
Least Generalizations under ImplicationShan-Hwei Nienhuys-Cheng and Ronald de WolfErasmus University of Rotterdam, Department of Computer Science, H4-19,P.O. Box 1738, 3000 DR Rotterdam, the Netherlands,fcheng,bidewolfg@cs.few.eur.nlAbstract. One of the most prominent approaches in Inductive LogicProgramming is the use of least generalizations under subsumption ofgiven clauses. However, subsumption is weaker than logical implication,and not very well suited for handling recursive clauses. Therefore animportant open question in this area concerns the existence of least gen-eralizations under implication (LGIs). Our main new result in this paperis the existence and computability of such an LGI for any �nite set ofclauses which contains at least one non-tautologous function-free clause.We can also de�ne implication relative to background knowledge. In thiscase, least generalizations only exist in a very limited case.1 IntroductionInductive Logic Programming (ILP) is the intersection of Logic Programmingand Machine Learning. It studies methods to induce clausal theories from givensets of positive and negative examples. An inductively inferred theory shouldimply all of the positive, and none of the negative examples. For instance,suppose we are given P (0), P (s2(0)), P (s4(0)), P (s6(0)) as positive examples,and P (s(0)); P (s3(0)); P (s5(0)) as negative examples. Then the set � = fP (0);(P (s2(x)) P (x))g is a solution: it implies all positive, and no negative exam-ples. Note that this set can be seen as a description of the even integers. Thusinduction of clausal theories is a form of learning from examples. For a moreextensive introduction to ILP, we refer to [6, 10].One of the most prominent approaches in ILP is the use of least general-izations under subsumption of given clauses, introduced by Plotkin [16, 17]. Aclause C is a least generalization under subsumption (LGS) of a �nite set S ofclauses, if C subsumes every clause in S, and is subsumed by any other clausewhich also subsumes every clause in C. Plotkin's main result is that any �niteset of clauses has an LGS. The construction of such a least generalization allowsus to generalize the examples cautiously, avoiding over-generalization. Of course,we need not take the LGS of all positive examples, which would yield a theoryconsisting of only one clause. Instead, we might divide the positive examples intosubsets, and take a separate LGS of each subset. That way we obtain a theorycontaining more than one clause.However, subsumption is not fully satisfactory for such generalizations. Forexample, if S consists ofD1 = P (f2(a)) P (a) andD2 = P (f(b)) P (b), thenP (f(y)) P (x) is an LGS of S. The clause P (f(x)) P (x), which seems more

appropriate as a least generalization of S, cannot be found by Plotkin's approach,because it does not subsume D1. As this example also shows, subsumption isparticularly unsatisfactory for recursive clauses: clauses which can be resolvedwith themselves.Because of the weakness of subsumption, it is desirable to consider least gen-eralizations under implication (LGIs) instead. Accordingly, we want to �nd outwhether Plotkin's positive result on the existence of LGSs holds for LGIs as well.Most ILP-researchers are inclined to believe that this question has a negativeanswer, due to the undecidability of logical implication between clauses [8]. If werestrict attention to Horn clauses (clauses with at most one positive literal), thequestion has indeed been answered negatively: there is no least Horn clause whichimplies both P (f2(x)) P (x) and P (f3(x)) P (x) [10]. However, Muggletonand Page [12] have shown that the non-Horn clause P (f(x))_P (f2(y)) P (x)is an LGI of these two clauses. Therefore we investigate the existence of an LGIin the set of general (not necessarily Horn) clauses here.No de�nive answer has as yet been given to this more general question, butsome work has already been done. For instance, Idestam-Almquist [4] studiesleast generalizations under T-implication as an approximation to LGIs. Muggle-ton and Page [12] investigate self-saturated clauses. A clause is self-saturated if itis subsumed by any clause which implies it. A clause D is a self-saturation of C,if C and D are logically equivalent and D is self-saturated. As [12] states, if twoclauses C1 and C2 have self-saturations D1 and D2, respectively, then an LGSof D1 and D2 is also an LGI of C1 and C2. This positively answers our ques-tion concerning the existence of LGIs for clauses which have a self-saturation.However, Muggleton and Page also show that there exist clauses which have noself-saturation. So the concept of self-saturation cannot solve the general ques-tion concerning the existence of LGIs.In this paper, we prove the new result that if S is a �nite set of clauses con-taining at least one non-tautologous function-free clause (among other clauseswhich may contain functions), then S has a computable LGI. Our proof is on theone hand based on the Subsumption Theorem for resolution [7, 5, 15], and on theother hand on a modi�cation of some results of Idestam-Almquist [4] concerningT-implication. An immediate corollary of this result is the existence and com-putability of an LGI of any �nite set of function-free clauses. This result does notsolve the general question of the existence of LGIs, but it does provide a positiveanswer for a large class of cases: the presence of one non-tautologous function-free clause in a �nite S already guarantees the existence and computability ofan LGI of S. Because of the prominence of function-free clauses in ILP, this casemay be of great practical signifcance.1 Well-known ILP-systems such as Foil1 Note that even for function-free clauses, the subsumption order is still not enough.Consider D1 = P (x; y; z) P (y; z; x) and D2 = P (x; y; z) P (z; x; y) (this exam-ple is adapted from Idestam-Almquist). D1 is a resolvent of D2 and D2, and D2 isa resolvent of D1 and D1. Hence D1 and D2 are logically equivalent. This meansthat D1 is an LGI of the set fD1; D2g. However, the LGS of these two clauses isP (x; y; z) P (u; v; w), which is clearly an over-generalization.

