
Decidability and Undecidability of Marked PCPVesa Halava1, Mika Hirvensalo2;1?, and Ronald de Wolf3;41 Turku Centre for Computer Science, Lemmink�aisenkatu 14 A, 4th 
oor, FIN-20520,Turku, Finland, vehalava@cs.utu.fi2 Department of Mathematics, University of Turku, FIN-20014, Turku, Finland.mikhirve@utu.fi3 CWI, P.O. Box 94079, Amsterdam, The Netherlands, rdewolf@cwi.nl4 University of AmsterdamAbstract. We show that themarked version of the Post CorrespondenceProblem, where the words on a list are required to di�er in the �rstletter, is decidable. On the other hand, PCP remains undecidable if weonly require the words to di�er in the �rst two letters. Thus we locatethe decidability/undecidability-boundary between marked and 2-markedPCP.1 Introduction: PCP and Marked PCPThe Post Correspondence Problem (PCP) [6] is one of the most useful unde-cidable problems, because it can be simply described and many other problemscan easily be reduced to it, particularly problems in formal language theory. Thegeneral form of the problem is as follows. An instance of PCP is a four-tupleI = (�;�; g; h), consisting of a �nite source alphabet � = fa1; : : : ; ang, a �nitetarget alphabet � and two homomorphisms g; h : �� ! �� (g(ab) = g(a)g(b)and h(ab) = h(a)h(b) whenever a; b 2 ��). It is enough to de�ne g; h : � ! ��,the extension is just concatenation. PCP is the following decision problem:Given I = (�;�; g; h), is there an x 2 �+ such that g(x) = h(x)?In other words, we have two lists of words g(a1); : : : ; g(an) and h(a1); : : : ; h(an)and we want to decide if there is a correspondence between them: are thereai1 ; : : : ; aik 2 � such that g(ai1) : : : g(aik) = h(ai1) : : : h(aik )?The general form of this problem is undecidable [6], the reason being that thetwo morphisms together can simulate the computation of a Turing machine ona speci�c input. Examining restricted versions of PCP allows one to determinethe exact boundary between decidability and undecidability. For instance, theproblem becomes trivially decidable (but NP-complete) if we ask for the exis-tence of a solution x of length at most some �xed k [2, p. 228]. If we restrictto g; h which have to be injective (g is injective if x 6= y ) g(x) 6= g(y)), theproblem remains undecidable [4]. Also PCP(7), where we restrict to n = 7, is? Supported by the Academy of Finland under grant 14047.



still undecidable [5], but PCP(2) is decidable [1]. As far as we know, decidabilityor undecidability is still open for 2 < n < 7.A further restriction which we will examine in this paper is to have g and hmarked, which we formally de�ne as follows. If z is a string, we use Prefk(z) todenote the pre�x of length k of z (Prefk(z) = z if jzj � k). A homomorphism gis k-marked if g(a) and g(b) are nonempty and have Prefk(g(a)) 6= Prefk(g(b))whenever a 6= b 2 �. An instance I = (�;�; g; h) of PCP is k-marked if both gand h are k-marked, and k-marked PCP is the PCP decision problem restrictedto k-marked instances. We will abbreviate 1-marked to marked. If I is markedthen g(a) and g(b) start with a di�erent letter whenever a 6= b 2 �, which impliesthat j�j � j�j. Without loss of generality we may assume � � �. Markednessclearly implies injectivity: suppose g is marked and x 6= y 2 �+, let x = zax0 andy = zby0, a and b being the �rst letter where x and y di�er. Because of markednesswe have g(a) 6= g(b), hence g(x) = g(z)g(a)g(x0) 6= g(z)g(b)g(y0) = g(y), so gis injective. The converse does not hold. Consider for instance � = � = f1; 2g,g(1) = 11, g(2) = 12, then g is injective but not marked.The proof of decidability of PCP(2) in [1] is based on a reduction fromarbitrary instances of PCP(2) to marked instances of generalized PCP(2). [1]then prove by means of extensive case analysis that marked generalized PCP(2) isdecidable. In particular marked PCP(2) is decidable. Here we prove that markedPCP is decidable for any