Least (Generalizations under Implication

Shan-Hwei Nienhuys-Cheng and Ronald de Wolf

Erasmus University of Rotterdam, Department of Computer Science, H4-19,
P.O. Box 1738, 3000 DR Rotterdam, the Netherlands,
{cheng,bidewolf}@cs.few.eur.nl

Abstract. One of the most prominent approaches in Inductive Logic
Programming is the use of least generalizations under subsumption of
given clauses. However, subsumption is weaker than logical implication,
and not very well suited for handling recursive clauses. Therefore an
important open question in this area concerns the existence of least gen-
eralizations under implication (LGIs). Our main new result in this paper
is the existence and computability of such an LGI for any finite set of
clauses which contains at least one non-tautologous function-free clause.
We can also define implication relative to background knowledge. In this
case, least generalizations only exist in a very limited case.

1 Introduction

Inductive Logic Programming (ILP) is the intersection of Logic Programming
and Machine Learning. It studies methods to induce clausal theories from given
sets of positive and negative examples. An inductively inferred theory should
imply all of the positive, and none of the negative examples. For instance,
suppose we are given P(0), P(s*(0)), P(s*(0)), P(s%(0)) as positive examples,
and P(s(0)), P(s3(0)), P(s°(0)) as negative examples. Then the set ¥ = {P(0),
(P(s?(x)) < P(z))} is a solution: it implies all positive, and no negative exam-
ples. Note that this set can be seen as a description of the even integers. Thus
induction of clausal theories is a form of learning from examples. For a more
extensive introduction to ILP, we refer to [6, 10].

One of the most prominent approaches in ILP is the use of least general-
izations under subsumption of given clauses, introduced by Plotkin [16, 17]. A
clause C is a least generalization under subsumption (LGS) of a finite set S of
clauses, if C' subsumes every clause in S, and is subsumed by any other clause
which also subsumes every clause in C. Plotkin’s main result is that any finite
set of clauses has an LGS. The construction of such a least generalization allows
us to generalize the examples cautiously, avoiding over-generalization. Of course,
we need not take the LGS of all positive examples, which would yield a theory
consisting of only one clause. Instead, we might divide the positive examples into
subsets, and take a separate LGS of each subset. That way we obtain a theory
containing more than one clause.

However, subsumption is not fully satisfactory for such generalizations. For
example, if S consists of D1 = P(f?(a)) < P(a) and Dy = P(f(b)) < P(b), then
P(f(y)) < P(z)is an LGS of S. The clause P(f(z)) + P(xz), which seems more

appropriate as a least generalization of S, cannot be found by Plotkin’s approach,
because it does not subsume D;. As this example also shows, subsumption is
particularly unsatisfactory for recursive clauses: clauses which can be resolved
with themselves.

Because of the weakness of subsumption, it is desirable to consider least gen-
eralizations under implication (LGIs) instead. Accordingly, we want to find out
whether Plotkin’s positive result on the existence of LGSs holds for LGIs as well.
Most ILP-researchers are inclined to believe that this question has a negative
answer, due to the undecidability of logical implication between clauses [8]. If we
restrict attention to Horn clauses (clauses with at most one positive literal), the
question has indeed been answered negatively: there is no least Horn clause which
implies both P(f?(z)) + P(z) and P(f?(z)) < P(z) [10]. However, Muggleton
and Page [12] have shown that the non-Horn clause P(f(x))V P(f2(y)) + P(z)
is an LGI of these two clauses. Therefore we investigate the existence of an LGI
in the set of general (not necessarily Horn) clauses here.

No definive answer has as yet been given to this more general question, but
some work has already been done. For instance, Idestam-Almquist [4] studies
least generalizations under T-implication as an approximation to LGIs. Muggle-
ton and Page [12] investigate self-saturated clauses. A clause is self-saturated if it
is subsumed by any clause which implies it. A clause D is a self-saturation of C,
if C and D are logically equivalent and D is self-saturated. As [12] states, if two
clauses C'; and Cs have self-saturations Dy and Ds, respectively, then an LGS
of Dy and D, is also an LGI of Cy and C5. This positively answers our ques-
tion concerning the existence of LGIs for clauses which have a self-saturation.
However, Muggleton and Page also show that there exist clauses which have no
self-saturation. So the concept of self-saturation cannot solve the general ques-
tion concerning the existence of LGIs.

