �j+1 is an mgu for A0 and Bi�j, so there ex-ists a substitution �0 such that �j+1�0 =
0. Now we have G0j+1 = (A1; (B1; B0; B2)�;A2)�0 = (A1; B1; B0; B2; A2)��0 = (A1; B1; B0; B2;A2)�j
0 = (A1; (B1; B0; B2)�;A2)�j�j+1�0 = Gj+1�0We have shown that Gj+1 = G0j+1� and G0j+1 = Gj+1�0, so Gj+1 and G0j+1 arevariants.Since Gj+1 and G0j+1 are variants, we have shown that the two resolutionsteps leading from Gj�1 to Gj+1 can be replaced by a single resolution step,which uses C 0 as input clause. In the same way, we can eliminate all otheruses of C as input clause in the rest of the tree, by constructing a refutationwhich uses some clause in UC;i to replace a usage of C, each time replacing tworesolution steps by one single resolution step. Finally we get an SLD-refutationof � [UC;i [fGg which doesn't use C at all. This means that we have in factfound an SLD-refutation of �u1;C;i [fGg. 2A direct consequence of the proof given above, is the following:Corollary 3.1 Let � be a de�nite program, G a de�nite goal and �u1;C;i thetype 1 program resulting from unfolding C upon Bi in �. Suppose there existsan SLD-refutation of length n of �[fGg, which uses C r times as input clause.Then there exists an SLD-refutation of length n� r of �u1;C;i [fGg.Intuitively, this corollary shows that unfolding makes refutations shorter. Sounfolding has the potential of improving the e�ciency of an SLD-based theoremprover. Especially unfolding often-used clauses is worthwhile, since then thevalue r mentioned in the corollary is highest. On the other hand, unfoldingusually increases the number of clauses. So what we see here is an interestingtrade-o� between the number of clauses and the average length of a refutation:unfolding usually decreases the average length of a refutation, but also usuallyincreases the number of clauses in the program.We now proceed to prove that constructing the type 1 program preservesthe least Herbrand model M� of the program. This is also proved in [TS84],though di�erently from our proof.Theorem 3.1 Let � be a de�nite program, C 2 � and �u1;C;i the type 1program resulting from unfolding C upon Bi in �. Then M� =M�u1;C;i .Proof Let A be some ground atom. Then:A 2M� i� (by Theorem A.6)� j= A i� (by Proposition A.1)� [f Ag is unsatis�able i� (by Theorem 2.9)� [f Ag `sr 2 i� (by Proposition 3.1)�u1;C;i [f Ag `sr 2 i� (by Theorem 2.9)�u1;C;i [f Ag is unsatis�able i� (by Proposition A.1)�u1;C;i j= A i� (by Theorem A.6)A 2M�u1;C;i .

3.3. UD1-SPECIALIZATION 45Hence M� =M�u1;C;i . 2Thus constructing the type 1 program preserves the least Herbrand model.However, it does not preserve logical equivalence. Take for instance � = fC =P (f(x)) P (x)g. Then �u1;C;1 = fP (f2(x)) P (x)g. NowM� =M�u1;C;1 =;, but � 6, �u1;C;1 since �u1;C;1 6j= �. Note that this means that a specializationof � need not be a specialization of �u1;C;i. This is actually one of the reasons forthe fact that type 1 unfolding and clause deletion cannot solve all specializationproblems (see Section 3.3).On the other hand, constructing the type 2 program does preserve logicalequivalence. Since � � �u2;C;i we have �u2;C;i j= �; and because �u2;C;in� isa set of resolvents of clauses in �, we also have � j= �u2;C;i.Proposition 3.2 Let � be a de�nite program, C 2 � and �u2;C;i the type 2program resulting from unfolding C upon Bi in �. Then �, �u2;C;i.3.3 UD1-specializationAs we have seen in the introduction, unfolding together with clause deletion canbe used to solve some specialization problems. In this section we formalize thisin a method called UD1-specialization. The name is an acronym for Unfoldingand clause Deletion, the `1' indicates that we use the type 1 program resultingfrom unfolding here. UD1-specialization corresponds to the approach takenin [BIA94].De�nition 3.3 Let � and �0 be de�nite programs. We say �0 is a UD1-specialization of �, if there exists a sequence �1 = �;�2; : : : ;�n = �0 (n � 1)of de�nite programs, such that for each j = 1; : : : ; n� 1, either1. �j+1 = �ju1;C;i .2. �j+1 = �jnfCg for some C 2 �j. 3If �j+1 = �ju1;C;i , then each clause in �j+1 is either in �j , or a resolvent of twoclauses in �j . Hence �j j= �j+1 in this case. If �j+1 = �jnfCg, then clearly�j j= �j+1. Thus we have the following:Proposition 3.3 Let � be a de�nite program and �0 a UD1-specialization of�. Then � j= �0.For a solution �0 to a specialization problem, we have two conditions: � j= �0and �0 should be correct w.r.t. E+ and E�. The previous proposition showsthat a UD1-specialization of � always satis�es the �rst condition.However, the second condition cannot always be satis�ed by UD1-specializa-tion. Two kinds of steps can be taken here: �j+1 can be the result of un-folding a clause in �j, or by deleting a clause from �j. The �rst kind ofstep preserves the least Herbrand model, the second kind possibly reduces it.In fact, not only deleting a clause, but also the unfolding step may weaken

46 CHAPTER 3. UNFOLDINGthe program. For instance, suppose � = fP (a); (P (x) P (f(x)))g. Then�0 = fP (a); (P (x) P (f2(x)))g is the result of unfolding P (x) P (f(x)) in�. Whereas this unfolding step has not a�ected the least Herbrand model|M� = M�0 = fP (a)g|it has indeed made the program weaker: � j= �0, but�0 6j= �.Actually, even if a correct program �0 is implied by the original program�, this �0 need no longer be implied by a program �00 obtained from � byUD1-specialization. Since further UD1-specializations of �00 can only yield pro-grams which are implied by �00 (and hence do not imply the solution �0), UD1-specialization will not reach a solution of the specialization problem in this case.Consider � = f(P (f(x)) P (x)); P (a)g. Let M� = fP (a); P (f(a)); P (f2(a));P (f3(a)) : : :g, and let E+ = M�nfP (f2(a))g and E� = fP (f2(a))g. See �g-ure 3.3. P (x)���	1 @@@R2 2fx=ag;+ P (x)���	1 @@@R2 2fx=f(a)g;+ P (x)���	1 @@@R2 2fx=f2(a)g;� P (x)���	1 @@@R2... 2fx=f3(a)g;+Figure 3.3: The SLD-tree for � [f P (x)gLet �1 = �. The only clause that can be unfolded is P (f(x)) P (x).Unfolding this clause results in�2 = f(P (f2(x)) P (x)); P (f(a)); P (a)g:Then unfolding P (f2(x)) P (x) gives�3 = f(P (f4(x)) P (x)); P (f3(a)); P (f2(a)); P (f(a)); P (a)g:Notice that M�1 = M�2 = M�3 , but unfolding has nevertheless weakened theprogram: �1 j= �2 j= �3, but �2 6j= �1 and �3 6j= �2. In �3, P (f4(x)) P (x) can be unfolded, etc. It is not di�cult to see that in general, any UD1-specialization of � is a subset offP (f2n(x)) P (x)); P (f2n�1(a)); P (f2n�2(a)); : : : ; P (f2(a)); P (f(a)); P (a)g;for some n. In order to specialize this program such that P (f2(a)) is no longerderivable, we must in any case remove P (f2(a)). However, this would alsoprune some of the positive examples (such as P (f2n+2(a))) from the program

3.4. UD2-SPECIALIZATION 47via the clause P (f2n(x)) P (x). Hence there is no UD1-specialization thatsolves this particular specialization problem. Note that�00 = f(P (f4(x)) P (x)); (P (f3(x)) P (x)); P (f(a)); P (a)gis a solution for this particular specialization problem. � j= �00, but the spe-cializations �2;�3; : : : no longer imply this correct program �00. So in this case,UD1-specialization has \skipped" over the right solution. In the next section,we will show how this can be solved by UD2-specialization.3.4 UD2-specializationThe previous example showed the incompleteness of UD1-specialization. Butsuppose we change our strategy, such that the unfolded clause is not removedimmediately from the program. That is, suppose we use type 2 instead oftype 1 unfolding. This increases the number of clauses that can later on beused in unfolding. In this case, we can �nd a correct specialization w.r.t. theexamples given in Section 3.3, as follows. We start with �01 = �, and unfoldP (f(x)) P (x) without removing the unfolded clause. This gives �02:�02 = f(P (f2(x)) P (x)); (P (f(x)) P (x)); P (f(a)); P (a)g:Now we unfold P (f2(x)) P (x), again without removing the unfolded clause.This gives �03:�03 = f(P (f4(x)) P (x)); (P (f3(x)) P (x)); (P (f2(x)) P (x));(P (f(x)) P (x)); P (f3(a)); P (f2(a)); P (f(a)); P (a)g:If we remove (P (f2(x)) P (x)), (P (f(x)) P (x)), P (f3(a)) and P (f2(a))from �03, we obtain �00:�00 = f(P (f4(x)) P (x)); (P (f3(x)) P (x)); P (f(a)); P (a)g:This is a correct specialization of � w.r.t. E+ and E�: �00 j= E+ and �00 6j=P (f2(a)).This example induces a second kind of specialization, UD2-specialization,which di�ers from UD1-specialization in the use of type 2 unfolding instead oftype 1 unfolding.3De�nition 3.4 Let � and �0 be de�nite programs. We say �0 is a UD2-specialization of �, if there exists a sequence �1 = �;�2; : : : ;�n = �0 (n � 1)of de�nite programs, such that for each j = 1; : : : ; n� 1, either1. �j+1 = �ju2;C;i .3Henrik Bostr�om (personal communication) made us aware of the fact that the coveringalgorithm of [Bos95a], with which his unfolding-algorithm Spectre is compared, is in factequivalent to our UD2-specialization. He also gave an example of a solution of a specializationproblem which could be found by the covering algorithm, though not by Spectre, becausethe hypothesis-space of Spectre is a proper subset of the hypothesis-space of the coveringalgorithm.

48 CHAPTER 3. UNFOLDING2. �j+1 = �jnfCg for some C 2 �j. 3Note that any UD1-specialization is also a UD2-specialization, since obtainingthe type 2 program and then removing the unfolded clause in the next stepis equivalent to obtaining the type 1 program. The following proposition isobvious:Proposition 3.4 Let � be a de�nite program and �0 a UD2-specialization of�. Then � j= �0.Since any UD1-specialization is a UD2-specialization, while some UD2-specia-lizations cannot be found with UD1-specialization (see the example above),UD2-specialization is \more complete" than UD1-specialization. Unfortunately,UD2-specialization is still not su�ciently strong to provide a solution for allspecialization problems. Consider the following: � = fP (x)g, E+ = fP (f(a));P (f2(a))g and E� = fP (a)g. �0 = fP (f(x))g is a solution for this specializa-tion problem. However, no solution can be found by UD2-specialization. Since� contains only a single atom, no unfolding can take place here. Hence theonly UD2-specializations of � are � itself and the empty set, neither of whichis correct. So some specialization problems do not have a UD2-specializationas a solution.3.5 UDS-specializationIn order to extend UD2-specialization to a method which can solve all spe-cialization problems, we have to allow the possibility of taking a subsumptionstep.4 In general, we can de�ne UDS-specialization (Unfolding, clauseDeletion,Subsumption) as follows:De�nition 3.5 Let � and �0 be de�nite programs. We say �0 is a UDS-specialization of �, if there exists a sequence �1 = �;�2; : : : ;�n = �0 (n � 1)of de�nite programs, such that for each j = 1; : : : ; n � 1, one of the followingholds:1. �j+1 = �ju2;C;i .2. �j+1 = �jnfCg for some C 2 �j.3. �j+1 = �j [fCg for a C that is subsumed by a clause in �j . 3UDS-specialization is indeed complete: any specialization problem has a UDS-specialization as solution. For the proof of completeness, we use the Subsump-tion Theorem for SLD-resolution (Theorem 2.10).Theorem 3.2 Let � and �0 be de�nite programs, such that �0 contains notautologies. Then � j= �0 i� �0 is a UDS-specialization of �.4Subsumption can be seen as a solution to the problem of ambivalent leaves in an SLD-tree[BIA94, Bos95b].

3.5. UDS-SPECIALIZATION 49Proof(: By the soundness of resolution and subsumption.): Suppose � j= �0. Then for every C 2 �0, we have � j= C. Let Cbe some particular clause in �0 that is not in �. Then by the SubsumptionTheorem for SLD-resolution, there exists an SLD-derivation from � of a clauseD which subsumes C, as shown in �gure 3.4.R0 2 �? C1 2 ��������R1...Rn�1? Cn 2 ��������Rn = D?subsumesCFigure 3.4: An SLD-deduction of C from �Since R1 is a resolvent of R0 and C1 (upon the selected atom Bi in R0), if weunfold R0 in � upon Bi we get the program �u2;R0;i which contains R1. Nowwhen we unfold R1 in �u2;R0;i, we get a program which contains R2, etc. Thusafter n applications of (type 2) unfolding, we can produce a UDS-specialization(a superset of �) containing the clause Rn = D. Since D subsumes C, we canadd C to the program, by the third item in the de�nition of UDS-specialization.If we do this for every C 2 �0 that is not in �, we get a program �00 whichcontains every clause in �0. Since �00 is obtained from � by a �nite numberof applications of unfolding and subsumption, �00 is a UDS-specialization of �.Now delete from �00 all those clauses that are not in �0. Then we obtain �0 asa UDS-specialization of �. Thus if � j= �0, then �0 is a UDS-specialization of�. 2Now suppose we have �, �0, E+ and E�, such that � j= �0 and �0 is correctw.r.t. E+ and E�. We can assume �0 contains no tautologies. Then it followsfrom the previous theorem that �0 is a UDS-specialization of �. This showsthat UDS-specialization is complete:5Corollary 3.2 (Completeness of UDS-specialization) Every specializa-tion problem with � as initial program has a UDS-specialization of � as solution.5UDS-specialization need not specialize minimally in the sense advocated in [Wro93]: aUDS-specialization of an initial � may be considerably di�erent from �. On the other hand,the approach of [Wro93] has the disadvantage that each clause in a specialized theory shouldbe equal to or subsumed by a clause in the initial � (p. 71, postulate 1), which is quiterestrictive.