alphabet size. We will in fact show that marked PCPis in EXPTIME (the class of languages that can be recognized in time upperbounded by 2p(N) for some polynomial p of the input size N).As stated above, PCP can be used for establishing the boundaries betweendecidability and undecidability. The main result of this paper is decidability ofmarked PCP. How much can we weaken the markedness condition before welose decidability? We will show in Section 3 that 2-marked PCP is undecidable,thus locating the decidability/undecidability-boundary between 1-markednessand 2-markedness.In another direction, we can weaken the markedness condition by only re-quiring g and h to be pre�x morphisms (g is pre�x if no g(ai) is a pre�x oranother g(aj)) or even bipre�x (g is bipre�x if no g(ai) is a pre�x or su�x ofanother g(aj)). It turns out that bipre�x PCP is undecidable [8].12 Marked PCP Is Decidable2.1 A Simpler Decision ProblemWe would like to give a decision method for marked PCP. First we give analgorithm for the following simpler problem, which also occurs in [1, Section 6]:Given marked I = (�;�; g; h) and a 2 �, are there x; y 2 �+ such thatg(x) = h(y) and g(x) starts with a?1 Clearly, a marked morphism is pre�x. Both marked and bipre�x PCP are specialcases of injective PCP, but 2-marked PCP is not. See also at the end of Section 3.



We do not look for g(x) = h(x) here but only for g(x) = h(y), and we additionallyrequire that g(x) starts with some speci�c a 2 �. For example, if I hasg(a1) = a1 g(a2) = a2 g(a3) = a3a4 g(a4) = a4h(a1) = a1a3 h(a2) = a4a2 h(a3) = a3a3 h(a4) = a2a2then for a = a1, a solution would be x = a1a3a2 and y = a1a2.The next algorithm decides the problem.1. Set G = H = ;, i = j = 1.2. If there are x1; y1 2 � such that g(x1) and h(y1) start with a, then setx = x1, y = y1else goto 4.3. (a) If g(x) = h(y), then print \solution x = x1 : : : xi and y = y1 : : : yj" andterminate.(b) If g(x) is not a pre�x of h(y) nor vice versa, then goto 4.(c) If g(x)s = h(y), then do the following.If s 2 G then goto 4; else set i = i+ 1 and G = G [ fsg.If there is an xi such that g(xi) and s start with the same letter, thenset x = xxi and goto 3; else goto 4.(d) If g(x) = h(y)s, then analogous to previous step.4. Print \no solution" and terminate.Informally, we are building x = x1 : : : xi and y = y1 : : : yj , trying to achieveg(x) = h(y). We add on a new xi+1 as long as g(x) is a proper pre�x of h(y)(i.e., g(x)s = h(y) for some su�x s), and add on a new yj+1 if h(y) is a properpre�x of g(x). Note that at each point such xi+1 or yj+1 are unique (if theyexist) because of markedness; if they do not exist we know there is no solution.We keep track of the su�xes we have seen so far in the sets G and H . Becausethe number of possible su�xes is �nite, either the process terminates with asolution, or at some point a su�x is encountered for the second time, in whichcase we know the process will cycle forever and there is no solution.The solutions produced by this algorithm are of minimal length. Note care-fully that the whole procedure is deterministic, because g and h are marked.Furthermore, if N is the length of the instance I given as input (i.e., the num-ber of bits needed to describe the instance), then this procedure runs in timepolynomial in N . Namely, each g(ai) and h(ai) can have length at most N , andhence can have at most N � 1 proper su�xes. Since there are only 2n = O(N)di�erent g(ai) and h(ai), there are only O(N2) di�erent su�xes, hence the loopof the algorithm can be repeated at most O(N2) times. This loop itself takesO(N) steps, because (1) to check if g(x) = h(y) or g(x)s = h(y) or g(x) = h(y)s,we only need to check the way g(x) and h(y) have been changed by the additionof the previous xi or yj , and (2) searching for a new xi (in step c) or yj (in stepd) can be done in O(n) = O(N) steps. Therefore the whole procedure runs inO(N3) steps.