[18], Linus [6], and Mobal [9], all use only function-free clauses.Apart from \plain" subsumption, one can also de�ne subsumption relativeto background knowledge. The two best-known forms are Plotkin's relative sub-sumption [17], and Buntine's generalized subsumption [1]. Similarly, we can gen-eralize implication to relative implication, which will be considered in Section 5.The results of this paper, together with some other results on greatest spe-cializations and the lattice-structure of sets of clauses ordered by subsumptionor implication, are described in more detail in our article [14].2 PreliminariesIn this section, we will de�ne the main concepts we need. For the de�nitions of`model', `tautology', `substitution', etc., we refer to [2]. A positive literal is anatom, a negative literal is the negation of an atom. A clause is a �nite set ofliterals, treated as the universally quanti�ed disjunction of those literals. If C isa clause, then C+ denotes the set of positive literals in C, while C� denotes theset of negative literals.De�nition 1. Let A be an alphabet of the �rst-order logic. Then the clausallanguage C by A is the set of all clauses which can be constructed from thesymbols in A.Here we just presuppose some arbitrary alphabet A, and consider the clausallanguage C based on this A.De�nition 2. Let � be a set, and R be a binary relation on � .1. R is re
exive on � , if xRx for every x 2 � .2. R is transitive on � , if for every x; y; z 2 � , xRy and yRz implies xRz.3. R is symmetric on � , if for every x; y 2 � , xRy implies yRx.4. R is anti-symmetric on � , if for every x; y; z 2 � , xRy and yRx impliesx = y.If R is both re
exive and transitive on � , we say R is a quasi-order on � . IfR is both re
exive, transitive, and anti-symmetric on � , we say R is a partialorder on � . If R is re
exive, transitive and symmetric on � , R is an equivalencerelation on � .A quasi-order R on � induces an equivalence-relation � on � , as follows: we sayx; y 2 � are equivalent induced by R (denoted x � y) if both xRy and yRx.Using this equivalence relation, a quasi-order R on � induces a partial orderR0 on the set of equivalence classes in � , de�ned as follows: if [x] denotes theequivalence class of x (i.e., [x] = fy j x � yg), then [x]R0[y] i� xRy.We �rst give a general de�nition of least generalizations for sets of clausesordered by some quasi-order.

