
Journal of Arti�cial Intelligence Research 4 (1996) 341-363 Submitted 11/95; published 5/96
Least Generalizations and Greatest Specializationsof Sets of ClausesShan-Hwei Nienhuys-Cheng cheng@cs.few.eur.nlRonald de Wolf bidewolf@cs.few.eur.nlErasmus University of RotterdamDepartment of Computer Science, H4-19P.O. Box 1738, 3000 DR Rotterdam, the NetherlandsAbstractThe main operations in Inductive Logic Programming (ILP) are generalization andspecialization, which only make sense in a generality order. In ILP, the three most impor-tant generality orders are subsumption, implication and implication relative to backgroundknowledge. The two languages used most often are languages of clauses and languages ofonly Horn clauses. This gives a total of six di�erent ordered languages. In this paper, wegive a systematic treatment of the existence or non-existence of least generalizations andgreatest specializations of �nite sets of clauses in each of these six ordered sets. We surveyresults already obtained by others and also contribute some answers of our own.Our main new results are, �rstly, the existence of a computable least generalizationunder implication of every �nite set of clauses containing at least one non-tautologousfunction-free clause (among other, not necessarily function-free clauses). Secondly, we showthat such a least generalization need not exist under relative implication, not even if boththe set that is to be generalized and the background knowledge are function-free. Thirdly,we give a complete discussion of existence and non-existence of greatest specializations ineach of the six ordered languages.1. IntroductionInductive Logic Programming (ILP) is a sub�eld of Logic Programming and Machine Learn-ing that tries to induce clausal theories from given sets of positive and negative exam-ples. An inductively inferred theory should imply all of the positive and none of the neg-ative examples. For instance, suppose we are given P (0), P (s2(0)), P (s4(0)), P (s6(0))as positive examples and P (s(0)); P (s3(0)); P (s5(0)) as negative examples.1 Then the set� = fP (0); (P (s2(x)) P (x))g is a solution: it implies all positive and no negative ex-amples. Note that this set can be seen as a description of the even integers, learned fromthese examples. Thus induction of clausal theories is a form of learning from examples. Fora more extensive introduction to ILP, we refer to (Lavra�c & D�zeroski, 1994; Muggleton &De Raedt, 1994).Learning from examples means modifying a theory to bring it more in accordance withthe examples. The two main operations in ILP for modi�cation of a theory are generalizationand specialization. Generalization strengthens a theory that is too weak, while specializationweakens a theory that is too strong. These operations only make sense within a generalityorder. This is a relation stating when some clause is more general than some other clause.1. Here s2(0) abbreviates s(s(0)), s3(0) abbreviates s(s(s(0))), etc.c1996 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Nienhuys-Cheng & de WolfThe three most important generality orders used in ILP are subsumption (also called�-subsumption), logical implication and implication relative to background knowledge.2 Inthe subsumption order, we say that clause C is more general than D|or, equivalently, Dis more speci�c than C|in case C subsumes D. In the implication order C is more generalthan D if C logically implies D. Finally, C is more general than D relative to backgroundknowledge � (� is a set of clauses), if fCg [� logically implies D.Of these three orders, subsumption is the most tractable. In particular, subsumptionis decidable, whereas logical implication is not decidable, not even for Horn clauses, asestablished by Marcinkowski and Pacholski (1992). In turn, relative implication is harderthan implication: both are undecidable, but proof procedures for implication need to takeonly derivations from fCg into account, whereas a proof procedure for relative implicationshould check all derivations from fCg [�.Within a generality order, there are two approaches to generalization or specialization.The �rst approach generalizes or specializes individual clauses. We do not discuss this inany detail in this paper, and merely mention it for completeness' sake. This approach canbe traced back to Reynolds' (1970) concept of a cover. It was implemented for exampleby Shapiro (1981) in the subsumption order in the form of re�nement operators. However,a clause C which implies another clause D need not subsume D. For instance, take C =P (f(x)) P (x) and D = P (f2(x)) P (x). Then C does not subsume D, but C j= D.Thus subsumption is weaker than implication. A further sign of this weakness is the factthat tautologies need not be subsume-equivalent, even though they are logically equivalent.The second approach generalizes or specializes sets of clauses. This is the approachwe will be concerned with in this paper. Here the concept of a least generalization3 isimportant. The use of such least generalizations allows us to generalize cautiously, avoidingover-generalization. Least generalizations of sets of clauses were �rst discussed by Plotkin(1970, 1971a, 1971b). He proved that any �nite set S of clauses has a least generalizationunder subsumption (LGS). This is a clause which subsumes all clauses in S and which issubsumed by all other clauses that also subsume all clauses in S. Positive examples canbe generalized by taking their LGS.4 Of course, we need not take the LGS of all positiveexamples, which would yield a theory consisting of only one clause. Instead, we mightdivide the positive examples into subsets, and take a separate LGS of each subset. Thatway we obtain a theory containing more than one clause.For this second approach, subsumption is again not fully satisfactory. For example, if Sconsists of the clauses D1 = P (f2(a)) P (a) and D2 = P (f(b)) P (b), then the LGS ofS is P (f(y)) P (x). The clause P (f(x)) P (x), which seems more appropriate as a leastgeneralization of S, cannot be found by Plotkin's approach, because it does not subsumeD1. As this example also shows, the subsumption order is particularly unsatisfactory whenwe consider recursive clauses: clauses which can be resolved with themselves.2. There is also relative subsumption (Plotkin, 1971b), which will be briey touched in Section 4.3. Least generalizations are also often called least general generalizations, for instance by Plotkin (1971b),Muggleton and Page (1994), Idestam-Almquist (1993, 1995), Niblett (1988), though not by Plotkin(1970), but we feel this `general' is redundant.4. There is also a relation between least generalization under subsumption and inverse resolution (Muggle-ton, 1992). 342

Least Generalizations and Greatest SpecializationsBecause of the weakness of subsumption, it is desirable to make the step from thesubsumption order to the more powerful implication order. Accordingly, it is important to�nd out whether Plotkin's positive result on the existence of LGS's holds for implicationas well. So far, the question whether any �nite set of clauses has a least generalizationunder implication (LGI) has only been partly answered. For instance, Idestam-Almquist(1993, 1995) studies least generalizations under T-implication as an approximation to LGI's.Muggleton and Page (1994) investigate self-saturated clauses. A clause is self-saturated if itis subsumed by any clause which implies it. A clause D is a self-saturation of C if C and Dare logically equivalent and D is self-saturated. As Muggleton and Page (1994) state, if twoclauses C1 and C2 have self-saturations D1 and D2, then an LGS of D1 and D2 is also anLGI of C1 and C2. This positively answers our question concerning the existence of LGI'sin the case of clauses which have a self-saturation. However, Muggleton and Page also showthat there exist clauses which have no self-saturation. Hence the concept of self-saturationcannot solve our question in general.Use of the third generality order, relative implication, is even more desirable than theuse of \plain" implication. Relative implication allows us to take background knowledgeinto account, which can be used to formalize many useful properties and relations of thedomain of application. For this reason, least generalizations under implication relative tobackground knowledge also deserve attention.Apart from the least generalization, there is also its dual: the greatest specialization.Greatest specializations have been accorded much less attention in ILP than least gener-alizations, but the concept of a greatest specialization may nevertheless be useful (see thebeginning of Section 6).In this paper, we give a systematic treatment of the existence and non-existence ofleast generalizations and greatest specializations, applied to each of these three generalityorders. Apart from distinguishing between these three orders, we also distinguish betweenlanguages of general clauses and more restricted languages of Horn clauses. Though mostresearchers in ILP restrict attention to Horn clauses, general clauses are also sometimes used(Plotkin, 1970, 1971b; Shapiro, 1981; De Raedt & Bruynooghe, 1993; Idestam-Almquist,1993, 1995). Moreover, many researchers who do not use general clauses actually allownegative literals to appear in the body of a clause. That is, they use clauses of the formA L1; : : : ; Ln, where A is an atom and each Li is a literal. These are called programclauses (Lloyd, 1987). Program clauses are in fact logically equivalent to general clauses.For instance, the program clause P (x) Q(x);:R(x) is equivalent to the non-Horn clauseP (x)_:Q(x)_R(x). For these two reasons we consider not only languages of Horn clauses,but also pay attention to languages of general clauses.The combination of three generality orders and two di�erent possible languages of clausesgives a total of six di�erent ordered languages. For each of these, we can ask whether leastgeneralizations (LG's) and greatest specializations (GS's) always exist. We survey resultsalready obtained by others and also contribute some answers of our own. For the sake ofclarity, we will summarize the results of our survey right at the outset. In the followingtable `+' signi�es a positive answer, and `�' means a negative answer.343