In this paper, we prove the new result that if S is a finite set of clauses con-
taining at least one non-tautologous function-free clause (among other clauses
which may contain functions), then S has a computable LGI. Our proof is on the
one hand based on the Subsumption Theorem for resolution [7, 5, 15], and on the
other hand on a modification of some results of Idestam-Almquist [4] concerning
T-implication. An immediate corollary of this result is the existence and com-
putability of an LGI of any finite set of function-free clauses. This result does not
solve the general question of the existence of LGIs, but it does provide a positive
answer for a large class of cases: the presence of one non-tautologous function-
free clause in a finite S already guarantees the existence and computability of
an LGI of S. Because of the prominence of function-free clauses in ILP, this case
may be of great practical signifcance.! Well-known ILP-systems such as FOIL

! Note that even for function-free clauses, the subsumption order is still not enough.
Consider D1 = P(z,y,z) + P(y,z,z) and D> = P(z,y,z) < P(z,z,y) (this exam-
ple is adapted from Idestam-Almquist). D; is a resolvent of Dy and Ds, and D is
a resolvent of D; and D;. Hence D; and D» are logically equivalent. This means
that D; is an LGI of the set {Di, D>}. However, the LGS of these two clauses is
P(z,y,z) < P(u,v,w), which is clearly an over-generalization.

[18], LiNUs [6], and MOBAL [9], all use only function-free clauses.

Apart from “plain” subsumption, one can also define subsumption relative
to background knowledge. The two best-known forms are Plotkin’s relative sub-
sumption [17], and Buntine’s generalized subsumption [1]. Similarly, we can gen-
eralize implication to relative implication, which will be considered in Section 5.

The results of this paper, together with some other results on greatest spe-
cializations and the lattice-structure of sets of clauses ordered by subsumption
or implication, are described in more detail in our article [14].

2 Preliminaries

In this section, we will define the main concepts we need. For the definitions of
‘model’, ‘tautology’, ‘substitution’, etc., we refer to [2]. A positive literal is an
atom, a negative literal is the negation of an atom. A clause is a finite set of
literals, treated as the universally quantified disjunction of those literals. If C is
a clause, then C* denotes the set of positive literals in C', while C~ denotes the
set of negative literals.

Definition 1. Let A be an alphabet of the first-order logic. Then the clausal
language C by A is the set of all clauses which can be constructed from the
symbols in A.

Here we just presuppose some arbitrary alphabet A, and consider the clausal
language C based on this A.

Definition 2. Let I" be a set, and R be a binary relation on I".

1. R is reflexive on I', if zRx for every x € I'.

2. R is transitive on I, if for every x,y,z € I', xRy and yRz implies zRz.

3. R is symmetric on I, if for every x,y € I', xRy implies yRz.

4. R is anti-symmetric on I, if for every x,y,z € I', xRy and yRz implies
T =1y.

If R is both reflexive and transitive on I', we say R is a quasi-order on I'. If
R is both reflexive, transitive, and anti-symmetric on I', we say R is a partial
order on I'. If R is reflexive, transitive and symmetric on I', R is an equivalence
relation on I.

A quasi-order R on I" induces an equivalence-relation ~ on I, as follows: we say
xz,y € I' are equivalent induced by R (denoted x ~ y) if both zRy and yRz.
Using this equivalence relation, a quasi-order R on I' induces a partial order
R’ on the set of equivalence classes in I', defined as follows: if [z] denotes the
equivalence class of z (i.e., [z] = {y | x ~ y}), then [z]R'[y] iff zRy.

We first give a general definition of least generalizations for sets of clauses
ordered by some quasi-order.

Definition 3. Let I' be a set of clauses, > be a quasi-order on I'; S C I" be a
finite set of clauses, and C € I'. If C > D for every D € S, then we say C is a
generalization of S under >. Such a C is called a least generalization (LG) of S
under > in I', if C' > C for every generalization C' € I" of S under >.

It is easy to see that if some set S has an LG under > in I, then this LG will be
unique up to the equivalence induced by > in I'. That is, if C and D are both
LGs of some set S, then we have C' ~ D.

We will now define three increasingly strong quasi-orders on clauses: sub-
sumption, implication, and relative implication.

Definition 4. Let C and D be clauses, and X' be a set of clauses. C' subsumes
D, denoted as C' > D, if there exists a substitution 8 such that C6 C D. C' and
D are subsume-equivalent if C = D and D > C.

X (logically) implies C, denoted as X' = C, if every model of X' is also a
model of C. C (logically) implies D, denoted as C |= D, if {C'} = D. C and D
are (logically) equivalent if C = D and D = C.

C implies D relative to X, denoted as C =x D, if ¥ U {C} = D. C and D
are equivalent relative to ¥ if C |=x D and D =5 C.