50 CHAPTER 3. UNFOLDINGE�ciency:Note that if we want to unfold some particular clause C, we actually only needto consider the resolvents of C and clauses from the original �. This is clearfrom �gure 3.4, since in order to produce Ri+1, we only need to resolve Ri withCi+1, which is a member of the original �. In other words, we only need to adda subset of UC;i to the program. We might de�ne U 0C;i as the set of resolventsupon Bi of C and clauses from the original � and then use �j+1 = �j [U 0C;iinstead of �j+1 = �ju2;C;i = �j [UC;i. This reduces the number of clauses thatunfolding produces, and hence improves e�ciency.3.6 Relation with inverse resolutionAs we have already seen in Chapter 1, there are basically two possible ap-proaches in ILP. We have the top-down approach (of which UDS-specializationis an example) which starts with an overly general program and specializes this,and the bottom-up approach, which starts with an overly speci�c program andgeneralizes this. There is an interesting relation between our previous analysisof program specialization on the one hand, and program generalization by in-verse resolution (see for instance [MB88, Mug92a, Rou92, SA93]) on the otherhand. The inversion of resolution is a well-known approach towards generaliza-tion in ILP. Here the inversion of a resolution step can be viewed as the dualof unfolding.However, in the same way as specialization by unfolding is not completewithout subsumption, its dual also needs (the inversion of) subsumption. Mostresearch in inverse resolution has focused on inverting resolution steps, mostlyignoring the inversion of the �nal subsumption step. By the previous analysis,inverting a subsumption step will be necessary for completeness. For example,we cannot generalize � = fP (f(x))g to �0 = fP (x)g just by inverting resolutionsteps.3.7 SummaryThe specialization problem, a special case of the general problem setting forILP, can be stated as follows:Given: A de�nite program � and two disjoint sets of ground atomsE+ and E�, such that � is overly general w.r.t. E+ and E�, andsuppose there exists a de�nite program �0 such that � j= �0 and �0is correct w.r.t. E+ and E�.Find: One such a �0.Unfolding, constructing the set UC;i of resolvents of a clause C 2 � with clausesin �, can be used as a tool for solving such problems. The type 1 program isobtained by replacing C in � by UC;i, while the type 2 program is � [UC;i.Constructing the type 1 program preserves the least Herband model, while thetype 2 program preserves logical equivalence with the original program.

3.7. SUMMARY 51We de�ned three increasingly strong specialization techniques here. UD1-and UD2-specialization employ clause deletion and, respectively, the type 1 andtype 2 programs resulting from unfolding. Both are incomplete. If we add toUD2-specialization the possibility of taking a subsumption step, we obtain UDS-specialization. This is a complete specialization method: every specializationproblem with � as initial program has a UDS-specialization of � as solution.

52 CHAPTER 3. UNFOLDING

Chapter 4Least Generalizations andGreatest Specializations4.1 IntroductionInductive Logic Programming is concerned with learning from examples. Learn-ing from examples means adjusting a theory to the examples. As we have seenin Chapter 1, the two main operations in ILP for adjustment of a theory, aregeneralization and specialization. Generalization strengthens a theory that istoo weak, while specialization weakens a theory that is too strong. These op-erations only make sense within a generality order, which is a relation statingwhen some clause is more general than some other clause.The three most important generality orders used in ILP are subsumption(also called �-subsumption), logical implication and implication relative to back-ground knowledge.1 In the subsumption order, we say that clause C is moregeneral than D|or, equivalently, D is more speci�c than C|in case C sub-sumes D. In the implication order, we say that C is more general than D if Clogically implies D. Finally, C is more general than D relative to backgroundknowledge � (� is a set of clauses), if fCg [� logically implies D.Of these three orders, subsumption is the most tractable. In particular,subsumption is decidable, whereas logical implication is not decidable, not evenfor Horn clauses, as established in [MP92]. In turn, relative implication is harderthan implication: both are undecidable, but proof procedures for implicationneed to take only derivations from C into account, whereas a proof procedurefor relative implication should check all derivations from fCg [�.Within a generality order, there are two approaches to generalization orspecialization. The �rst approach generalizes or specializes individual clauses.We will not discuss this in any detail in this chapter, and only mention it forcompleteness' sake. This approach can be traced back to Reynolds' concept of acover [Rey70]. It was implemented for example by Shapiro in the subsumptionorder, in the form of re�nement operators [Sha81b]. However, a clause C whichimplies another clause D need not subsume this D. For instance, take C =P (f(x)) P (x) and D = P (f2(x)) P (x). Then C does not subsume D,1There is also relative subsumption [Plo71b], which will be brie
y touched in Section 4.4.53

54 GENERALIZATIONS AND SPECIALIZATIONSbut C j= D. Thus subsumption is weaker than implication. A further sign ofthis weakness is the fact that tautologies need not be subsume-equivalent, eventhough they are logically equivalent.The second approach generalizes or specializes sets of clauses. This is theapproach we will be concerned with in this chapter. Here the concept of a leastgeneralization2 is important. The use of such least generalizations allows us togeneralize cautiously, avoiding over-generalization. Least generalizations of setsof clauses were �rst discussed by Plotkin [Plo70, Plo71a, Plo71b]. He provedthat any �nite set S of clauses has a least generalization under subsumption(LGS). This is a clause which subsumes all clauses in S and which is subsumedby all other clauses that also subsume all clauses in S. Positive examples canbe generalized by taking their LGS.3 Of course, we need not take an LGS ofall positive examples, which would yield a theory consisting of only one clause.Instead, we might divide the positive examples into subsets, and take a separateLGS of each subset. That way we obtain a theory containing more than oneclause.For this second approach, subsumption is again not fully satisfactory. Forexample, if S consists of the clauses D1 = P (f2(a)) P (a) and D2 =P (f(b)) P (b), then the LGS of S is P (f(y)) P (x). The clause P (f(x)) P (x), which seems more appropriate as a least generalization of S, cannot befound by Plotkin's approach, because it does not subsume D1. As this exam-ple also shows, the subsumption order is particularly unsatisfactory when weconsider recursive clauses: clauses which can be resolved with themselves.Because of the weakness of subsumption, it is desirable to make the stepfrom the subsumption order to the more powerful implication order. Accord-ingly, it is important to �nd out whether Plotkin's positive result on the exis-tence of LGS's also holds for implication. Thus the question whether any �niteset of clauses has a least generalization under implication (LGI), has been de-voted quite a lot of attention recently. Sofar, this question has only been partlyanswered. For instance, Idestam-Almquist [IA93, IA95] studies least general-izations under T-implication as an approximation to LGI's. Muggleton andPage [MP94] investigate self-saturated clauses. A clause is self-saturated if it issubsumed by any clause which implies it. A clause D is a self-saturation of C, ifC and D are logically equivalent and D is self-saturated. As stated in [MP94],if two clauses C1 and C2 have self-saturations D1 and D2, then an LGS of D1and D2 is also an LGI of C1 and C2. This answers our question concerning theexistence of LGI's for clauses which have a self-saturation. However, Muggletonand Page also show that there exist clauses which have no self-saturation. Sothe concept of self-saturation cannot solve our question in general.Use of the third generality order, relative implication, is even more desirablethan the use of \plain" implication. Relative implication allows us to takebackground knowledge into account, which can be used to formalize many usefulproperties and relations of the domain of application. For this reason, least2Least generalizations are often called least general generalizations, for instance in [Plo71b,MP94, IA93, IA95, Nib88], though not in [Plo70], but we feel this `general' is redundant.3There is also a relation between least generalization under subsumption and inverse res-olution [Mug92a].

4.1. INTRODUCTION 55generalizations under implication relative to background knowledge also deserveattention.Apart from the least generalization, there is also its dual: the greatest spe-cialization. Greatest specializations have been accorded much less attention inILP than least generalizations, but the concept of a greatest specialization maynevertheless be useful (see the beginning of Section 4.6).In this chapter, we give a systematic treatment of the existence and non-existence of least generalizations and greatest specializations, applied to eachof these three generality orders. Apart from distinguishing between thesethree orders, we also distinguish between languages of general clauses andmore restricted languages of Horn clauses. Though most researchers in ILPrestrict attention to Horn clauses, general clauses are also sometimes used[Plo70, Plo71b, Sha81b, DRB93, IA93, IA95]. Moreover, many researchers whodo not use general clauses actually allow negative literals to appear in the bodyof a clause. That is, they use clauses of the form A L1; : : : ; Ln, where Ais an atom and each Li is a literal. These are called program clauses [Llo87].Program clauses are in fact logically equivalent to general clauses. For instance,the program clause P (x) Q(x);:R(x) is equivalent to the non-Horn clauseP (x)_:Q(x)_R(x). For these two reasons, we consider not only languages ofHorn clauses, but also pay attention to languages of general clauses.The combination of three generality orders and two di�erent possible lan-guages of clauses gives a total of six di�erent ordered languages. For each ofthese, we can ask whether least generalizations (LG's) and greatest specializa-tions (GS's) always exist. We survey results already obtained by others and alsocontribute some answers of our own. For the sake of clarity, we will summarizethe results of our survey right at the outset. In the following table `+' signi�esa positive answer, `�' means a negative answer.Horn clauses General clausesQuasi-order LG GS LG GSSubsumption (�) + + + +Implication (j=) � � + for function-free +Relative implication (j=�) � � � +Table 4.1: Existence of LG's and GS'sOur own contributions to this table are threefold. First and foremost, weprove that if S is a �nite set of clauses containing at least one non-tautologousfunction-free clause4 (apart from this non-tautologous function-free clause, Smay contain an arbitrary �nite number of other clauses, including clauses whichcontain functions), then there exists a computable LGI of S. This result is onthe one hand based on the Subsumption Theorem, which allows us to restrictattention to �nite sets of ground instances of clauses and on the other handon a modi�cation of some proofs concerning T-implication which can be foundin [IA93, IA95]. An immediate corollary of this result is the existence andcomputability of an LGI of any �nite set of function-free clauses. As far as we4A clause which only contains constants and variables as terms.

56 GENERALIZATIONS AND SPECIALIZATIONSknow, both our general LGI-result and this particular corollary are new results.Niblett [Nib88, p. 135] claims that \it is simple to show that there are lggs ifthe language is restricted to a �xed set of constant symbols since all Herbrandinterpretations are �nite." Yet even for this special case of our general result,it appears that no proof has been published. Initially, we found a direct proofof this case, but this was not really any simpler than the proof of the moregeneral result that we give in this chapter. Niblett's idea that the proof issimple may be due to some confusion about the relation between Herbrandmodels and logical implication (which is de�ned in terms of all models, not justHerbrand models). We will describe this at the end of Subsection 4.5.1. Orperhaps one might think that the decidability of implication for function-freeclauses immediately implies the existence of an LGI. But in fact, decidabilityis not a su�cient condition for the existence of a least generalization. Forexample, it is decidable whether one function-free clause C implies anotherfunction-free clauseD relative to function-free background knowledge. Yet leastgeneralizations relative to function-free background knowledge do not alwaysexist, as we will show in Section 4.7.Our LGI-result does not solve the general question of the existence of LGI's,but it does provide a positive answer for a large class of cases: the presenceof one non-tautologous function-free clause in a �nite S already guarantees theexistence and computability of an LGI of S, no matter what other clauses Scontains.5 Because of the prominence of function-free clauses in ILP, this casemay be of great practical signifcance. Often, in particular in implementations ofILP-systems, the language is required to be function-free, or function symbolsare removed from clauses and put in the background knowledge by techniquessuch as
attening [Rou92]. Well-known ILP-systems such as Foil [QCJ93],Linus [LD94] and Mobal [MWKE93] all use only function-free clauses. Morethan one half of the ILP-systems surveyed by David Aha [Aha92] is restrictedto function-free clauses. Function-free clauses are also su�cient for most appli-cations concerning databases.Our second contribution shows that a set S need not have a least general-ization relative to some background knowledge �, not even when S and � areboth function-free.Thirdly, we contribute a complete discussion of existence and non-existenceof greatest specializations in each of the six ordered languages. In particular,we show that any �nite set of clauses has a greatest specialization under impli-cation. Combining this with the corollary of our result on LGI's, it follows thata function-free clausal language is a lattice.5Note that even for function-free clauses, the subsumption order is still not enough. Con-sider D1 = P (x; y; z) P (y; z; x) and D2 = P (x; y; z) P (z; x; y). D1 is a resolvent ofD2 and D2 and D2 is a resolvent of D1 and D1. Hence D1 and D2 are logically equivalent.This means that D1 is an LGI of the set fD1; D2g. However, the LGS of these two clauses isP (x; y; z) P (u; v; w), which is clearly an over-generalization.

4.2. PRELIMINARIES 574.2 PreliminariesIn this chapter, it will be convenient to ignore the order and possible duplicationof literals in a clause. Clearly, this order and duplication does not a�ect thetruth-value of a clause. Thus P (x) _Q(x) _ P (x) and Q(x) _Q(x) _ P (x) canboth be considered as the same clause P (x) _ Q(x). The union C [D of twoclauses denotes a clause which contains every literal in C and D.The two languages of clauses that will be considered in this chapter are thefollowing:De�nition 4.1 Let A be an alphabet of the �rst-order logic. Then the clausallanguage C by A is the set of all clauses which can be constructed from thesymbols in A. The Horn language H by A is the set of all Horn clauses whichcan be constructed from the symbols in A. 3Here we just presuppose some arbitrary alphabet A, and consider the clausallanguage C and Horn language H based on this A.Three increasingly strong generality orders on clauses are subsumption, im-plication and relative implication. Below we repeat the de�nitions of subsump-tion and implication, and introduce the de�nition of relative implication.De�nition 4.2 Let C and D be clauses and � be a set of clauses. We say thatC subsumes D, denoted as C � D, if there exists a substitution � such thatC� � D.6 C and D are subsume-equivalent if C � D and D � C.� (logically) implies C, denoted as � j= C, if every model of � is also amodel of C. C (logically) implies D, denoted as C j= D, if fCg j= D. C and Dare (logically) equivalent if C j= D and D j= C.C implies D relative to �, denoted as C j=� D, if � [fCg j= D. C and Dare equivalent relative to � if both C j=� D and D j=� C. 3If C � D, then C j= D. The converse does not hold, as the examples inthe Introduction showed. Similarly, if C j= D, then C j=� D, and again theconverse need not hold. Consider the clauses C = P (a)_:P (b), D = P (a) and� = fP (b)g: then C j=� D, but C 6j= D.The next lemma was �rst proved by Gottlob [Got87]. Actually, it is animmediate corollary of the Subsumption Theorem:Lemma 4.1 (Gottlob) Let C and D be non-tautologous clauses. If C j= D,then C+ � D+ and C� � D�.Proof Since C+ � C, if C j= D, then we have C+ j= D. Since C+ cannotbe resolved with itself, it follows from the Subsumption Theorem that C+ �D. But then C+ must subsume the positive literals in D, hence C+ � D+.Similarly C� � D�. 2An important consequence of this lemma concerns the depth of clauses, de�nedas follows:6Right from the very �rst applications of subsumption in ILP, there has been some con-troversy about the symbol used for subsumption: Plotkin [Plo70] used `�', while Reynolds[Rey70] used `�'. We use `�' here, similar to Reynolds' `�', because we feel it serves theintuition to view C as somehow \bigger" or \stronger" than D, if C � D holds.