Nienhuys-Cheng & de WolfHorn clauses General clausesQuasi-order LG GS LG GSSubsumption (�) + + + +Implication (j=) � � + for function-free +Relative implication (j=�) � � � +Table 1: Existence of LG's and GS'sOur own contributions to this table are threefold. First and foremost, we prove that if Sis a �nite set of clauses containing at least one non-tautologous function-free clause5 (apartfrom this non-tautologous function-free clause, S may contain an arbitrary �nite numberof other clauses, including clauses which contain functions), then there exists a computableLGI of S. This result is on the one hand based on the Subsumption Theorem for resolution(Lee, 1967; Kowalski, 1970; Nienhuys-Cheng & de Wolf, 1996), which allows us to restrictattention to �nite sets of ground instances of clauses, and on the other hand on a modi�-cation of some proofs concerning T-implication which can be found in (Idestam-Almquist,1993, 1995). An immediate corollary of this result is the existence and computability of anLGI of any �nite set of function-free clauses. As far as we know, both our general LGI-resultand this particular corollary are new results.Niblett (1988, p. 135) claims that \it is simple to show that there are lggs if the languageis restricted to a �xed set of constant symbols since all Herbrand interpretations are �nite."Yet even for this special case of our general result, it appears that no proof has beenpublished. Initially, we found a direct proof of this case, but this was not really any simplerthan the proof of the more general result that we give in this paper. Niblett's idea that theproof is simple may be due to some confusion about the relation between Herbrand modelsand logical implication (which is de�ned in terms of all models, not just Herbrand models).We will describe this at the end of Subsection 5.1. Or perhaps one might think that thedecidability of implication for function-free clauses immediately implies the existence ofan LGI. But in fact, decidability is not a su�cient condition for the existence of a leastgeneralization. For example, it is decidable whether one function-free clause C impliesanother function-free clause D relative to function-free background knowledge. Yet leastgeneralizations relative to function-free background knowledge do not always exist, as wewill show in Section 7.Our LGI-result does not solve the general question of the existence of LGI's, but it doesprovide a positive answer for a large class of cases: the presence of one non-tautologousfunction-free clause in a �nite S already guarantees the existence and computability of anLGI of S, no matter what other clauses S contains.6 Because of the prominence of function-free clauses in ILP, this case may be of great practical signifcance. Often, particularly inimplementations of ILP-systems, the language is required to be function-free, or function5. A clause which only contains constants and variables as terms.6. Note that even for function-free clauses, the subsumption order is still not enough. Consider D1 =P (x; y; z) P (y; z; x) and D2 = P (x; y; z) P (z; x; y) (this example is adapted from Idestam-Almquist). D1 is a resolvent of D2 and D2 and D2 is a resolvent of D1 and D1. Hence D1 and D2are logically equivalent. This means that D1 is an LGI of the set fD1; D2g. However, the LGS of thesetwo clauses is P (x; y; z) P (u; v; w), which is clearly an over-generalization.344

Least Generalizations and Greatest Specializationssymbols are removed from clauses and put in the background knowledge by techniquessuch as attening (Rouveirol, 1992). Well-known ILP-systems such as Foil (Quinlan &Cameron-Jones, 1993), Linus (Lavra�c & D�zeroski, 1994) and Mobal (Morik, Wrobel,Kietz, & Emde, 1993) all use only function-free clauses. More than one half of the ILP-systems surveyed by Aha (1992) is restricted to function-free clauses. Function-free clausesare also su�cient for most applications concerning databases.Our second contribution shows that a set S need not have a least generalization relativeto some background knowledge �, not even when S and � are both function-free.Thirdly, we contribute a complete discussion of existence and non-existence of greatestspecializations in each of the six ordered languages. In particular, we show that any �niteset of clauses has a greatest specialization under implication. Combining this with thecorollary of our result on LGI's, it follows that a function-free clausal language is a lattice.2. PreliminariesIn this section we will de�ne some of the concepts we need. For the de�nitions of `model',`tautology', `substitution', etc., we refer to standard works such as (Chang & Lee, 1973;Lloyd, 1987). A positive literal is an atom, a negative literal is the negation of an atom.A clause is a �nite set of literals, which is treated as the universally quanti�ed disjunctionof those literals. A de�nite program clause is a clause with one positive and zero or morenegative literals and a de�nite goal is a clause without positive literals. A Horn clause iseither a de�nite program clause or a de�nite goal. If C is a clause, we use C+ to denotethe positive literals in C, and C� to denote the negative literals in C. The empty clause,which represents a contradiction, is denoted by 2.De�nition 1 Let A be an alphabet of the �rst-order logic. Then the clausal language Cby A is the set of all clauses which can be constructed from the symbols in A. The Hornlanguage H by A is the set of all Horn clauses which can be constructed from the symbolsin A. 2In this paper, we just presuppose some arbitrary alphabet A, and consider the clausallanguage C and Horn language H based on this A. We will now de�ne three increasinglystrong generality orders on clauses: subsumption, implication and relative implication.De�nition 2 Let C and D be clauses and � be a set of clauses. We say that C subsumesD, denoted as C � D, if there exists a substitution � such that C� � D.7 C and D aresubsume-equivalent if C � D and D � C.� (logically) implies C, denoted as � j= C, if every model of � is also a model of C. C(logically) implies D, denoted as C j= D, if fCg j= D. C and D are (logically) equivalent ifC j= D and D j= C.C implies D relative to �, denoted as C j=� D, if �[fCg j= D. C and D are equivalentrelative to � if C j=� D and D j=� C. 27. Right from the very �rst applications of subsumption in ILP, there has been some controversy aboutthe symbol used for subsumption: Plotkin (1970) used `�', while Reynolds (1970) used `�'. We use `�'here, similar to Reynolds' `�', because we feel it serves the intuition to view C as somehow \bigger" or\stronger" than D, if C � D holds. 345

Nienhuys-Cheng & de WolfIf C does not subsume D, we write C 6� D. Similarly, we use the notation C 6j= D andC 6j=� D.If C � D, then C j= D. The converse does not hold, as the examples in the introductionshowed. Similarly, if C j= D, then C j=� D, and again the converse need not hold. ConsiderC = P (a) _ :P (b), D = P (a), and � = fP (b)g: then C j=� D, but C 6j= D.We now proceed to de�ne a proof procedure for logical implication between clauses,using resolution and subsumption.De�nition 3 If two clauses have no variables in common, then they are said to be stan-dardized apart.Let C1 = L1 _ : : : _ Li _ : : : _ Lm and C2 = M1 _ : : : _Mj _ : : : _Mn be two clauseswhich are standardized apart. If the substitution � is a most general uni�er (mgu) of theset fLi;:Mjg, then the clause ((C1 � Li) [(C2 �Mj))� is called a binary resolvent of C1and C2. The literals Li and Mj are said to be the literals resolved upon. 2If C1 and C2 are not standardized apart, we can take a variant C 02 of C2, such that C1 andC 02 are standardized apart. For simplicity, a binary resolvent of C1 and C 02 is also called abinary resolvent of C1 and C2 itself.De�nition 4 Let C be a clause and � an mgu of fL1; : : : ; Lng � C (n � 1). Then theclause C� is called a factor of C. 2Note that any non-empty clause C is a factor of itself, using the empty substitution " as anmgu of a single literal in C.De�nition 5 A resolvent C of clauses C1 and C2 is a binary resolvent of a factor of C1and a factor of C2, where the literals resolved upon are the literals uni�ed in the respectivefactors. C1 and C2 are the parent clauses of C. 2De�nition 6 Let � be a set of clauses and C a clause. A derivation of C from � is a �nitesequence of clauses R1; : : : ; Rk = C, such that each Ri is either in �, or a resolvent of twoclauses in fR1; : : : ; Ri�1g. If such a derivation exists, we write � `r C. 2De�nition 7 Let � be a set of clauses and C a clause. We say there exists a deduction ofC from �, written as � `d C, if C is a tautology, or if there exists a clause D such that� `r D and D � C. 2The next result, proved by Nienhuys-Cheng and de Wolf (1996), generalizes Herbrand'sTheorem:Theorem 1 Let � be a set of clauses and C be a ground clause. If � j= C, then thereexists a �nite set �g of ground instances of clauses in �, such that �g j= C.The following Subsumption Theorem gives a precise characterization of implication betweenclauses in terms of resolution and subsumption. It was proved by Lee (1967), Kowalski(1970) and reproved by Nienhuys-Cheng and de Wolf (1996).346

