
Philosophical Applications of
Computational Learning Theory:

Chomskyan Innateness and Occam's Razor

Afstudeerscriptie Filoso�e van de Informatica (15sp)R. M. de Wolf114903Erasmus Universiteit RotterdamVakgroep: Theoretische Filoso�eBegeleider: Dr. G. J. C. Lokhorst
Juli 1997

Contents
Preface v1 Introduction to Computational Learning Theory 11.1 Introduction : 11.2 Algorithms that Learn Concepts from Examples : : : : : : : : : 21.3 The PAC Model and E�ciency : : : : : : : : : : : : : : : : : : : 41.4 PAC Algorithms : 61.5 Sample Complexity : 81.6 Time Complexity : 101.6.1 Representations : 101.6.2 Polynomial-Time PAC Learnability : : : : : : : : : : : : : 111.7 Some Related Settings : 141.7.1 Polynomial-Time PAC Predictability : : : : : : : : : : : : 141.7.2 Membership Queries : 151.7.3 Identi�cation from Equivalence Queries : : : : : : : : : : 151.7.4 Learning with Noise : 161.8 Summary : 172 Application to Language Learning 192.1 Introduction : 192.2 A Brief History of the Chomskyan Revolutions : : : : : : : : : : 202.2.1 Against Behaviorism : 202.2.2 Transformational-Generative Grammar : : : : : : : : : : 212.2.3 Principles-and-Parameters : : : : : : : : : : : : : : : : : : 232.2.4 The Innateness of Universal Grammar : : : : : : : : : : : 232.3 Formalizing Languages and Grammars : : : : : : : : : : : : : : : 252.3.1 Formal Languages : 252.3.2 Formal Grammars : 262.3.3 The Chomsky Hierarchy : : : : : : : : : : : : : : : : : : : 272.4 Simplifying Assumptions for the Formal Analysis : : : : : : : : : 282.4.1 Language Learning Is Algorithmic Grammar Learning : : 292.4.2 All Children Have the Same Learning Algorithm : : : : : 302.4.3 No Noise in the Input : 302.4.4 PAC Learnability Is the Right Analysis : : : : : : : : : : 312.5 Formal Analysis of Language Learnability : : : : : : : : : : : : : 312.5.1 The PAC Setting for Language Learning : : : : : : : : : : 31i

ii CONTENTS2.5.2 A Conjecture : 322.6 The Learnability of Type 4 Languages : : : : : : : : : : : : : : : 322.7 The Learnability of Type 3 Languages : : : : : : : : : : : : : : : 352.8 The Learnability of Type 2 Languages : : : : : : : : : : : : : : : 362.8.1 Of What Type Are Natural Languages? : : : : : : : : : : 362.8.2 A Negative Result : 372.8.3 k-Bounded Context-Free Languages Are Learnable : : : : 372.8.4 Simple Deterministic Languages are Learnable : : : : : : 382.9 The Learnability of Type 1 Languages : : : : : : : : : : : : : : : 392.10 Finite Classes Are Learnable : 392.11 What Does All This Mean? : 412.12 Wider Learning Issues : 422.13 Summary : 433 Kolmogorov Complexity and Simplicity 453.1 Introduction : 453.2 De�nition and Properties : 473.2.1 Turing Machines and Computability : : : : : : : : : : : : 483.2.2 De�nition : 493.2.3 Objectivity up to a Constant : : : : : : : : : : : : : : : : 503.2.4 Non-Computability : 513.2.5 Relation to Shannon's Information Theory : : : : : : : : : 523.3 Simplicity : 533.4 Randomness : 573.4.1 Finite Random Strings : 573.4.2 In�nite Random Strings : : : : : : : : : : : : : : : : : : : 593.4.3 An Interesting Random String : : : : : : : : : : : : : : : 623.5 G�odel's Theorem Without Self-Reference : : : : : : : : : : : : : : 643.5.1 The Standard Proof : 653.5.2 A Proof Without Self-Reference : : : : : : : : : : : : : : : 673.5.3 Randomness in Mathematics? : : : : : : : : : : : : : : : : 683.6 Summary : 694 Occam's Razor 714.1 Introduction : 714.2 Occam's Razor : 734.2.1 History : 734.2.2 Applications in Science : : : : : : : : : : : : : : : : : : : 744.2.3 Applications in Philosophy : : : : : : : : : : : : : : : : : 774.3 Occam and PAC Learning : 794.4 Occam and Minimum Description Length : : : : : : : : : : : : : 814.5 Occam and Universal Prediction : : : : : : : : : : : : : : : : : : 854.6 On the Very Possibility of Science : : : : : : : : : : : : : : : : : 884.7 Summary : 894.A Proof of Occam's Razor (PAC Version) : : : : : : : : : : : : : : : 90

CONTENTS iii5 Summary and Conclusion 935.1 Computational Learning Theory : : : : : : : : : : : : : : : : : : 935.2 Language Learning : 945.3 Kolmogorov Complexity : 945.4 Occam's Razor : 955.5 Conclusion : 96List of Symbols 97Bibliography 99Index of Names 107Index of Subjects 109

iv CONTENTS

PrefaceWhat is learning? Learning is what makes us adapt to changes and threats, andwhat allows us to cope with a world in ux. In short, learning is what keepsus alive. Learning has strong links to almost any other topic in philosophy:scienti�c inference, knowledge, truth, reasoning (logic), language, anthropology,behaviour (ethics), good taste (aesthetics), and so on. Accordingly, it can beseen as one of the quintessential philosophical topics|an appropriate topic fora graduation thesis! Much can be said about learning, too much to �t in asingle thesis. Therefore this thesis is restricted in scope, dealing only withcomputational learning theory (often abbreviated to COLT).Learning seems so simple: we do it every day, often without noticing it.Nevertheless, it is obvious that some fairly complexmechanismsmust be at workwhen we learn. COLT is the branch of Arti�cial Intelligence that deals with thecomputational properties and limitations of such mechanisms. The �eld can beseen as the intersection of Machine Learning and complexity theory. COLT is avery young �eld|the publication of Valiant's seminal paper in 1984 may be seenas its birth|and it appears that virtually none of its many interesting resultsare known to philosophers. Some philosophical work has referred to complexitytheory (for instance [Che86]) and some has referred to Machine Learning (forinstance [Tha90]), but as far as I know, thus far no philosophical use has beenmade of the results that have sprung from COLT. For instance, at the time ofwriting of this thesis, the Philosopher's Index, a database containing most majorpublications in philosophical journals or books, contains no entries whatsoeverthat refer to COLT or to its main model, the model of PAC learning; there ishardly any reference to Kolmogorov complexity, either. Stuart Russell devotestwo pages to PAC learning [Rus91, pp. 43{44] and James McAllister devotes onepage to Kolmogorov complexity as a quantitative measure of simplicity [McA96,pp. 119{120], but both do not provide more than a sketchy and super�cialexplanation.As its title already indicates, the present thesis tries to make contact be-tween COLT and philosophy. The aim of the thesis is threefold. The �rst andmost shallow goal is to obtain a degree in philosophy for its author. The secondgoal is to take a number of recent results from computational learning theory,insert them in their appropriate philosophical context, and see how they bear onvarious ongoing philosophical discussions. The third and most ambitious goalis to draw the attention of philosophers to computational learning theory ingeneral. Unfortunately, the traditional reluctance of philosophers (in particularthose of a non-analytical strand) to use formal methods, as well as their inapt-v

vi CONTENTSness with formal methods once they have outgrown that reluctance, makes thisgoal rather hard to attain. Nevertheless, it is my opinion that computationallearning theory|or, for that matter, complexity theory as a whole|has muchto o�er to philosophy. Accordingly, this thesis may be seen as a plea for thephilosophical relevance of computational learning theory as a whole.The thesis is organized as follows. In the �rst chapter, we will give anoverview of the main learning setting used in COLT. We will stick to the rig-orous formal de�nitions as used in COLT, but supplement them with a lot ofinformal and intuitive comment in order to make them accessible and readablefor philosophers. After that introductory chapter, the second chapter appliesresults from COLT to Noam Chomsky's ideas about language learning and theinnateness of linguistic biases. The third chapter gives an introduction to thetheory of Kolmogorov complexity, which provides us with a fundamental mea-sure of simplicity. Kolmogorov complexity does not belong to computationallearning theory proper (its invention in fact pre-dates COLT), but its mainapplication for us lies in Occam's Razor. This fundamental maxim tells us togo for the simplest theories consistent with the data, and is highly relevant inthe context of learning in general, and scienti�c theory construction in partic-ular. The fourth chapter provides di�erent formal settings in which some formof the razor can be mathematically justi�ed, using Kolmogorov complexity toquantitatively measure simplicity. Finally, we end with a brief chapter thatsummarizes the thesis in non-technical terms.Let me end this preface by expressing my gratitude to a number of peo-ple who contributed considerably to the contents of this thesis. First of all,I would of course like to thank my thesis advisor Gert-Jan Lokhorst|one ofthose philosophers who, like myself, do not hesitate to invoke formal de�ni-tions and results whenever these might be useful|for his many comments andsuggestions. Secondly, many thanks should go to Shan-Hwei Nienhuys-Cheng,who put me on the track of inductive learning in the �rst place, by inviting meto join her in writing a book on inductive logic programming [NW97]|a bookwhich eventually took us more than two and a half years to �nish. Chapter 18of that book actually provided the basis for a large part of the �rst chapterof the present thesis. Finally, I would like to thank Jeroen van Rijen for hismany helpful comments, Peter Sas and Peter Gr�unwald for some referenceson linguistics, and Paul Vit�anyi for his course on learning and Kolmogorovcomplexity.

Chapter 1Introduction toComputational LearningTheory1.1 IntroductionThis thesis is about philosophical applications of \computational learning the-ory", and the present chapter provides an introduction to this �eld.Why should we, as philosophers, be interested in something like a theoryof learning? The importance of learning can be illustrated on the basis of thefollowing quotation from Homer's Iliad:Him she found sweating with toil as he moved to and fro about hisbellows in eager haste; for he was fashioning tripods, twenty in all,to stand around the wall of his well-builded hall, and golden wheelshad he set beneath the base of each that of themselves they mightenter the gathering of the gods at his wish and again return to hishouse, a wonder to behold.Iliad, XVIII, 372{377 (pp. 315{317 of [Hom24], second volume).This quotation might well be the �rst ever reference to something like Arti�cialIntelligence: man-made (or in this case, god-made) artifacts displaying intelli-gent behaviour. As Thetis, Achilles' mother, enters Hephaestus' house in orderto fetch her son a new armour, she �nds Hephaestus constructing somethingwe today would call robots. His twenty tripods are of themselves to serve thegathering of the gods (bring them food, etc.), whenever Hephaestus so desires.Let us consider for a moment the kind of behaviour such a tripod shoulddisplay. Obviously, it should be able to recognise Hephaestus' voice, and toextract his wishes from his words. But furthermore, when serving the gods, thetripod should \know" and act upon many requirements, such as the following:1. If there is roasted owl for dinner, don't give any to Pallas Athena.2. Don't come too close to Hera if Zeus has committed adultery again.3. Stop fetching wine for Dionysus when he is too drunk.: : : 1