2.2 Reducing to Simpler InstancesConsider an instance I = (�;�; g; h) of marked PCP: we have two markedhomomorphisms g; h : �+ ! �+, where � = fa1; : : : ; ang � �, and we wantto decide if there is an x 2 �+ such that g(x) = h(x). Below we describe anapproach to decide I by reducing it to an equivalent but simpler instance I 0 ofmarked PCP (\equivalent" meaning that I has a solution i� I 0 has one).Suppose � = fa1; : : : ; alg, l � n. We can run the procedure of the pre-vious section for every ai 2 �, yielding pairs of (minimal-length) solutions(u1; v1); : : : ; (ul; vl) where ui; vi 2 �+ and g(ui) = h(vi) starts with ai, or non-existence of solutions for certain i. At most n of the ai can have a solution.Without loss of generality assume 1; : : : ;m � n are the i that have a solu-tion. We can turn this into a new instance I 0 = (�0; �; g0; h0) of PCP, where�0 = fa1; : : : ; amg, g0(ai) = ui and h0(ai) = vi. Note that g0 and h0 are marked,so I 0 is an instance of marked PCP. Also, since the procedure of the previoussection runs in O(N3) steps and has to be run n times here, I 0 can be built fromI in O(N4) steps. The reduction from I to I 0 preserves equivalence:Lemma 1. If I and I 0 are as above, then I and I 0 are equivalent.Proof. Note that every solution x to I must be built up from ui and vi: theremust be i1; : : : ; ik such that x = ui1 : : : uik = vi1 : : : vik . This is easy to seefrom the example in Figure 1. Here u1 = a5a3a1 and v1 = a5a3 is a solutionto the simpler problem for a1, similarly (a2a4; a1a2) is a solution for a6 and(a6a3; a4a6a3) is a solution for a2. Here x = a5a3a1a2a4a6a3 is a solution to I ,x0 = a1a6a2 is a solution to I 0, related by x = g0(x0).g(x) = g0(a1)=u1=a5a3a1z }| {(a1) g(a5) g(a3) g(a1) g0(a6)=u6=a2a4z }| {(a6) g(a2) g(a4) g0(a2)=u2=a6a3z }| {(a2) g(a6) g(a3)h(x) = (a1) h(a5) h(a3)| {z }h0(a1)=v1=a5a3 (a6) h(a1) h(a2)| {z }h0(a6)=v6=a1a2 (a2) h(a4) h(a6) h(a3)| {z }h0(a2)=v2=a4a6a3Fig. 1. How a solution to I translates to I 0 and vice versaIn general, by construction, if x0 is a solution to I 0 then x = g0(x0) = h0(x0)is a solution to I . And conversely, for every solution x to I there is a solution x0to I 0 such that x = g0(x0) = h0(x0). Thus I and I 0 are equivalent. 2If we could prove that I 0 is somehow simpler than I , then we could repeat theprocedure, reduce to simpler and simpler equivalent instances I 00, I 000,. . . , andeventually decide I . There are at least two ways in which I 0 can be simpler thanI : j�0j < j�j (m < n) or �(I 0) < �(I), where � measures the \su�x complexity"of an instance I = (�;�; g; h) [1]:�(I) = j [a2� fx j x is a proper su�x of g(a)gj+ j [a2� fx j x is a proper su�x of h(a)gj



If n = m, we would like I 0 to be simpler than I in the sense that �(I 0) < �(I).The following lemma shows that I 0 at least cannot be more complex than I :Lemma 2. If I and I 0 are as above, then �(I 0) � �(I).Proof. De�ne the following four sets:G = [a2�fx j x is a proper su�x of g(a)gG0 = [a2�0fx j x is a proper su�x of g0(a)gH = [a2�fx j x is a proper su�x of h(a)gH 0 = [a2�0fx j x is a proper su�x of h0(a)gWe will de�ne an injective function p : G0 ! H . Let u 2 G0, so u is a propersu�x of some speci�c g0(ai) = ui = x1 : : : xc generated by the procedure of theprevious section. Let xr be the �rst letter of u, and s be the shortest su�x ofsome h(yt) due to which xr was added to ui in the procedure of the previoussection, so s is a pre�x of g(xr) (see Figure 2) or vice versa. De�ne p as p(u) = s.g(ui) = g(x1) : : : : : : g(xr�1) u=xrxr+1:::xcz }| {g(xr) g(xr+1) : : : : : : g(xc)h(vi) = h(y1) : : : : : : h(yt)|{z}s h(yt+1) : : : : : : : : : h(yd)Fig. 2. The su�x s corresponding to uWe will show p is injective. If u; u0 2 G0 and p(u) = p(u0), then u and u0 areassociated with the same su�x s = p(u), hence u and u0 must start with thesame xr and (by determinism of the procedure of the previous section) continuein the same way, giving u = u0. Thus p is injective, which implies jG0j � jH j.Similarly we can de�ne an injective function from H 0 to G, which provesjH 0j � jGj. It now follows that �(I 0) = jG0j+ jH 0j � jGj+ jH j = �(I). 