Least Generalizations and Greatest SpecializationsTheorem 2 (Subsumption theorem) Let � be a set of clauses and C be a clause. Then� j= C i� � `d C.The next lemma was �rst proved by Gottlob (1987). Actually, it is an immediate corollaryof the subsumption theorem:Lemma 1 (Gottlob) Let C and D be non-tautologous clauses. If C j= D, then C+ � D+and C� � D�.Proof Since C+ � C, if C j= D, then we have C+ j= D. Since C+ cannot be resolved withitself, it follows from the subsumption theorem that C+ � D. But then C+ must subsumethe positive literals in D, hence C+ � D+. Similarly C� � D�. 2An important consequence of this lemma concerns the depth of clauses, de�ned as follows:De�nition 8 Let t be a term. If t is a variable or constant, then the depth of t is 1. Ift = f(t1; : : : ; tn), n � 1, then the depth of t is 1 plus the depth of the ti with largest depth.The depth of a clause C is the depth of the term with largest depth in C. 2For example, the term t = f(a; x) has depth 2. C = P (f(x)) P (g(f(x); a)) has depth 3,since g(f(x); a) has depth 3. It follows from Gottlob's lemma that if C j= D, then the depthof C is smaller than or equal to the depth of D, for otherwise C+ cannot subsume D+ orC� cannot subsume D�. For instance, take D = P (x; f(x; g(y))) P (g(a); b), which hasdepth 3. Then a clause C containing a term f(x; g2(y)) (depth 4) cannot imply D.De�nition 9 Let S and S0 be �nite sets of clauses, x1; : : : ; xn all distinct variables ap-pearing in S, and a1; : : : ; an distinct constants not appearing in S or S0. Then � =fx1=a1; : : : ; xn=ang is called a Skolem substitution for S w.r.t. S0. If S0 is empty, we justsay that � is a Skolem substitution for S. 2Lemma 2 Let � be a set of clauses, C be a clause, and � be a Skolem substitution for Cw.r.t. �. Then � j= C i� � j= C�.Proof): Obvious.(: Suppose C is not a tautology and let � = fx1=a1; : : : ; xn=ang. If � j= C�, it followsfrom the subsumption theorem that there is a D such that � `r D and D � C�. Thus thereis a �, such that D� � C�. Note that since � `r D and none of the constants a1; : : : ; anappears in �, none of these constants appears in D. Now let �0 be obtained by replacing in� all occurrences of ai by xi, for every 1 � i � n. Then D�0 � C, hence D � C. Therefore� `d C and hence � j= C. 2347

Nienhuys-Cheng & de Wolf3. Least Generalizations and Greatest SpecializationsIn this section, we will de�ne the concepts we need concerning least generalizations andgreatest specializations.De�nition 10 Let � be a set and R be a binary relation on �.1. R is reexive on �, if xRx for every x 2 �.2. R is transitive on �, if for every x; y; z 2 �, xRy and yRz implies xRz.3. R is symmetric on �, if for every x; y 2 �, xRy implies yRx.4. R is anti-symmetric on �, if for every x; y; z 2 �, xRy and yRx implies x = y.If R is both reexive and transitive on �, we say R is a quasi-order on �. If R is bothreexive, transitive and anti-symmetric on �, we say R is a partial order on �. If R isreexive, transitive and symmetric on �, R is an equivalence relation on �. 2A quasi-order R on � induces an equivalence-relation � on �, as follows: we say x; y 2 �are equivalent induced by R (denoted x � y) if both xRy and yRx. Using this equivalencerelation, a quasi-order R on � induces a partial order R0 on the set of equivalence classes in�, de�ned as follows: if [x] denotes the equivalence class of x (i.e., [x] = fy j x � yg), then[x]R0[y] i� xRy.We �rst give a general de�nition of least generalizations and greatest specializations forsets of clauses ordered by some quasi-order, which we then instantiate in di�erent ways.De�nition 11 Let � be a set of clauses, � be a quasi-order on �, S � � be a �nite set ofclauses and C 2 �. If C � D for every D 2 S, then we say C is a generalization of S under�. Such a C is called a least generalization (LG) of S under � in �, if we have C 0 � C forevery generalization C 0 2 � of S under �.Dually, C is a specialization of S under �, if D � C for every D 2 S. Such a C is calleda greatest specialization (GS) of S under � in �, if we have C � C 0 for every specializationC 0 2 � of S under �. 2It is easy to see that if some set S has an LG or GS under � in �, then this LG or GS willbe unique up to the equivalence induced by � in �. That is, if C and D are both LG's orGS's of some set S, then we have C � D.The concepts de�ned above are instances of the mathematical concepts of (least) upperbounds and (greatest) lower bounds. Thus we can speak of lattice-properties of a quasi- orpartially ordered set of clauses:De�nition 12 Let � be a set of clauses and � be a quasi-order on �. If for every �nitesubset S of �, there exist both a least generalization and a greatest specialization of S under� in �, then the set � ordered by � is called a lattice. 2It should be noted that usually in mathematics, a lattice is de�ned for a partial orderinstead of a quasi-order. However, since in ILP we usually have to deal with individualclauses rather than with equivalence classes of clauses, it is convenient for us to de�ne`lattice' for a quasi-order here. Anyhow, if a quasi-order � is a lattice on �, then the partialorder induced by � is a lattice on the set of equivalence classes in �.348

Least Generalizations and Greatest SpecializationsIn ILP, there are two main instantiations for the set of clauses �: either we take a clausallanguage C, or we take a Horn language H. Similarly, there are three interesting choicesfor the quasi-order �: we can use either � (subsumption), j= (implication), or j=� (relativeimplication) for some background knowledge �. In the �-order, we will sometimes abbrevi-ate the terms `least generalization of S under subsumption' and `greatest specialization ofS under subsumption' to `LGS of S' and `GSS of S', respectively. Similarly, in the j=-orderwe will sometimes speak of an LGI (least generalization under implication) and a GSI. Inthe j=�-order, we will use LGR (least generalization under relative implication) and GSR.These two di�erent languages and three di�erent quasi-orders give a total of six com-binations. For each combination, we can ask whether an LG or GS of every �nite set Sexists. In the next section, we will review the answers for subsumption given by others orby ourselves. Then we devote two sections to least generalizations and greatest specializa-tions under implication, respectively. Finally, we discuss least generalizations and greatestspecializations under relative implication. The results of this survey have already beensummarized in Table 1 in the introduction.4. SubsumptionFirst we devote some attention to subsumption. Least generalizations under subsumptionhave been discussed extensively by Plotkin (1970). The main result in Plotkin's frameworkis the following:Theorem 3 (Existence of LGS in C) Let C be a clausal language. Then for every �niteS � C, there exists an LGS of S in C.If S only contains Horn clauses, then it can be shown that the LGS of S is itself also aHorn clause. Thus the question for the existence of an LGS of every �nite set S of clausesis answered positively for both clausal languages and for Horn languages.Plotkin established the existence of an LGS, but he seems to have ignored the GSS in(1970, 1971b), possibly because it is a very straightforward result. It is in fact fairly easyto show that the GSS of some �nite set S of clauses is simply the union of all clauses in Safter they are standardized apart.8 We include the proof here.Theorem 4 (Existence of GSS in C) Let C be a clausal language. Then for every �niteS � C, there exists a GSS of S in C.Proof Suppose S = fD1; : : : ;Dng � C. Without loss of generality, we assume the clausesin S are standardized apart. Let D = D1 [: : : [Dn, then Di � D, for every 1 � i � n.Now let C 2 C be such that Di � C, for every 1 � i � n. Then for every 1 � i � n, thereis a �i such that Di�i � C and �i only acts on variables in Di. If we let � = �1 [: : : [�n,then D� = D1�1 [: : : [Dn�n � C. Hence D � C, so D is a GSS of S in C. 28. Note that this has nothing to do with uni�cation. For instance, if S = fP (a; x); P (y; b)g, then the GSSof S in C would be P (a; x) _ P (y; b). However, if we would instantiate � in De�nition 11 to the set ofatoms, then the greatest specialization of two atoms in the set of atoms should itself also be an atom.The GSS of two atoms is then their most general uni�cation (Reynolds, 1970). For instance, the GSS ofS would in this case be P (a; b). 349