2 CHAPTER 1. COMPUTATIONAL LEARNING THEORYIt is clear that this list can be continued without end. Again and again, onecan think of new situations that the tripod should be able to adapt to properly.It seems impossible to take all these requirements into account explicitly in theconstruction of the intelligent tripod. The task of \coding" each of the in�nitenumber of requirements into the tripods may be considered too much, even forHephaestus, certainly one of the most industrious among the Greek gods.One solution to this problem would be to initially endow the tripod with amodest amount of general knowledge about what it should do, and to give it theability to learn from the way the environment reacts to its behaviour. That is, ifthe tripod does something wrong, it can adjust its knowledge and its behaviouraccordingly, thus avoiding to make the same mistake in the future.1 In thatway, the tripod need not know everything beforehand. Instead, it can buildup most of the required knowledge along the way. Thus the tripod's ability tolearn would save Hephaestus a lot of trouble.The importance of learning is not restricted to artifacts built to serve divinewishes. Human beings, from birth till death, engage in an ongoing learningprocess. After all, children are not born with their native language, politemanners, the abilities to read and write, earn their living, make jokes, or todo philosophy or science (or even philosophy of science). These things haveto be learned. In fact, if we take `learning' in a su�ciently broad sense, anykind of adaptive behaviour will fall under the term. Since learning is of crucialimportance to us, a theory of learning is of crucial importance to philosophy.1.2 Algorithms that Learn Concepts from Exam-plesAfter the previous section, the importance of a theory of learning should beclear. But why computational learning theory? Well, a theory of learningshould be about the way we human beings learn, or, more generally, about theway any kind of learning can be achieved. A description of \a way of learning"will usually boil down to something like a \recipe": learning amounts to doingsuch-and-such things, taking such-and-such steps. Now, it seems that the onlyprecise way we have to specify this \such and such steps"|and of course weshould aim for precision|is by means of an algorithm. In general, an algorithm,or a mechanical procedure, precisely prescribes the sequence of steps that haveto be taken in order to solve some problem. Hence it is obvious that learningtheory can (or perhaps even should) involve the study of algorithms that learn.2Since algorithms perform computation, algorithmic theory of learning is usuallycalled computational learning theory.In this thesis, we will mainly be concerned with learning a concept from1Of course, for this scheme to work, we have to assume that the tripod \survives" its initialfailures. If Zeus immediately smashes the tripod into pieces for bringing him white instead ofred wine, the tripod won't be able to learn from its experience.2The notion of an algorithm includes neural networks, at least those that can be simulatedon an ordinary computer. In fact, the learnability of neural networks has been one of the mostprominent research areas in computational learning theory.

1.2. ALGORITHMS THAT LEARN CONCEPTS FROM EXAMPLES 3examples. If we take the term `example' in a su�ciently broad sense, almostany kind of learning will be based on examples, so restricting attention tolearning from examples is not really a restriction. On the other hand, restrictingattention to learning a concept appears to be quite restrictive, since it excludeslearning \know-how" knowledge, for instance learning how to run a marathon.However, many cases of \know-how" learning can actually quite well be modeledor redescribed as cases of concept learning. For instance, learning a languagemay at �rst sight appear to be a case of learning know-how (i.e., knowing howto use words), but it can also be modeled as the learning of a grammar fora language.3 Accordingly, concept learning can be used to model any kindof learning in which the learned \thing" can feasibly be represented by somemathematical construct|a grammar, a logical formula, a neural network, andwhat not. This includes a very wide range of topics, from language learning tolarge parts of empirical science.Induction, which is the usual name for learning from examples, has been atopic of inquiry for centuries. The study of induction can be approached frommany angles. Like most other scienti�c disciplines, it started out as a part ofphilosophy. Philosophers particularly focused on the role induction plays inthe empirical sciences. For instance, Aristotle characterized science roughly asdeduction from �rst principles, which were to be obtained by means of inductionfrom experience [Ari60]. (Though it should be noted that Aristotle's notion ofinduction was rather di�erent from the modern one, involving the \seeing" ofthe \essential forms" of examples.)After the Middle Ages, Francis Bacon [Bac94] revived the importance ofinduction from experience (in the modern sense) as the main scienti�c activity.In later centuries, induction was taken up by many philosophers. David Hume[Hum56, Hum61] formulated what is nowadays called the `problem of induction',or `Hume's problem': how can induction from a �nite number of cases result inknowledge about the in�nity of cases to which an induced general rule applies?What justi�es inferring a general rule, or \law of nature", from a �nite numberof cases? Surprisingly, Hume's answer was that there is no such justi�cation.In his view, it is simply a psychological fact about humans beings that whenwe observe some particular pattern recur in di�erent cases (without observingcounterexamples to the pattern), we tend to expect this pattern to appearin all similar cases. In Hume's view, this inductive expectation is a habit,analogous to the habit of a dog who runs to the door after hearing his mastercall, expecting to be let out. Later philosphers such as John Stuart Mill [Mil58]tried to answer Hume's problem by stating conditions under which an inductiveinference is justi�ed. Other philosophers who made important comments oninduction were Stanley Jevons [Jev74] and Charles Sanders Peirce [Pei58].In our century, induction was mainly discussed by philosophers and mathe-maticians who were also involved in the development and application of formallogic. Their treatment of induction was often in terms of the probability orthe \degree of con�rmation" that a particular theory or hypothesis receivesfrom available empirical data. Some of the main contributors are Bertrand3This is what the Chomskyan revolution in linguistics is all about, see the next chapter.

4 CHAPTER 1. COMPUTATIONAL LEARNING THEORYRussell [Rus80, Rus48], Rudolf Carnap [Car52, Car50], Carl Hempel [Hem45a,Hem45b, Hem66], Hans Reichenbach [Rei49], and Nelson Goodman [Goo83].Particularly in Goodman's work, an increasing number of unexpected concep-tual problems appeared for induction. In the 1950s and 1960s, induction wassworn o� by philosophers of science such as Karl Popper [Pop59].4However, in roughly those same years, it was recognised in the rapidly ex-panding �eld of Arti�cial Intelligence that the knowledge an AI system needsto perform its tasks, should not all be hand-coded into the system beforehand.Instead, it is much more e�cient to provide the system with a relatively smallamount of knowledge and with the ability to adapt itself to the situations itencounters|to learn from its experience. Thus the study of induction switchedfrom philosophy to Arti�cial Intelligence. The branch of AI that studies learn-ing is called Machine Learning. As Marvin Minsky, one of the founders of AI,wrote: \Arti�cial Intelligence is the science of making machines do things thatwould require intelligence if done by man" [Min68, p. v]. Given this view, thestudy of induction is indeed part of AI, since learning from examples certainlyrequires intelligence if done by man.1.3 The PAC Model and E�ciencySince Machine Learning is concerned with formal learning algorithms, it needsformal models of what it means to learn something: what kinds of \examples"and other resources does a learning algorithm have at its disposal, and what areits goals? In general, a learning algorithm reads a number of examples for someunknown target concept, and has to induce or learn some concept on the basis ofthese examples. Initial analysis of learnability in Machine Learning was mainlydone in terms of Gold's paradigm of identi�cation in the limit [Gol67], butnowadays Valiant's paradigm of PAC learnability [Val84] is usually consideredto provide a better model of learnability. A PAC algorithm is an algorithmthat reads examples concerning some target concept, which is taken from someclass F of concepts. The algorithm knows from which class the target conceptis chosen, but it does not know which particular concept is the target, and itsonly access to the target is through the examples it reads. These examples willusually not provide complete knowledge of the target concept, so we cannotexpect our algorithm to learn the target exactly. Instead, we can only hope tolearn an approximately correct concept: a concept which diverges only slightlyfrom the target. Moreover, since the given set of examples may be biased andneed not always be a good representative of the target concept as a whole, wecannot even expect to learn approximately correctly every time. Accordingly,the best our algorithm can do, is learn a concept which is probably approximatelycorrect (PAC) with respect to the target concept, whenever the target is drawnfrom F . That is, a PAC algorithm should, with high probability, learn a conceptwhich diverges only slightly from the target concept.4Interestingly enough, Thomas Kuhn, Popper's antipode in the philosophy of science,later became involved in computer models of inductive concept learning from examples. Seepp. 474{482 of [Kuh77].

1.3. THE PAC MODEL AND EFFICIENCY 5In the PAC model, a class of concepts is only considered learnable if there isan e�cient PAC algorithm for that class.5 E�ciency concerns two major com-plexity issues: how many examples do we need to ensure that we will probably�nd an approximately correct concept (sample complexity), and how many stepsdo we need to take to �nd such a concept (time complexity)? An algorithm ise�cient if both its sample and its time complexity can be upper-bounded by apolynomial function in the inputs of the algorithm.6Before embarking on formal expositions of PAC algorithms and their sampleand time complexity, let us �rst say something about why we call an algorithmwith polynomially-bounded running time an e�cient algorithm. Suppose wewant to solve some family of problems, and we can measure the size of eachparticular problem (or instance) in that family by some integer n. For instance,we might want to construct an algorithm for solving the traveling salesmanproblem (TSP): given a road map and a number of cities on the map, �ndthe shortest route that leads past each city on the map. For simplicity, letus de�ne the size of a particular traveling salesman problem as the number nof cities on the map. Suppose we have two algorithms for solving TSP: eachtakes a particular TSP-instance as input, and �nds the shortest route for usin a �nite number of steps. Now, suppose the �rst algorithm, when given aproblem of size n as input, gives the right answer after n2 steps, while thesecond needs 2n steps.7 Let us call the �rst the polynomial algorithm, andthe second the exponential algorithm. Consider the number of steps needed bythese two algorithms for larger n:Number of cities: 1 5 10 50 100 : : :No. of steps (polynomial): 1 25 100 2500 10000 : : :No. of steps (exponential): 2 32 1024 1:13 � 1015 1:27 � 1030 : : :As can be seen from this table, the time required by the exponential algo-rithm really explodes for larger n, while for the polynomial algorithm it growsmuch more moderately. Both algorithms solve the same problem correctly, butthe polynomial algorithm needs much less time for this than the exponentialone.The relative e�ciency of the polynomial algorithm can also be seen in an-other way. According to Moore's well known law, the speed of computers dou-bles every one and a half years. Suppose that in Januari 1996 we can solveTSP's of length up to n1 in one hour's time using the polynomial algorithm,and TSP's of length up to n2 with the exponential algorithm. Now supposecomputing power doubles, and in July 1997 we have a computer which can make5Note carefully that learnability is a property of classes of concepts, rather than of individ-ual concepts. A class consisting of a single concept f is always learnable, because a learningalgorithm can already know in advance that the target concept has to be f in this case.6A polynomial function with variables x1; : : : ; xn is a sum of terms of the formcxe11 xe22 : : : xenn , where c is an arbitrary real constant, and the exponents e1; : : : ; en are non-negative real constants. For instance, x2 + 3 and 3x1x2 + 5x22 are polynomials.7In fact, it is a big open question whether TSP can be solved by a polynomial-time algo-rithm, because this problem, in a slightly di�erent form, is known to be NP-complete. Seenote 16 on p. 39 for more on NP-completeness.