De�nition 3. Let � be a set of clauses, � be a quasi-order on � , S � � be a�nite set of clauses, and C 2 � . If C � D for every D 2 S, then we say C is ageneralization of S under �. Such a C is called a least generalization (LG) of Sunder � in � , if C 0 � C for every generalization C 0 2 � of S under �.It is easy to see that if some set S has an LG under � in � , then this LG will beunique up to the equivalence induced by � in � . That is, if C and D are bothLGs of some set S, then we have C � D.We will now de�ne three increasingly strong quasi-orders on clauses: sub-sumption, implication, and relative implication.De�nition 4. Let C and D be clauses, and � be a set of clauses. C subsumesD, denoted as C � D, if there exists a substitution � such that C� � D. C andD are subsume-equivalent if C � D and D � C.� (logically) implies C, denoted as � j= C, if every model of � is also amodel of C. C (logically) implies D, denoted as C j= D, if fCg j= D. C and Dare (logically) equivalent if C j= D and D j= C.C implies D relative to �, denoted as C j=� D, if � [fCg j= D. C and Dare equivalent relative to � if C j=� D and D j=� C.If C does not subsumeD, we write C 6� D. Similarly we use C 6j= D and C 6j=� D.`Least generalization under subsumption' will be abbreviated to LGS. Similarly,LGI is `least generalization under implication', and LGR is `least generalizationunder relative implication'.If C � D, then C j= D. The converse does not hold, as the examples in theIntroduction showed. Similarly, if C j= D, then C j=� D, and again the converseneed not hold. Consider C = P (a) _ :P (b), D = P (a), and � = fP (b)g: thenC j=� D, but C 6j= D.We now proceed to de�ne a proof procedure for logical implication betweenclauses, using resolution and subsumption.De�nition 5. Let C1 and C2 be clauses. If C1 and C2 have no variables incommon, then they are said to be standardized apart.Given clauses C1 = L1_ : : :_Li_ : : :_Lm and C2 =M1_ : : :_Mj _ : : :_Mnwhich are standardized apart. If the substitution � is a most general uni�er(mgu) of the set fLi;:Mjg, then the clause ((C1�Li)[(C2�Mj))� is a binaryresolvent of C1 and C2. Li and Mj are said to be the literals resolved upon.If C1 and C2 are not standardized apart, we can take a variant C 02 of C2, suchthat C1 and C 02 are standardized apart. For simplicity, a binary resolvent of C1and C 02 is also called a binary resolvent of C1 and C2 itself.De�nition 6. Let C be a clause, and � an mgu of fL1; : : : ; Lng � C (n � 1).Then the clause C� is called a factor of C.De�nition 7. A resolvent C of clauses C1 and C2 is a binary resolvent of afactor of C1 and a factor of C2, where the literals resolved upon are the literalsuni�ed in the respective factors. C1 and C2 are the parent clauses of C.

De�nition 8. Let � be a set of clauses and C a clause. A derivation of C from� is a �nite sequence of clauses R1; : : : ; Rk = C, such that each Ri is either in�, or a resolvent of two clauses in fR1; : : : ; Ri�1g. If such a derivation exists,we write � `r C.De�nition 9. Let � be a set of clauses and C a clause. We say there exists adeduction of C from �, written as � `d C, if C is a tautology, or if there existsa clause D such that � `r D and D � C.The next result, proved in [15], generalizes Herbrand's Theorem:Theorem10. Let � be a set of clauses, and C a ground clause. If � j= C, thenthere is a �nite set �g of ground instances of clauses in �, such that �g j= C.The following Subsumption Theorem gives a precise characterization of implica-tion between clauses in terms of resolution and subsumption. It was �rst provedin [7, 5], and reproved in [15].Theorem11 (Subsumption Theorem). Let � be a set of clauses, and C bea clause. Then � j= C i� � `d C.The next lemma was �rst proved by Gottlob [3]. Actually, it is an immediatecorollary of the Subsumption Theorem:Lemma12 (Gottlob). Let C and D be non-tautologous clauses. If C j= D,then C+ � D+ and C� � D�.Proof. Since C+ � C, if C j= D, then we have C+ j= D. Since C+ cannot beresolved with itself, it follows from the Subsumption Theorem that C+ � D. Butthen C+ must subsume the positive literals in D, hence C+ � D+. SimilarlyC� � D�. 2An important consequence of this lemma concerns the depth of clauses:De�nition 13. Let t be a term. If t is a variable or constant, then the depth oft is 1. If t = f(t1; : : : ; tn), n � 1, then the depth of t is 1 plus the depth of the tiwith largest depth. The depth of a clause C is the depth of the term with largestdepth in C.Suppose C j= D, and D is not a tautology. By Gottlob's Lemma, we must haveC+ � D+ and C� � D�. Since applying a substitution cannot decrease thedepth of a clause, it follows that depth(C) � depth(D). Hence in case depth(C) >depth(D) and D is not a tautology, we know C cannot imply D. For instance,take D = P (x; f(x; g(y))) P (g(a); b), which has depth 3. Then a clause Ccontaining a term f(x; g2(y)) (depth 4) cannot imply D.De�nition 14. Let S and S0 be �nite sets of clauses, x1; : : : ; xn all distinctvariables appearing in S, and a1; : : : ; an distinct constants not appearing in Sor S0. Then � = fx1=a1; : : : ; xn=ang is called a Skolem substitution for S w.r.t.S0. If S0 is empty, we just say that � is a Skolem substitution for S.