Nienhuys-Cheng & de WolfThis establishes that a clausal language C ordered by � is a lattice.Proving the existence of a GSS of every �nite set of Horn clauses in H requires a littlemore work, but here also the result is positive. For example, D = P (a) P (f(a)); Q(y)is a GSS of D1 = P (x) P (f(x)) and D2 = P (a) Q(y). Note that D can be obtainedby applying � = fx=ag (the mgu of the heads of D1 and D2) to D1 [D2, the GSS of D1and D2 in C. This idea will be used in the following proof. Here we assume H contains anarti�cial bottom element (True) ?, such that C � ? for every C 2 H, and ? 6� C for everyC 6= ?. Note that ? is not subsume-equivalent with other tautologies.Theorem 5 (Existence of GSS in H) Let H be a Horn language, with ? 2 H. Thenfor every �nite S � H, there exists a GSS of S in H.Proof Suppose S = fD1; : : : ;Dng � H. Without loss of generality we assume theclauses in S are standardized apart, D1; : : : ;Dk are the de�nite program clauses in S,and Dk+1; : : : ;Dn are the de�nite goals in S. If k = 0 (i.e., if S only contains goals), thenit is easy to show that D1 [: : :[Dn is a GSS of S in H. If k � 1 and the set fD+1 ; : : : ;D+k gis not uni�able, then ? is a GSS of S in H. Otherwise, let � be an mgu of fD+1 ; : : : ;D+k g,and let D = D1� [: : : [Dn� (note that actually Di� = Di for k + 1 � i � n, since theclauses in S are standardized apart). Since D has exactly one literal in its head, it is ade�nite program clause. Furthermore, we have Di � D for every 1 � i � n, since Di� � D.To show that D is a GSS of S in H, suppose C 2 H is some clause such that Di � Cfor every 1 � i � n. For every 1 � i � n, let �i be such that Di�i � C and �i only actson variables in Di. Let � = �1 [: : : [�n. For every 1 � i � k, D+i � = D+i �i = C+, so � isa uni�er of fD+1 ; : : : ;D+k g. But � is an mgu of this set, so there is a such that � = �.Now D = D1� [: : : [Dn� = D1� [: : :[Dn� = D1�1 [: : : [Dn�n � C. Hence D � C,so D is a GSS of S in H. See �gure 1 for illustration of the case where n = 2.D1HHHHj�JJJJJĴ�1 D2����� �

� �2D?CFigure 1: D is a GSS of D1 and D2 2Thus a Horn language H ordered by � is also a lattice.We end this section by briey discussing Plotkin's (1971b) relative subsumption. This isan extension of subsumption which takes background knowledge into account. This back-ground knowledge is rather restricted: it must be a �nite set � of ground literals. Becauseof its restrictiveness, we have not included relative subsumption in Table 1. Nevertheless,we mention it here, because least generalization under relative subsumption forms the basisof the well-known ILP system Golem (Muggleton & Feng, 1992).De�nition 13 Let C;D be clauses, � = fL1; : : : ; Lmg be a �nite set of ground literals.Then C subsumes D relative to �, denoted by C �� D, if C � (D [f:L1; : : : ;:Lmg). 2350

Least Generalizations and Greatest SpecializationsIt is easy to see that �� is reexive and transitive, so it imposes a quasi-order on a set ofclauses.Suppose S = fD1; : : : ;Dng and � = fL1; : : : ; Lmg. It is easy to see that an LGS off(D1 [f:L1; : : : ;:Lmg); : : : ; (Dn [f:L1; : : : ;:Lmg)g is a least generalization of S under��, so every �nite set of clauses has a least generalization under �� in C. Moreover, ifeach Di is a Horn clause and each Lj is a positive ground literal (i.e., a ground atom), thenthis least generalization will itself also be a Horn clause. Accordingly, if � is a �nite setof positive ground literals, then every �nite set of Horn clauses has a least generalizationunder �� in H.5. Least Generalizations under ImplicationNow we turn from subsumption to the implication order. In this section we will discussLGI's, in the next section we handle GSS's. For Horn clauses, the LGI-question has alreadybeen answered negatively by Muggleton and De Raedt (1994).Let D1 = P (f2(x)) P (x), D2 = P (f3(x)) P (x), C1 = P (f(x)) P (x) andC2 = P (f2(y)) P (x). Then we have both C1 j= fD1;D2g and C2 j= fD1;D2g. It is notvery di�cult to see that there are no more speci�c Horn clauses than C1 and C2 that implyboth D1 and D2. For C1: no resolvent of C1 with itself implies D2 and no clause that isproperly subsumed by C1 still implies D1 and D2. For C2: every resolvent of C2 with itselfis a variant of C2, and no clause that is properly subsumed by C2 still implies D1 and D2.Thus C1 and C2 are both \minimal" generalizations under implication of fD1;D2g. SinceC1 and C2 are not logically equivalent under implication, there is no LGI of fD1;D2g in H.However, the fact that there is no LGI of fD1;D2g in H does not mean that D1 and D2have no LGI in C, since a Horn language is a more restricted space than a clausal language.In fact, it is shown by Muggleton and Page (1994) that C = P (f(x))_P (f2(y)) P (x) isan LGI of D1 and D2 in C. For this reason, it may be worthwhile for the LGI to considera clausal language instead of only Horn clauses.In the next subsection, we show that any �nite set of clauses which contains at leastone non-tautologous function-free clause, has an LGI in C. An immediate corollary of thisresult is the existence of an LGI of any �nite set of function-free clauses. In our usage of theword, a `function-free' clause may contain constants, even though constants are sometimesseen as functions of arity 0.De�nition 14 A clause is function-free if it does not contain function symbols of arity 1or more. 2Note that a clause is function-free i� it has depth 1. In case of sets of clauses which allcontain function symbols, the LGI-question remains open.5.1 A Su�cient Condition for the Existence of an LGIIn this subsection, we will show that any �nite set S of clauses containing at least onenon-tautologous function-free clause, has an LGI in C.De�nition 15 Let C be a clause, x1; : : : ; xn all distinct variables in C, and K a set ofterms. Then the instance set of C w.r.t. K is I(C;K) = fC� j � = fx1=t1; : : : ; xn=tng;351