58 GENERALIZATIONS AND SPECIALIZATIONSDe�nition 4.3 Let t be a term. If t is a variable or constant, then the depthof t is 1. If t = f(t1; : : : ; tn), n � 1, then the depth of t is 1 plus the depth ofthe ti with largest depth. The depth of a clause C is the depth of the term withlargest depth in C. 3Example 4.1 The term t = f(a; x) has depth 2. C = P (f(x)) P (g(f(x); a))has depth 3, since g(f(x); a) has depth 3. <It follows from Gottlob's lemma that if C j= D, then the depth of C is smallerthan or equal to the depth of D, for otherwise C+ cannot subsume D+ or C�cannot subsume D�. For instance, take D = P (x; f(x; g(y))) P (g(a); b),which has depth 3. Then a clause C containing a term f(x; g2(y)) (depth 4)cannot imply D.Lemma 4.2 Let � be a set of clauses, C be a clause, and � be a Skolemsubstitution for C w.r.t. �. Then � j= C i� � j= C�.Proof): Obvious.(: Suppose C is not a tautology and let � = fx1=a1; : : : ; xn=ang. If � j=C�, it follows from the Subsumption Theorem that there is a D such that� `r D and D � C�. Thus there is a �, such that D� � C�. Note thatsince � `r D and none of the constants a1; : : : ; an appears in �, none of theseconstants appears in D. Now let �0 be obtained by replacing in � all occurrencesof ai by xi, for every 1 � i � n. Then D�0 � C, hence D � C. Therefore� `d C, and hence � j= C. 24.3 Least generalizations and greatest specializa-tionsIn this section, we will de�ne the concepts we need concerning least generaliza-tions and greatest specializations.De�nition 4.4 Let � be a set and R be a binary relation on � (i.e., R � ���).1. R is re
exive on �, if xRx for every x 2 �.2. R is transitive on �, if for every x; y; z 2 �, xRy and yRz implies xRz.3. R is symmetric on �, if for every x; y 2 �, xRy implies yRx.4. R is anti-symmetric on �, if for every x; y; z 2 �, xRy and yRx impliesx = y.If R is both re
exive and transitive on �, we say R is a quasi-order on �. IfR is both re
exive, transitive and anti-symmetric on �, we say R is a partialorder on �. If R is re
exive, transitive and symmetric on �, R is an equivalencerelation on �. 3

4.3. LEAST GENERALIZATIONS AND GREATEST SPECIALIZATIONS59A quasi-order R on � induces an equivalence-relation � on �, as follows: wesay x; y 2 � are equivalent induced by R (denoted x � y) if both xRy and yRx.Using this equivalence relation, a quasi-order R on � induces a partial orderR0 on the set of equivalence classes in �, de�ned as follows: if [x] denotes theequivalence class of x (i.e., [x] = fy j x � yg), then [x]R0[y] i� xRy.We �rst give a general de�nition of least generalizations and greatest spe-cializations for sets of clauses ordered by some quasi-order, which we then in-stantiate in di�erent ways.De�nition 4.5 Let � be a set of clauses, � be a quasi-order on �, S � � be a�nite set of clauses and C 2 �. If C � D for every D 2 S, then we say C is ageneralization of S under �. Such a C is called a least generalization (LG) ofS under � in �, if we have C 0 � C for every generalization C 0 2 � of S under�. Dually, C is a specialization of S under �, if D � C for every D 2 S. Sucha C is called a greatest specialization (GS) of S under � in �, if we have C � C 0for every specialization C 0 2 � of S under �. 3It is easy to see that if some set S has an LG or GS under � in �, then thisLG or GS will be unique up to the equivalence induced by � in �. That is, ifC and D are both LG's or GS's of some set S, then we have C � D.The concepts de�ned above are instances of the mathematical concepts of(least) upper bounds and (greatest) lower bounds. Thus we can speak of lattice-properties of a quasi- or partially ordered set of clauses:De�nition 4.6 Let � be a set of clauses and � a quasi-order on �. If forevery �nite subset S of � there exist both a least generalization and a greatestspecialization of S under � in �, then � ordered by � is called a lattice. 3It should be noted that usually in mathematics, a lattice is de�ned for a partialorder instead of a quasi-order. However, since in ILP we usually have to dealwith individual clauses rather than with equivalence classes of clauses, it isconvenient for us to de�ne `lattice' for a quasi-order here. Anyhow, if a quasi-order � is a lattice on �, then the partial order induced by � is a lattice on theset of equivalence classes in �.In ILP, there are two main instantiations for the set of clauses �: eitherwe take a clausal language C, or we take a Horn language H. Similarly, thereare three interesting choices for the quasi-order �: we can use either � (sub-sumption), j= (implication), or j=� (relative implication) for some backgroundknowledge �. It is easy to see that each of these is indeed a quasi-order on aset of clauses. In the �-order, we will sometimes abbreviate the terms `leastgeneralization of S under subsumption' and `greatest specialization of S un-der subsumption' to `LGS of S' and `GSS of S', respectively. Similarly, in thej=-order we will sometimes speak of an LGI (least generalization under implica-tion) and a GSI. In the j=�-order, we will use LGR (least generalization underrelative implication) and GSR.These two di�erent languages and three di�erent quasi-orders give a to-tal of six combinations. For each combination, we can ask whether an LG or

60 GENERALIZATIONS AND SPECIALIZATIONSGS of every �nite set S exists. In the next section, we will review the an-swers for subsumption given by others or by ourselves. Then we devote twosections to least generalizations and greatest specializations under implication,respectively. Finally, we discuss least generalizations and greatest specializa-tions under relative implication. The results of this survey have already beensummarized in Table 4.1 in the Introduction.4.4 SubsumptionFirst we devote some attention to subsumption. Least generalizations undersubsumption have been discussed extensively by Plotkin [Plo70]. The mainresult in his framework is the following:Theorem 4.1 (Existence of LGS in C) Let C be a clausal language. Thenfor every �nite S � C, there exists an LGS of S in C.If S only contains Horn clauses, then it can be shown that the LGS of S is itselfalso a Horn clause. Thus the question for the existence of an LGS of every�nite set S of clauses is answered positively for both clausal languages and forHorn languages.Plotkin established the existence of an LGS, but he seems to have ignoredthe GSS in [Plo70, Plo71b], possibly because it is a very straightforward result.It is in fact fairly easy to show that the GSS of some �nite set S of clausesis simply the union of all clauses in S after they are standardized apart.7 Weinclude the proof here.Theorem 4.2 (Existence of GSS in C) Let C be a clausal language. Thenfor every �nite S � C, there exists a GSS of S in C.Proof Suppose S = fD1; : : : ;Dng � C. Without loss of generality, we assumethe clauses in S are standardized apart. Let D = D1 [: : : [Dn, then Di � D,for every 1 � i � n. Now let C 2 C be such that Di � C, for every 1 � i � n.Then for every 1 � i � n, there is a �i such that Di�i � C and �i only acts onvariables in Di. If we let � = �1 [: : : [�n, then D� = D1�1 [: : : [Dn�n � C.Hence D � C, so D is a GSS of S in C. 2This establishes that a clausal language C ordered by � is a lattice.Proving the existence of a GSS of every �nite set of Horn clauses in Hrequires a little more work, but here also the result is positive. For example,D = P (a) P (f(a)); Q(y) is a GSS of D1 = P (x) P (f(x)) and D2 =P (a) Q(y). Note that D can be obtained by applying � = fx=ag (the mgufor the heads of D1 and D2) to D1 [D2, the GSS of D1 and D2 in C. This idea7Note that this has nothing to do with uni�cation. For instance, if S = fP (a; x); P (y; b)g,then the GSS of S in C would be P (a; x) _ P (y; b). However, if we would instantiate � inDe�nition 4.5 to the set of atoms, then the greatest specialization of two atoms in the setof atoms should itself also be an atom. The GSS of two atoms is then their most generaluni�cation [Rey70]. For instance, the GSS of S would in this case be P (a; b).

4.4. SUBSUMPTION 61will be used in the following proof. Here we assume H contains an arti�cialbottom element (True) ?, such that C � ? for every C 2 H, and ? 6� C forevery C 6= ?. Note that ? is not subsume-equivalent with other tautologies.Theorem 4.3 (Existence of GSS in H) Let H be a Horn language, with? 2 H. Then for every �nite S � H, there exists a GSS of S in H.Proof Suppose S = fD1; : : : ;Dng � H. Without loss of generality we assumethe clauses in S are standardized apart, D1; : : : ;Dk are the de�nite programclauses in S and Dk+1; : : : ;Dn are the de�nite goals in S. If k = 0 (i.e., if Sonly contains goals), then it is easy to show that D1 [: : :[Dn is a GSS of S inH. If k � 1 and the set fD+1 ; : : : ;D+k g is not uni�able, then ? is a GSS of S inH. Otherwise, let � be an mgu for fD+1 ; : : : ;D+k g, and let D = D1�[: : :[Dn�(note that actually Di� = Di for k + 1 � i � n, since the clauses in S arestandardized apart). Since D has exactly one literal in its head, it is a de�niteprogram clause. Furthermore, we have Di � D for every 1 � i � n, sinceDi� � D.To show that D is a GSS of S in H, suppose C 2 H is some clause such thatDi � C for every 1 � i � n. For every 1 � i � n, let �i be such that Di�i � Cand �i only acts on variables in Di. Let � = �1 [: : : [�n. For every 1 � i � k,D+i � = D+i �i = C+, so � is a uni�er of fD+1 ; : : : ;D+k g. But � is an mgu forthis set, so there is a
 such that � = �
. Now D
 = D1�
 [: : : [Dn�
 =D1� [: : : [Dn� = D1�1 [: : : [Dn�n � C. Hence D � C, so D is a GSS of Sin H. See �gure 4.1 for illustration of the case where n = 2. 2D1HHHHj�JJJJJĴ�1 D2����� �

� �2D?
CFigure 4.1: D is a GSS of D1 and D2Thus a Horn language H ordered by � is also a lattice.We end this section by brie
y discussing Plotkin's relative subsumption[Plo71b]. This is an extension of subsumption which takes background knowl-edge into account. This background knowledge is rather restricted: it mustbe a �nite set � of ground literals. Because of its restrictiveness, we have notincluded relative subsumption in Table 4.1. Nevertheless, we mention it here,because least generalization under relative subsumption forms the basis of thewell-known ILP system Golem [MF92].De�nition 4.7 Let C;D be clauses, � = fL1; : : : ; Lmg be a �nite set of groundliterals. Then C subsumes D relative to �, denoted by C �� D, if C �(D [f:L1; : : : ;:Lmg). 3It is easy to see that �� is re
exive and transitive, so it imposes a quasi-orderon a set of clauses.

62 GENERALIZATIONS AND SPECIALIZATIONSSuppose S = fD1; : : : ;Dng and � = fL1; : : : ; Lmg. It is easy to see that anLGS of f(D1 [f:L1; : : : ;:Lmg); : : : ; (Dn [f:L1; : : : ;:Lmg)g is a least gener-alization of S under ��, so every �nite set of clauses has a least generalizationunder �� in C. Moreover, if each Di is a Horn clause and each Lj is a positiveground literal (i.e., a ground atom), then this least generalization will itself alsobe a Horn clause. Accordingly, if � is a �nite set of positive ground literals,then every �nite set of Horn clauses has a least generalization under �� in H.4.5 Least generalizations under implicationNow we turn from subsumption to the implication order. In this section wewill discuss LGI's, in the next section we handle GSS's. For Horn clauses, theLGI-question has already been answered negatively in [MDR94].Let D1 = P (f2(x)) P (x), D2 = P (f3(x)) P (x), C1 = P (f(x)) P (x) and C2 = P (f2(y)) P (x). Then we have both C1 j= fD1;D2g andC2 j= fD1;D2g. It is not very di�cult to see that there are no more speci�cHorn clauses than C1 and C2 that imply both D1 and D2. For C1: no resolventof C1 with itself implies D2 and no clause that is properly subsumed by C1 stillimplies D1 and D2. For C2: every resolvent of C2 with itself is a variant of C2,and no clause that is properly subsumed by C2 still implies D1 and D2. ThusC1 and C2 are both \minimal" generalizations under implication of fD1;D2g.Since C1 and C2 are not logically equivalent under implication, there is no LGIof fD1;D2g in H.However, the fact that there is no LGI of fD1;D2g inH, does not mean thatD1 and D2 have no LGI in C, since a Horn language is a more restricted spacethan a clausal language. In fact, it is shown in [MP94] that C = P (f(x)) _P (f2(y)) P (x) is an LGI of D1 and D2 in C. For this reason, it may beworthwhile for the LGI to consider a clausal language instead of only Hornclauses.In the next subsection, we show that any �nite set of clauses which con-tains at least one non-tautologous function-free clause, has an LGI in C. Animmediate corollary of this result is the existence of an LGI of any �nite setof function-free clauses. In our usage of the word, a `function-free' clause maycontain constants, even though constants are sometimes seen as functions ofarity 0.De�nition 4.8 A clause is function-free if it does not contain function symbolsof arity 1 or more. 3Note that a clause is function-free i� it has depth 1. In case of sets of clauseswhich all contain function symbols, the LGI-question remains open.4.5.1 A su�cient condition for the existence of an LGIIn this subsection, we will show that any �nite set S of clauses containing atleast one non-tautologous function-free clause, has an LGI in C.

4.5. LEAST GENERALIZATIONS UNDER IMPLICATION 63De�nition 4.9 Let C be a clause, x1; : : : ; xn all distinct variables in C, andK a set of terms. Then the instance set of C w.r.t. K is I(C;K) = fC� j � =fx1=t1; : : : ; xn=tng; where ti 2 K, for every 1 � i � ng. If � = fC1; : : : ; Ckg isa set of clauses, then the instance set of � w.r.t. K is I(�;K) = I(C1;K) [: : : [I(Ck;K). 3Example 4.2 If C = P (x)_Q(y) and T = fa; f(z)g, then I(C; T) = f(P (a)_Q(a)); (P (a) _Q(f(z))); (P (f(z)) _Q(a)); (P (f(z)) _Q(f(z)))g. <De�nition 4.10 Let S be a �nite set of clauses, and � be a Skolem substitutionfor S. Then the term set of S by � is the set of all terms (including subterms)occurring in S�. 3A term set of S by some � is a �nite set of ground terms.Example 4.3 The term set of D = P (f2(x); y; z) P (y; z; f2(x)) by � =fx=a; y=b; z=cg is T = fa; f(a); f2(a); b; cg. <Our de�nition of a term set corresponds to what Idestam-Almquist [IA93,IA95] calls a `minimal term set'. In his de�nition, if � is a Skolem substitutionfor a set of clauses S = fD1; : : : ;Dng w.r.t. some other set of clauses S0, thena term set of S is a �nite set of terms which contains the minimal term set ofS by � as a subset.Using his notion of term set, he de�nes T-implication as follows: if C andD are clauses and T is a term set of fDg by some Skolem substitution � w.r.t.fCg, then C T-implies D w.r.t. T , if I(C; T) j= D�. T-implication is decidable,weaker than logical implication and stronger than subsumption. [IA93, IA95]gives the result that any �nite set of clauses has a least generalization underT-implication w.r.t. any term set T . However, as he also notes, T-implicationis not transitive and hence not a quasi-order. Therefore it does not �t into ourgeneral framework here. For this reason, we will not discuss it fully here, andfor the same reason we have not included a row for T-implication in Table 4.1.Let us now begin with the proof of our result concerning the existence ofLGI's. Consider C = P (x; y; z) P (z; x; y), and D, � and T as above. ThenC j= D and also I(C; T) j= D�, since D� is a resolvent of P (f2(a); b; c) P (c; f2(a); b) and P (c; f2(a); b) P (b; c; f2(a)), which are in I(C; T). As wewill show in the next lemma, this holds in general: if C j= D and C is function-free, then we can restrict attention to the ground instances of C instantiatedto terms in the term set of D by some �.The proof of Lemma 4.3 uses the following idea. Consider a derivation ofa clause E from a set � of ground clauses. Suppose some of the clauses in �contain terms not appearing in E. Then any literals containing these terms in� must be resolved away in the derivation. This means that if we replace allthe terms in the derivation that are not in E, by some other term t, then theresult will be another derivation of E. For example, the left of �gure 4.2 showsa derivation of length 1 of E. The term f2(b) in the parent clauses does notappear in E. If we replace this term by the constant a, the result is anotherderivation of E (right of the �gure).