6 CHAPTER 1. COMPUTATIONAL LEARNING THEORYtwice as many steps in one hour as the computer we used in Januari 1996. Thenit is easy to show that with this faster computer, we can solve TSP's of lengthup to p2 � n1 � 1:41 � n1 with the polynomial algorithm: an improvement ofabout 41%, which is quite nice. However, with the exponential algorithm, wecan only solve problems of length up to n2 + 1 in one hour! Thus an increasein computing power makes a great di�erence if we use the e�cient polynomialalgorithm, but makes hardly any di�erence using the exponential algorithm.1.4 PAC AlgorithmsLet us �rst illustrate and motivate the de�nition of a PAC algorithm by meansof a metaphorical example. Suppose some biology student wants to learn fromexamples to distinguish insects from other animals. That is, he wants to learnthe concept of an `insect' within the domain of all animals. A teacher gives thestudent examples: a positive example is an insect, a negative example is someother animal. The student has to develop his own concept of what an insect ison the basis of these examples. Now, the student will be said to have learned theconcept approximately correctly, if, when afterwards tested, he classi�es only asmall percentage of given test animals incorrectly as insect or non-insect. Inother words, his own developed concept should not diverge too far from the realconcept of an `insect'.In the interest of fairness, we require that the animals given as examplesduring the learning phase, and the animals given afterwards as test, are allselected by the same teacher (or at least by teachers with the same inclinations).For suppose the student learns from a teacher with a particular interest inEuropean animals, whose examples are mainly European animals. Then itwould be somewhat unfair if the animals that were given afterwards to testthe student, were selected by a di�erent teacher having a decisive interest inthe very di�erent set of African insects. In other words: the student should betaught and tested by the same teacher.Let us now formalize this setting. To my knowledge, three di�erent text-books for computational learning theory exist to date, respectively writtenby Natarajan [Nat91], Anthony and Biggs [AB92], and Kearns and Vazirani[KV94]. The formal de�nitions in this chapter will mostly follow Natarajan.De�nition 1.1 A domain X is a set of strings over some �nite alphabet �.The length of some x 2 X is the string length of x. X [n] denotes the set of allstrings in X of length at most n.A concept f is a subset of X, a concept class F is a set of concepts. Anexample for f is a pair (x; y), where x 2 X, y is called the label of the example,y = 1 if x 2 f and y = 0 otherwise. If y = 1 then the example is positive, ify = 0 it is negative.If f and g are two concepts, then f�g denotes the symmetric di�erence off and g: f�g = (fng) [(gnf). 3In our metaphor, X would be the set of descriptions of all animals, the targetconcept f � X would be the set of descriptions of all insects, and the student

1.4. PAC ALGORITHMS 7would develop his own concept g � X on the basis of a number of positiveand negative examples (i.e., insects and non-insects). The symmetric di�erencef�g would be the set of all animals which the student classi�es incorrectly: allinsects that he takes to be non-insects and all non-insects he takes to be insects.For technical reasons, we restrict the examples to those of length at mostsome number n, so all examples are drawn from X [n]. Note that X [n] is a�nite set. We assume these examples are given according to some unknownprobability distribution P on X [n], which reects the particular interests of theteacher. If S � X [n], we let P(S) denote the probability that a member of X [n]that is drawn according to P, is a member of S (i.e., P(S) =Ps2S P(s)). Nowsuppose the student has developed a certain concept g. Then in the test phase,he will misclassify some object x 2 X [n] i�8 x 2 f�g. Thus we can say thatg is approximately correct if the probability that such a misclassi�ed object isgiven during the test phase, is small:P(f�g) � ";where " 2 (0; 1] is called the error parameter. For instance, if " = 0:05, thenthere is a chance of at most 5% that an arbitrary given test object from X [n]will be classi�ed incorrectly. Note that the set of examples that is given, as wellas the evaluation of approximate correctness of the learned concept g, dependson the same probability distribution P. This formally reects the fairness-requirement that the student is taught and tested by the same teacher.After all these preliminaries, we can now de�ne a PAC algorithm as analgorithm which, under some unknown distribution P and target concept f ,learns a concept g which is probably approximately correct. `Probably' heremeans with probability at least 1 � �, where � 2 (0; 1] is called the con�denceparameter. For instance, if � = 0:1 and the algorithm would be run an in�nitenumber of times, at least 90% of these runs would output an approximatelycorrect concept. The constants ", �, and n are given by the user as input to thealgorithm.De�nition 1.2 A learning algorithm L is a PAC algorithm for a concept classF over domain X if1. L takes as input real numbers "; � > 0 and a natural number n 2 N,where " is the error parameter, � is the con�dence parameter, and n isthe length parameter.2. L may call the procedure Example, each call of which returns an examplefor some unknown target concept f 2 F according to an arbitrary andunknown probability distribution P on X [n].3. For all concepts f 2 F and all probability distributions P on X [n], Loutputs a concept g, such that with probability at least 1��, P(f�g) � ".3A PAC algorithm may be randomized, which means, informally, that it may\toss coins" and use the results in its computations. One further technicality:8`I�' abbreviates `if, and only if'.

8 CHAPTER 1. COMPUTATIONAL LEARNING THEORYa PAC algorithm should be admissible, meaning that for any input "; �; n, forany sequence of examples that Example may return, and for any concept g,the probability that L outputs g should be well de�ned.1.5 Sample ComplexityHaving a PAC algorithm for a concept class F is nice, but having an e�cientPAC algorithm for F is even nicer. In this section we analyze this e�ciency interms of the number of examples the algorithm needs (the sample complexity),while in the next section we treat the number of steps the algorithm needs totake (time complexity).The sample complexity of a learning algorithm can be seen as a functionfrom its inputs ", �, and n, to the maximum number of examples that thealgorithm reads when learning an unknown target concept under an unknownprobability distribution. Since the examples are drawn according to a proba-bility distribution, di�erent runs of the same algorithm with the same inputand the same target concept and distribution may still read di�erent examples.Thus di�erent runs of the same algorithm with the same input may need adi�erent number of examples in order to �nd a satisfactory concept. There-fore, the sample complexity as de�ned below relates to the maximum numberof examples over all runs of the algorithm with the same input.De�nition 1.3 Let L be a learning algorithm for concept class F . The samplecomplexity of L is a function s, with parameters ", � and n. It returns themaximum number of calls of Example made by L, for all runs of L withinputs "; �; n, for all f 2 F and all P on X [n]. If no �nite maximum exists, welet s("; �; n) =1. 3Of course, for the sake of e�ciency we want this complexity to be as small aspossible. A concept class is usually considered to be e�ciently PAC learnable|as far as the required number of examples is concerned|if there is a PACalgorithm for this class for which the sample complexity is bounded from aboveby a polynomial function in 1=", 1=�, and n. Of course, even polynomialsmay grow rather fast (consider n100), but still their growth rate is much moremoderate than, for instance, exponential functions.De�nition 1.4 A concept class F is called polynomial-sample PAC learnable,if a PAC algorithm exists for f , which has a sample complexity bounded fromabove by a polynomial in 1=", 1=�, and n. 3Note that polynomial-sample PAC learnability has to do with the worst case:if the worst case cannot be bounded by a polynomial, a concept class is notpolynomial-sample PAC learnable, even though there may be PAC algorithmswhich take only a small polynomial number of examples on average.A crucial notion in the study of sample complexity is the dimension namedafter Vapnik and Chervonenkis [VC71]:De�nition 1.5 Let F be a concept class on domainX. We say that F shattersa set S � X, if ff \ S j f 2 Fg = 2S , i.e., if for every subset S0 of S, there isan f 2 F such that f \ S = S0. 3

1.5. SAMPLE COMPLEXITY 9De�nition 1.6 Let F be a concept class on domain X. The Vapnik-Chervo-nenkis dimension (VC-dimension) of F , denoted by DV C(F), is the greatestinteger d such that there exists a set S � X with jSj = d, that is shattered byF . DV C(F) =1 if no greatest d exists. 3Note that if F = 2S , then F shatters S. Thus if F = 2S for some �nite setS, then F has jSj as VC-dimension.Example 1.1 Let X = f1; 2; 3; 4g and F = ff1g; f2g; f3g; f4g; f1; 2g; f2; 3g;f1; 3; 4g; f1; 2; 3; 4gg be a concept class. Then F shatters the set S = f1; 2g,because ff \ S j f 2 Fg = f;; f1g; f2g; f1; 2gg = 2S . Thus F 's \shattering" ofS intuitively means that F \breaks" S into all possible pieces.F also shatters S0 = f1; 2; 3g, because ff \ S0 j f 2 Fg = f;; f1g; f2g;f3g; f1; 2g; f2; 3g; f1; 3g; f1; 2; 3gg = 2S . F does not shatter S00 = f1; 2; 3; 4g,since there is for instance no f 2 F with f \ S00 = f1; 4g. In general, there isno set of four or more elements that is shattered by F , so we have DV C(F) =jS0j = 3. <Since we are actually dealing with X [n] rather than with X itself, we needthe following de�nitions, which \project" the VC-dimension on X [n].De�nition 1.7 The projection of a concept f on X [n] is f [n] = f \X [n]. Theprojection of a concept class F on X [n] is F [n] = ff [n] j f 2 Fg. 3De�nition 1.8 Let F be a concept class on domain X. F is of polynomialVC-dimension if DV C(F [n]) is bounded from above by some polynomial in n.3The following fundamental result, due to Blumer, Ehrenfeucht, Haussler,and Warmuth [BEHW89], states the relation between polynomial-sample PAClearnability and the VC-dimension. For a proof we refer to Theorem 2.3of [Nat91].Theorem 1.1 Let F be a concept class on domain X. Then F is polynomial-sample PAC learnable i� F is of polynomial VC-dimension.In the proof of the theorem, the following important lemma is proved(Lemma 2.1 of [Nat91]):Lemma 1.1 Let F be a concept class on a �nite domain X. If d = DV C(F),then 2d � jFj � (jXj+ 1)d:Let us use this to obtain bounds on jF [n]j. Suppose the length parameter nis given, and the domain X is built from an alphabet � which contains s � 2characters. Since we are only concerned with elements of the domain of lengthat most n, and the number of strings of length i over � is si, we can upperbound jXj as follows:jXj � s0 + s1 + : : : + sn = sn+1 � 1:

10 CHAPTER 1. COMPUTATIONAL LEARNING THEORYPutting d = DV C(F [n]) and substituting our upper bound on jXj in the relationof the lemma, we obtain the following relation:2d � jF [n]j � s(n+1)d:If we take logarithms (with base 2) on both sides, using that log ab = b log aand log 2 = 1, we obtaind � log jF [n]j � (n+ 1)d log s:This implies that a concept class F is of polynomial VC-dimension (i.e., d isbounded by a polynomial in n) i� log jF [n]j can be bounded by some polynomialp(n) i� jF [n]j can be bounded by 2p(n). Thus if we are able to show that jF [n]jis bounded in this way, we have thereby shown it to be polynomial-sample PAClearnable. And conversely, if jF [n]j grows faster than 2p(n), for any polynomialp(n), then F is not polynomial-sample PAC learnable.1.6 Time ComplexityIn outline, the analysis of time complexity is similar to the analysis of samplecomplexity: the time complexity of a learning algorithm is a function from itsinputs to the maximum number of computational steps the algorithm takes onthese inputs. Here we assume that the procedure Example takes at most some�xed constant number of steps. Again, we are mainly interested in the existenceof algorithms which have a polynomially-bounded time complexity.1.6.1 RepresentationsUnfortunately, things are somewhat more complicated than in the last section:the \number of examples" that an algorithm needs is unambiguous, but whatabout the \number of computational steps"? What counts as a computationalstep? In order to make this notion precise, we have to turn to some precisemodel of computation, where it is clear what a single step is. Usually Turingmachines are used for this.9 We will not go into details, but will just note herethat a Turing machine programmed to learn some concept will often not be ableto output the learned concept g itself e�ciently, because this concept may betoo large or even in�nite. Therefore, instead of the concept g itself, the Turingmachine will have to output some �nite representation of g, which we call aname of g. Abstractly, a representation speci�es the relation between conceptsand their names:De�nition 1.9 Let F be a concept class, and � a set of symbols. �+ denotesthe set of all �nite non-empty strings over �. A representation of F is a functionR : F ! 2�+ , where we require that for each f 2 F , R(f) 6= ; and for every9See [HU79, BJ89] for an introduction into Turing machines. Since Turing machines cannotrepresent arbitrary real numbers, we have to restrict the parameters � and " somewhat, forinstance by only allowing them to be the inverses of integers.