Nienhuys-Cheng & de Wolfwhere ti 2 K, for every 1 � i � ng. If � = fC1; : : : ; Ckg is a set of clauses, then theinstance set of � w.r.t. K is I(�;K) = I(C1;K) [: : : [I(Ck;K). 2For example, if C = P (x)_Q(y) and T = fa; f(z)g, then I(C; T) = f(P (a)_Q(a)); (P (a)_Q(f(z))); (P (f(z)) _Q(a)); (P (f(z)) _Q(f(z)))g.De�nition 16 Let S be a �nite set of clauses, and � be a Skolem substitution for S. Thenthe term set of S by � is the set of all terms (including subterms) occurring in S�. 2A term set of S by some � is a �nite set of ground terms. For instance, the term set ofD = P (f2(x); y; z) P (y; z; f2(x)) by � = fx=a; y=b; z=cg is T = fa; f(a); f2(a); b; cg.Our de�nition of a term set corresponds to what Idestam-Almquist (1993, 1995) callsa `minimal term set'. In his de�nition, if � is a Skolem substitution for a set of clausesS = fD1; : : : ;Dng w.r.t. some other set of clauses S0, then a term set of S is a �nite set ofterms which contains the minimal term set of S by � as a subset.Using his notion of term set, he de�nes T-implication as follows: if C and D are clausesand T is a term set of fDg by some Skolem substitution � w.r.t. fCg, then C T-implies Dw.r.t. T if I(C; T) j= D�. T-implication is decidable, weaker than logical implication andstronger than subsumption. Idestam-Almquist (1993, 1995) gives the result that any �niteset of clauses has a least generalization under T-implication w.r.t. any term set T . However,as he also notes, T-implication is not transitive and hence not a quasi-order. Therefore itdoes not �t into our general framework here. For this reason, we will not discuss it fullyhere, and for the same reason we have not included a row for T-implication in Table 1.Let us now begin with the proof of our result concerning the existence of LGI's. ConsiderC = P (x; y; z) P (z; x; y) and D, � and T as above. Then C j= D and also I(C; T) j= D�,since D� is a resolvent of P (f2(a); b; c) P (c; f2(a); b) and P (c; f2(a); b) P (b; c; f2(a)),which are in I(C; T). As we will show in the next lemma, this holds in general: if C j= D andC is function-free, then we can restrict attention to the ground instances of C instantiatedto terms in the term set of D by some �.The proof of Lemma 3 uses the following idea. Consider a derivation of a clause E froma set � of ground clauses. Suppose some of the clauses in � contain terms not appearing inE. Then any literals containing these terms in � must be resolved away in the derivation.This means that if we replace all the terms in the derivation that are not in E, by someother term t, then the result will be another derivation of E. For example, the left of �gure 2shows a derivation of length 1 of E. The term f2(b) in the parent clauses does not appearin E. If we replace this term by the constant a, the result is another derivation of E (rightof the �gure).P (b) P (f2(b)) P (f2(b)) Q(a; f(a))@@@R ���	E = P (b) Q(a; f(a)) P (b) P (a) P (a) Q(b; f(a))@@@R ���	E = P (b) Q(a; f(a))Figure 2: Transforming the left derivation yields the right derivationLemma 3 Let C be a function-free clause, D be a clause, � be a Skolem substitution forD w.r.t. fCg and T be the term set of D by �. Then C j= D i� I(C; T) j= D�.352

Least Generalizations and Greatest SpecializationsProof(: Since C j= I(C; T) and I(C; T) j= D�, we have C j= D�. Now C j= D by Lemma 2.): If D is a tautology, then D� is a tautology, so this case is obvious. Suppose D is nota tautology, then D� is not a tautology. Since C j= D�, it follows from Theorem 1 thatthere exists a �nite set � of ground instances of C, such that � j= D�. By the SubsumptionTheorem, there exists a derivation from � of a clause E, such that E � D�. Since � isground, E must also be ground, so we have E � D�. This implies that E only containsterms from T .Let t be an arbitrary term in T and let �0 be obtained from � by replacing every termin clauses in � which is not in T , by t. Note that since each clause in � is a ground instanceof the function-free clause C, every clause in �0 is also a ground instance of C. Now it iseasy to see that the same replacement of terms in the derivation of E from � results ina derivation of E from �0: (1) each resolution step in the derivation from � can also becarried out in the derivation from �0, since the same terms in � are replaced by the sameterms in �0, and (2) the terms in � that are not in T (and hence are replaced by t) do notappear in the conclusion E of the derivation.Since there is a derivation of E from � we have �0 j= E, and hence �0 j= D�. �0 is aset of ground instances of C and all terms in �0 are terms in T , so �0 � I(C; T). HenceI(C; T) j= D�. 2Lemma 3 cannot be generalized to the case where C contains function symbols of arity� 1, take C = P (f(x); y) P (z; x) and D = P (f(a); a) P (a; f(a)) (from the examplegiven on p. 25 of Idestam-Almquist, 1993). Then T = fa; f(a)g is the term set of D andwe have C j= D, yet it can be seen that I(C; T) 6j= D. The argument used in the previouslemma does not work here, because di�erent terms in some ground instance need not relateto di�erent variables. For example, in the ground instance P (f2(a); a) P (a; f(a)) of C,we cannot just replace f2(a) by some other term, for then the resulting clause would notbe an instance of C.On the other hand, Lemma 3 can be generalized to a set of clauses instead of a singleclause. If � is a set of function-free clauses, C is an arbitrary clause, and � is a Skolemsubstitution for C w.r.t. �, then we have that � j= C i� I(�; T) j= C�. The proof is almostliterally the same as above.This result implies that � j= C is reducible to an implication I(�; T) j= C� betweenground clauses. Since, by the next lemma, implication between ground clauses is decidable,it follows that � j= C is decidable in case � is function-free.Lemma 4 The problem whether � j= C, where � is a �nite set of ground clauses and C isa ground clause, is decidable.Proof Let C = L1 _ : : : _ Ln and A be the set of all ground atoms occurring in � and C.Now consider the following statements, which can be shown equivalent.(1) � j= C.(2) � [f:L1; : : : ;:Lng is unsatis�able.(3) � [f:L1; : : : ;:Lng has no Herbrand model.(4) No subset of A is an Herbrand model of � [f:L1; : : : ;:Lng.353

Nienhuys-Cheng & de WolfThen (1),(2). (2),(3) by Theorem 4.2 of (Chang & Lee, 1973). Since also (3),(4), wehave (1),(4). (4) is decidable because A is �nite, so (1) is decidable as well. 2Corollary 1 The problem whether � j= C, where � is a �nite set of function-free clausesand C is a clause, is decidable.The following sequence of lemmas more or less follows the pattern of Idestam-Almquist's(1995) Lemma 10 to Lemma 12 (similar to Lemma 3.10 to Lemma 3.12 of Idestam-Almquist,1993). There he gives a proof of the existence of a least generalization under T-implicationof any �nite set of (not necessarily function-free) clauses. We can adjust the proof in sucha way that we can use it to establish the existence of an LGI of any �nite set of clausescontaining at least one non-tautologous function-free clause.Lemma 5 Let S be a �nite set of non-tautologous clauses, V = fx1; : : : ; xmg be a set ofvariables and let G = fC1; C2; : : :g be a (possibly in�nite) set of generalizations of S underimplication. Then the set G0 = I(C1; V) [I(C2; V) [: : : is a �nite set of clauses.Proof Let d be the maximal depth of the terms in clauses in S. It follows from Lemma 1that G (and hence also G0) cannot contain terms of depth greater than d, nor predicates,functions or constants other than those in S. The set of literals which can be constructedfrom predicates in S and from terms of depth at most d consisting of functions and constantsin S and variables in V , is �nite. Hence the set of clauses which can be constructed fromthose literals is �nite as well. G0 is a subset of this set, so G0 is a �nite set of clauses. 2Lemma 6 Let D be a clause, C be a function-free clause such that C j= D, T = ft1; : : : ; tngbe the term set of D by �, V = fx1; : : : ; xmg be a set of variables and m � n. If E is anLGS of I(C; V), then E j= D.Proof Let = fx1=t1; : : : ; xn=tn; xn+1=tn; : : : ; xm=tng (it does not matter to which termsthe variables xn+1; : : : ; xm are mapped by , as long as they are mapped to terms in T).Suppose I(C; V) = fC�1; : : : ; C�kg. Then I(C; T) = fC�1; : : : ; C�kg. Let E be an LGSof I(C; V) (note that E must be function-free). Then for every 1 � i � k, there are �isuch that E�i � C�i. This means that E�i � C�i and hence E�i j= C�i, for every1 � i � k. Therefore E j= I(C; T).Since C j= D, we know from Lemma 1 that constants appearing in C must also appearin D. This means that � is a Skolem substitution for D w.r.t. fCg. Then from Lemma 3we know I(C; T) j= D�, hence E j= D�. Furthermore, since E is an LGS of I(C; V), allconstants in E also appear in C, hence all constants in E must appear in D. Thus � is alsoa Skolem substitution for D w.r.t. fEg. Therefore E j= D by Lemma 2. 2Consider C = P (x; y; z) P (y; z; x) and D = Q(w). Both C and D imply the clauseE = P (x; y; z) P (z; x; y); Q(b). Now note that C[D = P (x; y; z) P (y; z; x); Q(w) alsoimplies E. This holds for clauses in general, even in the presence of background knowledge�. The next lemma is very general, but in this section we only need the special case whereC and D are function-free and � is empty. We need the general case to prove the existenceof a GSR in Section 8. 354