64 GENERALIZATIONS AND SPECIALIZATIONSP (b) P (f2(b)) P (f2(b)) Q(a; f(a))@@@R ���	E = P (b) Q(a; f(a)) P (b) P (a) P (a) Q(b; f(a))@@@R ���	E = P (b) Q(a; f(a))Figure 4.2: Transforming the left derivation yields the right derivationLemma 4.3 Let C be a function-free clause, D be a clause, � be a Skolemsubstitution for D w.r.t. fCg and T be the term set of D by �. Then C j= Di� I(C; T) j= D�.Proof(: Since C j= I(C; T) and I(C; T) j= D�, we have C j= D�. Now C j= Dby Lemma 4.2.): If D is a tautology, then D� is a tautology, so this case is obvious.Suppose D is not a tautology, then D� is not a tautology. Since C j= D�, itfollows from Theorem 2.2 that there exists a �nite set � of ground instances ofC, such that � j= D�. By the Subsumption Theorem, there exists a derivationfrom � of a clause E, such that E � D�. Since � is ground, E must also beground, so we have E � D�. This implies that E only contains terms from T .Let t be an arbitrary term in T and let �0 be obtained from � by replacingevery term in clauses in � which is not in T , by t. Note that since each clausein � is a ground instance of the function-free clause C, every clause in �0 isalso a ground instance of C. Now it is easy to see that the same replacementof terms in the derivation of E from � results in a derivation of E from �0:(1) each resolution step in the derivation from � can also be carried out in thederivation from �0, since the same terms in � are replaced by the same termsin �0 and (2) the terms in � that are not in T (and hence are replaced by t),do not appear in the conclusion E of the derivation.Since there is a derivation of E from �, we have �0 j= E, and hence �0 j= D�.�0 is a set of ground instances of C and all terms in �0 are terms in T , so�0 � I(C; T). Hence I(C; T) j= D�. 2Lemma 4.3 cannot be generalized to the case where C contains function symbolsof arity � 1, take C = P (f(x); y) P (z; x) and D = P (f(a); a) P (a; f(a))(from the example given on p. 25 of [IA93]). Then T = fa; f(a)g is the term setof D, and we have C j= D, yet it can be seen that I(C; T) 6j= D. The argumentused in the previous lemma does not work here, because di�erent terms insome ground instance need not relate to di�erent variables. For example, in theground instance P (f2(a); a) P (a; f(a)) of C, we cannot just replace f2(a)by some other term, for then the resulting clause would not be an instance ofC. On the other hand, Lemma 4.3 can be generalized to a set of clauses insteadof a single clause. If � is a �nite set of function-free clauses, C is an arbitraryclause and � is a Skolem substitution for C w.r.t. �, then we have that � j= Ci� I(�; T) j= C�. The proof is almost literally the same as above.

4.5. LEAST GENERALIZATIONS UNDER IMPLICATION 65This result implies that � j= C is reducible to an implication I(�; T) j= C�between ground clauses. Since, by the next lemma, implication between groundclauses is decidable, it follows that � j= C is decidable in case � is function-free.Lemma 4.4 The problem whether � j= C, where � is a �nite set of groundclauses and C is a ground clause, is decidable.Proof Let C = L1 _ : : : _ Ln and A be the set of all ground atoms occurringin � and C. Now:� j= C i� (by Proposition A.1)� [f:L1; : : : ;:Lng is unsatis�able i� (by Proposition A.4)� [f:L1; : : : ;:Lng has no Herbrand model i�no subset of A is an Herbrand model of � [f:L1; : : : ;:Lng.Since A is �nite, the last statement is decidable. 2Corollary 4.1 The problem whether � j= C, where � is a �nite set of function-free clauses and C is a clause, is decidable.The following sequence of results more or less follows the pattern of Lemma 11to Theorem 14 of Idestam-Almquist's [IA95] (similar to Lemma 3.10 to Theorem3.14 of [IA93]). There he gives a proof of the existence of a least generalizationunder T-implication of any �nite set of (not necessarily function-free) clauses.We can adjust the proof in such a way that we can use it to establish theexistence of an LGI of any �nite set of clauses containing at least one non-tautologous and function-free clause.Lemma 4.5 Let S be a �nite set of non-tautologous clauses, V = fx1; : : : ; xmgbe a set of variables and let G = fC1; C2; : : :g be a (possibly in�nite) set ofgeneralizations of S under implication. Then the set G0 = I(C1; V)[I(C2; V)[: : : is a �nite set of clauses.Proof Let d be the maximal depth of the terms in clauses in S. It follows fromLemma 4.1 that G (and hence also G0) cannot contain terms of depth greaterthan d, nor predicates, functions or constants other than those in S. The setof literals which can be constructed from predicates in S, and from terms ofdepth at most d consisting of functions and constants in S and variables in V ,is �nite. Hence the set of clauses which can be constructed from those literalsis also �nite. G0 is a subset of this set, so G0 is a �nite set of clauses. 2Lemma 4.6 Let D be a clause, C be a function-free clause such that C j= D,T = ft1; : : : ; tng be the term set of D by �, V = fx1; : : : ; xmg be a set ofvariables and m � n. If E is an LGS of I(C; V), then E j= D.Proof Let
 = fx1=t1; : : : ; xn=tn; xn+1=tn; : : : ; xm=tng (it does not matter towhich terms the variables xn+1; : : : ; xm are mapped by
, as long as they aremapped to terms in T). Suppose I(C; V) = fC�1; : : : ; C�kg. Then I(C; T) =

66 GENERALIZATIONS AND SPECIALIZATIONSfC�1
; : : : ; C�k
g. Let E be an LGS of I(C; V) (note that E must be function-free). Then for every 1 � i � k, there are �i such that E�i � C�i. This meansthat E�i
 � C�i
 and hence E�i
 j= C�i
, for every 1 � i � k. ThereforeE j= I(C; T).Since C j= D, we know from Lemma 4.1 that constants appearing in C mustalso appear in D. This means that � is a Skolem substitution for D w.r.t. fCg.Then from Lemma 4.3 we know I(C; T) j= D�, hence E j= D�. Furthermore,since E is an LGS of I(C; V), all constants in E also appear in C, hence allconstants in E must appear in D. Thus � is also a Skolem substitution for Dw.r.t. fEg. Therefore E j= D by Lemma 4.2. 2Consider C = P (x; y; z) P (y; z; x) and D = Q(w). Both C and D im-ply the clause E = P (x; y; z) P (z; x; y); Q(b). Now note that C [D =P (x; y; z) P (y; z; x); Q(w) also implies E. This holds for clauses in general,even in the presence of background knowledge �. The next lemma is verygeneral, but in this section we only need the special case where C and D arefunction-free and � is empty. We need the general case to prove the existenceof a GSR in Section 4.8.Lemma 4.7 Let C, D and E be clauses such that C and D are standardizedapart, and let � be a set of clauses. If C j=� E and D j=� E, then C[D j=� E.Proof Suppose C j=� E and D j=� E, and let M be a model of �[fC [Dg.Since C and D are standardized apart, the clause C [D is equivalent to theformula 8(C)_8(D) (where 8(C) denotes the universally quanti�ed clause C).This means that M is a model of C or a model of D. Furthermore, M is also amodel of �, so it follows from �[fCg j= E or �[fDg j= E that M is a modelof E. Therefore � [fC [Dg j= E, hence C [D j=� E. 2Now we can prove the existence of an LGI of any �nite set S of clauses whichcontains at least one non-tautologous and function-free clause. In fact we canprove something stronger, namely that this LGI is a special LGI. This is an LGIthat is not only implied, but actually subsumed by any other generalization ofS:De�nition 4.11 Let C be a clausal language and S be a �nite subset of C.An LGI C of S in C is called a special LGI of S in C, if C 0 � C for everygeneralization C 0 2 C of S under implication. 3Note that if D is an LGI of a set containing at least one non-tautologousfunction-free clause, then by Lemma 4.1 D is itself function-free, because itshould imply the function-free clause(s) in S. For instance, C = P (x; y; z) P (y; z; x); Q(w) is an LGI of D1 = P (x; y; z) P (y; z; x); Q(f(a)) and D2 =P (x; y; z) P (z; x; y); Q(b). Note that this LGI is properly subsumed bythe LGS of fD1;D2g, which is P (x; y; z) P (x0; y0; z0); Q(w). An LGI maysometimes be the empty clause 2, for example if S = fP (a); Q(a)g.

4.5. LEAST GENERALIZATIONS UNDER IMPLICATION 67Theorem 4.4 (Existence of special LGI in C) Let C be a clausal language.If S is a �nite set of clauses from C, and S contains at least one non-tautologousfunction-free clause, then there exists a special LGI of S in C.Proof Let S = fD1; : : : ;Dng be a �nite set of clauses from C, such thatS contains at least one non-tautologous function-free clause. We can assumewithout loss of generality that S contains no tautologies. Let � be a Skolemsubstitution for S, T = ft1; : : : ; tmg be the term set of S by �, V = fx1; : : : ; xmgbe a set of variables and G = fC1; C2; : : :g be the set of all generalizationsof S under implication in C. Note that 2 2 G, so G is not empty. Sinceeach clause in G must imply the function-free clause(s) in S, it follows fromLemma 4.1 that all members of G are function-free. By Lemma 4.5, the setG0 = I(C1; V) [I(C2; V) [: : : is a �nite set of clauses. Since G0 is �nite, theset of I(Ci; V)'s is also �nite. For simplicity, let fI(C1; V); : : : ;I(Ck; V)g bethe set of all distinct I(Ci; V)'s.Let Ei be an LGS of I(Ci; V), for every 1 � i � k, such that E1; : : : ; Ek arestandardized apart. For every 1 � j � n, the term set of Dj by � is some setftj1 ; : : : ; tjsg � T , such that m � js. From Lemma 4.6, we have that Ei j= Dj ,for every 1 � i � k and 1 � j � n, hence Ei j= S. Now let F = E1 [: : : [Ek,then we have F j= S from Lemma 4.7 (applying the case of Lemma 4.7 where� is empty).To prove that F is a special LGI of S, it remains to show that Cj � F ,for every j � 1. For every j � 1, there is an i (1 � i � k), such thatI(Cj; V) = I(Ci; V). So for this i, Ei is an LGS of I(Cj; V). Cj is itself alsoa generalization of I(Cj; V) under subsumption, hence Cj � Ei. Then �nallyCj � F , since Ei � F . 2As a consequence, we also immediately have the following:Corollary 4.2 (Existence of LGI for function-free clauses) Let C be aclausal language. Then for every �nite set of function-free clauses S � C, thereexists an LGI of S in C.Proof Let S be a �nite set of function-free clauses in C. If S only containstautologies, any tautology will be an LGI of S. Otherwise, let S0 be obtainedby deleting all tautologies from S. By the previous theorem, there is a specialLGI of S0. Clearly, this is also a special LGI of S itself in C. 2This corollary is not trivial, since even though the number of Herbrand inter-pretations of a language without function symbols is �nite (due to the fact thatthe number of all possible ground atoms is �nite in this case), S may never-theless be implied by an in�nite number of non-equivalent clauses. This mayseem like a paradox, since there are only �nitely many categories of clausesthat can \behave di�erently" in a �nite number of �nite Herbrand interpre-tations. Thus it would seem that the number of non-equivalent function-freeclauses should also be �nite. This is a misunderstanding, since logical implica-tion (and hence also logical equivalence) is de�ned in terms of all interpreta-tions, not just Herbrand interpretations. For instance, de�ne D1 = P (a; a) and

68 GENERALIZATIONS AND SPECIALIZATIONSP (b; b), Cn = fP (xi; xj) j i 6= j; 1 � i; j � ng. Then we have Cn j= fD1;D2g,Cn j= Cn+1 and Cn+1 6j= Cn, for every n � 1, see [LNC94a].Another interesting consequence of Theorem 4.4 concerns self-saturation(see the Introduction to this chapter for the de�nition of self-saturation). If Cis a special LGI of some set S, then it is clear that C is self-saturated: anyclause which implies C also implies S and hence must subsume C, since C isa special LGI of S. Now consider S = fDg, where D is some non-tautologousfunction-free clause. Then a special LGI C of S will be logically equivalent toD. Moreover, since this C will be self-saturated, it is a self-saturation of D.Corollary 4.3 If D is a non-tautologous function-free clause, then there existsa self-saturation of D.4.5.2 The LGI is computableIn the previous subsection we proved the existence of an LGI in C of every �niteset S of clauses containing at least one non-tautologous function-free clause. Inthis subsection, we will establish the computability of such an LGI. The nextalgorithm, extracted from the proof of the previous section, computes this LGIof S.Algorithm 4.1 (LGI-Algorithm)Input: A �nite set S of clauses, containing at least one non-tautologousfunction-free clause.Output: An LGI of S in C.1. Remove all tautologies from S (a clause is a tautology i� it contains literalsA and :A), call the remaining set S0.2. Let m be the number of distinct terms (including subterms) in S0, letV = fx1; : : : ; xmg. (Notice that this m is the same number as the numberof terms in the term set T used in the proof of Theorem 4.4.)3. Let G be the (�nite) set of all clauses which can be constructed frompredicates and constants in S0 and variables in V .4. Let fU1; : : : ; Ung be the set of all subsets of G.5. Let Hi be an LGS of Ui, for every 1 � i � n. These Hi can be computedby Plotkin's algorithm [Plo70].6. Remove from fH1; : : : ;Hng all clauses which do not imply S0 (since eachHi is function-free, by Corollary 4.1 this implication is decidable), andstandardize the remaining clauses fH1; : : : ;Hqg apart.7. Return the clause H = H1 [: : : [Hq.The correctness of this algorithm follows from the proof of Theorem 4.4. Firstnotice that H j= S by Lemma 4.7. Furthermore, note that all I(Ci; V)'s men-tioned in the proof of Theorem 4.4, are elements of the set fU1; : : : ; Ung. Thismeans that for every Ei in the set fE1; : : : ; Ekg mentioned in that proof, thereis a clause Hj in fH1; : : : ;Hqg such that Ei and Hj are subsume-equivalent.Then it follows that the LGI F = E1 [: : : [Ek of that proof subsumes theclause H = H1 [: : : [Hq that our algorithm returns. On the other hand, F isa special LGI, so F and H must be subsume-equivalent.

4.6. GREATEST SPECIALIZATIONS UNDER IMPLICATION 69Suppose the number of distinct constants in S0 is c and the number ofdistinct variables in step 2 of the algorithm is m. Furthermore, suppose thereare p distinct predicate symbols in S0, with respective arities a1; : : : ; ap. Thenthe number of distinct atoms that can be formed from these constants, variablesand predicates, is l = Ppi=1(c +m)ai , and the number of distinct literals thatcan be formed, is 2 � l. The set G of distinct clauses which can be formed fromthese literals is the power set of this set of literals, so jGj = 22�l. Then the setfU1; : : : ; Ung of all subsets of G contains 2jGj = 222�l members.Thus the algorithm outlined above is not very e�cient (to say the least).A more e�cient algorithm may exist, but since implication is harder than sub-sumption and the computation of an LGS is already quite expensive, we shouldnot put our hopes too high. Nevertheless, the existence of the LGI-algorithmdoes establish the theoretical point that the LGI of any �nite set of clausescontaining at least one non-tautologous function-free clause, is e�ectively com-putable.Theorem 4.5 (Computability of LGI) Let C be a clausal language. If Sis a �nite set of clauses from C, and S contains at least one non-tautologousfunction-free clause, then the LGI of S in C is computable.4.6 Greatest specializations under implicationNow we turn from least generalizations under implication to greatest special-izations. Finding least generalizations of sets of clauses is common practice inILP. On the other hand, the greatest specialization, which is the dual of theleast generalization, is used hardly ever. Nevertheless, the GSI of two clausesD1 and D2 might be useful. Suppose that we have one positive example e+and two negative examples e�1 and e�2 , and suppose that D1 implies e+ and e�1 ,while D2 implies e+ and e�2 . Then it might very well be that the GSI of D1and D2 still implies e+, but is consistent w.r.t. fe�1 ; e�2 g. Then we could obtaina correct specialization by taking the GSI of D1 and D2.It is obvious from the previous sections that the existence of an LGI of S isquite hard to establish. For clauses which all contain functions, the existenceof an LGI is still an open question and even for the case where S contains atleast one non-tautologous function-free clause, the proof was far from trivial.However, the existence of a GSI in C is much easier to prove. In fact, a GSI ofa �nite set S is the same as the GSS of S, namely the union of the clauses inS after these are standardized apart.To see the reason for this dissymmetry, let us take a step back from theclausal framework and consider full �rst-order logic for a moment. If �1 and�2 are two arbitrary �rst-order formulas, then it can be easily shown that theirleast generalization is just �1 ^ �2: this conjunction implies �1 and �1, andmust be implied by any other formula which implies both �1 and �2. Dually,the greatest specialization is just �1_�2: this is implied by both �1 and �2 andmust imply any other formula that is implied by both �1 and �2. See �gure 4.3.Now suppose �1 and �2 are clauses. Then why do we have a problem in�nding the LGI of �1 and �2? The reason for this is that �1^�2 is not a clause.