Lemma15. Let � be a set of clauses, C be a clause, and � be a Skolem substi-tution for C w.r.t. �. Then � j= C i� � j= C�.Proof.): Obvious.(: Suppose C is not a tautology, and let � = fx1=a1; : : : ; xn=ang. If � j= C�,it follows from the Subsumption Theorem that there is a D such that � `r D,and D � C�. Thus there is a �, such that D� � C�. Note that since � `r D andnone of the constants a1; : : : ; an appears in �, none of these constants appearsin D. Now let �0 be obtained by replacing in � all occurrences of ai by xi, forevery 1 � i � n. Then D�0 � C, hence D � C. Therefore � `d C, and hence� j= C. 23 Least Generalizations under ImplicationIn this section, we show that any �nite set of clauses which contains at least onenon-tautologous function-free clause, has an LGI in C. An immediate corollary isthe existence of an LGI of any �nite set of function-free clauses. In our usage ofthe word, a `function-free' clause may contain constants, even though constantsare sometimes seen as functions of arity 0. Note that a clause is function-free i�it has depth 1.De�nition 16. A clause is function-free if it does not contain function symbolsof arity 1 or more.De�nition 17. Let C be a clause, x1; : : : ; xn all distinct variables in C, andK a set of terms. Then the instance set of C w.r.t. K is I(C;K) = fC� j � =fx1=t1; : : : ; xn=tng; where ti 2 K, for every 1 � i � ng. If � = fC1; : : : ; Ckg is aset of clauses, then the instance set of � w.r.t. K is I(�;K) = I(C1;K)[: : :[I(Ck ;K).For example, if C = P (x) _ Q(y) and T = fa; f(z)g, then I(C; T) = f(P (a) _Q(a)); (P (a) _Q(f(z))); (P (f(z)) _Q(a)); (P (f(z)) _Q(f(z)))g.De�nition 18. Let S be a �nite set of clauses, and � a Skolem substitution forS. The term set of S by � is the set of all terms (including subterms) occurringin S�.A term set of S by some � is a �nite set of ground terms. For instance, theterm set of D = P (f2(x); y; z) P (y; z; f2(x)) by � = fx=a; y=b; z=cg is T =fa; f(a); f2(a); b; cg.Consider C = P (x; y; z) P (z; x; y), andD, � and T as above. Then C j= D,and also I(C; T) j= D�, since D� is a resolvent of P (f2(a); b; c) P (c; f2(a); b)and P (c; f2(a); b) P (b; c; f2(a)), which are in I(C; T). As we will show in thenext lemma, this holds in general: if C j= D and C is function-free, then we canrestrict attention to the ground instances of C instantiated to terms in the termset of D by some �.

The proof of Lemma 19 uses the following idea. Consider a derivation of aclause E from a set � of ground clauses. Suppose some of the clauses in �contain terms not appearing in E. Then any literals containing these terms in� must be resolved away in the derivation. This means that if we replace allthe terms in the derivation that are not in E, by some other term t, then theresult will be another derivation of E. For example, the left of �gure 1 shows aderivation of length 1 of E. The term f2(b) in the parent clauses does not appearin E. If we replace this term by the constant a, the result is another derivationof E (right of the �gure).P (b) P (f2(b)) P (f2(b)) Q(a; f(a))@@@R ���	E = P (b) Q(a; f(a)) P (b) P (a) P (a) Q(a; f(a))@@@R ���	E = P (b) Q(a; f(a))Fig. 1. Transforming the left derivation yields the right derivationLemma19. Let C be a function-free clause, D be a clause, � be a Skolem sub-stitution for D w.r.t. fCg, and T be the term set of D by �. Then C j= D i�I(C; T) j= D�.Proof.(: Since C j= I(C; T) and I(C; T) j= D�, we have C j= D�. Now C j= Dby Lemma 15.): IfD is a tautology, then D� is a tautology, so this case is obvious. SupposeD is not a tautology, then D� is not a tautology. Since C j= D�, it follows fromTheorem 10 that there exists a �nite set � of ground instances of C, such that� j= D�. By the Subsumption Theorem, there exists a derivation from � of aclause E, such that E � D�. Since � is ground, E must also be ground, so wehave E � D�. This implies that E only contains terms from T .Let t be an arbitrary term in T , and let �0 be obtained from � by replacingevery term in clauses in � which is not in T , by t. Note that since each clausein � is a ground instance of the function-free clause C, every clause in �0 isalso a ground instance of C. Now it is easy to see that the same replacementof terms in the derivation of E from � results in a derivation of E from �0:(1) each resolution step in the derivation from � can also be carried out in thederivation from �0, since the same terms in � are replaced by the same termsin �0, and (2) the terms in � that are not in T (and hence are replaced by t),do not appear in the conclusion E of the derivation.Since there is a derivation of E from�, we have�0 j= E, and hence �0 j= D�.�0 is a set of ground instances of C and all terms in �0 are terms in T , so�0 � I(C; T). Hence I(C; T) j= D�. 2Lemma 19 cannot be generalized to the case where C contains function symbolsof arity � 1, take C = P (f(x); y) P (z; x) and D = P (f(a); a) P (a; f(a)).