22.3 The AlgorithmWe will here give a method to decide if a given instance I = (�;�; g; h) ofmarked PCP has a solution. The idea is to make a sequence of equivalence-preserving reductions I0 = I; I1; I2; : : :, such that once in a while a reductionfrom Ii to Ii+1 simpli�es the instance (makes the source alphabet or the su�xcomplexity smaller). We will show that either this sequence of reductions reachesan Ij which has source alphabet of size 1 or � equal to 0 (so Ij is decidable),or the sequence will repeat itself after a while and start cycling. Such cyclesare detectable, and we will show that every I leading to such a cycle is easilydecidable.So suppose the sequence of reductions does not reach an Ij with alphabet ofsize 1 or �(Ij) = 0. Then it must get \stuck" at a certain source alphabet size



and �. That is, there exist a k, m and z such that all Ii in the in�nite sequenceIk; Ik+1; Ik+2; : : : have source alphabet of size m and have �(Ii) = z. Now thissequence must repeat itself after a while, for otherwise there would be in�nitelymany distinct instances with the same alphabet and �-value, contradicting thenext lemma.Lemma 3. Let � = fa1; : : : ; amg � � be �nite sets and z be a positive naturalnumber. There exist only �nitely many distinct instances I = (�;�; g; h) of PCPthat satisfy �(I) � z.Proof. An instance I = (�;�; g; h) is completely speci�ed by giving the 2mwords g(a1); : : : ; g(am), h(a1); : : : ; h(am) 2 �+. Note that if one of those wordshas length > z+1, then this word has more than z proper su�xes and �(I) > z.Accordingly, each of the 2m words can have length at most z + 1. There arePz+1i=1 j�ji � j�jz+2 such words. Thus there are at most j�j(z+2)2m choices for2m such words, and hence �nitely many di�erent I that satisfy �(I) � z. 2This lemma shows that if the procedure does not converge to very simpleinstances then it will cycle, and we can detect this by noting that some Ik andIr (k < r) are equal. It remains to show how we can decide such \cycling"instances of marked PCP. So suppose we have a cycle, assume without loss ofgenerality that it already starts at I0:I0 ! I1 ! � � � ! Ir�1 ! Ir = I0;where Ii = (�;�; gi; hi). By the proof of Lemma 1, for every solution xi tosome Ii, there is a solution xi+1 to Ii+1 such that xi = gi+1(xi+1) = hi+1(xi+1).Suppose x0 is a solution to I0 of minimal length. There must exist some solutionxr to Ir such thatx0 = g1g2 : : : gr(xr)x0 = h1h2 : : : hr(xr)Since the gi and hi cannot be length-decreasing, we have jx0j � jxr j. But x0 waschosen to be a minimal-length solution to I0 and xr is also a solution to Ir = I0,hence jx0j = jxrj. This implies that g0(= gr) and h0(= hr) map the lettersoccurring in xr to letters. But then the �rst letter of xr is already a solution,hence jx0j = jxrj = 1. Thus I0 has a solution i� I0 has a 1-letter solution (i.e.,there is an a 2 �0 such that g0(a) = h0(a)), and this is trivially decidable.Below we summarize this analysis in an algorithm and a theorem:Decision procedure for marked PCP1. Set I = ;, i = 0, I0 = I .2. Set i = i+ 1.3. Reduce Ii�1 to Ii in the way stated above.4. If Ii has source alphabet of size 1 or � = 0, then decide Ii, print the outcomeand terminate.