70 GENERALIZATIONS AND SPECIALIZATIONS�1 ^ �2���	 @@@R�1 �2@@@R ���	�1 _ �2Figure 4.3: Least generalization and greatest specialization in �rst-order logicInstead of using �1 ^ �2, we have to �nd some least clause which implies bothclauses �1 and �2. Such a clause appears quite hard to �nd sometimes.On the other hand, in case of specialization there is no problem. Here wecan take �1 _�2 as GSI, since �1 _�2 is equivalent to a clause, if we handle theuniversal quanti�ers in front of a clause properly. If �1 and �2 are standardizedapart, then the formula �1 _ �2 is equivalent to the clause which is the unionof �1 and �2. This fact was used in the proof of Lemma 4.7.Suppose S = fD1; : : : ;Dng, and D01; : : : ;D0n are variants of these clauseswhich are standardized apart. Then clearly D = D01 [: : : [D0n is a GSI of S,since it follows from Lemma 4.7 that any specialization of S under implicationis implied by D. Thus we have the following result:Theorem 4.6 (Existence of GSI in C) Let C be a clausal language. Thenfor every �nite S � C, there exists a GSI of S in C.The previous theorem holds for clauses in general, so in particular also forfunction-free clauses. Furthermore, Corollary 4.2 guarantees us that in a func-tion-free clausal language, an LGI of every �nite S exists. This means thatthe set of function-free clauses quasi-ordered by logical implication, is in fact alattice.Corollary 4.4 (Lattice-structure of function-free clauses under j=)A function-free clausal language ordered by implication is a lattice.In case of a Horn language H, we cannot apply the same proof method as in thecase of a clausal language, since the union of two Horn clauses need not be aHorn clause itself. In fact, we can show that not every �nite set of Horn clauseshas a GSI in H. Here we can use the same clauses that we used to show thatsets of Horn clauses need not have an LGI in H, this time from the perspectiveof specialization instead of generalization.Again, letD1 = P (f2(x)) P (x), D2 = P (f3(x)) P (x), C1 = P (f(x)) P (x) and C2 = P (f2(y)) P (x). Then C1 j= fD1;D2g and C2 j= fD1;D2g,and there is no Horn clause D such that D j= D1, D j= D2, C1 j= D andC2 j= D. Hence there is no GSI of fC1; C2g in H.4.7 Least generalizations under relative implicationImplication is stronger than subsumption, but relative implication is even morepowerful, because background knowledge can be used to model all sorts of useful

4.7. LEAST GENERALIZATIONS UNDER RELATIVE IMPLICATION 71properties and relations. In this section, we will discuss least generalizationsunder implication relative to some given background knowledge � (LGR's). Inthe next section, we treat greatest specializations under relative implication.First, we will prove the equivalence between our de�nition of relative impli-cation and a de�nition given by Niblett [Nib88, p. 133]. He gives the followingde�nition of subsumption relative to a background knowledge � (to distinguishit from our notion of subsumption, we will call this `N-subsumption'):8De�nition 4.12 Clause C N-subsumes clause D with respect to backgroundknowledge � if there is a substitution � such that � ` (C� ! D) (here `!' isthe implication-connective, and ``' is an arbitrary sound and complete proofprocedure). 3Proposition 4.1 Let C and D be clauses and � be a set of clauses. Then CN-subsumes D with respect to � i� C j=� D.Proof C N-subsumes D with respect to � i�There is a � such that � ` (C� ! D) i� (by sound- and completeness of ``')There is a � such that � j= (C�! D) i� (by Theorem A.1)There is a � such that � [fC�g j= D i� (for the `if', put � = ")� [fCg j= D i�C j=� D. 2Since j= is the special case of j=� where � is empty, our counterexamples tothe existence of LGI's or GSI's in H are also counterexamples to the existenceof LGR's or GSR's in H. In other words, the `�'-entries in the second row ofTable 4.1 carry over to the third row.For general clauses, the LGR-question also has a negative answer. We willshow here that even if S and � are both �nite sets of function-free clauses,an LGR of S relative to � need not exist. Let D1 = P (a), D2 = P (b), S =fD1;D2g, and � = f(P (a) _ :Q(x)); (P (b) _ :Q(x))g. We will show that thisS has no LGR relative to � in C.Suppose C is an LGR of S relative to �. Note that if C contains the literalP (a), then the Herbrand interpretation which makes P (a) true and which makesall other ground literals false, would be a model of � [fCg but not of D2, sothen we would have C 6j=� D2. Similarly, if C contains P (b) then C 6j=� D1.Hence C cannot contain P (a) or P (b).Now let d be a constant not appearing in C. Let D = P (x) _ Q(d), thenD j=� S. By the de�nition of an LGR, we should have D j=� C. Then by theSubsumption Theorem, there must be a derivation from �[fDg of a clause E,which subsumes C. The set of all clauses which can be derived (in 0 or moreresolution-steps) from �[fDg is �[fDg[f(P (a)_P (x)); (P (b)_P (x))g. Butnone of these clauses subsumes C, because C does not contain the constant d,nor the literals P (a) or P (b). Hence D 6j=� C, contradicting the assumptionthat C is an LGR of S relative to � in C.8Niblett attributes this de�nition to Plotkin, though Plotkin gives a rather di�erent de�-nition of relative subsumption, as we have seen in Section 4.4.

72 GENERALIZATIONS AND SPECIALIZATIONSAs we have seen, in general the LGR of S relative to � need not exist.However, we can identify a special case in which the LGR does exist. Thiscase might be of practical interest. Suppose � = fL1; : : : ; Lmg is a �nite set offunction-free ground literals. We can assume � does not contain complementaryliterals (i.e., A and :A), for otherwise � would be inconsistent. Also, supposeS = fD1; : : : ;Dng is a set of clauses, at least one of which is non-tautologousand function-free. Then C j=� Di i� fCg[� j= Di i� C j= Di_:(L1^ : : :^Lm)i� C j= Di _ :L1 _ : : : _ :Lm. This means that an LGI of the set of clausesfD1 _:L1 _ : : :_:Lm; : : : ;Dn _:L1 _ : : :_:Lmg is also an LGR of S relativeto �. If some Dk _ :L1 _ : : : _ :Lm is non-tautologous and function-free, thisLGI exists and is computable. Hence in this special case, the LGR of S relativeto � exists and is computable.4.8 Greatest specializations under relative implica-tionSince the counterexample to the existence of GSI's inH is also a counterexampleto the existence of GSR's in H, the only remaining question in the j=�-order isthe existence of GSR's in C. The answer to this question is positive. In fact,like the GSS and the GSI, the GSR of some �nite set S in C is just the unionof the (standardized apart) clauses in S.Theorem 4.7 (Existence of GSR in C) Let C be a clausal language and � �C. Then for every �nite S � C, there exists a GSR of S relative to � in C.Proof Suppose S = fD1; : : : ;Dng � C. Without loss of generality, we assumethe clauses in S are standardized apart. Let D = D1[: : :[Dn, then Di j=� D,for every 1 � i � n. Now let C 2 C be such that Di j=� C, for every 1 � i � n.Then from Lemma 4.7, we have D j=� C. Hence D is a GSR of S relative to �in C. 24.9 SummaryIn ILP, the three main generality orders are subsumption, implication and rel-ative implication. The two main languages are clausal languages and Hornlanguages. This gives a total of six di�erent ordered sets. In this chapter, wehave given a systematic treatment of the existence or non-existence of least gen-eralizations and greatest specializations in each of these six ordered sets. Theoutcome of this investigation has been summarized in Table 4.1 on p. 55. Theonly remaining open question is the existence or non-existence of a least gen-eralization under implication in C for sets of clauses which all contain functionsymbols.Table 4.1 makes explicit the trade-o� between di�erent generality orders.On the one hand, implication is better suited as a generality order than sub-sumption, particularly in case of recursive clauses. Relative implication is still

4.9. SUMMARY 73better, because it allows us to take background knowledge into account. Onthe other hand, we can see from the table that as far as the existence of leastgeneralizations goes, subsumption is more attractive than logical implication,and logical implication is in turn more attractive than relative implication. Forsubsumption, least generalizations always exist. For logical implication, we canonly prove the existence of least generalizations in the presence of a function-free clause. And �nally, for relative implication, least generalizations need noteven exist in a function-free language. In practice this means that we cannothave it all: if we choose to use a very strong generality order, we have fewpositive results to go on, whereas if we want to guarantee the existence of leastgeneralizations, we are committed to the weakest generality order: subsump-tion.

74 GENERALIZATIONS AND SPECIALIZATIONS

Appendix ADe�nitions from LogicFirst-order logic was initially conceived by Gottlob Frege [Fre79], and furtherdeveloped by Alfred North Whitehead and Bertrand Russell [WR27]. Its se-mantics was developed by Alfred Tarski [Tar36, Tar56].In this appendix, we include the de�nitions from �rst-order logic that areused in this thesis. The appendix is mainly intended to make the thesis self-contained, it does not contain a full discussion with examples. For a moreextensive introduction, we refer to [CL73, Llo87, Men87, BJ89].A.1 SyntaxThe syntax of �rst-order logic de�nes what constitutes a well-formed formula.De�nition A.1 An alphabet consists of the following symbols:1. A set of constants: a; b; : : :, which may be subscripted.2. A set of variables: u; v; w; x; y; : : :, which may be subscripted.3. A set of function symbols: f; g; : : :, which may be subscripted. Eachfunction symbol has a natural number (its arity) assigned to it.4. A non-empty set of predicate symbols: P;Q; : : :, which may be subscripted.Each predicate symbol has a natural number (its arity) assigned to it.5. The following �ve connectives: :, ^, _, ! and $.6. Two quanti�ers: 9 (called the existential quanti�er) and 8 (called theuniversal quanti�er).7. Three punctuation symbols: `(', `)' and `,'. 3The arity of a function or predicate symbol is the number of its arguments.De�nition A.2 Terms are de�ned as follows:1. A constant is a term.2. A variable is a term.3. If f is an n-ary function symbol and t1; : : : ; tn are terms, then f(t1; : : : ; tn)is a term. 375

76 APPENDIX A. DEFINITIONS FROM LOGICDe�nition A.3 Well-formed formulas (or just formulas) are de�ned as follows:1. If P is an n-ary predicate symbol and t1; : : : ; tn are terms, then P (t1; : : : ; tn)is a formula, called an atom.2. If � is a formula, then :� is a formula.3. If � and are formulas, then (� ^), (� _), (�!) and (�$) areformulas.4. If � is a formula and x is a variable, then 9x � and 8x � are formulas.A formula which is not an atom is called a composite formula. 3De�nition A.4 The �rst-order language given by an alphabet is the set of allformulas which can be constructed from the symbols of the alphabet. 3De�nition A.5 The scope of 8x (respectively 9x) in 8x � (resp. 9x �) is �. 3De�nition A.6 A bound occurrence of a variable in a formula is an occurrenceof this variable immediately following a quanti�er or an occurrence within thescope of a quanti�er which has the same variable immediately after the quan-ti�er. An occurrence of a variable which is not bound, is called free. 3De�nition A.7 A closed formula is a formula which does not contain any freeoccurrences of variables. 3De�nition A.8 A ground term is a term which does not contain any variables.A ground formula is a formula which does not contain any variables. 3A.2 SemanticsThe semantics of �rst-order logic is concerned with interpretations, which givemeaning to the formulas in a language.A.2.1 InterpretationsA pre-interpretation is a mapping from terms in the language to objects in adomain.De�nition A.9 A pre-interpretation J of a �rst-order language L consists ofthe following:1. A non-empty set D, called the domain of the pre-interpretation.2. Each constant in L is assigned an element of D.3. Each n-ary function symbol f in L is assigned a mapping Jf from Dn toD. 3

A.2. SEMANTICS 77The domain D may be either �nite or in�nite. Here Dn = f(d1; : : : ; dn) j di 2D; for every 1 � i � ng. The mapping from variables to objects in the domainis done by a variable assignment:De�nition A.10 Let J be a pre-interpretation with domain D of a �rst-orderlanguage L. A variable assignment V with respect to L, is a mapping fromthe set of variables in L to the domain D of J . We use V (x=d) to denote thevariable assignment which maps the variable x to d 2 D and maps the othervariables according to V . 3The combination of a pre-interpretation and a variable assignment assigns anobject in the domain to each term in the language:De�nition A.11 Let J be a pre-interpretation with domain D of a �rst-orderlanguage L, and let V be a variable assignment w.r.t. L. The term assignmentw.r.t. J and V of the terms in L is the following mapping from the set of termsin L to the domain D:1. Each constant is mapped to an element in D by J .2. Each variable is mapped to an element in D by V .3. If d1; : : : ; dn are the elements of the domain to which the terms t1; : : : ; tnare mapped, respectively, and Jf is the function from Dn to D assignedto the function symbol f by J , then the term f(t1; : : : ; tn) is mapped toJf (d1; : : : ; dn). 3Given a pre-interpretation, an interpretation is a mapping from formulas totruth-values:De�nition A.12 An interpretation I of a �rst-order language L consists ofthe following:1. A pre-interpretation J , with some domain D, of L. I is based on J .2. Each n-ary predicate symbol P in L is assigned a mapping IP from Dnto fT; Fg. 3De�nition A.13 Let I be an interpretation, based on the pre-interpretation Jwith domainD, of the �rst-order language L, and let V be a variable assignmentw.r.t. L. Let Z be the term assignment w.r.t. J and V . Then a formula � in Lhas a truth-value under I and V , as follows:1. If � is the atom P (t1; : : : ; tn) and di is the domain-element assigned to ti byZ (i = 1; : : : ; n), then the truth-value of � under I and V is IP (d1; : : : ; dn).2. If � is a formula of the form : , (^ �), (_ �), (! �) or ($ �),then the truth-value of � is determined by the following truth-table forthe �ve connectives:11As can be seen from this table, the connective `:' is to be interpreted as `not', `^' as `and',`_' as `or', `!' as `if: : : then' and `$' as `if, and only if'.