Then T = fa; f(a)g is the term set of D, and we have C j= D, yet it can beseen that I(C; T) 6j= D. The argument used in the previous lemma does not workhere, because di�erent terms in some ground instance need not relate to di�erentvariables. For example, in the ground instance P (f2(a); a) P (a; f(a)) of C,we cannot just replace f2(a) by some other term, for then the resulting clausewould not be an instance of C.On the other hand, Lemma 19 can be generalized to a set of clauses insteadof a single clause. If � is a �nite set of function-free clauses, C is an arbitraryclause, and � is a Skolem substitution for C w.r.t. �, then we have that � j= Ci� I(�; T) j= C�. The proof is almost literally the same as above.This result implies that � j= C is reducible to an implication I(�; T) j= C�between ground clauses. Since, by the next lemma, implication between groundclauses is decidable, it follows that � j= C is decidable in case � is function-free.Lemma20. The problem whether � j= C, where � is a �nite set of groundclauses and C is a ground clause, is decidable.Proof. Let C = L1 _ : : :_Ln, and A be the set of all ground atoms occurring in� and C. Now � j= C i�� [f:L1; : : : ;:Lng is unsatis�able i� (by Theorem 4.2 of [2])� [f:L1; : : : ;:Lng has no Herbrand model i�no subset of A is an Herbrand model of � [f:L1; : : : ;:Lng.Since A is �nite, the last statement is decidable. 2Corollary 21. The problem whether � j= C, where � is a �nite set of function-free clauses and C is a clause, is decidable.The following sequence of lemmas is adapted, with modi�cations, from Idestam-Almquist [4], where they are given for T-implication.Lemma22. Let S be a �nite set of non-tautologous clauses, V = fx1; : : : ; xmgbe a set of variables, and let G = fC1; C2; : : :g be a (possibly in�nite) set ofgeneralizations of S under implication. Then the set G0 = I(C1; V)[I(C2; V)[: : : is a �nite set of clauses.Proof. Let d be the maximal depth of the terms in clauses in S. It follows fromLemma 12 that G (and hence also G0) cannot contain terms of depth greaterthan d, nor predicates, functions or constants other than those in S. The setof literals which can be constructed from predicates in S, and from terms ofdepth at most d consisting of functions and constants in S and variables in V ,is �nite. Hence the set of clauses which can be constructed from those literals isalso �nite. G0 is a subset of this set, so G0 is a �nite set of clauses. 2Lemma23. Let D be a clause, C be a function-free clause such that C j= D,T = ft1; : : : ; tng be the term set of D by �, V = fx1; : : : ; xmg be a set ofvariables, and m � n. If E is an LGS of I(C; V), then E j= D.

Proof. Let
 = fx1=t1; : : : ; xn=tn; xn+1=tn; : : : ; xm=tng (it does not matter towhich terms the variables xn+1; : : : ; xm are mapped by
, as long as they aremapped to terms in T). Suppose I(C; V) = fC�1; : : : ; C�kg. Then I(C; T) =fC�1
; : : : ; C�k
g. Let E be an LGS of I(C; V) (note that E must be function-free). Then for every 1 � i � k, there are �i such that E�i � C�i. This meansthat E�i
 � C�i
 and hence E�i
 j= C�i
, for every 1 � i � k. ThereforeE j= I(C; T).Since C j= D, we know from Lemma 12 that constants appearing in C mustalso appear in D. This means that � is a Skolem substitution for D w.r.t. fCg.Then from Lemma 19 we know I(C; T) j= D�, hence E j= D�. Furthermore,since E is an LGS of I(C; V), all constants in E also appear in C, hence allconstants in E must appear in D, so � is a Skolem substitution for D w.r.t.fEg. Then E j= D by Lemma 15. 