Least Generalizations and Greatest SpecializationsLemma 7 Let C, D and E be clauses such that C and D are standardized apart and let �be a set of clauses. If C j=� E and D j=� E, then C [D j=� E.Proof Suppose C j=� E and D j=� E, and let M be a model of � [fC [Dg. Since Cand D are standardized apart, the clause C [D is equivalent to the formula 8(C) _ 8(D)(where 8(C) denotes the universally quanti�ed clause C). This means that M is a model ofC or a model of D. Furthermore, M is also a model of �, so it follows from � [fCg j= Eor � [fDg j= E that M is a model of E. Thus � [fC [Dg j= E, hence C [D j=� E. 2Now we can prove the existence of an LGI of any �nite set S of clauses which contains atleast one non-tautologous and function-free clause. In fact we can prove something stronger,namely that this LGI is a special LGI. This is an LGI that is not only implied, but actuallysubsumed by any other generalization of S:De�nition 17 Let C be a clausal language and S be a �nite subset of C. An LGI C of Sin C is called a special LGI of S in C, if C 0 � C for every generalization C 0 2 C of S underimplication. 2Note that if D is an LGI of a set containing at least one non-tautologous function-freeclause, then by Lemma 1 D is itself function-free, because it should imply the function-free clause(s) in S. For instance, C = P (x; y; z) P (y; z; x); Q(w) is an LGI of D1 =P (x; y; z) P (y; z; x); Q(f(a)) and D2 = P (x; y; z) P (z; x; y); Q(b). Note that this LGIis properly subsumed by the LGS of fD1;D2g, which is P (x; y; z) P (x0; y0; z0); Q(w). AnLGI may sometimes be the empty clause 2, for example if S = fP (a); Q(a)g.Theorem 6 (Existence of special LGI in C) Let C be a clausal language. If S is a�nite set of clauses from C and S contains at least one non-tautologous function-free clause,then there exists a special LGI of S in C.Proof Let S = fD1; : : : ;Dng be a �nite set of clauses from C, such that S contains at leastone non-tautologous function-free clause. We can assume without loss of generality that Scontains no tautologies. Let � be a Skolem substitution for S, T = ft1; : : : ; tmg be the termset of S by �, V = fx1; : : : ; xmg be a set of variables and G = fC1; C2; : : :g be the set ofall generalizations of S under implication in C. Note that 2 2 G, so G is not empty. Sinceeach clause in G must imply the function-free clause(s) in S, it follows from Lemma 1 thatall members of G are function-free. By Lemma 5, the set G0 = I(C1; V) [I(C2; V) [: : : isa �nite set of clauses. Since G0 is �nite, the set of I(Ci; V)s is also �nite. For simplicity, letfI(C1; V); : : : ;I(Ck; V)g be the set of all distinct I(Ci; V)s.Let Ei be an LGS of I(Ci; V), for every 1 � i � k, such that E1; : : : ; Ek are standardizedapart. For every 1 � j � n, the term set of Dj by � is some set ftj1 ; : : : ; tjsg � T , suchthat m � js. >From Lemma 6, we have that Ei j= Dj , for every 1 � i � k and 1 � j � n,hence Ei j= S. Now let F = E1 [: : : [Ek, then we have F j= S from Lemma 7 (applyingthe case of Lemma 7 where � is empty).To prove that F is a special LGI of S, it remains to show that Cj � F , for every j � 1.For every j � 1, there is an i (1 � i � k), such that I(Cj; V) = I(Ci; V). So for this i,Ei is an LGS of I(Cj; V). Cj is itself also a generalization of I(Cj; V) under subsumption,355

Nienhuys-Cheng & de Wolfhence Cj � Ei. Then �nally Cj � F , since Ei � F . 2As a consequence, we also immediately have the following:Corollary 2 (Existence of LGI for function-free clauses) Let C be a clausal language.Then for every �nite set of function-free clauses S � C, there exists an LGI of S in C.Proof Let S be a �nite set of function-free clauses in C. If S only contains tautologies,any tautology will be an LGI of S. Otherwise, let S0 be obtained by deleting all tautologiesfrom S. By the previous theorem, there is a special LGI of S0. Clearly, this is also a specialLGI of S itself in C. 2This corollary is not trivial, since even though the number of Herbrand interpretationsof a language without function symbols is �nite (due to the fact that the number of allpossible ground atoms is �nite in this case), S may nevertheless be implied by an in�nitenumber of non-equivalent clauses. This may seem like a paradox, since there are only�nitely many categories of clauses that can \behave di�erently" in a �nite number of �niteHerbrand interpretations. Thus it would seem that the number of non-equivalent function-free clauses should also be �nite. This is a misunderstanding, since logical implication (andhence also logical equivalence) is de�ned in terms of all interpretations, not just Herbrandinterpretations. For instance, de�ne D1 = P (a; a) and P (b; b), Cn = fP (xi; xj) j i 6= j; 1 �i; j � ng. Then we have Cn j= fD1;D2g, Cn j= Cn+1 and Cn+1 6j= Cn, for every n � 1, see(van der Laag & Nienhuys-Cheng, 1994).Another interesting consequence of Theorem 6 concerns self-saturation (see the intro-duction to this paper for the de�nition of self-saturation). If C is a special LGI of some setS, then it is clear that C is self-saturated: any clause which implies C also implies S andhence must subsume C, since C is a special LGI of S. Now consider S = fDg, where Dis some non-tautologous function-free clause. Then a special LGI C of S will be logicallyequivalent to D. Moreover, since this C will be self-saturated, it is a self-saturation of D.Corollary 3 If D is a non-tautologous function-free clause, then there exists a self-satura-tion of D.5.2 The LGI is ComputableIn the previous subsection we proved the existence of an LGI in C of every �nite set S ofclauses containing at least one non-tautologous function-free clause. In this subsection wewill establish the computability of such an LGI. The next algorithm, extracted from theproof of the previous section, computes this LGI of S.
356

Least Generalizations and Greatest SpecializationsLGI-AlgorithmInput: A �nite set S of clauses, containing at least one non-tautologous function-free clause.Output: An LGI of S in C.1. Remove all tautologies from S (a clause is a tautology i� it contains literalsA and :A), call the remaining set S0.2. Let m be the number of distinct terms (including subterms) in S0, letV = fx1; : : : ; xmg. (Notice that this m is the same number as the numberof terms in the term set T used in the proof of Theorem 6.)3. Let G be the (�nite) set of all clauses which can be constructed frompredicates and constants in S0 and variables in V .4. Let fU1; : : : ; Ung be the set of all subsets of G.5. Let Hi be an LGS of Ui, for every 1 � i � n. These Hi can be computedby Plotkin's (1970) algorithm.6. Remove from fH1; : : : ;Hng all clauses which do not imply S0 (since eachHi is function-free, by Corollary 1 this implication is decidable), and stan-dardize the remaining clauses fH1; : : : ;Hqg apart.7. Return the clause H = H1 [: : : [Hq.The correctness of this algorithm follows from the proof of Theorem 6. First notice thatH j= S by Lemma 7. Furthermore, note that all I(Ci; V)'s mentioned in the proof ofTheorem 6, are elements of the set fU1; : : : ; Ung. This means that for every Ei in the setfE1; : : : ; Ekg mentioned in that proof, there is a clause Hj in fH1; : : : ;Hqg such that Eiand Hj are subsume-equivalent. Then it follows that the LGI F = E1 [: : : [Ek of thatproof subsumes the clause H = H1 [: : : [Hq that our algorithm returns. On the otherhand, F is a special LGI, so F and H must be subsume-equivalent.Suppose the number of distinct constants in S0 is c and the number of distinct variables instep 2 of the algorithm ism. Furthermore, suppose there are p distinct predicate symbols inS0, with respective arities a1; : : : ; ap. Then the number of distinct atoms that can be formedfrom these constants, variables and predicates, is l = Ppi=1(c +m)ai , and the number ofdistinct literals that can be formed is 2 � l. The set G of distinct clauses which can beformed from these literals is the power set of this set of literals, so jGj = 22�l. Then the setfU1; : : : ; Ung of all subsets of G contains 2jGj = 222�l members.Thus the algorithm outlined above is not very e�cient (to say the least). A more e�cientalgorithm may exist, but since implication is harder than subsumption and the computationof an LGS is already quite expensive, we should not put our hopes too high. Nevertheless,the existence of the LGI-algorithm does establish the theoretical point that the LGI of any�nite set of clauses containing at least one non-tautologous function-free clause is e�ectivelycomputable.Theorem 7 (Computability of LGI) Let C be a clausal language. If S is a �nite set ofclauses from C, and S contains at least one non-tautologous function-free clause, then theLGI of S in C is computable. 357