If C does not subsume D, we write C' % D. Similarly we use C' £ D and C 5 D.
‘Least generalization under subsumption’ will be abbreviated to LGS. Similarly,
LGI is ‘least generalization under implication’, and LGR is ‘least generalization
under relative implication’.

If C > D, then C' = D. The converse does not hold, as the examples in the
Introduction showed. Similarly, if C' = D, then C |=x D, and again the converse
need not hold. Consider C = P(a) V =P(b), D = P(a), and ¥ = {P(b)}: then
C Ex D, but C £ D.

We now proceed to define a proof procedure for logical implication between
clauses, using resolution and subsumption.

Definition 5. Let C; and Cy be clauses. If C; and C5 have no variables in
common, then they are said to be standardized apart.

Given clauses Cy = Ly V...VL;V...VL, and Co = My V...VM; V...V M,
which are standardized apart. If the substitution 6 is a most general unifier
(mgu) of the set {L;,—M;}, then the clause ((C1 — L;) U(Ca — M;))8 is a binary
resolvent of Cy and Cs. L; and M; are said to be the literals resolved upon.

If C; and Cy are not standardized apart, we can take a variant C} of Cy, such
that C; and C} are standardized apart. For simplicity, a binary resolvent of C}
and C} is also called a binary resolvent of Cy and C5 itself.

Definition 6. Let C be a clause, and 6 an mgu of {Ly,...,L,} C C (n > 1).
Then the clause C# is called a factor of C.

Definition 7. A resolvent C of clauses Cy and Cs is a binary resolvent of a
factor of C; and a factor of Cs, where the literals resolved upon are the literals
unified in the respective factors. C; and Cy are the parent clauses of C.

Definition 8. Let X' be a set of clauses and C' a clause. A derivation of C' from
X is a finite sequence of clauses Ry,..., R = C, such that each R; is either in
XY, or a resolvent of two clauses in {Ry,...,R;_1}. If such a derivation exists,
we write X -, C.

Definition 9. Let X be a set of clauses and C' a clause. We say there exists a
deduction of C' from ¥, written as X' 4 C, if C is a tautology, or if there exists
a clause D such that ¥+, D and D > C.

The next result, proved in [15], generalizes Herbrand’s Theorem:

Theorem 10. Let X be a set of clauses, and C a ground clause. If ¥ |= C, then
there is a finite set Xy of ground instances of clauses in X, such that Xy = C.

The following Subsumption Theorem gives a precise characterization of implica-
tion between clauses in terms of resolution and subsumption. It was first proved
in [7, 5], and reproved in [15].

Theorem 11 (Subsumption Theorem). Let X' be a set of clauses, and C' be
a clause. Then X |=C iff ¥ k4 C.

The next lemma was first proved by Gottlob [3]. Actually, it is an immediate
corollary of the Subsumption Theorem:

Lemma 12 (Gottlob). Let C and D be non-tautologous clauses. If C = D,
then Ct* > D%t and C~ > D~

Proof. Since CT = C, if C = D, then we have C* |= D. Since CT cannot be
resolved with itself, it follows from the Subsumption Theorem that Ct > D. But
then Ct must subsume the positive literals in D, hence Ct > D¥. Similarly
C- =D |

An important consequence of this lemma concerns the depth of clauses:

Definition 13. Let ¢ be a term. If ¢ is a variable or constant, then the depth of
tis1.If ¢ = f(t1,...,ts), n > 1, then the depth of ¢ is 1 plus the depth of the ¢;
with largest depth. The depth of a clause C' is the depth of the term with largest
depth in C.

Suppose C |= D, and D is not a tautology. By Gottlob’s Lemma, we must have
Ct = Dt and C~ > D~. Since applying a substitution cannot decrease the
depth of a clause, it follows that depth(C) < depth(D). Hence in case depth(C) >
depth(D) and D is not a tautology, we know C' cannot imply D. For instance,
take D = P(x, f(x,9(y))) < P(g(a),b), which has depth 3. Then a clause C
containing a term f(z, g?(y)) (depth 4) cannot imply D.

Definition 14. Let S and S’ be finite sets of clauses, x1,..., 2, all distinct
variables appearing in S, and aq, ..., an distinct constants not appearing in S

or S'. Then o = {z1/ay,..., Zn/an} is called a Skolem substitution for S w.r.t.

S’ If S’ is empty, we just say that o is a Skolem substitution for S.

Lemma15. Let X be a set of clauses, C' be a clause, and o be a Skolem substi-
tution for C w.r.t. X. Then ¥ = C iff ¥ = Co.