1.6. TIME COMPLEXITY 11distinct f; g 2 F , R(f)\R(g) = ;. For each f 2 F , R(f) is the set of names off in R.The length of a name r 2 R(f) is simply the string length of r, i.e., thenumber of symbols in r. The size of f in R is the length of the shortest namein R(f), denoted by lmin(f;R). 3The requirement that R(f) 6= ; for each f 2 F means that each concept inF has at least one name, while R(f) \ R(g) = ; for every distinct f; g meansthat no two distinct concepts share the same name. Note the di�erence betweenthe string length of a string x 2 X and the size of a concept f 2 F in R: thelatter depends on R, the former does not.The aim of the analysis of time complexity is to be able to bound by apolynomial function the number of steps needed for learning. After all, we areinterested in e�cient learning. However, if a learning algorithm provided uswith a name of an approximately correct concept in a polynomial number ofsteps, but we were not able to decide in polynomial time whether that conceptactually contains a given x 2 X, we still had a computational problem. There-fore, a representation R should be polynomially evaluable: given an x 2 X anda name r of a concept f , we should be able to �nd out, in polynomial time,whether x 2 f . This is de�ned as follows.De�nition 1.10 Let R be a representation of a concept class F over domainX. We say that R is evaluable if there exists an algorithm which, for anyf 2 F , takes any x 2 X and any name r 2 R(f) as input, and decides ina �nite number of steps whether x 2 f . R is polynomially evaluable if thereis such an algorithm, whose running time is bounded by a polynomial in thelengths of x and r. 3In the sequel, whenever we write `representation' we actually mean a poly-nomially evaluable representation.1.6.2 Polynomial-Time PAC LearnabilityIn order to be able to study time complexity, we need to change the de�nition ofa PAC learning algorithm somewhat to incorporate the representation: a PACalgorithm for a concept class F in representation R should output the name ofa concept g, rather than g itself.Now time complexity can be de�ned as follows, where we introduce a newparameter l that bounds the size of the concepts considered:De�nition 1.11 Let L be a learning algorithm for concept class F in repre-sentation R. The time complexity of L is a function t, with parameters ", �, n,and l. It returns the maximum number of computational steps made by L, forall runs of L with inputs "; �; n; l, for all f 2 F such that lmin(f;R) � l, and allP on X [n]. If no �nite maximum exists, we de�ne t("; �; n; l) =1. 3De�nition 1.12 A concept class F is called polynomial-time PAC learnablein a representation R, if a PAC algorithm exists for f in R, which has a timecomplexity bounded from above by a polynomial in 1=", 1=�, n, and l. 3

12 CHAPTER 1. COMPUTATIONAL LEARNING THEORYLet us suppose we have some concept class F of polynomial VC-dimension.Then we know F is polynomial-sample PAC learnable, so we only need a poly-nomial number of examples. Now, in order to achieve polynomial-time PAClearnability of F , it is su�cient to have an algorithm that �nds, in a polyno-mial number of steps, a concept that is consistent with the given examples. Aconcept is consistent if it contains all given positive examples and none of thegiven negative examples.De�nition 1.13 Let g be a concept and S be a set of examples. We say g isconsistent with S, if x 2 g for every (x; 1) 2 S and x 62 g for every (x; 0) 2 S.3An algorithm which returns a name of a concept that is consistent witha set of examples S is called a �tting, since it \�ts" a concept to the givenexamples. As always, we want a �tting to work e�ciently. The running timeof the �tting should be bounded by a polynomial in two variables. The �rst isthe length of S, which we de�ne as the sum of the lengths of the various x 2 Xthat S contains. The second is the size of the shortest consistent concept. Forthis, we will extend the lmin notation as follows. If S is a set of examples, thenlmin(S;R) is the size of the concept f 2 F with smallest size that is consistentwith S. If no such consistent f 2 F exists, then lmin(S;R) =1.De�nition 1.14 An algorithm Q is said to be a �tting for a concept class Fin representation R if1. Q takes as input a set S of examples.2. If there exists a concept in F that is consistent with S, then Q outputs aname of such a concept.If Q is a deterministic algorithm such that the number of computational stepsof Q is bounded from above by a polynomial in the length of S and lmin(S;R),then Q is called a polynomial-time �tting. 3As the next theorem (Theorem 3.1 of [Nat91]) shows, the existence of such a�tting is indeed su�cient for the polynomial-time PAC learnability of a conceptclass of polynomial VC-dimension.Theorem 1.2 Let F be a concept class of polynomial VC-dimension, and Rbe a representation of F . If there exists a polynomial-time �tting for F in R,then F is polynomial-time PAC learnable in R.Conversely, it is also possible to give a necessary condition for polynomial-time PAC learnability in terms of so-called randomized polynomial-time �ttings.We will not go into that here (see Theorem 3.2 of [Nat91]), but just mentionthat it can be used to establish negative results: if no such �tting for F in Rexists, F is not polynomial-time PAC learnable in R.Example 1.2 Consider an in�nite sequence of properties p1; p2; : : : For con-creteness, suppose the �rst properties of this sequence are the following:

1.6. TIME COMPLEXITY 13p1: \is a mammal"p2: \is green"p3: \is grey"p4: \is large"p5: \is small"p6: \has a trunk"p7: \smells awful": : :Let us identify an animal with the set of its properties. Then we can roughlyrepresent an animal (that is, an individual animal, not a species) by a �nitebinary string, i.e., a �nite sequence of 0s and 1s, where the ith bit is 1 i�the animal has property pi. Here we assume that a binary string of length ntells us whether the animal does or does not have the properties p1; : : : ; pn,while it tells us nothing about the further properties pn+1; pn+2; : : : Thus, forinstance, some particular small, green, awfully smelling, trunk-less mammalcould be represented by the string 1100101. Note that not every binary stringcan represent an animal. For instance, 111 would be an (impossible) mammalwhich is both green and grey at the same time. Similarly, since an animalcannot be large and small at the same time, a binary string cannot have 1 atboth the 4th and the 5th bit.Let us suppose our domain X is a set of binary strings, each of whichrepresents some particular animal. Then, simplifyingmatters somewhat, we canidentify a species with the set of animals that have the \essential" characteristicsof that species. Thus, for instance, the concept `elephant' would be the set of alllarge, grey, mammals with a trunk: all strings in X that have (possibly amongothers) properties p1; p3; p4 and p6.How could an algorithm learn the target concept `elephant'? Well, it wouldreceive positive and negative examples for this concept: strings fromX togetherwith a label indicating whether the animal represented by the string is anelephant or not. Hopefully, it would �nd out after a number of examples thata string is an elephant i� it has (possibly among others) properties p1; p3; p4and p6. Consider the following representation: a conjunction of pi's is a nameof the concept consisting of all strings which have (possibly among others) theproperties in the conjunction. Then the conjunction p1 ^ p3 ^ p4 ^ p6 would bea name of the concept `elephant', and the learning algorithm could output thisconjunction as a name of the concept it has learned.It turns out that the concept class that consists of concepts representable bya conjunction of properties is polynomial-time PAC learnable (see Example 2.5of [Nat91]). Thus, if F is a concept class, each member of which is a speciesof animals that can be represented by some �nite conjunction of properties,then a polynomially-bounded number of examples and a polynomially-boundednumber of steps su�ces to learn some target concept (species) approximatelycorrectly. In fact, much more complex concept classes are polynomial-timePAC learnable as well. For an overview of positive and negative results, see[Nat91, AB92, KV94]. <

14 CHAPTER 1. COMPUTATIONAL LEARNING THEORY1.7 Some Related SettingsThe standard PAC setting of the previous sections may be varied somewhat.In this section, we will mention some alternatives.1.7.1 Polynomial-Time PAC PredictabilityIn the ordinary PAC setting, a PAC algorithm for a concept class F readsexamples from an unknown target concept f from F , and has to construct aconcept g, also from F , which is approximately correct. This may lead to aseemingly paradoxical situation: we would expect that learning a superset ofF is at least as hard as learning F itself, but this need not be the case in theordinary PAC setting. Namely, it may be that there is no polynomial-time PACalgorithm for some concept class F in some representation R, while for somelarger concept class G � F there is such a polynomial-time PAC algorithm.The latter algorithm, when given examples for some target concept f 2 F ,always constructs a name of a probably approximately correct concept g 2 G inpolynomial time. Still, F itself may be hard to learn, because the requirementthat the output concept should be a member of F may be very hard to meet.We can take this into account by loosening the requirement on g somewhat,and allow it to be a member of a broader concept class G, of which F is asubset. This gives the learning algorithm more freedom, which may facilitatethe learning task. Suppose we have a concept class F , a broader concept classG � F , and a representation R of G (which is of course also a representationof F). Suppose, furthermore, that there exists a learning algorithm L for Fin R, which is just like a PAC algorithm for F in R, except that it outputs aname of a concept g such that g 2 G but not necessarily g 2 F . In this case,we say that L is a PAC prediction algorithm for F in R in terms of G and Fis PAC predictable in R in terms of G. If, furthermore, the time complexity ofalgorithm L is bounded by a polynomial in 1=", 1=�, n, and l, we say that Fis polynomial-time PAC predictable in R in terms of G. If some G exists suchthat F is polynomial-time PAC predictable in R in terms of G, we will simplysay that F is polynomial-time PAC predictable in R.Clearly, if some concept class F is polynomial-time PAC learnable in someR, it is also polynomial-time PAC predictable in R: simply put G = F . Hencethe setting of polynomial-time PAC predictability may be used to establishnegative results: if we can prove that some concept class F is not polynomial-time PAC predictable in R in terms of any G, we have thereby also shown thatF|as well as any superset of F|is not polynomial-time PAC learnable in R.The converse need not hold: some classes are polynomial-time PAC predictable,but not polynomial-time PAC learnable (see Sections 1.4 and 1.5 of [KV94] foran example). Hence polynomial-time PAC predictability is strictly weaker thanpolynomial-time PAC learnability.