Nienhuys-Cheng & de Wolf6. Greatest Specializations under ImplicationNow we turn from least generalizations under implication to greatest specializations. Find-ing least generalizations of sets of clauses is common practice in ILP. On the other hand,the greatest specialization, which is the dual of the least generalization, is used hardly ever.Nevertheless, the GSI of two clauses D1 and D2 might be useful. Suppose that we have onepositive example e+ and two negative examples e�1 and e�2 and suppose that D1 implies e+and e�1 , while D2 implies e+ and e�2 . Then it might very well be that the GSI of D1 andD2 still implies e+, but does not imply either e�1 or e�2 . Thus we could obtain a correctspecialization by taking the GSI of D1 and D2.It is obvious from the previous sections that the existence of an LGI of S is quite hardto establish. For clauses which all contain functions, the existence of an LGI is still an openquestion, and even for the case where S contains at least one non-tautologous function-freeclause, the proof was far from trivial. However, the existence of a GSI in C is much easierto prove. In fact, a GSI of a �nite set S is the same as the GSS of S, namely the union ofthe clauses in S after these are standardized apart.To see the reason for this dissymmetry, let us take a step back from the clausal frameworkand consider full �rst-order logic for a moment. If �1 and �2 are two arbitrary �rst-orderformulas, then it can be easily shown that their least generalization is just �1 ^ �2: thisconjunction implies �1 and �1, and must be implied by any other formula which impliesboth �1 and �2. Dually, the greatest specialization is just �1_�2: this is implied by both �1and �2, and must imply any other formula that is implied by both �1 and �2. See �gure 3.�1 ^ �2���	 @@@R�1 �2@@@R ���	�1 _ �2Figure 3: Least generalization and greatest specialization in �rst-order logicNow suppose �1 and �2 are clauses. Then why do we have a problem in �nding the LGIof �1 and �2? The reason for this is that �1^�2 is not a clause. Instead of using �1^�2, wehave to �nd some least clause which implies both clauses �1 and �2. Such a clause appearsquite hard to �nd sometimes.On the other hand, in case of specialization there is no problem. Here we can take�1 _�2 as GSI, since �1 _�2 is equivalent to a clause, if we handle the universal quanti�ersin front of a clause properly. If �1 and �2 are standardized apart, then the formula �1 _ �2is equivalent to the clause which is the union of �1 and �2. This fact was used in the proofof Lemma 7.Suppose S = fD1; : : : ;Dng, and D01; : : : ;D0n are variants of these clauses which arestandardized apart. Then clearly D = D01 [: : : [D0n is a GSI of S, since it follows fromLemma 7 that any specialization of S under implication is implied by D. Thus we have thefollowing result: 358

Least Generalizations and Greatest SpecializationsTheorem 8 (Existence of GSI in C) Let C be a clausal language. Then for every �niteS � C, there exists a GSI of S in C.The previous theorem holds for clauses in general, so in particular also for function-freeclauses. Furthermore, Corollary 2 guarantees us that in a function-free clausal language anLGI of every �nite S exists. This means that the set of function-free clauses quasi-orderedby logical implication is in fact a lattice.Corollary 4 (Lattice-structure of function-free clauses under j=) A function-freeclausal language ordered by implication is a lattice.In case of a Horn language H, we cannot apply the same proof method as in the case of aclausal language, since the union of two Horn clauses need not be a Horn clause itself. Infact, we can show that not every �nite set of Horn clauses has a GSI in H. Here we can usethe same clauses that we used to show that sets of Horn clauses need not have an LGI inH, this time from the perspective of specialization instead of generalization.Again, let D1 = P (f2(x)) P (x), D2 = P (f3(x)) P (x), C1 = P (f(x)) P (x) andC2 = P (f2(y)) P (x). Then C1 j= fD1;D2g and C2 j= fD1;D2g, and there is no Hornclause D such that D j= D1, D j= D2, C1 j= D and C2 j= D. Hence there is no GSI offC1; C2g in H.7. Least Generalizations under Relative ImplicationImplication is stronger than subsumption, but relative implication is even more powerful,because background knowledge can be used to model all sorts of useful properties andrelations. In this section, we will discuss least generalizations under implication relativeto some given background knowledge � (LGR's). In the next section we treat greatestspecializations under relative implication.First, we will prove the equivalence between our de�nition of relative implication and ade�nition given by Niblett (1988, p. 133). He gives the following de�nition of subsumptionrelative to a background knowledge � (to distinguish it from our notion of subsumption,we will call this `N-subsumption'):9De�nition 18 Clause C N-subsumes clause D with respect to background knowledge � ifthere is a substitution � such that � ` (C� ! D) (here `!' is the implication-connective,and ``' is an arbitrary complete proof procedure). 2Proposition 1 Let C and D be clauses and � be a set of clauses. Then C N-subsumes Dwith respect to � i� C j=� D.Proof Consider the following six statements, which can be shown equivalent.(1) C N-subsumes D with respect to �.(2) There is a substitution � such that � ` (C�! D).(3) There is a substitution � such that � j= (C�! D).9. Niblett attributes this de�nition to Plotkin, though Plotkin gives a rather di�erent de�nition of relativesubsumption in (Plotkin, 1971b), as we have seen in Section 4.359

Nienhuys-Cheng & de Wolf(4) There is a substitution � such that � [fC�g j= D.(5) � [fCg j= D.(6) C j=� D.(1),(2) by de�nition. (2),(3) by the completeness of `. (3),(4) by the DeductionTheorem. (4))(5) is obvious and (5))(4) follows from letting � be the empty substitution,hence (4),(5). Finally, (5),(6) by de�nition. Thus these six statements are equivalent. 2Since j= is the special case of j=� where � is empty, our counterexamples to the existenceof LGI's or GSI's in H are also counterexamples to the existence of LGR's or GSR's in H.In other words, the `�'-entries in the second row of Table 1 carry over to the third row.For general clauses, the LGR-question also has a negative answer. We will show herethat even if S and � are both �nite sets of function-free clauses, an LGR of S relative to �need not exist. LetD1 = P (a), D2 = P (b), S = fD1;D2g, and � = f(P (a)_:Q(x)); (P (b)_:Q(x))g. We will show that this S has no LGR relative to � in C.Suppose C is an LGR of S relative to �. Note that if C contains the literal P (a),then the Herbrand interpretation which makes P (a) true and which makes all other groundliterals false, would be a model of �[fCg but not of D2, so then we would have C 6j=� D2.Similarly, if C contains P (b) then C 6j=� D1. Hence C cannot contain P (a) or P (b).Now let d be a constant not appearing in C. Let D = P (x) _ Q(d), then D j=�S. By the de�nition of an LGR, we should have D j=� C. Then by the subsumptiontheorem, there must be a derivation from � [fDg of a clause E, which subsumes C. Theset of all clauses which can be derived (in 0 or more resolution-steps) from � [fDg is�[fDg[f(P (a)_P (x)); (P (b)_P (x))g. But none of these clauses subsumes C, because Cdoes not contain the constant d, nor the literals P (a) or P (b). Hence D 6j=� C, contradictingthe assumption that C is an LGR of S relative to � in C.Thus in general the LGR of S relative to � need not exist. However, we can identify aspecial case in which the LGR does exist. This case might be of practical interest. Suppose� = fL1; : : : ; Lmg is a �nite set of function-free ground literals. We can assume � doesnot contain complementary literals (i.e., A and :A), for otherwise � would be inconsistent.Also, suppose S = fD1; : : : ;Dng is a set of clauses, at least one of which is non-tautologousand function-free. Then C j=� Di i� fCg [� j= Di i� C j= Di _ :(L1 ^ : : : ^ Lm)i� C j= Di _ :L1 _ : : : _ :Lm. This means that an LGI of the set of clauses f(D1 _:L1 _ : : : _ :Lm); : : : ; (Dn _ :L1 _ : : : _ :Lm)g is also an LGR of S relative to �. If someDk_:L1_: : :_:Lm is non-tautologous and function-free, this LGI exists and is computable.Hence in this special case, the LGR of S relative to � exists and is computable.8. Greatest Specializations under Relative ImplicationSince the counterexample to the existence of GSI's in H is also a counterexample to theexistence of GSR's in H, the only remaining question in the j=�-order is the existence ofGSR's in C. The answer to this question is positive. In fact, like the GSS and the GSI, theGSR of some �nite set S in C is just the union of the (standardized apart) clauses in S.Theorem 9 (Existence of GSR in C) Let C be a clausal language and � � C. Then forevery �nite S � C, there exists a GSR of S relative to � in C.360