Proof.

=: Obvious.

<: Suppose C' is not a tautology, and let o = {z1 /a1, ..., z,/a,}. If X |= Co,
it follows from the Subsumption Theorem that there is a D such that X +, D,
and D > Co. Thus there is a 6, such that D8 C C'o. Note that since ¥ I, D and
none of the constants ay,...,a, appears in X, none of these constants appears
in D. Now let ' be obtained by replacing in 6 all occurrences of a; by z;, for
every 1 < i < n. Then D' C C, hence D > C. Therefore X 4 C, and hence
Y=C. m|

3 Least Generalizations under Implication

In this section, we show that any finite set of clauses which contains at least one
non-tautologous function-free clause, has an LGI in C. An immediate corollary is
the existence of an LGI of any finite set of function-free clauses. In our usage of
the word, a ‘function-free’ clause may contain constants, even though constants
are sometimes seen as functions of arity 0. Note that a clause is function-free iff
it has depth 1.

Definition 16. A clause is function-free if it does not contain function symbols
of arity 1 or more.

Definition 17. Let C be a clause, x1,...,z, all distinct variables in C, and
K a set of terms. Then the instance set of C w.rt. K is Z(C, K) = {C0 | § =
{z1/t1,...,xn/tn}, where t; € K, forevery 1 <i<n}.If ¥ ={C;,...,Cr}isa
set of clauses, then the instance set of ¥ w.rt. K is Z(¥,K) =Z(Ch,K)U...U

I(Ck, K).

For example, if C = P(z) V Q(y) and T = {a, f(2)}, then Z(C,T) = {(P(a) V
Q(a)), (P(a) V Q(f(2))), (P(f(2)) V Q(a)), (P(f(2)) V Q(f(2)))}-

Definition 18. Let S be a finite set of clauses, and o a Skolem substitution for
S. The term set of S by o is the set of all terms (including subterms) occurring
in So.

A term set of S by some o is a finite set of ground terms. For instance, the
term set of D = P(f?(x),y,2) < P(y,z, f*(z)) by 0 = {x/a,y/b,z/c} is T =
{a, f(a), £*(a), b, c}.

Consider C = P(z,y,2) + P(z,z,y),and D, o and T as above. Then C = D,
and also Z(C,T) |= Do, since Do is a resolvent of P(f?(a),b,c) + P(c, f*(a),b)
and P(c, f*(a),b) < P(b,c, f*(a)), which are in Z(C,T). As we will show in the
next lemma, this holds in general: if C' = D and C is function-free, then we can
restrict attention to the ground instances of C instantiated to terms in the term
set of D by some o.

The proof of Lemma 19 uses the following idea. Consider a derivation of a
clause E from a set X of ground clauses. Suppose some of the clauses in X
contain terms not appearing in E. Then any literals containing these terms in
Y’ must be resolved away in the derivation. This means that if we replace all
the terms in the derivation that are not in E, by some other term ¢, then the
result will be another derivation of E. For example, the left of figure 1 shows a
derivation of length 1 of E. The term f2(b) in the parent clauses does not appear
in E. If we replace this term by the constant a, the result is another derivation
of E (right of the figure).

P(b) + P(f2(b)) P(£2(b)) + Q(a, f(a)) P(b) < P(a) P(a) « Q(a, f(a))

N/ N/

E = P(b) « Q(a, f(a)) E = P(b) + Q(a, f(a))

Fig. 1. Transforming the left derivation yields the right derivation

Lemma 19. Let C be a function-free clause, D be a clause, o be a Skolem sub-
stitution for D w.r.t. {C}, and T be the term set of D by o. Then C = D iff
Z(C,T) = Do.

Proof.

<: Since C |= Z(C,T) and Z(C,T) = Do, we have C |= Do. Now C = D
by Lemma 15.

=:If D is a tautology, then Do is a tautology, so this case is obvious. Suppose
D is not a tautology, then Do is not a tautology. Since C' = Do, it follows from
Theorem 10 that there exists a finite set X' of ground instances of C, such that
XY = Do. By the Subsumption Theorem, there exists a derivation from X of a
clause E, such that E > Do. Since X' is ground, E must also be ground, so we
have E C Do. This implies that E only contains terms from T'.