1.7. SOME RELATED SETTINGS 151.7.2 Membership QueriesWe may facilitate the learning task by allowing a PAC algorithm to make use ofvarious kinds of oracles. An oracle is a device which returns answers to certainquestions, which are called queries. For the PAC algorithm that uses an oracle,the oracle is like a black box: you pose a question and get an answer, but donot know how the oracle constructs it answer. Like the Example procedure,oracles are assumed to run in at most some �xed constant number of steps.The most straightforward kind are the membership queries. Here the oracletakes some x 2 X as input, and returns `yes' if x is a member of the targetconcept, and `no' if not. Clearly, the oracle somehow has to have knowledgeabout the domain. Two justi�cations for assuming an oracle can be given:1. Induction can be compared with a simpli�ed picture of the work of ascientist. Consider a particle physicist. The physicist may not know thegeneral laws that characterize the objects in his domain of inquiry, but hecan obtain knowledge about certain speci�c instances of those conceptsby doing experiments. Posing a membership query to an oracle is similarto doing an experiment in science, which is like \posing a question tonature".2. When learning, a student may have a teacher who can answer questionsabout whether some object has a certain property or not. It need not bethe case here that the student only learns what the teacher already knows.We only assume the teacher has su�cient knowledge of individual objectsof the concepts. The teacher may know all about the particular instancesof the concepts, and yet be pleasantly surprised by the concept that asmart student comes up with. Translating this analogy to induction, theoracle acts as the teacher, while the learning algorithm is the student.If a concept class F is polynomial-time PAC learnable in some R by analgorithm which makes membership queries, we will say that F is polynomial-time PAC learnable in R with membership queries. Analogously, we can de�nePAC predictability with membership queries. Note that if an algorithm makesmembership queries, it in a way \creates its own examples." Note also that apolynomial-time algorithm can make at most a polynomial number of queries,since each query counts for at least one computational step.Equivalence queries need a more fancy oracle, which is discussed in the nextsubsection. For an overview of other kinds of queries, we refer to [Ang88].1.7.3 Identi�cation from Equivalence QueriesWhile polynomial-time PAC predictability is strictly weaker than polynomial-time PAC learnability, polynomial-time identi�cation from equivalence queries,introduced by Angluin [Ang87b], is strictly stronger. In this setting, we havean oracle which takes a name of a concept g as input, and answers `yes' if gequals the target concept f , and `no' otherwise. In case of a `no', it also returnsa randomly chosen counterexample x 2 f�g. There is no need for the oracle toprovide the correct label of the counterexample x, because the algorithm can

16 CHAPTER 1. COMPUTATIONAL LEARNING THEORY�nd this out for itself: if x 2 g then x 62 f , and if x 62 g then x 2 f . Whenequivalence queries are available, the requirement that an algorithm outputs aname of an approximately correct concept is replaced by the requirement thatthe target concept is identi�ed exactly : an algorithm that is allowed to makeequivalence queries should output a name of the target concept.Consider a concept class F and a representation R of F . Let L be an algo-rithm which uses equivalence queries in order to learn some unknown conceptf 2 F under some unknown probability distribution P, and which takes asinput an upper bound l on lmin(f;R) and an upper bound n on the length ofthe counterexamples from the oracle. If this algorithm always outputs a nameof the target concept, we say F is identi�able from equivalence queries in R. Ifthe running time of the algorithm L is bounded by a polynomial in its inputs land n, then F is polynomial-time identi�able from equivalence queries in R. Asin the case of membership queries, an algorithm with a polynomially-boundedrunning time can make only a polynomially-bounded number of equivalencequeries.It is shown in Section 2.4 of [Ang88] that if a concept class is polynomial-timeidenti�able from equivalence queries in some R, then it is also polynomial-timePAC learnable in R. The converse does not hold. Thus, while PAC predictabil-ity can be used to establish negative results, identi�cation from equivalencequeries may be used for positive results: if we can prove that some concept classF is polynomial-time identi�able from equivalence queries, we have thereby alsoshown that F , as well as any subset of F , is polynomial-time PAC learnable inR. We may also allow an algorithm to make both equivalence queries andmembership queries. Angluin [Ang87b] calls this combination a \minimallyadequate teacher": if a teacher wants to teach some target concept to his stu-dent, he should be able to answer student's questions about whether someobject is in the target concept (membership queries), and he should be ableto judge whether some concept the student comes up with, is really the targetconcept, and give a counterexample if not (equivalence queries). If polynomial-time identi�cation of F from equivalence queries is done by an algorithm whichmakes use of equivalence queries as well as membership queries, then we say Fis polynomial-time identi�able from equivalence and membership queries in R.This implies polynomial-time PAC learnability with membership queries.1.7.4 Learning with NoiseIn many real-world learning tasks, examples may contain errors (noise), whichmay for instance be due to inaccurate measurements. There are various ways inwhich the analysis of noise may be modelled in the theoretical setting for PAClearnability. We will discuss only two kinds of noise here: Valiant's maliciousnoise [Val85], also sometimes called adversarial noise, and Angluin and Laird'srandom classi�cation noise [AL88]. For other kinds of noise, see [Lai88, Slo95].Firstly, in the malicious noise model, a malicious adversary of the learningalgorithm tinkers with the examples: for each example that the learning algo-rithm reads, there is a �xed, unknown probability 0 � � that the adversary has

1.8. SUMMARY 17changed the original, correct example (x; y) to any other (x0; y0)-pair he chooses.Since y0 may not be the correct label for x0, the adversary may introduce noisein this way. The adversary is assumed to be omnipotent and omniscient|inparticular, he has knowledge of the learning algorithm he is trying to deceive.This means that the learning algorithm should be able to cope even with theworst possible changes in the examples.Secondly, in the random classi�cation noise model, the Example procedureis replaced by a procedure Example�, and there is a �xed, unknown probability0 � � < 0:5 that the label of an example provided by this procedure is incorrect.For instance, suppose � = 0:1. If a learning algorithm receives an example (x; y)from Example�, then there is a probability of 10% that y is incorrect.In both models, the actual noise rate � is unknown to the learning algo-rithm. However, an upper bound �b on the noise rate is given as an additionalinput parameter to a PAC algorithm, where 0 � � � �b < 0:5. This �b isadded as a parameter to the time complexity function as well. If there is aPAC algorithm for a concept class F in some representation R, working in thepresence of malicious (resp. random classi�cation) noise, with time complexitybounded by a polynomial in 1=", 1=�, n, l, and 1=(1 � 2�b), then F is said tobe polynomial-time PAC learnable in R with malicious (resp. random classi-�cation) noise. Similarly, we can de�ne PAC predictability with malicious orrandom classi�cation noise.1.8 SummaryThis thesis is concerned with computational learning theory : the study of algo-rithmic ways to learn from examples. The dominant formal model of learnabilityin Arti�cial Intelligence is Valiant's model of approximately correct learning. Inthis model, a concept is simply a subset of a domain X, and a concept classis a set of concepts. A PAC algorithm reads examples for an unknown targetconcept (taken from some concept class), drawn according to an unknown prob-ability distribution, and learns, with tunably high probability, a tunably goodapproximation of the target concept. A concept class F is polynomial-samplePAC learnable if a PAC algorithm exists for F that uses only a polynomially-bounded number of examples, and is polynomial-time PAC learnable if the al-gorithm uses only a polynomially-bounded number of steps. In the latter case,the algorithm should output a name of the learned concept in some polynomi-ally evaluable representation. An oracle for membership queries can informthe learner whether a speci�c object is in the target or not. Polynomial-time PAC predictability is weaker than polynomial-time PAC learnability, whilepolynomial-time identi�cation from equivalence queries is stronger. When noiseis involved, the examples may sometimes be incorrect.

18 CHAPTER 1. COMPUTATIONAL LEARNING THEORY

Chapter 2Application to LanguageLearning2.1 IntroductionIn the course of the 20th century, language has become the focal interest of phi-losophy. Many of the central philosophical problems|logical, epistemological,anthropological, ethical, and even metaphysical|are bound up with the intri-cacies of human language. Investigating how human beings learn languages,and which languages can be learned by human beings may tell us a lot aboutthose intricacies, and should therefore be of great importance to philosophy.Seeking knowledge about language, where better to turn than to linguistics,the science of language? And within linguistics, whom better to turn to thanNoam Chomsky, the man who made linguistics the most scienti�c of all hu-manities? One of Chomsky's most interesting claims concerns the innatenessof important aspects of our natural languages. For this claim, he has beenseverely attacked by various empiricist philosophers, among them Putnam andQuine. While Chomsky argues that children can only acquire language in virtueof having speci�c innate language acquisition mechanisms, Putnam and Quineargue that general (not language-speci�c) learning mechanisms may su�ce forlanguage acquisition.This chapter is an attempt to settle this issue in Chomsky's favour by meansof a mathematical argument: we will use results from computational learningtheory to establish that children would not be able to learn their native languageif they started without any pre-knowledge of the language they have to learn.In other words, we provide a formal \proof" that general learning mechanismscannot explain why children acquire language as successfully as they in fact do:language acquisition must be based on certain propensities and biases whichdirect the child towards certain kinds of languages and away from others. Wheredo these biases come from? The most plausible answer is that they are innate.The chapter is organized as follows. We start by sketching some backgroundconcerning Chomskyan linguistics and the innateness of language. In order tobe able to state formal results about language learnability, we need to pro-vide two things: a formal model of learning, and a formal model of languages19

20 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGand grammar. The �rst has been dealt with in the previous chapter, whileSection 2.3 provides formal counterparts to the notions of a language and agrammar. One of the main self-imposed goals of philosophers is to bring outpresuppositions. In Section 2.4, we follow this laudable practice, making ex-plicit the main assumptions and presuppositions of our analysis of languagelearnability. Sections 2.5 to 2.11 form the main part of the chapter. Here weshow that the set of languages a child can learn must be severely constrainedin order to enable e�cient learning to take place. Finally, in Section 2.12 weextrapolate this argument to other kinds of learning.2.2 A Brief History of the Chomskyan RevolutionsIn this section we will give a brief and incomplete overview of the revolutioncaused in linguistics by the work of Noam Chomsky.1 Actually, we may distin-guish between two revolutions: the �rst replaced the behavioristic paradigm bythe paradigm of transformational-generative grammar; the second involved im-portant changes in the transformational-generative framework, yielding Chom-sky's current principles-and-parameters framework.2.2.1 Against BehaviorismLinguistics BC, Before Chomsky, was dominated by behaviorism. Accordingly,a good place to start our story is Chomsky's review of Verbal Behavior, a bookby the leading behaviorist B. F. Skinner. In his book, Skinner attempted toextend the behaviorist approach to the study of language use by human beings.The behaviorist picture of science amounts to the following: you have someobject, for instance an animal, which reacts or responds in certain ways tocertain stimuli from the environment. The task of the scientist is to �nd lawswhich describe the relations between stimulus and response, on the basis ofexperiments where you vary the stimulus and observe how the response changes.Previously, that approach had mainly been restricted to very small contexts, forinstance rats in mazes, where behaviorist concepts like \stimulus", \response",\reinforcement" could be precisely de�ned by reference to simple measuringapparatus.Chomsky's critique of Skinner's book was simple, yet e�ective: the extrap-olation of the behaviorist approach to the area of human language use leavesthe key behaviorist concepts empty. The problem for the behaviorist is: whatare the stimulus and the response in case of linguistic behavior? In order togive results, the behaviorist approach requires a precise de�nition of things likestimulus and response, as well as the ability to somehow measure or determinethose things. In a simple laboratory experiment with animals, this can indeedbe done. However, if we supplant the laboratory terminology to the much morecomplex case of language learning, it either becomes non-applicable (if we takethe terminology literally) or empty (if we take it metaphorically). Skinner's1This summary is mainly based on a number of recent linguistic texts [Bot89, New91,Har93, Pin94], to which we refer the reader for more detail.