2Consider C = P (x; y; z) P (y; z; x) and D = Q(w). Both C and D imply theclause E = P (x; y; z) P (z; x; y); Q(b). Now note that C [D = P (x; y; z) P (y; z; x); Q(w) also implies E. This holds for clauses in general:Lemma24. Let C, D, and E be clauses such that C and D are standardizedapart. If C j= E and D j= E, then C [D j= E.Proof. Suppose C j= E and D j= E, and M be a model of the clause C [D.Since C and D are standardized apart, the clause C [D is equivalent to theformula 8(C) _ 8(D) (where 8(C) denotes the universally quanti�ed clause C).This means thatM is a model of C or a model of D. Then it follows from C j= Eand D j= E that M is a model of E. Therefore C [D j= E. 2Now we can prove the existence of an LGI of any �nite set S of clauses whichcontains at least one non-tautologous and function-free clause. In fact we canprove something stronger, namely that this LGI is a special LGI, which is notonly implied, but actually subsumed by any other generalization of S:De�nition 25. Let C be a clausal language, and S be a �nite subset of C. AnLGI C of S in C is called a special LGI of S in C, if C 0 � C for every generalizationC 0 2 C of S under implication.Note that if D is an LGI of a set containing at least one non-tautologousfunction-free clause, then by Lemma 12 D is itself function-free, because itshould imply the function-free clause(s) in S. For instance, C = P (x; y; z) P (y; z; x); Q(w) is an LGI of D1 = P (x; y; z) P (y; z; x); Q(f(a)) and D2 =P (x; y; z) P (z; x; y); Q(b). Note that this LGI is properly subsumed by theLGS of fD1; D2g, which is P (x; y; z) P (x0; y0; z0); Q(w). An LGI may some-times be the empty clause 2, for example if S = fP (a); Q(a)g.Theorem26 (Existence of special LGI in C). Let C be a clausal language.If S is a �nite set of clauses from C, and S contains at least one non-tautologousfunction-free clause, then there exists a special LGI of S in C.

Proof. Let S = fD1; : : : ; Dng be a �nite set of clauses from C, such that S con-tains at least one non-tautologous function-free clause. We can assume withoutloss of generality that S contains no tautologies. Let � be a Skolem substitutionfor S, T = ft1; : : : ; tmg be the term set of S by �, V = fx1; : : : ; xmg be a set ofvariables, and G = fC1; C2; : : :g be the set of all generalizations of S under im-plication in C. Note that 2 2 G, so G is not empty. Since each clause in G mustimply the function-free clause(s) in S, it follows from Lemma 12 that all mem-bers of G are function-free. By Lemma 22, the set G0 = I(C1; V)[I(C2; V)[: : :is a �nite set of clauses. Since G0 is �nite, the set of I(Ci; V)s is also �nite. Forsimplicity, let fI(C1; V); : : : ; I(Ck ; V)g be the set of all distinct I(Ci; V)s.Let Ei be an LGS of I(Ci; V), for every 1 � i � k, such that E1; : : : ; Ek arestandardized apart. For every 1 � j � n, the term set of Dj by � is some setftj1 ; : : : ; tjsg � T , such that m � js. >From Lemma 23, we have that Ei j= Dj ,for every 1 � i � k and 1 � j � n, hence Ei j= S. Now let F = E1 [: : : [Ek ,then we have F j= S from Lemma 24.To prove that F is a special LGI of S, it remains to show that Cj � F , forevery j � 1. For every j � 1, there is an i (1 � i � k), such that I(Cj ; V) =I(Ci; V). So for this i, Ei is an LGS of I(Cj ; V). Cj is itself also a generalizationof I(Cj ; V) under subsumption, hence Cj � Ei. Then �nally Cj � F , sinceEi � F . 2Corollary 27. Let C be a clausal language. Then for every �nite set of function-free clauses S � C, there exists an LGI of S in C.2Proof. Let S be a �nite set of function-free clauses in C. If S only containstautologies, any tautology will be an LGI of S. Otherwise, let S0 be obtained bydeleting all tautologies from S. By the previous theorem, there is a special LGIof S0. Clearly, this is also a special LGI of S itself in C. 24 The LGI is ComputableIn the previous section we proved the existence of an LGI in C of every �nite setS of clauses containing at least one non-tautologous function-free clause. In thissection, we will establish the computability of such an LGI. The next algorithm,extracted from the proof of the previous section, computes this LGI:LGI-AlgorithmInput: A �nite set S of clauses, at least one of which is non-tautologous andfunction-free.Output: An LGI of S in C.2 Niblett [13, p. 135] claims that it is simple to show that LGIs exist in a languagewith only a �nite number of constants and no function symbols. Such a result wouldimply our corollary. However, Niblett has not provided a proof, and neither hasanyone else, as far as we know. We would be rather surprised if a proof exists whichis actually much simpler than the proof we have given here.