Let t be an arbitrary term in T, and let X’ be obtained from X' by replacing
every term in clauses in X' which is not in 7', by t. Note that since each clause
in ¥ is a ground instance of the function-free clause C, every clause in X' is
also a ground instance of C. Now it is easy to see that the same replacement
of terms in the derivation of E from X results in a derivation of E from X':
(1) each resolution step in the derivation from X' can also be carried out in the
derivation from X', since the same terms in X are replaced by the same terms
in X', and (2) the terms in X that are not in 7' (and hence are replaced by t)
do not appear in the conclusion E of the derivation.

Since there is a derivation of E from X', we have X' |= E, and hence X' = Do.
X' is a set of ground instances of C' and all terms in X' are terms in T, so
X' CZ(C,T). Hence Z(C,T) = Do. O

Lemma 19 cannot be generalized to the case where C' contains function symbols
of arity > 1, take C = P(f(z),y) < P(z,z) and D = P(f(a),a) + P(a, f(a)).

Then T = {a, f(a)} is the term set of D, and we have C' |= D, yet it can be
seen that Z(C,T') £ D. The argument used in the previous lemma does not work
here, because different terms in some ground instance need not relate to different
variables. For example, in the ground instance P(f2(a),a) < P(a, f(a)) of C,
we cannot just replace f2(a) by some other term, for then the resulting clause
would not be an instance of C'.

On the other hand, Lemma 19 can be generalized to a set of clauses instead
of a single clause. If X is a finite set of function-free clauses, C is an arbitrary
clause, and o is a Skolem substitution for C' w.r.t. X, then we have that ¥ = C
iff Z(X,T) |= Co. The proof is almost literally the same as above.

This result implies that X' |= C is reducible to an implication Z(X,T) = Co
between ground clauses. Since, by the next lemma, implication between ground
clauses is decidable, it follows that X' = C' is decidable in case X is function-free.

Lemma20. The problem whether ¥ |= C, where X is a finite set of ground
clauses and C is a ground clause, is decidable.

Proof. Let C =Ly V...V Ly, and A be the set of all ground atoms occurring in
Y and C. Now X |= C iff

Y U{-Ly,...,~L,} is unsatisfiable iff (by Theorem 4.2 of [2])

Y U{-Ly,...,~L,} has no Herbrand model iff

no subset of A is an Herbrand model of ¥ U {=L4,...,2L,}.

Since A is finite, the last statement is decidable. a

Corollary 21. The problem whether X |= C, where X is a finite set of function-
free clauses and C is a clause, is decidable.

The following sequence of lemmas is adapted, with modifications, from Idestam-
Almquist [4], where they are given for T-implication.

Lemma22. Let S be a finite set of non-tautologous clauses, V. ={z1,...,zm}
be a set of variables, and let G = {C1,C5,...} be a (possibly infinite) set of
generalizations of S under implication. Then the set G' = Z(Cy,V)UZ(C2,V)U

. is a finite set of clauses.

Proof. Let d be the maximal depth of the terms in clauses in S. It follows from
Lemma 12 that G (and hence also G') cannot contain terms of depth greater
than d, nor predicates, functions or constants other than those in S. The set
of literals which can be constructed from predicates in S, and from terms of
depth at most d consisting of functions and constants in S and variables in V,
is finite. Hence the set of clauses which can be constructed from those literals is
also finite. G’ is a subset of this set, so G’ is a finite set of clauses. |

Lemma23. Let D be a clause, C be a function-free clause such that C = D,
T = {t1,...,tn} be the term set of D by o, V = {x1,...,2m} be a set of
variables, and m > n. If E is an LGS of Z(C,V), then E |= D.

which terms the variables x,41,...,2,, are mapped by 7, as long as they are
mapped to terms in T'). Suppose Z(C,V) = {Cp1,...,Cpx}. Then Z(C,T) =
{Cp17,...,Cpry}. Let E be an LGS of Z(C, V) (note that E must be function-
free). Then for every 1 < i < k, there are 6; such that Ef; C Cp;. This means
that Ef;y C Cp;v and hence Ef;y = Cp;y, for every 1 < i < k. Therefore
E=7(C,T).

Since C' | D, we know from Lemma 12 that constants appearing in C' must
also appear in D. This means that o is a Skolem substitution for D w.r.t. {C}.
Then from Lemma 19 we know Z(C,T) |= Do, hence E = Do. Furthermore,
since E is an LGS of Z(C,V), all constants in E also appear in C, hence all
constants in E must appear in D, so ¢ is a Skolem substitution for D w.r.t.
{E}. Then E = D by Lemma 15. i

Consider C = P(z,y,z) < P(y,z,z) and D =+ Q(w). Both C and D imply the
clause E = P(z,y,2) + P(z,z,y),Q(b). Now note that C U D = P(z,y,2) +
P(y,z,z),Q(w) also implies E. This holds for clauses in general:

Lemma?24. Let C, D, and E be clauses such that C and D are standardized
apart. If C = E and D = E, then CUD = E.