2.2. A BRIEF HISTORY OF THE CHOMSKYAN REVOLUTIONS 21attempt to extend the behaviorist approach to human language use failed, andso have later attempts. In fact, it seems plausible that the precise de�nitionsand ways of measuring that the behaviorist requires, are simply unavailable inthe complex area of linguistic behavior.2.2.2 Transformational-Generative GrammarIf language use and learning cannot be described behavioristically, then what?A few years before his Skinner-review, Chomsky had himself put forward aradically di�erent linguistic theory. He distinguishes between linguistic perfor-mance and competence. Performance is the way a person actually or potentiallyuses language; competence is what he, perhaps unconsciously, knows about thatlanguage. The distinction is crucial: natural languages contain an in�nite setof sentences which have never been used before (and hence are not amenable tobehavioristic analysis), yet which would easily be recognized as grammatical byany competent native speaker. Because performance varies too much with thecontingencies of context, it is not well suited for scienti�c inquiry; competence isthe appropriate target for linguistics. Thus we need a model which speci�es theknowledge native speakers have of the set of all syntactically correct sentences,rather than the ones that have actually been used or uttered.Throughout his career, Chomsky's linguistic research has been motivatedby the following problem: what makes it possible that almost all children ac-quire near-perfect competence of their native language, despite the poverty ofthe stimulus they receive? When children learn their �rst language, the only\input" they receive are the sentences they hear from their parents and others.This set of sentences does not uniquely determine a language: many di�erentlanguages are consistent with the input the child receives. Nevertheless, it isan empirical fact that children all �ll in the gaps in more or less the same way,learning approximately the same language. From this Chomsky concludes thatchildren must be born with a strong linguistic bias, consisting of constraints onthe set of possible languages. These constraints, Universal Grammar, lead chil-dren to learn only very speci�c languages from the input they receive, ignoringthe in�nite number of other languages compatible with the input.Universal Grammar is incarnated in what Chomsky calls the language facul-ty2, and what others sometimes call the language organ or the language instinct,which is supposed to be a more or less separate module in the mind/brain.(Chomsky often uses the term \mind/brain" in order to forestall discussions ofthe \dualism vs. monism" type.) In Chomsky's view, the main task of linguisticsis to investigate the properties of Universal Grammar. Thus linguistics wouldgive us information about the workings of our mind/brain. In fact, Chomskyhas stated at several places that he is mainly interested in linguistics not for itsown sake, but because it is a way to gain knowledge about the mind [Har93,p. 11]. This is in sharp contrast to the earlier behaviorist approach, whicheschewed anything mental.2The term Universal Grammar is used with systematic ambiguity, referring both to theinitial, innate state of the language faculty at birth, and to the properties shared by all naturallanguages. For the latter, see [Haw88].

22 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGChomsky's initial broad model of language competence, �rst described inhis groundbreaking work [Cho57] and elaborated in more painstaking detailin [Cho65], roughly amounts to the following. Having competence of some lan-guage amounts to \having", in some sense, a transformational-generative gram-mar for that language \in your head". A transformational-generative grammarfor a language determines the set of syntactically correct sentences of that lan-guage. It consists of two parts: a base part and a transformational part. The�rst part generates deep structures of sentences, the second part transformsthese into the surface structures that we normally would call sentences. Furtheroperations on deep structure were to yield the interpreted form (or meaning)of a sentence, while further operations on surface structures would yield thephonological form of a sentence. However, in this chapter we will ignore suchfurther linguistic issues, restricting attention to syntax.The base part is a generative grammar, which consists of a set of phrasestructure rules and a lexicon. The phrase structure rules recursively specify theforms a sentence may have. For example, such rules might state \a sentencecan consist of a noun phrase followed by a verb phrase" and \a noun phrase canconsist of a determiner followed by a noun." The lexicon is like a dictionary:it contains the words that may be plugged into those forms. One entry mightfor instance be \dog : singular animate noun". Inserting words into a sentenceform yields a deep structure. The base part of a grammar thus generates a setof deep structures. An example of such a deep structure might be the followingtree, which gives a structural description of the sentence \The dog bites theman." Sentence���	 @@@RNoun phrase���	 @@@RDeterminer? Noun?the dog
Verb phrase���	 @@@RVerb?bites Noun phrase���	 @@@RDeterminer? Noun?the manFigure 2.1: Deep structure of the sentence \The dog bites the man"The transformations that make up the second part of a transformational-generative grammar map deep structures to surface structures. For example,two transformations may take the above deep structure into the following sur-face structures, respectively:1. The dog bites the man. (the identity transformation)2. The man was bitten by the dog. (a \passivizing" transformation)

2.2. A BRIEF HISTORY OF THE CHOMSKYAN REVOLUTIONS 23The relationship between sentences 1 and 2 is brought out by the way they havebeen constructed: both stem from the same deep structure.The base part of a transformational-generative grammar|phrase structurerules plus lexicon|was intended to be fairly restricted in power, hopefully onlycontext-free (see Section 2.3 for the de�nition of this term). Unfortunately,the transformational part of a grammar is potentially too expressive: it can beshown that any grammatically describable language can be generated by meansof a transformational-generative grammar [PR73, BC74], even if we choose avery simple, �xed base part. This means that the transformational-generativeframework by itself, including the choice of the base part, does not seem tomake any substantive claims about Universal Grammar. Accordingly, claimsabout Universal Grammar had to be phrased in terms of constraints on theallowed base part and, particularly, transformations. Eventually, the problemsin formulating adequate constraints led up to a second revolution in linguistics.2.2.3 Principles-and-ParametersChomsky's current principles-and-parameters model does away with phrasestructure rules altogether, and with most of the transformations as well [Cho81,Cho86].3 Instead, much more emphasis is placed on the information in the lexi-con than in the earlier model. Sentences are generated directly from the lexiconby means of the interaction of a number of subsystems, each consisting of vari-ous general principles. In this new model, the principles are innate|and hencethe same for all natural languages|except for some parameterized variation.Thus innate Universal Grammar speci�es \schemes" of principles, which havecertain open parameters, and it speci�es the range of possible values those pa-rameters may take. Fixing the parameters in the principle schemes yields theprinciples that govern particular natural languages. Therefore, apart from thelexicon, each natural language can be characterized by the particular values ofthe parameters for that language. Accordingly, for a child, learning a languagenow amounts to two things: (1) determining the particular values of the pa-rameters that yield the principles of its native language, and (2) acquiring thelexicon.2.2.4 The Innateness of Universal GrammarThe above pages briey mentioned the philosophicallymost interesting of Chom-sky's claims: the innateness of Universal Grammar. Innateness has of coursebeen a topic for philosophical discussion for years. Particularly in the 17thand 18th century the debate was on. The \rationalists" Descartes and Leibnizare commonly considered to be on the innate side, the \empiricists" Locke andHume on the other. Thus for instance Descartes (as cited on p. 48 of [Cho65])takes the ideas of �gures, pain, colour and sound to be innate, while Book I of3It should be (foot)noted that nowadays Chomsky's work is much less dominant than itwas in, say, the 1960s. In present-day linguistics, Chomsky's approach is one among severalalternative approaches. Other are based on, for instance, neural networks or various kinds ofconstraints (see [Sei97, PS97] and the references therein).

24 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGLocke's Essay [Loc93] argues against all innate notions and principles. As far asthe Anglo-American philosophical world is concerned, it seems fair to say thatthe empiricist side of the discussion has been dominant. It has long been theguiding principle of empiricist philosophy that most (possibly all) knowledgederives from the senses|a principle which would be seriously undermined ifimportant aspects of knowledge of language turned out to be innate.Chomsky's work has revived the old debate on innateness in an updatedguise: the discussion has shifted from innate ideas to innate mechanisms. Asfar as language learning is concerned, Chomsky explicitly sides with the ratio-nalists:\In general, then, it seems to me correct to say that empiricist theo-ries about language acquisition are refutable wherever they are clear,and that further empiricist speculations have been quite empty anduninformative. On the other hand, the rationalist approach exempli-�ed by recent work in the theory of transformational grammar seemsto have proved fairly productive, to be fully in accord with what isknown about language, and to o�er at least some hope of providinga hypothesis about the intrinsic structure of a language-acquisitionsystem that will meet the condition of adequacy-in-principle and doso in a su�ciently narrow and interesting way so that the questionof feasibility can, for the �rst time, be seriously raised." [Cho65,pp. 54{55]Thus it is not surprising to �nd that he has been attacked by various con-temporary philosophers of a more empiricist bent, such as Putnam and Quine.4Unfortunately, the discussion has been hampered by mutual misunderstandings(see for instance [Cho75, Qui75]5.) Both positions are not as extreme as theirrespective opponents sometimes take them to be. As Rosemont [Ros78] notes,the Chomskyans certainly acknowledge that a child develops language from ex-periental data (though they would perhaps prefer to say that language growsin a child, triggered by experience, rather than that is being learned from ex-perience). On the other hand, most present-day empiricists have watered downtheir empiricism somewhat, and would agree that we are not born as a tabularasa, but have various innate capacities and biases. An example of the latterwould be a general innate measure of \similarity" used for induction [Qui69].Perhaps the best way to state the debate is as follows. While Quine andother empiricists are willing to admit innate biases and learning mechanisms,these are general-purpose mechanisms. Chomsky, on the other hand, postulatesinnate mechanisms which are speci�c for language. In other words, while em-piricists still hang on to the idea that children acquire language by means ofthe same general-purpose learning mechanisms that enable them to learn, e.g.,4Putnam certainly was an empiricist at the time he wrote his critique of Chomsky [Put71,Put83], but seems harder to classify now. Quine is still as empiricist as he ever was.5However, it is interesting to note that of the �fteen replies that Quine wrote in [DH75], theone to Chomsky is the longest and most detailed. This suggests that Quine took Chomsky'scriticisms more seriously than those made by other philosophers.

2.3. FORMALIZING LANGUAGES AND GRAMMARS 25to recognize faces or to wash their hands after dinner, Chomsky dispelled withthis idea.In the remainder of this chapter, we will see that results from computationallearning theory indicate that Chomsky is in the right here. In particular, somepre-knowledge of the language that is to be learned is required in order to enablee�cient language acquisition, and this pre-knowledge is most likely innate. Itis perhaps surprising that this conclusion can be established by means of amathematical argument. To be sure, Chomsky himself writes the followingabout the innateness of particular linguistic mechanisms:\You can't demonstratively prove it is innate|that is because weare dealing with science and not mathematics; even if you look at thegenes you couldn't prove that. In science you don't have demonstra-tive inferences; in science you can accumulate evidence that makescertain hypotheses seem reasonable, and that is all you can do|otherwise you are doing mathematics."[Cho83, p. 80], as cited in [Bot89, p. 199].Indeed, we cannot formally prove that certain speci�c grammatical principlesmust be innate. Still, what we can prove|given the presuppositions outlinedin Section 2.4|is that some bias must be present in order to make languagelearning feasible, and this bias is probably innate, since there is no plausiblealternative source where it might have come from.2.3 Formalizing Languages and GrammarsSince the aim of this chapter is to give a formal \proof" of the necessity of innategrammatical biases in language learning, we need to formalize the notions oflanguage and grammar. This is the job of the next three subsections.2.3.1 Formal LanguagesLet us consider some �xed alphabet �, for instance the set consisting of the26 letters `a',: : : ,`z' (in lower as well as upper case), the 10 digits `0',: : : ,`9',and some interpunction symbols like `.', `:', `?', and blank space. For any setof symbols S, we use S� to denote the set of all �nite strings (concatenations)of symbols from S, and S+ to denote the set of all �nite non-empty strings.A sentence will simply be a member of �+, i.e., a �nite non-empty string ofsymbols from �.We can only speak of grammatically correct or incorrect sentences relativeto a language. We will take a language to be simply a (possibly in�nite) set L ofsentences: any subset of �+ is a language. A sentence s is grammatically correctfor L if s 2 L, and grammatically incorrect otherwise.6 Thus, for instance, theEnglish language is simply the set E of all English sentences. The sentence \Thedog ate my homework" would be grammatically correct in English (it would be6This is similar to making grammatical correctness relative to a grammar: given a grammarG for a language L, a sentence s is grammatically correct i� G generates s.