78 APPENDIX A. DEFINITIONS FROM LOGIC � : (^ �) (_ �) (! �) ($ �)T T F T T T TT F F F T F FF T T F T T FF F T F F T TTable A.1: The truth-table for the �ve connectives3. If � is a formula of the form 9x , then � has truth-value T under I andV if there exists an element d 2 D for which has truth-value T under Iand V (x=d). Otherwise, � has truth-value F under I and V .4. If � is a formula of the form 8x , then � has truth-value T under I andV if for all elements d 2 D, has truth-value T under I and V (x=d).Otherwise, � has truth-value F under I and V . 3It is not very di�cult to see that the truth-value under some I and V of a closedformula does not depend on the variable assignment V . In this thesis, we areonly interested in closed formulas, so we can leave out the variable assignmentV and speak of \truth-value under I" instead of \truth-value under I and V ".Also, when we use the word `formula' later on, we mean `closed formula'.De�nition A.14 Let � be a formula in the �rst-order language L and I aninterpretation of L. Then � is said to be true under I if its truth-value underI is T . I is then said to satisfy �, or to make � true.Similarly, � is said to be false under I if its truth-value is F under I. I isthen said to falsify �, or to make � false. 3A.2.2 ModelsAn interpretation is a model of a formula, if it makes that formula true:De�nition A.15 Let � be a formula and I an interpretation. I is said to bea model of � if I satis�es �. � is then said to have I as a model. 3De�nition A.16 Let � be a set of formulas and I an interpretation. I is saidto be a model of � if I is a model of all formulas � 2 �. � is then said to haveI as a model. 3De�nition A.17 Let � be a set of formulas and � a formula. Then � is saidto be a logical consequence of � (written as � j= �), if every model of � is alsoa model of �. We also sometimes say � (logically) implies �. If � = f g, thiscan also be written as j= �. 3De�nition A.18 Let � and � be sets of formulas. Then � is said to be alogical consequence of � (written as � j= �), if � j= �, for every � 2 �. 3

A.2. SEMANTICS 79If � is not a logical consequence of �, we write � 6j= �, and similarly � 6j= � ifnot � j= �.De�nition A.19 Two formulas � and are said to be (logically) equivalent,denoted by � , , if both � j= and j= � (so � and have exactly thesame models). Similarly, two sets of formulas � and � are said to be (logically)equivalent, if both � j= � and � j= �. 3De�nition A.20 Let � be a formula. Then:1. � is called valid, or a tautology, if every interpretation is a model of �.This can be written as j= �. � is called invalid otherwise.2. � is called satis�able, or consistent, if some interpretation is a model of �.3. � is called inconsistent, or unsatis�able, or a contradiction, if no inter-pretation is a model of �. In other words, � is inconsistent if it has nomodels.4. � is called contingent if it is satis�able, but invalid. 3The above de�nition subdivides the set of all formulas as pictured in �gure A.1.All formulasz }| {Tautologyz }| {Alwaystrue Contingentz }| {Sometimes true,sometimes false| {z }Satis�able
Inconsistentz }| {Alwaysfalse| {z }Unsatis�ableFigure A.1: The class of tautologies, contingent formulas, etc.These concepts can be de�ned similarly for a set � of formulas. � is a tautologyif every interpretation is a model of �, � is satis�able if it has at least one model,etc. Note that an unsatis�able set of formulas logically implies anything, sinceit has no models.We now state a number of results, whose easy proofs are omitted.Theorem A.1 (Deduction Theorem) Let � be a set of formulas and � and be formulas. Then � [f�g j= i� � j= (�!).Proposition A.1 Let � be a set of formulas and � a formula. Then � j= �i� � [f:�g is unsatis�able.Proposition A.2 If � and are formulas, then �, i� j= (�$).Proposition A.3 The following assertions hold.1. �, ::�

80 APPENDIX A. DEFINITIONS FROM LOGIC2. (:� _ :), :(� ^)3. (:� ^ :), :(� _))4. ((� _) ^ �), ((� ^ �) _ (^ �))5. ((� ^) _ �), ((� _ �) ^ (_ �))6. (�!), (:� _)7. (�$), ((�!) ^ (! �))8. 8x �, :9x :�9. 9x �, :8x :�For a proof of the following Compactness Theorem, see [BJ89].Theorem A.2 (Compactness) If � is an in�nite, unsatis�able set of formu-las, then there exists a �nite, unsatis�able subset of �.Note the following consequence of this theorem:Theorem A.3 Let � be an in�nite set of formulas and � be a formula. If� j= �, then there is a �nite subset �0 of �, such that �0 j= �.Proof If � j= �, then by Proposition A.1, � [f:�g is unsatis�able. By theCompactness Theorem, there is a �nite unsatis�able set � � � [f:�g. Put�0 = �nf:�g. Then �0 � �, and since �0 [f:�g is unsatis�able, we have�0 j= � by Proposition A.1. 2A.2.3 Conventions to simplify notationIn order to avoid an overload of brackets, we can make a number of simplifyingconventions. Firstly, we can omit the outer brackets around a formula. Sec-ondly, since �_ (_�) and (�_)_� are equivalent, they can both be writtenas � _ _ �. Such a formula is called a disjunction. Similarly, we can write� ^ ^ � (a conjunction) instead of � ^ (^ �) and (� ^) ^ �. Finally, wewill sometimes abbreviate iterated function symbols in the following manner:f2(a) denotes f(f(a)), f3(a) denotes f(f(f(a))), etc.A.3 Normal formsIn this section we will de�ne two normal forms: prenex conjunctive normal formand Skolem standard form.A.3.1 Prenex conjunctive normal formDe�nition A.21 A literal is an atom or the negation of an atom. A positiveliteral is an atom, a negative literal is the negation of an atom. 3Here we adopt the notational convention that the negation of a negative literalis the atom in that literal: if L = :A, then :L = A.De�nition A.22 A clause is a �nite disjunction of zero or more literals. 3

A.3. NORMAL FORMS 81A disjunction of zero literals is called the empty clause, denoted by 2. Itrepresents a contradiction.Clauses are important, because sets of clauses are commonly used to expresstheories in Inductive Logic Programming.De�nition A.23 A formula is in prenex conjunctive normal form if it has thefollowing form: q1x1 : : : qnxn| {z }Prenex (C1 ^ : : : ^ Cm)| {z }Matrix ;where each qi is either 9 or 8, x1; : : : ; xn are all the variables occurring in theformula, and each Cj is a clause. The �rst part of the formula (the sequenceof quanti�ers with variables) is called the prenex of the formula. The secondpart is called the matrix of the formula2, which we sometimes abbreviate toM [x1; : : : ; xm]. 3In fact, any formula � can be transformed into an equivalent formula inprenex conjunctive normal form (see pp. 35{39 of [CL73] or Proposition 3.4of [Llo87]):Theorem A.4 Let � be a formula. Then there exists a formula in prenexconjunctive normal form, such that � and are equivalent.A.3.2 Skolem standard formThis section discusses the Skolem standard form of a formula. It is obtainedfrom the prenex conjunctive normal form by replacing existentially quanti�edvariables by functional terms.De�nition A.24 Let � = q1x1 : : : qnxnM [x1; : : : ; xm] be a formula in prenexconjunctive normal form. Then a Skolemized form of � is a formula �0 obtainedby applying the following procedure to �:1. Set �0 to �.2. If the prenex of �0 contains only universal quanti�ers, then stop.3. Let qi be the �rst (from the left) existential quanti�er in �0. Let xi1 ; : : : ; xijbe the variables on the left of xi (that is, those variables from x1; : : : ; xi�1that have not been deleted).4. Add a new j-ary function symbol, which we denote here by f , to thealphabet. Replace each occurrence of xi in the matrix of �0 by the termf(xi1 ; : : : ; xij). If there are no universal quanti�ers to the left of xi in �0,then replace each occurrence of xi by a new constant which is added tothe alphabet.5. Delete 9xi from the prenex of �0.6. Goto step number 2.The new function symbols and constants which are added to the alphabet arecalled Skolem functions and Skolem constants, respectively. 32This term `matrix' is just a name we use, it does not have very much in common with themathematical concept of a matrix.

82 APPENDIX A. DEFINITIONS FROM LOGICFor example, 8x8y P (x; y; f(x; y)) is a Skolemized form of 8x8y9z P (x; y; z),obtained by replacing the existentially quanti�ed variable z by the term f(x; y).The standard form of a formula is a conjunction of universally quanti�ed clauses.De�nition A.25 Let � be a (not necessarily closed) formula and x1; : : : ; xn beall distinct variables that occur free in �. Then 8(�) denotes the closed formula8x1 : : : 8xn �. 3De�nition A.26 Let � be a formula, �0 be a prenex conjunctive normal formof � and �00 = 8(C1 ^ : : : ^ Cn) be a Skolemized form of �0. Then = 8(C1) ^: : :^8(Cn) is called a Skolem standard form (or just a standard form) of �. Wesay � has as a standard form. 3The standard form of a set f�1; : : : ; �ng of formulas is simply the standard formof the formula �1 ^ : : : ^ �n.A standard form 8(C1)^: : :^8(Cn) can also be written as a set fC1; : : : ; Cngof clauses. When we are dealing with clauses, we will assume each clause to beuniversally quanti�ed. So for instance, if � = fC1; : : : ; Cng is a set of clausesand C is a clause, we use � j= C to abbreviate 8(C1) ^ : : : ^ 8(Cn) j= 8(C).Putting a formula in standard from does not preserve logical equivalence.For instance, P (a) is a standard form of 9x P (x), but 9x P (x) 6, P (a), because9x P (x) 6j= P (a). However, by the following theorem (Theorem 4.1 of [CL73]),standard form does preserve unsatis�ability.Theorem A.5 Let � be a formula and be a standard form of �. Then � isunsatis�able i� is unsatis�able.A.4 Herbrand interpretationsHerbrand interpretations are interpretations which have the set of ground termsas domain and which interpret each ground term in the language as that sameground term in the domain.De�nition A.27 Let L be a �rst-order language. The Herbrand universe ULfor L is the set of all ground terms which can be formed out of the constantsand function symbols in L. In case L does not contain any constants, we addone arbitrary constant to the alphabet to be able to form ground terms. 3De�nition A.28 Let L be a �rst-order language. The Herbrand base BL for Lis the set of all ground atoms which can be formed out of the predicate symbolsin L and the terms in the Herbrand universe UL. 3De�nition A.29 Let L be a �rst-order language. The Herbrand pre-inter-pretation for L is the pre-interpretation consisting of the following:1. The domain of the pre-interpretation is the Herbrand universe UL.2. Constants in L are assigned themselves in UL.

A.5. HORN CLAUSES 833. Each n-ary function symbol f in L is assigned the mapping Jf from UnLto UL, de�ned by Jf (t1; : : : ; tn) = f(t1; : : : ; tn). 3De�nition A.30 Let L be a �rst-order language and J an Herbrand pre-interpretation. Any interpretation based on J is called an Herbrand inter-pretation. 3An Herbrand interpretation I can be identi�ed with the set of ground atomsthat are true under I.De�nition A.31 Let I be an Herbrand interpretation of a �rst-order languageL. If I is a model of �, it is called an Herbrand model of �. 3In this thesis, we will simply assume some �xed language L, and speak ofinterpretations, instead of interpretations of L.The following result (see [CL73, Theorem 4.2] or [Llo87, Proposition 3.3])shows that when we are dealing with clauses, we can restrict attention to Her-brand models.Proposition A.4 A set of clauses � has a model i� � has an Herbrand model.A.5 Horn clausesHorn clauses are a restricted, but very useful kind of clauses.De�nition A.32 A de�nite program clause is a clause containing one positive,and zero or more negative literals. A (de�nite) goal is a clause containing onlynegative literals. A Horn clause is either a de�nite program clause, or a de�nitegoal. 3If a de�nite program clause consists of the positive literal A and the nega-tive literals :B1; : : ::Bn, then such a clause can be written as the followingimplication: (B1 ^ : : : ^Bn)! A:In most papers and books about Logic Programming, this is written as:A B1; : : : ; Bn:A is called the head of the clause, B1; : : : ; Bn is called the body of the clause.It will be convenient to denote the head of a clause C by C+ and the body byC�. In case of an atom A (that is, if n = 0), we can omit the ` '-symbol. Ade�nite goal can be written as B1; : : : ; Bn:The empty clause 2 is also considered to be a goal.

84 APPENDIX A. DEFINITIONS FROM LOGICDe�nition A.33 A de�nite program is a �nite set of de�nite program clauses.3Proposition A.5 (Proposition 6.1 of [Llo87]) Let � be a de�nite program.If fM1;M2; : : : ;Mk; : : :g is a (possibly in�nite) set of Herbrand models of �,then their intersection M = \iMi is also an Herbrand model of �.It follows from the previous proposition that the intersection of all Herbrandmodels of �, which will be called the least Herbrand model, is itself also anHerbrand model of �.De�nition A.34 Let � be a de�nite program. The intersection of all Herbrandmodels of � is called the least Herbrand model of �, and is denoted by M�. 3Theorem A.6 (Theorem 6.2 of [Llo87]) If � is a de�nite program, thenM� = fA 2 B� j � j= Ag.A.6 Substitution and uni�cationA.6.1 SubstitutionA substitution replaces variables by terms.De�nition A.35 A substitution � is a �nite set fx1=t1; : : : ; xn=tng, n � 0;where the xi are distinct variables and the ti are terms. We say ti is substitutedfor xi. xi=ti is called a binding for xi. The substitution � is called a groundsubstitution if every ti is ground.The substitution given by the empty set (n = 0) is called the identity sub-stitution, or the empty substitution, and is denoted by ". 3De�nition A.36 An expression is either a term, a literal, or a conjunction ordisjunction of literals. A simple expression is a term or a literal. 3De�nition A.37 Let � = fx1=t1; : : : ; xn=tng be a substitution, and E an ex-pression. Then E�, the instance of E by �, is the expression obtained from Eby simultaneously replacing each occurrence of xi by ti, 1 � i � n. E� is calleda ground instance of E if E� is ground. 3De�nition A.38 Let � = fx1=s1; : : : ; xm=smg and � = fy1=t1; : : : ; yn=tngbe substitutions. Then the composition �� is the substitution obtained fromfx1=(s1�); : : : ; xm=(sm�); y1=t1; : : : ; yn=tng by deleting any binding xi=(si�) forwhich xi = (si�), and any binding yj=tj for which yj 2 fx1; : : : ; xmg. 3De�nition A.39 Let � and � be substitutions. We say � is an instance of � ifthere exists a substitution
 such that �
 = �. 3

A.6. SUBSTITUTION AND UNIFICATION 85Proposition A.6 (Proposition 4.1 of [Llo87]) Let E be an expression and�, � and
 be substitutions. Then the following hold:1. � = �" = "�.2. (E�)� = E(��).3. (��)
 = �(�
).Since (��)
 = �(�
), we can omit brackets between substitutions.De�nition A.40 Let E be an expression and � = fx1=y1; : : : ; xn=yng be asubstitution. We say � is a renaming substitution for E if each xi occurs in E,and y1; : : : ; yn are distinct variables such that each yi is either equal to some xjin �, or yi does not occur in E. 3De�nition A.41 Let E and F be expressions. We say E and F are variants,or E is a variant of F , if there exist substitutions � and � such that E = F�and F = E�. 3It is easy to show that if E and F are variants, then there are renaming sub-stitutions � and � such that E = F� and F = E�.We will sometimes need a Skolem substitution, which substitutes new con-stants for the variables in a clause.De�nition A.42 Let � be a set of clauses, C be a clause, x1; : : : ; xn be all thevariables appearing in C and a1; : : : ; an be distinct constants not appearing in �or C. Then the substitution fx1=a1; : : : ; xn=ang is called a Skolem substitutionfor C w.r.t. �. 3A.6.2 Uni�cationA uni�er for the set of expressions fE1; E2; : : : ; Eng is a substitution � suchthat E1� = E2� = : : : = En�.De�nition A.43 Let � be a �nite set of expressions. A substitution � is calleda uni�er for � if �� is a singleton (a set containing exactly one element). Ifthere exists a uni�er for �, we say � is uni�able. 3De�nition A.44 If � is a uni�er for � and if for any uni�er � for � thereexists a substitution
 such that � = �
, then � is called a most general uni�er(abbreviated to mgu) for �. 3It can be shown that any �nite uni�able set of simple expressions has an mgu(see Theorem 4.3 of [Llo87] or Theorem 5.2 of [CL73]).