Least Generalizations and Greatest SpecializationsProof Suppose S = fD1; : : : ;Dng � C. Without loss of generality, we assume the clausesin S are standardized apart. Let D = D1 [: : : [Dn, then Di j=� D, for every 1 � i � n.Now let C 2 C be such that Di j=� C, for every 1 � i � n. Then from Lemma 7, we haveD j=� C. Hence D is a GSR of S relative to � in C. 29. ConclusionIn ILP, the three main generality orders are subsumption, implication, and relative impli-cation. The two main languages are clausal languages and Horn languages. This gives atotal of six di�erent ordered sets. In this paper, we have given a systematic treatment ofthe existence or non-existence of least generalizations and greatest specializations in each ofthese six ordered sets. The outcome of this investigation is summarized in Table 1. The onlyremaining open question is the existence or non-existence of a least generalization underimplication in C for sets of clauses which all contain function symbols.Table 1 makes explicit the trade-o� between di�erent generality orders. On the onehand, implication is better suited as a generality order than subsumption, particularly incase of recursive clauses. Relative implication is still better, because it allows us to takebackground knowledge into account. On the other hand, we can see from the table that asfar as the existence of least generalizations goes, subsumption is more attractive than logicalimplication, and logical implication is in turn more attractive than relative implication. Forsubsumption, least generalizations always exist. For logical implication, we can only provethe existence of least generalizations in the presence of a function-free clause. And �nally,for relative implication, least generalizations need not even exist in a function-free language.In practice this means that we cannot have it all. If we choose to use a very strong generalityorder such as relative implication, least generalizations only exist in very limited cases. Onthe other hand, if we want to guarantee that least generalizations always exist, we arecommitted to the weakest generality order: subsumption.AcknowledgementsWe would like to thank Peter Idestam-Almquist and the referees for their comments, whichhelped to improve the paper.ReferencesAha, D. W. (1992). Relating relational learning algorithms. In Muggleton, S. (Ed.), Induc-tive Logic Programming, Vol. 38 of APIC Series, pp. 233{254. Academic Press.Chang, C.-L., & Lee, R. C.-T. (1973). Symbolic Logic and Mechanical Theorem Proving.Academic Press, San Diego.De Raedt, L., & Bruynooghe, M. (1993). A theory of clausal discovery. In Proceedingsof the 13th International Joint Conference on Arti�cial Intelligence (IJCAI-93), pp.1058{1063. Morgan Kaufmann. 361

Nienhuys-Cheng & de WolfGottlob, G. (1987). Subsumption and implication. Information Processing Letters, 24 (2),109{111.Idestam-Almquist, P. (1993). Generalization of Clauses. Ph.D. thesis, Stockholm University.Idestam-Almquist, P. (1995). Generalization of clauses under implication. Journal of Arti-�cial Intelligence Research, 3, 467{489.Kowalski, R. A. (1970). The case for using equality axioms in automatic demonstration.In Proceedings of the Symposium on Automatic Demonstration, Vol. 125 of LectureNotes in Mathematics, pp. 112{127. Springer-Verlag.Lavra�c, N., & D�zeroski, S. (1994). Inductive Logic Programming: Techniques and Applica-tions. Ellis Horwood.Lee, R. C.-T. (1967). A Completeness Theorem and a Computer Program for Finding The-orems Derivable from Given Axioms. Ph.D. thesis, University of California, Berkeley.Lloyd, J. W. (1987). Foundations of Logic Programming (Second edition). Springer-Verlag,Berlin.Marcinkowski, J., & Pacholski, L. (1992). Undecidability of the horn-clause implicationproblem. In Proceedings of the 33rd Annual IEEE Symposium on Foundations ofComputer Science, pp. 354{362 Pittsburg.Morik, K., Wrobel, S., Kietz, J.-U., & Emde, W. (1993). Knowledge Acquisition and Ma-chine Learning: Theory, Methods and Applications. Academic Press, London.Muggleton, S. (1992). Inductive logic programming. In Muggleton, S. (Ed.), Inductive LogicProgramming, Vol. 38 of APIC Series, pp. 3{27. Academic Press.Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.Journal of Logic Programming, 19, 629{679.Muggleton, S., & Feng, C. (1992). E�cient induction of logic programs. In Muggleton, S.(Ed.), Inductive Logic Programming, Vol. 38 of APIC Series, pp. 281{298. AcademicPress.Muggleton, S., & Page, C. D. (1994). Self-saturation of de�nite clauses. In Wrobel, S.(Ed.), Proceedings of the 4th International Workshop on Inductive Logic Programming(ILP-94), Vol. 237 of GMD-Studien, pp. 161{174 Bad Honnef/Bonn. Gesellschaft f�urMathematik und Datenverarbeitung.Niblett, T. (1988). A study of generalisation in logic programs. In Sleeman, D. (Ed.),Proceedings of the 3rd European Working Sessions on Learning (EWSL-88), pp. 131{138.Nienhuys-Cheng, S.-H., & de Wolf, R. (1996). The subsumption theorem in inductive logicprogramming: Facts and fallacies. In De Raedt, L. (Ed.), Advances in Inductive LogicProgramming, pp. 265{276 Amsterdam. IOS Press.362

Least Generalizations and Greatest SpecializationsPlotkin, G. D. (1970). A note on inductive generalization. Machine Intelligence, 5, 153{163.Plotkin, G. D. (1971a). Automatic Methods of Inductive Inference. Ph.D. thesis, EdinburghUniversity.Plotkin, G. D. (1971b). A further note on inductive generalization. Machine Intelligence,6, 101{124.Quinlan, J. R., & Cameron-Jones, R. M. (1993). Foil: A midterm report. In Brazdil, P.(Ed.), Proceedings of the 6th European Conference on Machine Learning (ECML-93),Vol. 667 of Lecture Notes in Arti�cial Intelligence, pp. 3{20. Springer-Verlag.Reynolds, J. C. (1970). Transformational systems and the algebraic structure of atomicformulas. Machine Intelligence, 5, 135{151.Rouveirol, C. (1992). Extensions of inversion of resolution applied to theory completion.In Muggleton, S. (Ed.), Inductive Logic Programming, Vol. 38 of APIC Series, pp.63{92. Academic Press.Shapiro, E. Y. (1981). Inductive inference of theories from facts. Research report 192, YaleUniversity.van der Laag, P. R. J., & Nienhuys-Cheng, S.-H. (1994). Existence and nonexistence ofcomplete re�nement operators. In Bergadano, F., & De Raedt, L. (Eds.), Proceedingsof the 7th European Conference on Machine Learning (ECML-94), Vol. 784 of LectureNotes in Arti�cial Intelligence, pp. 307{322. Springer-Verlag.

363