26 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGa member of E), while the sentences \dog the blab" and \De hond heeft mijnhuiswerk opgegeten" would not. Of course, for natural languages the boundariesbetween grammatically correct and incorrect sentences are not that sharp. Infact, Chomsky [Cho65] has suggested that grammaticality may be a matter ofdegree, though he has not added much subsequent esh to this suggestion. Inthis chapter, we will assume grammaticality to be a sharp boundary.2.3.2 Formal GrammarsA common way to specify a language is by giving its grammar. We will de�nea grammar as a set of rules, called productions. Using productions, a grammargenerates sentences starting from an initial symbol S (for `sentence'). Let Nbe a �nite set of symbols called non-terminals. N should at least contain thesymbol S. The symbols in the alphabet � are called terminals, and we willassume � and N to be disjoint. In order to distinguish typographically non-terminals from terminals, we will write down non-terminals in a bold facetype.A production is something of the form A ! B, where A and B are �nitestrings over �[N , and A contains at least one non-terminal. A will be referredto as the left-hand side of the production, and B as the right-hand side. A gram-mar G is a �nite set of productions, such that at least one of the productionsin G has S as left-hand side.7How does a grammar relate to a language? The productions in a grammarG function as rewriting rules, which allow you to replace, in some string, theleft-hand side of a production by the right-hand side of that production. G cangenerate a sentence (a string of terminals) as follows:1. Start with the string S = S.2. Repeat the following:1. Find a production A! B 2 G such that A occurs somewhere in thestring S.2. Apply the production: replace one occurrence of A in S by B.until S is a sentence (i.e., contains only terminals).The language generated by a grammar G, denoted by L(G), is the set of allsentences which can be generated in this way.An example will make this clearer. Consider a set N consisting of the threenon-terminals S (for Sentence), N (for Name), and V (for Verb phrase). Let Gbe the grammar consisting of the following �ve productions:1. S ! N V2. N ! John3. N ! Paul7A grammar is often de�ned more formally as a 4-tuple G = (N;�; P;S), where N is theset of non-terminals, � is the set of terminals, P is the set of productions, and S is the startingsymbol. We have simpli�ed this to G = P , because our starting symbol will always be S, andthe sets N and � can be read o� from the set of productions.

2.3. FORMALIZING LANGUAGES AND GRAMMARS 274. V ! hates N5. V ! thinks that SWe do not make a formal distinction between the phrase structure rules of agrammar and its lexicon; both are represented by means of productions. The�rst production states that a sentence consists of a name followed by a verbphrase. The names can be either `John' or `Paul'. The last two productionsshow how the verb phrase V can be expanded. Note that the second of thesetwo productions introduces the non-terminal S again. This grammar can forinstance generate the sentence \John hates Paul" as follows:S 1) N V 2) John V 4) John hates N 3) John hates PaulWe start with S and apply productions until we end up with a string withoutnon-terminals. The application of production i is denoted above by i). Such asequence of applications of productions is called a derivation of the string fromthe grammar. Note that a derivation corresponds to the kind of structuraldescription that is embodied in the tree on p. 22.Similarly, G can generate the sentences \John hates John", \Paul hatesJohn", and \Paul hates Paul". We can also use G generate the more complexsentence \Paul thinks that John hates Paul", the derivation of which is:S 1) N V 3) Paul V 5) Paul thinks that S 1) Paul thinks that NV 4) Paul thinks that N hates N 2) Paul thinks that John hatesN 3) Paul thinks that John hates PaulL(G), the language generated by G, is the set of all sentences which can begenerated in this way. Note that L(G) is in�nite, due to the reintroduction of Sin the �fth production: the language contains the sentences \John thinks thatPaul hates John", \John thinks that Paul thinks that John hates Paul", etc. Itshould be clear that the language generated in this way is only a tiny subset ofa natural language (e.g., English). On the other hand, the example shows thatsmall|and yet in�nite!|fragments of language can already be generated withvery simple grammars. This holds out the hope that larger parts of naturallanguages can be generated by larger grammars, and perhaps it is even possibleto give a complete grammar for a natural language.2.3.3 The Chomsky HierarchyClearly, some languages are more complex than others. The complexity of alanguage is related to the complexity of the simplest grammar which generatesthat language. Below we de�ne the Chomsky hierarchy, consisting of the classesof Type 3, Type 2, Type 1, and Type 0 languages, with increasing grammaticalcomplexity.� A Type 3 (or regular) grammar contains only productions in which the left-hand side is a non-terminal, and the right-hand side is either a terminalor the concatenation of a terminal and a non-terminal.

28 CHAPTER 2. APPLICATION TO LANGUAGE LEARNING� A Type 2 (or context-free) grammar contains only productions in which theleft-hand side is a non-terminal, while the right-hand side is an arbitrarynon-empty string of terminals and non-terminals.� A Type 1 (or context-sensitive) grammar contains only productions inwhich the right-hand side is at least as long as the left-hand side.8� A Type 0 grammar may contain any kind of productions.A language is of Type i (i = 0; 1; 2; 3) if it can be generated by a grammarof Type i. For instance, the John/Paul-grammar is a Type 2 (context-free)grammar, and hence generates a Type 2 (context-free) language. Of what Typeare full natural languages? This is a question to which we will return later.We will now informally state some important results from the theory offormal languages (for technical details and proofs, see [HU79]). Firstly, it can beshown that the class of Type 3 languages is a proper subset of the class of Type 2languages. Similarly, Type 2 is a proper subset of Type 1 and Type 1 is a propersubset of Type 0. Type 1 languages are recursive: there exists an algorithm fordeciding whether a given sentence is a member of the language generated bya given Type 1 grammar. Type 0 languages are recursively enumerable: thereexists an algorithm which enumerates the (possibly in�nite) set of sentences inthe language generated by a given Type 0 grammar. Membership of a sentencein a language is semi-decidable, but not always decidable for a given Type 0language. Type 0 grammars are equivalent to Turing machines, in the sensethat a language is of Type 0 i� it is accepted by some Turing machine. Finally,even though the class of Type 0 languages is the broadest class in the hierarchy,it still does not comprise all possible languages: some languages are not Type 0languages.92.4 Simplifying Assumptions for the Formal Anal-ysisIn the next sections, we will give a formal analysis of language learning fromexample sentences in the PAC setting. The main objective there is to showthat unbiased language learning is just too hard|and hence cannot be whatchildren actually do. From this it would follow that children must have somebiases which inuence the language they learn and the way they learn it.It will be clear to all but the most naive readers that the real world is simplytoo big to model completely. Inevitably, a formal analysis involves a number of8A context-sensitive grammar may equivalently be de�ned as a set of productions of theform A! B=� �. Here A! B is simply a context-free production which, however, mayonly be applied as a rewriting rule in case A is surrounded by � on the left and � on theright. That is, � � speci�es the context in which the rule may be applied (� and/or � maybe empty).9A very quick proof of this: (1) �+, the set of all sentences, is denumerably in�nite; (2)the set of all languages is the power set of �+ (i.e., the set of all sets of sentences), and istherefore uncountable; (3) the set of all grammars is only denumerably in�nite; (4) thus thereare more languages than there are grammars, which implies (5) that some languages cannotbe generated by any grammar, and hence are not Type 0 languages.

2.4. SIMPLIFYING ASSUMPTIONS FOR THE FORMAL ANALYSIS 29simpli�cations, which have the disadvantage of making the analysis less \real-istic" and correspondingly less plausible. On the other hand, simplifying awaya number of the contingencies and noise of the real world may bring out moreclearly what really matters for language learning. Let us state and defend rightat the outset the main simplifying assumptions we will make here.2.4.1 Language Learning Is Algorithmic Grammar LearningA �rst assumption is that the process by which a child learns a language canbe described by an algorithm. This algorithm takes sentences from some targetlanguage (i.e., what is to become the child's native language) as input andlearns a grammar for those sentences. The sources of those input sentencesmay be very diverse: parental speech, dialogue from television series, and soon. Actually, two distinct assumptions are at work here: (1) that languagelearning is algorithmic, and (2) that it involves learning a grammar. We willclarify these two assumptions separately.Firstly, the algorithmic aspect. To say that a child's learning can be de-scribed by an algorithm does not imply that children consciously enact thesteps of some algorithm when they are learning. It does, however, mean thatthere is an algorithm which, whenever it is given the same input as the child,learns the same grammar. In other words, there should be an algorithm whoseinput-output behaviour is equivalent (or, if you will, isomorphic) to the child's.With this assumption, we are squarely within the tradition of cognitivescience. Here all intelligent behaviour (which includes learning) is taken tobe describable as some form of algorithmic information processing. A veryfundamental theoretical justi�cation for this may be found in the Church-Turingthesis. Informally, this thesis says that everything that can be accomplished bycertain systematic means, whatever these may be, can also be accomplished byan algorithm as implemented in a Turing machine (see Chapter 17 of [Hof79]for more on this). If the Church-Turing thesis holds, then it seems that theprocess of language acquisition should indeed be describable by an algorithm.Secondly, what does it mean to say that children learn a grammar? It is awell known fact that people are usually not able to state explicitly the grammarof their native language: they follow the rules of that grammar without con-sciously knowing those rules. That is, people may have \know-how" knowledgeof language (i.e., they know how to use language), without having \know that"knowledge. Thus we have to be a bit careful when we say that children acquirea grammar. In the sequel, we will say that a child has learned a grammar Gif the child, by and large, consistently follows that grammar: it only utters(or writes) sentences from L(G). In other words, we will say that a child haslearned a grammar if that grammar appropriately describes the child's linguis-tic behaviour|even though the child itself may be unaware of the rules of thegrammar it follows. In this way a grammar provides an appropriate descriptionof \know-how" knowledge of language.1010Note that it is no easy matter to �nd out whether a child's linguistic behaviour is inaccordance with some grammar G. Finding this out will usually be a matter of inductionitself: if we have observed a child's linguistic utterances for quite a while, and all utterances

30 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGOne further caveat has to be entered. Namely, the way we have formalizedgrammars (as �nite sets of productions) in the previous sections is rather dif-ferent from either Chomsky's transformational-generative grammar or his laterprinciples-and-parameters model. Actually, a set of productions formalizes onlythe base part of a transformational-generative grammar, ignoring the transfor-mations. Furthermore, we only focus on the set of sentences that a grammargenerates, mainly ignoring the way the sentence is parsed by the grammar; thatis, the only part of trees like Figure 2.1 that we are interested in, is the sentenceconstituted by the words at the leaves of the tree. However, any language witha transformational-generative or a principles-with-�xed-parameters grammar isa Type 0 language, and hence representable by a �nite set of productions. Ac-cordingly, restricting attention to the learnability of sets of productions doesnot really invalidate our analysis.This caveat also bars invoking semantical considerations to argue againstthe present purely syntax-oriented analysis. Though a full grammar wouldprobably let semantical issues inuence the syntax, the resulting system wouldstill be equivalent to some Turing machine (assuming the Church-Turing the-sis), and hence could be redescribed in purely syntactical terms as a Type 0grammar. Again, restricting attention to the learnability of syntax (i.e., sets ofproductions) does not invalidate our analysis.2.4.2 All Children Have the Same Learning AlgorithmFurthermore, we will assume that all children can be described by the samelearning algorithm. This is certainly a false presupposition: no two children arethe same, so no doubt some children will process sentences in a di�erent wayand will learn a di�erent grammar from the same input. Nevertheless, since thebrains of children all over the world have roughly the same structure, it doesseem fair to say that they probably have approximately the same mechanismsfor acquiring language. Therefore we take this presupposition to be at leastapproximately true.2.4.3 No Noise in the InputIn addition, we will assume all input sentences that the child receives to begrammatically correct: all input does indeed conform to one single grammarfor the target language. Again, this is an obviously false assumption. Forinstance, parents of very young children are notorious for the ungrammatical\goo-goo-gaa-gaa"-like way they talk to their infant. This is not a problem forus, however, since our objective here is to show that unbiased language learningis computationally intractable. Since learning with noise is at least as hard aslearning without noise, it will be su�cient for us to show that noiseless unbiasedlearning is already too hard.belong to the language generated by G, we may tentatively assume that the child has acquiredthe grammar G. x4 of Chapter 1 of [Cho65] has more on this.