86 APPENDIX A. DEFINITIONS FROM LOGIC

Bibliography[AGB95] Zolt�an Alexin, Tibor Gyim�othy, and Henrik Bostr�om. Integratingalgorithmic debugging and unfolding transformation in an interac-tive learner. In De Raedt [DR95], pages 437{453.[Aha92] David W. Aha. Relating relational learning algorithms. In Mug-gleton [Mug92b], pages 233{254.[Ari60] Aristotle. Posterior Analytics. Harvard University Press, Cam-bridge (MA), 1960. Edited and translated by Hugh Tredennick.[Bac20] Francis Bacon. Novum Organum. 1620.[Ban64] Ranan B. Banerji. A language for the description of concepts.General Systems, 9:135{141, 1964.[BG96] Francesco Bergadano and Daniele Gunetti. Inductive Logic Pro-gramming: From Machine Learning to Software Engineering. TheMIT Press, 1996.[BGA56] J. S. Bruner, J. J. Goodnow, and G. A. Austin. A Study of Think-ing. Wiley, New York, 1956.[BIA94] Henrik Bostr�om and Peter Idestam-Almquist. Specialization oflogic programs by pruning SLD-trees. In Wrobel [Wro94], pages31{48.[BJ89] George S. Boolos and Richard C. Je�rey. Computability and Logic.Cambridge University Press, Cambridge (UK), third edition, 1989.[BM92] Michael Bain and Stephen Muggleton. Non-monotonic learning. InMuggleton [Mug92b], pages 145{153.[Bos95a] Henrik Bostr�om. Covering vs. divide-and-conquer for top-down in-duction of logic programs. In Proceedings of the 14th InternationalJoint Conference on Arti�cial Intelligence (IJCAI-95), pages 1194{1200. Morgan Kaufmann, 1995.[Bos95b] Henrik Bostr�om. Specialization of recursive predicates. InN. Lavra�c and S. Wrobel, editors, Proceedings of the 8th Euro-pean Conference on Machine Learning (ECML-95), volume 912 ofLecture Notes in Computer Science, pages 92{106. Springer-Verlag,1995. 87

88 BIBLIOGRAPHY[Bra93] Pavel B. Brazdil, editor. Proceedings of the 6th European Con-ference on Machine Learning (ECML-93), volume 667 of LectureNotes in Arti�cial Intelligence. Springer-Verlag, 1993.[Bun86] Wray Buntine. Generalized subsumption. In Proceedings of theEuropean Conference on Arti�cial Intelligence (ECAI-86), 1986.[Bun88] Wray Buntine. Generalized subsumption and its applications to in-duction and redundancy. Arti�cial Intelligence, 36:149{176, 1988.[Car50] Rudolf Carnap. Logical Foundations of Probability. Routledge &Kegan Paul, London, 1950.[Car52] Rudolf Carnap. The Continuum of Inductive Methods. The Uni-versity of Chicago Press, Chicago, 1952.[CL73] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logicand Mechanical Theorem Proving. Academic Press, San Diego,1973.[DK96] Yannis Dimopoulos and Antonis Kakas. Abduction and inductivelearning. In De Raedt [DR96], pages 144{171.[DR95] Luc De Raedt, editor. Proceedings of the 5th International Work-shop on Inductive Logic Programming (ILP-95). Katholieke Uni-versiteit Leuven, 1995.[DR96] Luc De Raedt, editor. Advances in Inductive Logic Programming.IOS Press, Amsterdam, 1996.[DRB93] Luc De Raedt and Maurice Bruynooghe. A theory of clausal discov-ery. In Proceedings of the 13th International Joint Conference onArti�cial Intelligence (IJCAI-93), pages 1058{1063. Morgan Kauf-mann, 1993.[DRD94] Luc De Raedt and Sa�so D�zeroski. First order jk-clausal theoriesare PAC-learnable. Arti�cial Intelligence, 70:375{392, 1994.[Fla92] Peter A. Flach. A framework for Inductive Logic Programming. InMuggleton [Mug92b], pages 193{211.[Fla94] Peter A. Flach. Inductive Logic Programming and philosophy ofscience. In Wrobel [Wro94], pages 71{84.[Fla95] Peter A. Flach. Conjectures: An Inquiry Concerning the Logic ofInduction. PhD thesis, Tilburg University, 1995.[Fre79] Gottlob Frege. Begri�sschrift, eine der arithmetischen nachge-bildete Formelsprache des reinen Denkens. Halle, 1879. Englishtranslation in [Hei77].[GN87] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations ofArti�cial Intelligence. Morgan Kaufmann, Palo Alto (CA), 1987.

BIBLIOGRAPHY 89[Goo83] Nelson Goodman. Fact, Fiction, and Forecast. Harvard UniversityPress, Cambridge (MA), fourth edition, 1983.[Got87] Georg Gottlob. Subsumption and implication. Information Pro-cessing Letters, 24(2):109{111, 1987.[Hei77] Jean van Heijenoort, editor. From Frege to G�odel: A SourceBook in Mathematical Logic, 1879{1931. Harvard University Press,Cambridge (MA), 1977.[Hel89] Nicolas Helft. Induction as nonmonotonic inference. In Proceedingsof the 1st International Conference on Principles of KnowledgeRepresentation and Reasoning, pages 149{156. Morgan Kaufmann,1989.[Hem45a] Carl G. Hempel. Studies in the logic of con�rmation (part I). Mind,54(213):1{26, 1945.[Hem45b] Carl G. Hempel. Studies in the logic of con�rmation (part II).Mind, 54(214):97{121, 1945.[Hem66] Carl G. Hempel. Philosophy of Natural Science. Prentice-Hall,Englewood Cli�s, 1966.[Hom24] Homer. The Iliad. Harvard University Press, Cambridge (MA),1924. Translated by A. T. Murray. Two volumes.[Hum56] David Hume. An Enquiry Concerning Human Understanding.Gateway edition, Chicago, 1956. Originally 1748.[Hum61] David Hume. A Treatise of Human Nature. Dolphin Books. Dou-bleday, 1961. Originally 1739{1740.[IA93] Peter Idestam-Almquist. Generalization of Clauses. PhD thesis,Stockholm University, 1993.[IA95] Peter Idestam-Almquist. Generalization of clauses under implica-tion. Journal of Arti�cial Intelligence Research, 3:467{489, 1995.[Ino92] Katsumi Inoue. Linear resolution for consequence �nding. Arti�cialIntelligence, 56:301{353, 1992.[Jev74] Stanley Jevons. The Principles of Science: A Treatise. MacMillan,1874.[KK71] Robert Kowalski and Donald Kuehner. Linear resolution with se-lection function. Arti�cial Intelligence, 2:227{260, 1971.[KKT93] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Pro-gramming. Journal of Logic and Computation, 2(6):719{770, 1993.

90 BIBLIOGRAPHY[Kow70] Robert A. Kowalski. The case for using equality axioms in auto-matic demonstration. In Proceedings of the Symposium on Auto-matic Demonstration, volume 125 of Lecture Notes in Mathematics,pages 112{127. Springer-Verlag, 1970.[Kow74] Robert A. Kowalski. Predicate logic as a programming language.Information Processing, 74:569{574, 1974.[Kuh77] Thomas Kuhn. Second thoughts on paradigms. In Frederic Suppe,editor, The Structure of Scienti�c Theories, pages 459{482. Uni-versity of Illinois Press, second edition, 1977.[LD92a] Nada Lavra�c and Sa�so D�zeroski. Inductive learning of relationsfrom noisy examples. In Muggleton [Mug92b], pages 495{516.[LD92b] Nada Lavra�c and Sa�so D�zeroski. Re�nement graphs for FOIL andLINUS. In Muggleton [Mug92b], pages 319{333.[LD94] Nada Lavra�c and Sa�so D�zeroski. Inductive Logic Programming:Techniques and Applications. Ellis Horwood, 1994.[LDG91] N. Lavra�c, S. D�zeroski, and M. Grobelnik. Learning non-recursivede�nitions of relations with LINUS. In Y. Kodrato�, editor,Proceedings of the 6th European Working Sessions on Learning(EWSL-91), volume 482 of Lecture Notes in Arti�cial Intelligence,pages 265{281. Springer-Verlag, 1991.[Lee67] Richard Char-Tung Lee. A Completeness Theorem and a ComputerProgram for Finding Theorems Derivable from Given Axioms. PhDthesis, University of California, Berkeley, 1967.[Llo87] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second edition, 1987.[LNC94a] Patrick R. J. van der Laag and Shan-Hwei Nienhuys-Cheng. Ex-istence and nonexistence of complete re�nement operators. InF. Bergadano and L. De Raedt, editors, Proceedings of the 7th Eu-ropean Conference on Machine Learning (ECML-94), volume 784of Lecture Notes in Arti�cial Intelligence, pages 307{322. Springer-Verlag, 1994.[LNC94b] Patrick R. J. van der Laag and Shan-Hwei Nienhuys-Cheng. Anote on ideal re�nement operators in inductive logic programming.In Wrobel [Wro94], pages 247{262.[Lov70] Donald W. Loveland. A linear format for resolution. In Proceedingsof the IRIA Symposium on Automatic Demonstration, Versailles,France, 1968, pages 147{162. Springer-Verlag, 1970.[Lov78] Donald W. Loveland. Automated Theorem Proving: A Logical Ba-sis. North Holland, New York, 1978.

BIBLIOGRAPHY 91[Luc70] Donald Luckham. Re�nements in resolution theory. In Proceedingsof the IRIA Symposium on Automatic Demonstration, Versailles,France, 1968, pages 163{190. Springer-Verlag, 1970.[MB88] Stephen Muggleton and Wray Buntine. Machine invention of �rst-order predicates by inverting resolution. In John Laird, editor, Pro-ceedings of the 5th International Conference on Machine Learning(ICML-88), pages 339{352. Morgan Kaufmann, 1988.[MDR94] Stephen Muggleton and Luc De Raedt. Inductive Logic Program-ming: Theory and methods. Journal of Logic Programming, 19{20:629{679, 1994.[Men87] Elliott Mendelson. Introduction to Mathematical Logic. Wadsworth& Brooks, Belmont (CA), third edition, 1987.[MF92] Stephen Muggleton and Cao Feng. E�cient induction of logic pro-grams. In Muggleton [Mug92b], pages 281{298.[Mil58] John Stuart Mill. A System of Logic, Ratiocinative and Inductive.Harper, New York, 1858.[Min68] Marvin L. Minsky, editor. Semantic Information Processing. TheMIT Press, Cambridge (MA), 1968.[Mit82] Tom M. Mitchell. Generalization as search. Arti�cial Intelligence,18:203{226, 1982.[MP92] Jerzy Marcinkowski and Leszek Pacholski. Undecidability of thehorn-clause implication problem. In Proceedings of the 33rd AnnualIEEE Symposium on Foundations of Computer Science, pages 354{362, Pittsburg, 1992.[MP94] Stephen Muggleton and C. David Page. Self-saturation of de�niteclauses. In Wrobel [Wro94], pages 161{174.[MR72] Eliana Minicozzi and Raymond Reiter. A note on linear resolutionstrategies in consequence-�nding. Arti�cial Intelligence, 3:175{180,1972.[Mug87] Stephen Muggleton. Duce, an oracle based approach to construc-tive induction. In Proceedings of the 10th International Joint Con-ference on Arti�cial Intelligence (IJCAI-87), pages 287{292. Mor-gan Kaufmann, 1987.[Mug90] Stephen Muggleton. Inductive Logic Programming. In Proceed-ings of the 1st Conference on Algorithmic Learning Theory, Tokyo,1990. Ohmsha.[Mug91] Stephen Muggleton. Inductive Logic Programming. New Genera-tion Computing, 8(4):295{317, 1991.

92 BIBLIOGRAPHY[Mug92a] Stephen Muggleton. Inductive logic programming. In InductiveLogic Programming [Mug92b], pages 3{27.[Mug92b] Stephen Muggleton, editor. Inductive Logic Programming, vol-ume 38 of APIC Series. Academic Press, 1992.[Mug92c] Stephen Muggleton. Inverting implication. In S. Muggleton andK. Furukawa, editors, Proceedings of the 2nd International Work-shop on Inductive Logic Programming (ILP-92), Tokyo, 1992.ICOT Research Center. ICOT Technical Memorandum TM-1182.[MWKE93] K. Morik, S. Wrobel, J.-U. Kietz, and W. Emde. Knowledge Acqui-sition and Machine Learning: Theory, Methods and Applications.Academic Press, London, 1993.[NCLT93] Shan-Hwei Nienhuys-Cheng, Patrick R. J. van der Laag, and Leonvan der Torre. Constructing re�nement operators by deconstruct-ing logical implication. In Pietro Torasso, editor, Proceedings of the3rd Conference of the Italian Association for Arti�cial Intelligence(AI*IA-93), volume 728 of Lecture Notes in Arti�cial Intelligence,pages 178{189. Springer-Verlag, 1993.[NCW95a] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. The equiva-lence of the subsumption theorem and the refutation-completenessfor unconstrained resolution. In K. Kanchanasut and J.-J. L�evy,editors, Proceedings of the Asean Computer Science Conference(ACSC-95), volume 1023 of Lecture Notes in Computer Science,pages 269{285. Springer-Verlag, 1995.[NCW95b] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. The specializa-tion problem and the completeness of unfolding. In J. C. van Vliet,editor, Proceedings of Computing Science in the Netherlands (CSN-95), pages 155{169. SION, 1995.[NCW95c] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Specializing def-inite programs by unfolding. In Proceedings of Benelearn'95. Uni-versit�e Libre de Bruxelles, 1995.[NCW95d] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. The subsumptiontheorem in Inductive Logic Programming: Facts and fallacies. InDe Raedt [DR95], pages 147{160.[NCW95e] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. The subsumptiontheorem revisited: Restricted to SLD-resolution. In J. C. van Vliet,editor, Proceedings of Computing Science in the Netherlands (CSN-95), pages 143{154. SION, 1995.[NCW95f] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Tidying up themess around the subsumption theorem in Inductive Logic Program-ming. In J. C. Bioch and Y.-H. Tan, editors, Proceedings of the Sev-

BIBLIOGRAPHY 93enth Dutch Conference on Arti�cial Intelligence (NAIC-95), pages221{230. Erasmus University Rotterdam, 1995.[NCW96a] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. A completemethod for program specialization based on unfolding. In Wolf-gang Wahlster, editor, Proceedings of the European Conference onArti�cial Intelligence (ECAI-96), pages 438{442, 1996. In press.[NCW96b] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Least general-izations and greatest specializations of sets of clauses. Journal ofArti�cial Intelligence Research, 4:341{363, 1996.[NCW96c] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. The specializa-tion problem and the completeness of unfolding.Machine Learning,1996. Submitted.[NCW96d] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. The subsumptiontheorem in Inductive Logic Programming: Facts and fallacies. InDe Raedt [DR96], pages 265{276.[Nib88] Tim Niblett. A study of generalisation in logic programs. InD. Sleeman, editor, Proceedings of the 3rd European Working Ses-sions on Learning (EWSL-88), pages 131{138, 1988.[Pei58] Charles Sanders Peirce. Collected Papers. Harvard UniversityPress, Cambridge (MA), 1958. Edited by Charles Harstshorne andPaul Weiss. Volumes I{VII.[Plo70] Gordon D. Plotkin. A note on inductive generalization. MachineIntelligence, 5:153{163, 1970.[Plo71a] Gordon D. Plotkin. Automatic Methods of Inductive Inference.PhD thesis, Edinburgh University, 1971.[Plo71b] Gordon D. Plotkin. A further note on inductive generalization.Machine Intelligence, 6:101{124, 1971.[Pop59] Karl R. Popper. The Logic of Scienti�c Discovery. Hutchinson,London, 1959.[QCJ93] J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm report.In Brazdil [Bra93], pages 3{20.[Qui86] J. Ross Quinlan. Induction of decision trees. Machine Learning,1(1):81{106, 1986.[Qui90] J. Ross Quinlan. Learning logical de�nitions from relations. Ma-chine Learning, 5(3):239{266, 1990.[Rei49] Hans Reichenbach. The Theory of Probability. University of Cali-fornia Press, Berkeley and Los Angeles, 1949.