5. If Ii is simpler than Ii�1 (smaller source alphabet or �) then set I = ; andgoto 2.6. If Ii 2 I then there is a cycle and we can decide Ii by checking if it has a1-letter solution, print the outcome and terminate;else set I = I [ fIig and goto 2.Theorem 1. Marked PCP is decidable.2.4 Complexity AnalysisLet us analyze the complexity of this algorithm. Let N be the length of the inputinstance I . Each reduction from Ii to Ii+1 can be done in O(N4) steps. Howmany di�erent reductions do we need to make? For a �xed alphabet size j�j �j�j = m and su�x complexity z, we can make at most m(z+2)2m reductionsbefore detecting a cycle (proof of Lemma 3). Since m = O(N) and z = O(N2),this gives an upper bound of 2O(logN�N3) on the number of reductions for �xedalphabet size and su�x complexity. Alphabet size and su�x complexity cannotincrease during the process. There are at most n = O(N) di�erent alphabet sizesand at most �(I) = O(N2) di�erent su�x complexities possible, so we have tomake no more than O(N3) � 2O(logN�N3) reductions. Since the set I can containat most 2O(logN�N3) instances, the test Ii 2 I in step 6 can be performed in2O(logN�N3) steps. Thus the whole algorithm works in 2O(logN�N3) steps, whichmeans that marked PCP is in EXPTIME.3 2-Marked PCP Is UndecidableHere we will show that if we weaken the condition of markedness, by only re-quiring the morphisms to be 2-marked, then PCP becomes undecidable again.Consider the following semi-group S7 with set of 5 generators � = fa; b; c; d; egand 7 relations:S7 = ha; b; c; d; e j R iR = fac = ca; ad = da; bc = cb; bd = db; eca = ce; edb = de; cca = ccaegTzeitin [10] (see also [7, p. 445]) proved that the following problem for thissemi-group is undecidable:Given u; v 2 �+, is u = v 2 S7?Note that the set of 7 left-hand-sides of R is 2-marked, and similarly for theset of 7 right-hand-sides of R. We will reduce this problem to 2-marked PCP.We use a slight modi�cation of the standard reduction from word problems toPCP, involving an alphabet with some underlined letters in order to ensure 2-markedness.De�ne the source alphabet as� = � [ � [ fB;E;#;#; r1; r2; : : : ; r7; r1; r2; : : : ; r7g,



where � = fa; b; c; d; eg, and r1; : : : ; r7 are the 7 relations in R and r1; : : : ; r7are their underlined versions (considered as single letters), so r1 = [ac = ca],r1 = [ac = ca] etc. De�ne the target alphabet as� = � [ � [ fB;E;#;#g.B and E will mark the beginning and end of expressions, respectively. Givenu; v 2 �+, g and h are de�ned by Table 1:B E # # a . . . e a . . . e [s = t] [s = t]g Bu# E # # a . . . e a . . . e t sh B #vE # # a . . . e a . . . e s tTable 1. De�nition of g and hNote that the constructed instance I = (�;�; g; h) is an instance of 2-markedPCP. The following lemma shows that the reduction preserves equivalence withTzeitin's problem:Lemma 4. Let u; v; I be as above. Then u = v 2 S7 i� I has a solution.Proof.=): Suppose u = v 2 S7. Then there is a sequence u = u1 ! u2 ! � � � !uk = v, where ui = u0su00 and ui+1 = u0tu00, and s = t 2 R or t = s 2 R. Weconstruct a solution to I by induction on k.If k = 1, then u = v 2 �+. Now x = Bu#uE is a solution to I .Now let I 0 = (�;�; g0; h0) be the instance of 2-marked PCP correspondingto u = uk�1 2 S7. By the induction hypothesis we can assume that I 0 hasa minimal-length solution x0. It is easy to see that every solution must beginwith B and end with E, so x0 = ByE, and therefore g0(By) = w#uk�1 andh0(By) = w for some w. Note that since I and I 0 only di�er in the assignmenth(E) and h0(E), and E cannot occur in y (because x0 is minimal), we also haveg(By) = w#uk�1 and h(By) = w. We distinguish two cases. Firstly, uk�1 =u0su00 and v = uk = u0tu00, where r = [s = t] is one of the 7 relations. Thenit is easily veri�ed that x = By#u0ru00#u0tu00E is a solution to I . Secondly, ifuk�1 = u0tu00 and v = uk = u0su00, then x = By#u0tu00#u0ru00E is a solution.This completes the induction step.