1. Remove all tautologies from S (a clause is a tautology i� it contains literalsA and :A), call the remaining set S0.2. Let m be the number of distinct terms in S0, let V = fx1; : : : ; xmg. (Noticethat this m is the same number as the number of terms in the term set Tused in the proof of Theorem 26.)3. Let G be the (�nite) set of all clauses which can be constructed from predi-cates and constants in S0 and variables in V .4. Let fU1; : : : ; Ung be the set of all subsets of G.5. Let Hi be an LGS of Ui, for every 1 � i � n. These Hi can be computed byPlotkin's algorithm [16].6. Remove from fH1; : : : ; Hng all clauses which do not imply S0 (since eachHi isfunction-free, by Corollary 21 this implication is decidable), and standardizethe remaining clauses fH1; : : : ; Hqg apart.7. Return the clause H = H1 [: : : [Hq .The correctness of this algorithm follows from the proof of Theorem 26. Firstnotice thatH j= S by Lemma 24. Furthermore, note that all I(Ci; V)s mentionedin the proof of Theorem 26, are elements of the set fU1; : : : ; Ung. This meansthat for every Ei in the set fE1; : : : ; Ekg mentioned in that proof, there is aclause Hj in fH1; : : : ; Hqg such that Ei and Hj are subsume-equivalent. Thenit follows that the LGI F = E1 [: : : [Ek of that proof subsumes the clauseH = H1 [: : :[Hq that our algorithm returns. On the other hand, F is a specialLGI, so F and H must be subsume-equivalent.Suppose the number of distinct constants in S0 is c, and the number ofdistinct variables in step 2 of the algorithm is m. Furthermore, suppose thereare p distinct predicate symbols in S0, with respective arities a1; : : : ; ap. Thenthe number of distinct atoms that can be formed from these constants, variablesand predicates, is l = Ppi=1(c +m)ai , and the number of distinct literals thatcan be formed, is 2 � l. The set G of distinct clauses which can be formed fromthese literals is the power set of this set of literals, so jGj = 22�l. Then the setfU1; : : : ; Ung of all subsets of G contains 2jGj = 222�l members.Thus the algorithm outlined above is not very e�cient (to say the least).A more e�cient algorithm may exist, but since implication is harder than sub-sumption and the computation of an LGS is already quite expensive, we shouldnot put our hopes too high. Nevertheless, the existence of the LGI-algorithmdoes establish the theoretical point that the LGI of any �nite set of clausescontaining at least one non-tautologous function-free clause, is computable.Theorem28 (Computability of LGI). Let C be a clausal language. If S is a�nite set of clauses from C, and S contains at least one non-tautologous function-free clause, then the LGI of S in C is computable.5 Least Generalizations under Relative ImplicationImplication is stronger than subsumption, but implication relative to backgroundknowledge is even more powerful, since background knowledge can be used to

model all sorts of useful properties and relations. Here we will discuss leastgeneralizations under implication relative to some given background knowledge� (LGRs).We will show that even if S and � are both �nite sets of function-free clauses,an LGR of S relative to � need not exist. Let D1 = P (a), D2 = P (b), S =fD1; D2g, and � = f(P (a) _ :Q(x)); (P (b) _ :Q(x))g. This S has no LGRrelative to � in C.Suppose C is an LGR of S relative to �. Note that if C contains the literalP (a), then the Herbrand interpretation which makes P (a) true, and which makesall other ground literals false, would be a model of � [fCg but not of D2, sothen we would have C 6j=� D2. Similarly, if C contains P (b) then C 6j=� D1.Hence C cannot contain P (a) or P (b) as literals. Now let d be a constant notappearing in C. Let D = P (x) _ Q(d), then D j=� S. By the de�nition of anLGR, we should have D j=� C. Then by the Subsumption Theorem, there mustbe a derivation from � [fDg of a clause E, which subsumes C. The set of allclauses which can be derived (in 0 or more resolution-steps) from � [fDg is�[fDg[f(P (a)_P (x)); (P (b)_P (x))g. But none of these clauses subsumes C,because C does not contain the constant d, nor the literals P (a) or P (b). HenceD 6j=� C, contradicting the assumption that C is an LGR of S relative to � inC. However, we can identify a special case in which the LGR does exist. Here� = fL1; : : : ; Lkg should be a set of function-free ground literals. A notationalremark: if C is a clause, we use C [� to denote the clause C [f:L1; : : : ;:Lkg.Note that fCg [� is a set of clauses, while C [� is a single clause (a set ofliterals).Theorem29 (Existence of LGR in C). Let C be a clausal language and � �C be a �nite set of function-free ground literals. If S � C is a �nite set of clauses,containing at least one D for which D[� is non-tautologous and function-free,then S has an LGR in C relative to �.Proof. Let S = fD1; : : : ; Dng. It can be seen that since � is a �nite set ofground literals, for any clauses C and D we have C j=� D (i.e., � [fCg j= D)i� C j= (D [�). Hence an LGI in C of T = f(D1 [�); : : : ; (Dn [�)g is also anLGR of S in C. The existence of such an LGI of T follows from Theorem 26. 2It is interesting to compare this result with relative subsumption. Plotkin [17]proved that any �nite set of clauses has a least generalization under relativesubsumption, if the background knowledge � is a set of ground literals. Thisresult forms the basis of Golem [11], one of the most prominent ILP systems.Under relative implication, the background knowledge should not only be ground,but function-free as well. Moreover, the set S to be generalized should containat least one D such that D [� is non-tautologous and function-free. Thuson the one hand, relative implication is a more powerful order than relativesubsumption, but on the other hand, the existence of least generalizations canonly be guaranteed in a much more restricted case.