Proof. Suppose C = E and D | E, and M be a model of the clause C' U D.
Since C and D are standardized apart, the clause C' U D is equivalent to the
formula V(C) vV V(D) (where V(C) denotes the universally quantified clause C).
This means that M is a model of C or a model of D. Then it follows from C' |= E
and D |= E that M is a model of E. Therefore CUD |= E. i

Now we can prove the existence of an LGI of any finite set S of clauses which
contains at least one non-tautologous and function-free clause. In fact we can
prove something stronger, namely that this LGI is a special LGI, which is not
only implied, but actually subsumed by any other generalization of S:

Definition 25. Let C be a clausal language, and S be a finite subset of C. An
LGIC of S'in C is called a special LGI of S in C, if C' = C for every generalization
C' € C of S under implication.

Note that if D is an LGI of a set containing at least one non-tautologous
function-free clause, then by Lemma 12 D is itself function-free, because it
should imply the function-free clause(s) in S. For instance, C = P(xz,y,z)
P(y,z,z),Q(w) is an LGI of Dy = P(z,y,2) « P(y,z,z),Q(f(a)) and Dy =
P(z,y,z) + P(z,z,y),Q(b). Note that this LGI is properly subsumed by the
LGS of {Dy, Dy}, which is P(z,y,z) « P(z',y',2"), Q(w). An LGI may some-
times be the empty clause O, for example if S = {P(a),Q(a)}.

Theorem 26 (Existence of special LGI in C). Let C be a clausal language.
If S is a finite set of clauses from C, and S contains at least one non-tautologous
function-free clause, then there exists a special LGI of S in C.

Proof. Let S ={D,...,D,} be a finite set of clauses from C, such that S con-
tains at least one non-tautologous function-free clause. We can assume without
loss of generality that S contains no tautologies. Let o be a Skolem substitution
for S, T = {t1,...,tm} be the term set of S by o, V = {z1,...,2,,} be a set of
variables, and G = {Cy,C, ...} be the set of all generalizations of S under im-
plication in C. Note that O € G, so G is not empty. Since each clause in G must
imply the function-free clause(s) in S, it follows from Lemma 12 that all mem-
bers of G are function-free. By Lemma 22, the set G' = Z(C1, V)UZ(Cs, V) U...
is a finite set of clauses. Since G’ is finite, the set of Z(C;, V)s is also finite. For
simplicity, let {Z(C1,V),...,Z(Ck,V)} be the set of all distinct Z(C;, V)s.

Let E; be an LGS of Z(C;, V), for every 1 < i < k, such that E;, ..., Ey are
standardized apart. For every 1 < j < n, the term set of D; by o is some set
{tj;,...,t;,} €T, such that m > j,. ;From Lemma 23, we have that E; |= D;,
forevery 1 <i<kand 1< j<m, hence E; =S. Now let FF = E; U...UE,
then we have F' =S from Lemma 24.

To prove that F' is a special LGI of S, it remains to show that C; > F, for
every j > 1. For every j > 1, there is an i (1 < i < k), such that Z(C;,V) =
Z(C;, V). So for this i, E; is an LGS of Z(C;, V). C; is itself also a generalization
of Z(C;,V) under subsumption, hence C; > E;. Then finally C; = F, since
E; CF. O

Corollary 27. Let C be a clausal language. Then for every finite set of function-
free clauses S C C, there exists an LGI of S in C.2

Proof. Let S be a finite set of function-free clauses in C. If S only contains
tautologies, any tautology will be an LGI of S. Otherwise, let S’ be obtained by
deleting all tautologies from S. By the previous theorem, there is a special LGI
of S’. Clearly, this is also a special LGI of S itself in C. O

4 The LGI is Computable

In the previous section we proved the existence of an LGI in C of every finite set
S of clauses containing at least one non-tautologous function-free clause. In this
section, we will establish the computability of such an LGI. The next algorithm,
extracted from the proof of the previous section, computes this LGI:

LGI-Algorithm

Input: A finite set S of clauses, at least one of which is non-tautologous and
function-free.

Output: An LGI of S in C.

% Niblett [13, p. 135] claims that it is simple to show that LGIs exist in a language
with only a finite number of constants and no function symbols. Such a result would
imply our corollary. However, Niblett has not provided a proof, and neither has
anyone else, as far as we know. We would be rather surprised if a proof exists which
is actually much simpler than the proof we have given here.