(=: Suppose I has a solution x. We can assume x is of minimal length.This x must be of the form Bx1x2 : : : xmE, where xi 2 �, so g(Bx1 : : : xmE) =Bu#g(x1 : : : xm)E = h(Bx1 : : : xmE) = Bh(x1 : : : xm)#vE. Ignoring the un-derlining, g(x) = h(x) must be of the form Bu1#u2# : : :#uk�1#ukE, whereui 2 � �, u1 = u and uk = v. We will show that ui = ui+1 2 S7 for every1 � i � k � 1, from which u = v 2 S7 follows.Because # occurs in h(x1 : : : xm), there must be some least i such that xi =#, and hence u = h(x1 : : : xi�1). Since there is no underlining in u, it follows that



x1; : : : ; xi�1 must have been chosen from a; : : : ; e; r1; : : : ; r7. Let x1 : : : xi�1 =w1ri1w2ri2 : : : wl, with wi 2 � � and ri = [si = ti] 2 fr1; : : : ; r7g. Then u =h(w1ri1w2ri2 : : : wl) = w1si1w2si2 : : : wl. See Figure 3 for illustration.g(Bx1 : : : xi : : : xmE) = g(B)=Bu#z }| {B w1si1w2si2 : : : wl # g(x1) g(x2) : : : : : : g(E)z}|{Eh(Bx1 : : : xi : : : xmE) = B|{z}h(B) w1si1w2si2 : : : wl| {z }h(x1:::xi�1)=u=u1 #|{z}h(xi) h(xi+1) : : : : : : #vE| {z }h(E)Fig. 3. Picture leading to u = vNote that g(x1 : : : xi�1) = g(w1ri1w2ri2 : : : wl) = w1ti1w2ti2 : : : wl. But now,since we must have g(x1 : : : xmE) = h(xi+1 : : : xmE), there must be a least j > isuch that xj 2 f#;#g and h(xi+1 : : : xj�1) = g(x1 : : : xi�1) = w1ti1w2ti2 : : : wl.The latter string (without underlining) is u2. Note that u1 = u2 2 S7, becauseu1(= u) and u2 only di�er by u2 having ti where u1 has si.Continuing this reasoning, we can show that for every two words ui; ui+1 2 � �occurring in g(x) = h(x) separated by #, ignoring underlining, we must haveui = ui+1 2 S7 (some of the words ui and ui+1 may actually already be equal in�+). Hence u = v 2 S7, since g(x) starts with u1 = u and ends with uk = v. 2Together with Tzeitin's result, the above lemma implies:Theorem 2. 2-Marked PCP is undecidable.To end this section, we note that 2-marked PCP is not a special case ofinjective PCP. For example, the morphism de�ned by g(1) = 23, g(2) = 2, g(3) =3 is 2-marked but not injective. We can combine k-markedness and injectivity bycalling a morphism g strongly k-marked if g is both k-marked and pre�x (i.e., nog(ai) is a pre�x of another g(aj)). This clearly implies injectivity. It follows froma construction of Ruohonen [8] that strongly 5-marked PCP is undecidable: thebipre�x instances of PCP constructed there to show undecidability of bipre�xPCP are also 5-marked. Decidability of strongly k-marked PCP for 1 < k < 5 isstill open.4 Conclusion and Future WorkWe can investigate the boundary between decidability and undecidability by ex-amining which restrictions on the Post Correspondence Problem render the prob-lem decidable. We have shown here that restricting PCP to marked morphismsgives us decidability. On the other hand, 2-marked PCP is still undecidable.The following questions are left open by this research:
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