6 ConclusionImplication is more appropriate for least generalizations than subsumption. Wehave proved here that any �nite set of clauses containing at least one non-tautologous function-free clause has a computable LGI. For sets of clauses whichall contain functions, the existence of an LGI remains an open question. In caseof implication relative to background knowledge, least generalizations need notexist, except for very restricted cases.References1. W. Buntine. Generalized subsumption and its applications to induction and re-dundancy. Arti�cial Intelligence, 36:149{176, 1988.2. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.Academic Press, San Diego, 1973.3. G. Gottlob. Subsumption and implication. Inf. Process. Lett., 24(2):109{111,1987.4. P. Idestam-Almquist. Generalization of clauses under implication. Journal of Ar-ti�cial Intelligence Research, 3:467{489, 1995.5. R. A. Kowalski. The case for using equality axioms in automatic demonstration. InProceedings of the Symposium on Automatic Demonstration, volume 125 of LectureNotes in Mathematics, pages 112{127. Springer-Verlag, 1970.6. N. Lavra�c and S. D�zeroski. Inductive Logic Programming: Techniques and Appli-cations. Ellis Horwood, 1994.7. R. C.-T. Lee. A Completeness Theorem and a Computer Program for FindingTheorems Derivable from Given Axioms. PhD thesis, University of California,Berkeley, 1967.8. J. Marcinkowski and L. Pacholski. Undecidability of the horn-clause implicationproblem. In Proceedings of the 33rd Annual IEEE Symposium on Foundations ofComputer Science, pages 354{362, Pittsburg, 1992.9. K. Morik, S. Wrobel, J.-U. Kietz, and W. Emde. Knowledge Acquisition and Ma-chine Learning: Theory, Methods and Applications. Academic Press, London, 1993.10. S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and meth-ods. Journal of Logic Programming, 19{20:629{679, 1994.11. S. Muggleton and C. Feng. E�cient induction of logic programs. In S. Muggleton,editor, Inductive Logic Programming, volume 38 of APIC Series, pages 281{298.Academic Press, 1992.12. S. Muggleton and C. D. Page. Self-saturation of de�nite clauses. In S. Wrobel,editor, Proceedings of the 4th International Workshop on Inductive Logic Program-ming (ILP-94), volume 237 of GMD-Studien, pages 161{174, Bad Honnef/Bonn,1994. Gesellschaft f�ur Mathematik und Datenverarbeitung.13. T. Niblett. A study of generalisation in logic programs. In D. Sleeman, editor,Proceedings of the 3rd European Working Sessions on Learning (EWSL-88), pages131{138, 1988.14. S.-H. Nienhuys-Cheng and R. de Wolf. Least generalizations and greatest special-izations of sets of clauses. Journal of Arti�cial Intelligence Research, 4:341{363,1996.

15. S.-H. Nienhuys-Cheng and R. de Wolf. The subsumption theorem in InductiveLogic Programming: Facts and fallacies. In L. De Raedt, editor, Advances in In-ductive Logic Programming, pages 265{276. IOS Press, Amsterdam, 1996.16. G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153{163, 1970.17. G. D. Plotkin. A further note on inductive generalization. Machine Intelligence,6:101{124, 1971.18. J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm report. In P. B. Brazdil,editor, Proceedings of the 6th European Conference on Machine Learning (ECML-93), volume 667 of Lecture Notes in Arti�cial Intelligence, pages 3{20. Springer-Verlag, 1993.

This article was processed using the LaTEX macro package with LLNCS style