1. Remove all tautologies from S (a clause is a tautology iff it contains literals
A and —A), call the remaining set S’.

2. Let m be the number of distinct terms in S’, let V = {x1,..., 2, }. (Notice
that this m is the same number as the number of terms in the term set T’
used in the proof of Theorem 26.)

3. Let G be the (finite) set of all clauses which can be constructed from predi-
cates and constants in S' and variables in V.

4. Let {Uy,...,U,} be the set of all subsets of G.

5. Let H; be an LGS of U;, for every 1 < i < n. These H; can be computed by
Plotkin’s algorithm [16].

6. Remove from {Hy, ..., H,} all clauses which do not imply S’ (since each H; is
function-free, by Corollary 21 this implication is decidable), and standardize
the remaining clauses {Hi,..., H,} apart.

7. Return the clause H = Hy U ... U H,.

The correctness of this algorithm follows from the proof of Theorem 26. First
notice that H |= S by Lemma 24. Furthermore, note that all Z(C;, V')s mentioned
in the proof of Theorem 26, are elements of the set {Uy,...,U,}. This means
that for every E; in the set {Ei,..., E;} mentioned in that proof, there is a
clause H; in {Hy,...,H,} such that E; and H; are subsume-equivalent. Then
it follows that the LGI FF = E; U...U Ej, of that proof subsumes the clause
H = H,U...UH, that our algorithm returns. On the other hand, F'is a special
LGI, so F and H must be subsume-equivalent.

Suppose the number of distinct constants in S’ is ¢, and the number of
distinct variables in step 2 of the algorithm is m. Furthermore, suppose there
are p distinct predicate symbols in S’, with respective arities ai,...,a,. Then
the number of distinct atoms that can be formed from these constants, variables
and predicates, is | = Zle(c + m)%, and the number of distinct literals that
can be formed, is 2 - [. The set G of distinct clauses which can be formed from

these literals is the power set of this set of literals, so |G| = 22'!. Then the set
{Uy,...,Up,} of all subsets of G contains 2/¢! = 22°" members.

Thus the algorithm outlined above is not very efficient (to say the least).
A more efficient algorithm may exist, but since implication is harder than sub-
sumption and the computation of an LGS is already quite expensive, we should
not put our hopes too high. Nevertheless, the existence of the LGI-algorithm
does establish the theoretical point that the LGI of any finite set of clauses
containing at least one non-tautologous function-free clause, is computable.

Theorem 28 (Computability of LGI). Let C be a clausal language. If S is a
finite set of clauses from C, and S contains at least one non-tautologous function-
free clause, then the LGI of S in C is computable.

5 Least Generalizations under Relative Implication

Implication is stronger than subsumption, but implication relative to background
knowledge is even more powerful, since background knowledge can be used to

model all sorts of useful properties and relations. Here we will discuss least
generalizations under implication relative to some given background knowledge
XY (LGRs).

We will show that even if S and X are both finite sets of function-free clauses,
an LGR of S relative to X' need not exist. Let Dy = P(a), D; = P(b), S =
{D1,Ds3}, and ¥ = {(P(a) V =Q(z)), (P(b) V =Q(z))}. This S has no LGR
relative to X' in C.

Suppose C' is an LGR of S relative to Y. Note that if C contains the literal
P(a), then the Herbrand interpretation which makes P(a) true, and which makes
all other ground literals false, would be a model of ¥ U {C} but not of D,, so
then we would have C {£x D,. Similarly, if C' contains P(b) then C [£x Dj.
Hence C' cannot contain P(a) or P(b) as literals. Now let d be a constant not
appearing in C. Let D = P(x) V Q(d), then D =5 S. By the definition of an
LGR, we should have D |=5 C. Then by the Subsumption Theorem, there must
be a derivation from X U {D} of a clause E, which subsumes C. The set of all
clauses which can be derived (in 0 or more resolution-steps) from X' U {D} is
YU{D}U{(P(a)VP(x)),(P(b)VP(x))}. But none of these clauses subsumes C,
because C does not contain the constant d, nor the literals P(a) or P(b). Hence
D #5 C, contradicting the assumption that C is an LGR of S relative to X in
C.

However, we can identify a special case in which the LGR does exist. Here
Y ={Ly,...,L;} should be a set of function-free ground literals. A notational
remark: if C is a clause, we use C U X to denote the clause C U{=Ly,...,~L;}.
Note that {C} U X is a set of clauses, while C U X is a single clause (a set of
literals).