94 BIBLIOGRAPHY[Rey70] John C. Reynolds. Transformational systems and the algebraicstructure of atomic formulas. Machine Intelligence, 5:135{151,1970.[Rob65] J. Alan Robinson. A machine oriented logic based on the resolutionprinciple. Journal of the ACM, 12:23{41, 1965.[Rou92] C�eline Rouveirol. Extensions of inversion of resolution applied totheory completion. In Muggleton [Mug92b], pages 63{92.[Rus48] Bertrand Russell. Human Knowledge: It's Scope and Limits.George Allen and Unwin Ltd., London, 1948.[Rus80] Bertrand Russell. The Problems of Philosophy. Oxford UniversityPress, 1980. Originally 1912.[SA93] Taisuke Sato and Sumitaka Akiba. Inductive resolution. In Pro-ceedings of the 4th International Workshop on Algorithmic Learn-ing Theory (ALT-93), volume 744 of Lecture Notes in Arti�cialIntelligence, pages 101{110. Springer-Verlag, 1993.[Sam81] Claude A. Sammut. Learning Concepts by Performing Experi-ments. PhD thesis, University of New South Wales, 1981.[Sam93] Claude A. Sammut. The origins of Inductive Logic Programming:A prehistoric tale. In Stephen Muggleton, editor, Proceedings ofthe 3rd International Workshop on Inductive Logic Programming(ILP-93), pages 127{147, Ljubljana, 1993. Jo�zef Stefan Institute.Technical Report IJS-DP-6706.[SB86] C. A. Sammut and R. B. Banerji. Learning concepts by askingquestions. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,editors, Machine Learning: An Arti�cial Intelligence Approach,volume 2, pages 167{192. Morgan Kaufmann, Los Altos (CA),1986.[SCL69] J. R. Slagle, C. L. Chang, and R. C. T. Lee. Completeness theo-rems for semantic resolution in consequence-�nding. In Proceedingsof the 1st International Joint Conference on Arti�cial Intelligence(IJCAI-69), pages 281{285, 1969.[Sha81a] Ehud Y. Shapiro. An algorithm that infers theories from facts. InProceedings of the 7th International Joint Conference on Arti�cialIntelligence (IJCAI-81), pages 446{451, Vancouver, 1981. MorganKaufmann.[Sha81b] Ehud Y. Shapiro. Inductive inference of theories from facts. Re-search Report 192, Yale University, 1981.[Sha83] Ehud Y. Shapiro. Algorithmic Program Debugging. The MIT Press,1983.

BIBLIOGRAPHY 95[Tar36] Alfred Tarski. Der Wahrheitsbegri� in den formalisierten Sprachen.Studia Philosophica, pages 261{405, 1936. English translation in[Tar56].[Tar56] Alfred Tarski. Logic, Semantics, Metamathematics. Papers from1923 to 1938. Oxford University Press, New York, 1956.[TS84] Hisao Tamaki and Taisuke Sato. Unfold/fold transformation oflogic programs. In Sten-�Ake T�arnlund, editor, Proceedings of the2nd International Logic Programming Conference, pages 127{138,Uppsala, 1984. Uppsala University.[UM82] P. Utgo� and T. M. Mitchell. Acquisition of appropriate bias forinductive concept learning. In Proceedings of the National Con-ference on Arti�cial Intelligence, pages 414{417, Los Altos (CA),1982. Morgan Kaufmann.[Ver75] Steven Vere. Induction of concepts in the predicate calculus. InProceedings of the 4th International Joint Conference on Arti�cialIntelligence (IJCAI-75), pages 351{356, 1975.[Ver77] Steven Vere. Induction of relational productions in the presenceof background information. In Proceedings of the 5th InternationalJoint Conference on Arti�cial Intelligence (IJCAI-77), 1977.[WR27] Alfred North Whitehead and Bertrand Russell. Principia Mathe-matica. Cambridge University Press, 1927. Originally 1910{1913.[Wro93] Stefan Wrobel. On the proper de�nition of minimality in special-ization and theory revision. In Brazdil [Bra93], pages 65{82.[Wro94] Stefan Wrobel, editor. Proceedings of the 4th International Work-shop on Inductive Logic Programming (ILP-94), volume 237 ofGMD-Studien, Bad Honnef/Bonn, 1994. Gesellschaft f�ur Mathe-matik und Datenverarbeitung.

Author IndexAha, D., 56Akiba, S., 50Alexin, Z., 41nAristotle, 10Austin, G., 10Bacon, F., 10Bain, M., 14, 24Banerji, R., 11Bergadano, F., 15Boolos, G., 5, 75, 80Bostr�om, H., 39, 41n, 42, 45, 47, 48nBrazdil, P., 12Bruner, J., 10Bruynooghe, M., 55Buntine, W., 11, 50Cameron-Jones, R. M., 11, 56Carnap, R., 10Chang, C. L., 15, 27, 75, 81, 83, 85Cohen, B., 11De Raedt, L., 9, 15, 55, 62Dimopolous, Y., 9D�zeroski, S., 8, 9, 11, 56Emde, W., 56Feng, C., 12, 61Flach, P., 9Frege, G., 75Genesereth, M., 14Goodman, N., 10Goodnow, J., 10Gottlob, G., 57Grobelnik, M., 11Gunetti, D., 15Gyim�othy, T., 41nHelft, N., 9

Hempel, C., 10Homer, 1Hume, D., 10Idestam-Almquist, P., 14, 15, 39, 41n,42, 45, 48n, 54, 55, 63, 65Inoue, K., 16, 26, 28Je�rey, R., 5, 75, 80Jevons, S., 10Kakas, A., 9Kietz, J.-U., 56Kowalski, R., 9, 16, 26, 34Kuehner, D., 26Kuhn, T., 10Laag, P. van der, 14, 15, 68Lavra�c, N., 8, 11, 56Lee, R. C. T., 14, 15, 27, 75, 81, 83,85Lloyd, J., 15, 34, 40n, 55, 75, 81,83{85Loveland, D., 15, 26Luckham, D., 26Marcinkowski, J., 53Mendelson, E., 75Mill, J. S., 10Minicozzi, E., 16, 26, 30Minsky, M., 3Mitchell, T., 6, 8Morik, K., 56Muggleton, S., 3, 11, 12, 14{16, 24,37, 50, 54, 61, 62Niblett, T., 54n, 56, 71Nienhuys-Cheng, S.-H., 14, 15, 68Nilsson, N., 14Pacholski, L., 5396

AUTHOR INDEX 97Page, C. D., 16, 37, 54, 62Peirce, C. S., 9, 10Plotkin, G., 11, 12, 54, 55, 57n, 60,61, 68, 71nPopper, K., 10Quinlan, J. R., 11, 56Reichenbach, H., 10Reiter, R., 16, 26, 30Reynolds, J., 11, 53, 57n, 60nRobinson, J. A., 15, 17Rouveirol, C., 50, 56Russell, B., 10, 75Sammut, C., 10Sato, T., 44, 50Shapiro, E., 5, 11, 41n, 53, 55Slagle, J., 15Tamaki, H., 44Tarski, A., 75Toni, F., 9Torre, L. van der, 15Utgo�, P., 8Vere, S., 11Whitehead, A. N., 75Wolf, R. de, 15nWrobel, S., 49n, 56

Subject Indexabduction, 9alphabet, 57, 75ambivalent leaf, 48nanti-symmetric, 58arity, 75Arti�cial Intelligence, 1, 3, 10atom, 76attribute-value learning, 12background knowledge, 2, 71Backtracing Algorithm, 11, 41nbatch learning, 8bias, 8binary resolvent, 17binding, 84body of a clause, 83bottom-up approach to ILP, 7, 50bound variable, 76center clause, 27Cigol, 11clausal language (C), 55, 57, 59clause, 3, 11, 57, 80closed formula, 76, 78restriction to, 78Compactness Theorem, 80complete (w.r.t. examples), 4composite formula, 76composition, 84computation rule, 34con�rmatory problem setting, 9Confucius, 11conjunction, 80connective, 75consistent, 79consistent (w.r.t. examples), 4constant, 75contingent, 79contradiction, 79

correct (w.r.t. examples), 4cover, 53data-mining, 9decidablefunction-free clausal implication,65ground clausal implication, 65decision tree, 3, 11deduction, 12, 18Deduction Theorem, 79de�nite goal, 83de�nite program, 4, 39, 84de�nite program clause, 83depth of a term or clause, 58derivation, 17disjunction, 80domain, 76Duce, 11empty clause (2), 81empty substitution, 84enumerably in�nite set, 5enumeration, 5equivalence, 79equivalence relation, 58equivalent, 57example, 4existential quanti�er, 75explanatory problem setting, 5expression, 84falsify, 78�rst-order language, 76
attening, 56Foil, 11, 56formula, 79free variable, 76function symbol, 7598

SUBJECT INDEX 99function-free clause, 56, 62generalization, 6, 12, 53, 59genetic algorithm, 3Golem, 12, 61Gottlob's Lemma, 57greatest specialization (GS), 55, 59in �rst-order logic, 69under implication (GSI), 59, 69,70for Horn clauses, 70under relative implication (GSR),59, 72under subsumption (GSS), 59,60for Horn clauses, 61ground formula, 76ground instance, 84ground substitution, 84ground term, 76head of a clause, 83Herbrand base, 82Herbrand interpretation, 56, 67, 83Herbrand model, 83, 84Herbrand pre-interpretation, 82Herbrand universe, 82Herbrand's Theorem, 20Horn clause, 15, 17, 83Horn language (H), 55, 57, 59identity substitution, 84implication, 12, 14, 53, 57, 59, 62,78inconsistent, 79incremental learning, 8induction, 2not truth-preserving, 3Inductive Logic Programming, 3, 5,14, 53, 81history of, 10input clause, 31, 34input deduction, 31input derivation, 31input refutation, 31input resolution, 12, 15, 31not complete for one premise,32

not refutation-complete, 31instance, 84instance set, 63interactive learning, 8interpretation, 77invalid, 79inverse resolution, 11, 41, 50, 54nknowledge discovery, 9language bias, 8lattice, 56, 59under implication, 70under subsumption, 60, 61learning, 2least generalization (LG), 11, 55, 59in �rst-order logic, 69under implication (LGI), 54, 55,59, 67computable, 69for Horn clauses, 62special, 66under relative implication (LGR),59, 71, 72under relative subsumption, 62under subsumption (LGS), 54,59, 60for Horn clauses, 60under T-implication, 63, 65least Herbrand model, 84LGI-Algorithm, 68Lifting Lemmafor linear resolution, 28for SLD-resolution, 36for unconstrained resolution, 21linear deduction, 27linear derivation, 27linear refutation, 27linear resolution, 12, 15, 26Linus, 11, 56literal, 80Ln, 14Logic Programming, 3, 11logical consequence, 78m.c.l.-resolution, 16nMachine Learning, 3Marvin, 11

100 SUBJECT INDEXMis, 11Mobal, 56model, 78, 83model inference problem, 5, 11most general uni�er (mgu), 85multiple-predicate learning, 8N-subsumption, 71negative example, 4negative literal, 80neural network, 3noise, 8non-interactive learning, 8non-monotonic problem setting, 9normal problem setting, 5notational conventions, 80nth powers, 15nth roots, 15overly general (w.r.t. examples), 4overly speci�c (w.r.t. examples), 4parent clause, 17partial order, 58positive example, 4positive literal, 80power set, 6pre-interpretation, 76predicate invention, 9predicate symbol, 75prenex conjunctive normal form, 81problem setting of ILP, 5, 39non-existence of solution for, 5program clause, 55Prolog, 11punctuation symbol, 75quasi-order, 58recursive clause, 54re�nement operator, 11, 53re
exive, 58refutation, 17refutation-completeness, 12, 13of linear resolution, 29, 31of SL-resolution, 26of SLD-resolution, 36, 38

of unconstrained resolution, 24,26relation, 58relative implication, 53, 54, 57, 59,71relative subsumption, 53n, 61renaming substitution, 85resolution, 12, 13resolvent, 17Rn, 14satis�able, 79satisfy, 78scope, 76search bias, 8search space, 6selected atom, 34self-saturation, 54, 68semantics, 76shifting the bias, 9side clause, 27simple expression, 84single-predicate learning, 8Skolem standard form, 82Skolem substitution, 85Skolemized form, 81SLD-deduction, 34SLD-derivation, 34SLD-refutation, 34SLD-resolution, 12, 15, 17, 34SLD-tree, 40specialization, 6, 12, 53, 59specialization problem, 39Spectre, 41n, 47nSpectre ii, 41nstandard form, 81, 82standardized apart, 17substitution, 84subsume-equivalent, 57subsumption, 11, 12, 14, 17, 41, 48,53, 56n, 57, 59, 60Subsumption Theorem, 12, 13, 15,55for linear resolution, 16, 26, 31for semantic resolution, 15for SLD-resolution, 37, 38, 41,48

SUBJECT INDEX 101for SOL-resolution, 16, 26for unconstrained resolution, 18,23, 26two formulations in ILP, 14symmetric, 58syntax, 75T-implication, 54, 55, 63, 65tautology, 79term, 75term assignment, 77term set, 63theory revision, 7ntoo strong (w.r.t. examples), 4too weak (w.r.t. examples), 4top clause, 27, 34top-down approach to ILP, 7, 50transitive, 58truth-table, 78truth-value, 77, 78type 1 program (unfolding), 42preserves M�, 44type 2 program (unfolding), 42preserves equivalence, 45UD1-specialization, 12, 41, 45UD2-specialization, 12, 41, 47UDS-specialization, 12, 41, 48completeness of, 49unconstrained resolution, 17uncountable set, 5undecidableHorn clause implication, 53unfolding, 12, 39, 41uni�able, 85uni�er, 85universal quanti�cation, 82universal quanti�er, 75unsatis�able, 79valid, 79variable, 75variable assignment, 77, 78variant, 85weak induction, 9well-formed formula, 76