Theorem 29 (Existence of LGR in C). LetC be a clausal language and X C
C be a finite set of function-free ground literals. If S C C is a finite set of clauses,

containing at least one D for which DU X is non-tautologous and function-free,
then S has an LGR in C relative to X.

Proof. Let S = {D;,...,D,}. It can be seen that since X is a finite set of
ground literals, for any clauses C' and D we have C' |=x D (i.e., Y U{C} = D)
iff C = (DUX). Hence an LGIin C of T = {(D; U XY),..., (D, U X)} is also an

LGR of S in C. The existence of such an LGI of T follows from Theorem 26. O

It is interesting to compare this result with relative subsumption. Plotkin [17]
proved that any finite set of clauses has a least generalization under relative
subsumption, if the background knowledge X is a set of ground literals. This
result forms the basis of GOLEM [11], one of the most prominent ILP systems.
Under relative implication, the background knowledge should not only be ground,
but function-free as well. Moreover, the set S to be generalized should contain
at least one D such that D U ¥ is non-tautologous and function-free. Thus
on the one hand, relative implication is a more powerful order than relative
subsumption, but on the other hand, the existence of least generalizations can
only be guaranteed in a much more restricted case.

6

Conclusion

Implication is more appropriate for least generalizations than subsumption. We
have proved here that any finite set of clauses containing at least one non-
tautologous function-free clause has a computable LGI. For sets of clauses which
all contain functions, the existence of an LGI remains an open question. In case
of implication relative to background knowledge, least generalizations need not
exist, except for very restricted cases.

References

10.

11.

12.

13.

14.

W. Buntine. Generalized subsumption and its applications to induction and re-
dundancy. Artificial Intelligence, 36:149-176, 1988.

. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, San Diego, 1973.

G. Gottlob. Subsumption and implication. Inf. Process. Lett., 24(2):109-111,
1987.

P. Idestam-Almquist. Generalization of clauses under implication. Journal of Ar-
tificial Intelligence Research, 3:467-489, 1995.

. R. A. Kowalski. The case for using equality axioms in automatic demonstration. In

Proceedings of the Symposium on Automatic Demonstration, volume 125 of Lecture
Notes in Mathematics, pages 112-127. Springer-Verlag, 1970.

N. Lavra¢ and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

R. C.-T. Lee. A Completeness Theorem and a Computer Program for Finding
Theorems Derivable from Given Azioms. PhD thesis, University of California,
Berkeley, 1967.

J. Marcinkowski and L. Pacholski. Undecidability of the horn-clause implication
problem. In Proceedings of the 33rd Annual IEEE Symposium on Foundations of
Computer Science, pages 354-362, Pittsburg, 1992.

K. Morik, S. Wrobel, J.-U. Kietz, and W. Emde. Knowledge Acquisition and Ma-
chine Learning: Theory, Methods and Applications. Academic Press, London, 1993.
S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and meth-
ods. Journal of Logic Programming, 19-20:629-679, 1994.

S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton,
editor, Inductive Logic Programming, volume 38 of APIC Series, pages 281-298.
Academic Press, 1992.

S. Muggleton and C. D. Page. Self-saturation of definite clauses. In S. Wrobel,
editor, Proceedings of the 4th International Workshop on Inductive Logic Program-
ming (ILP-94), volume 237 of GMD-Studien, pages 161-174, Bad Honnef/Bonn,
1994. Gesellschaft fiir Mathematik und Datenverarbeitung.

T. Niblett. A study of generalisation in logic programs. In D. Sleeman, editor,
Proceedings of the 3rd European Working Sessions on Learning (EWSL-88), pages
131-138, 1988.

S.-H. Nienhuys-Cheng and R. de Wolf. Least generalizations and greatest special-
izations of sets of clauses. Journal of Artificial Intelligence Research, 4:341-363,
1996.

15.

16.

17.

18.

S.-H. Nienhuys-Cheng and R. de Wolf. The subsumption theorem in Inductive
Logic Programming: Facts and fallacies. In L. De Raedt, editor, Advances in In-
ductive Logic Programming, pages 265—-276. I0S Press, Amsterdam, 1996.

G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153—
163, 1970.

G. D. Plotkin. A further note on inductive generalization. Machine Intelligence,
6:101-124, 1971.

J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm report. In P. B. Brazdil,
editor, Proceedings of the 6th European Conference on Machine Learning (ECML-
93), volume 667 of Lecture Notes in Artificial Intelligence, pages 3-20. Springer-
Verlag, 1993.

This article was processed using the IATEX macro package with LLNCS style