2.5. FORMAL ANALYSIS OF LANGUAGE LEARNABILITY 312.4.4 PAC Learnability Is the Right AnalysisThe �nal assumption is that polynomial-time PAC learnability (or, somewhatmore liberally, polynomial-time PAC predictability) provides an appropriateanalysis of learnability. That is, we will take it that a concept class is learnablefor a child if and only if the child \has" an e�cient (polynomial-time) PAClearning algorithm for that class. For language learning, this means that a classof possible languages is learnable if and only if the child's language acquisitionmechanism is a polynomial-time PAC learning algorithm for that class.Some readers may feel this to be too strong a requirement. After all, PAClearnability is a worst-case analysis over all possible probability distributions onthe domain. Do we really require that a child be able to learn a language with allpossible distributions over the examples (some distributions are pretty weird)?Maybe not. Maybe the child's language acquisition algorithm only works forcertain probability distributions, for instance those under which the most oftenused sentences are also more probable to appear as input. But that would meanthat the child's learning algorithm is already biased to particular probababilitydistributions, and that it would not be able to learn its native language undersome other distributions. Either way, whether PAC learnability is the rightanalysis or not, we have established the main objective of this chapter: a childmust have a certain bias which directs the way it acquires language.Another feature of PAC learnability which may seem too strong, is the use ofthe con�dence parameter � and the error parameter ". Can we really set � and "to arbitrarily small values, and be sure that a child will, with probability at least1� �, learn a language (actually, a grammar for that language) which has errorless than " compared to the target language? Again, maybe not. Maybe this isindeed too much to ask. Nevertheless, it seems fair to assume that giving a childmore example sentences, as well as more time to think those sentences over, willincrease the probability that it learns an approximately correct language andwill decrease the number of errors the child makes. From this I conclude thatthe requirements of PAC learnability are at least right in spirit, even thoughthe technical details of those requirements might be somewhat too strong.2.5 Formal Analysis of Language Learnability2.5.1 The PAC Setting for Language LearningWe will now tune the PAC setting of the previous chapter to language learning.Let us take as our domainX all possible sentences, i.e., all �nite sequences usingsymbols from some �xed alphabet �. A language is then a concept over X, anda concept class (or language class) is a set of languages. Note that grammarscan be used to represent languages, in the sense of Section 1.6.1, as follows. Agrammar G represents (or is a name of) a language L if L equals the set ofsentences generated by G: the grammar G is a name of the language L(G). Wewill call this representation the grammatical representation. Note that since alanguage can usually be generated by more than one grammar, most languageswill have more than one name in this representation.

32 CHAPTER 2. APPLICATION TO LANGUAGE LEARNING2.5.2 A ConjectureIn Section 2.4, we have made the assumption that all children have the samealgorithm for learning their native language from input sentences. Let us callthis algorithm C (for Child). No doubt C is extremely complex, and no oneknows exactly what it looks like.11 However, this need not detain us here|the abstract assumption of the existence of this algorithm is su�cient for ourpurposes.The algorithm C is an algorithm for learning languages from example sen-tences. Since children all over the world are able to learn their native language,C must be an algorithm that can learn at least all existing natural languages.Moreover, it is well known that most children, when provided with su�cientlymany example sentences of what will become their native language, learn thatlanguage almost perfectly. Thus, when a child is presented with example sen-tences from some natural language, it will probably learn that language approx-imately correctly. I will take this as strong evidence for the conjecture thatC is a PAC learning algorithm for the class of all existing natural languages.Furthermore, children learn their language quite fast and without much visiblee�ort, usually within only a few years|children certainly outperform present-day language-processing computers when it comes to language learning. This isparticularly fast when compared to the time and e�ort humans generally needto acquire competence in other complex areas (for instance, learning mathemat-ics, or learning how to play the piano) to the same level of perfection. Thus itappears that children not only learn language probably approximately correctly,but that they do so quite e�ciently as well. Therefore, we will strengthen ourconjecture by assuming that C is an e�cient (i.e., polynomial-time) PAC learn-ing algorithm for the class of all existing natural languages. Finally, there is noneed to assume that the existing natural languages are the only languages thatour algorithm C can learn e�ciently: any language su�ciently similar to theexisting natural languages will be learnable by children as well.12 Accordingly,we will make the following claim:There exists a language class L, containing (probably among others)all existing natural languages, such that C is a polynomial-time PACalgorithm for L.Our aim in the following sections is to �nd constraints on L, using argumentsfrom computational learning theory. Speci�cally, it will be shown that L cannotbe the set of all context-sensitive languages.2.6 The Learnability of Type 4 LanguagesIn this and the following sections, we will investigate the learnability of thedi�erent levels in the Chomsky hierarchy. Actually, it will turn out that without11Steven Pinker's [Pin84] contains a very elaborate and ambitious proposal as to the actuallearning mechanisms used.12Specifying what \su�ciently similar to the existing natural languages" means is more orless the same as specifying Universal Grammar.

2.6. THE LEARNABILITY OF TYPE 4 LANGUAGES 33additional help (e.g., the ability to make membership queries), even the simplestclass in the Chomsky hierarchy, the class of Type 3 languages, is not e�cientlylearnable.In fact, we can de�ne an even simpler type \on top of" the Chomsky hierar-chy, which is still not e�ciently learnable. Recall that a language is of Type 3,or regular, if it can be generated by a grammar containing only productions ofthe following forms:A! aA! aBSuch a grammar may be circular or recursive, in the sense that, for instance,it contains productions A ! aB, B ! bC, and C ! cA. We can restrictthe regular languages by banning such recursion. Formally, this is de�ned asfollows:De�nition 2.1 Let G be a Type 3 (regular) grammar, and N be the set ofnon-terminals in G. We say there is a chain in G from A 2 N to B 2 N , if oneof the following holds:1. G contains a production of the form A ! aB.2. There exists a chain from A to some C 2 N , and G contains a productionof the form C ! aB. 3De�nition 2.2 A Type 3 grammar G, with set of non-terminalsN , is of Type 4(or non-recursive), if there does not exist a chain in G from any A 2 N to A.A language is of Type 4 if it can be generated by a Type 4 grammar. 3As the next theorem shows, the class of Type 4 languages is fairly simpleindeed:Theorem 2.1 A language L is of Type 4 i� L is �nite.Proof): Suppose L is generated by Type 4 grammar G. Note that if there is aderivation of a sentence s = a1 : : : ak from G, then G contains productions S!a1A1, A1 ! a2A2, : : : , Ak�2 ! ak�1Ak�1, Ak�1 ! ak. Then there is a chainfrom S to any Ai, and a chain from Ai to Aj whenever i < j. Now, assumeL is in�nite. Then there is a sentence s 2 L, such that s cannot be generatedwithout using some production A! aB more than once. But then there wouldbe a chain from A to A, contradicting the assumption that G is of Type 4.(: Suppose L = fs1; : : : ; skg is �nite. It is easy to see that L can begenerated by a Type 4 grammar, using a separate set of non-terminals for eachsi. 2The reader may wonder why we have not used a more general de�nitionof non-recursive languages. After all, a similar de�nition of `chain' and `non-recursive' may be given for grammars of arbitrary type. However, it can infact easily be shown that if we generalize the de�nition, then it still holds that

34 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGany non-recursive grammar, even one of Type 0, can generate only a �nite (andhence Type 4) language. Thus it is no real restriction to de�ne non-recursivenessfor Type 3 languages only.Alternatively, we might have de�ned Type 4 languages more generally bylimiting the number of recursive applications of productions to some numberk, instead of banning recursion altogether. That is, we might have de�neda k-recursive language as a language generated by a Type 3 grammar underthe constraint that for any A 2 N , a derivation of a sentence uses at mostk productions that have A as left-hand side. (Note that this would not be arestriction on the grammar, but on the way the grammar is used to generatesentences.) But again, this is no real restriction, for it can be easily shownthat such a k-recursive language will be �nite, and hence already in the classof Type 4 languages as formally de�ned above.Since some regular grammars generate in�nite languages, for instance G =fA ! a, A ! aAg, it follows that the class of non-recursive languages is aproper subset of the class of regular languages.Unfortunately, even the very simple class of all non-recursive languages isnot e�ciently learnable:Lemma 2.1 The class of non-recursive languages is not of polynomial VC-dimension.Proof Let F be the concept class of all non-recursive languages, over some�xed alphabet � which contains s characters. Then the number of sentences oflength i is si, and the number of sentences of length at most n iss1 + s2 + : : : + sn�1 + sn � sn:F [n] is the set of all �nite sets of such sentences, sojF [n]j � 2sn :This implies that jF [n]j cannot be upper-bounded by a polynomial in n. Hence,by the remarks following Lemma 1.1 in the last chapter, we have that F is notof polynomial VC-dimension. 2Thus, using Theorem 1.1:Theorem 2.2 The class of non-recursive languages is not polynomial-samplePAC learnable.Learning languages seems to be very hard indeed! Even the class of all�nite languages is not e�ciently learnable|there are simply too many suchlanguages. In the next section, we will see how membership queries may helpto solve this problem.

2.7. THE LEARNABILITY OF TYPE 3 LANGUAGES 352.7 The Learnability of Type 3 LanguagesIn this section we will investigate the learnability of the class of regular (Type 3)languages. Firstly, since the class of Type 4 languages is a proper subset of theclass of Type 3 languages, the negative result of the previous section carriesover immediately to Type 3 languages:Corollary 2.1 The class of regular languages is not polynomial-sample PAClearnable.Furthermore, in Theorem 7.6 of [KV94], it is shown that the class of lan-guages which can be recognized by a deterministic �nite automaton (DFA) isnot e�ciently PAC predictable in any polynomially evaluable representation(under a common complexity theoretic assumption, for which see Section 6.2of [KV94]). The details of such DFAs need not detain us here. What is impor-tant, is that a language is regular if and only if it can be recognized by sucha DFA [HU79, Chapter 2]. Hence it follows that the class of regular languagesis not e�ciently PAC predictable (if membership queries are not available).Since this result holds for any polynomially evaluable representation, it holdsin particular when we use grammars to represent languages.13Theorem 2.3 The class of regular languages is not polynomial-time PAC pre-dictable in the grammatical representation.However, in the stronger setting where both equivalence and membershipqueries are available, the class of languages representable by DFAs is e�-ciently exactly learnable (Theorem 8.1 of [KV94]). This result is due to An-gluin [Ang87b]. Since learning with equivalence queries implies PAC learning(see Section 1.7.3), and a DFA can easily be converted into a regular grammar,we have the following result:Theorem 2.4 The class of regular languages is polynomial-time PAC learnablewith membership queries in the grammatical representation.Let us take a step back to the real world for a moment. After all, we areanalyzing the learnability of languages by human beings, in particular by youngchildren. What would membership queries be for a child? A membership queryis the question whether some particular sentence is a member of the target lan-guage. To the extent that a child can ask questions like \Mummy, is this a goodsentence?", we can assume it has access to membership queries (also assuming,of course, that mummy gives correct answers). Moreover, young children oftenimplicitly \test" sentences by saying something to see what happens, and tosee how its parents react. Such tests may also be seen as a kind of member-ship queries. Now it is clear that in the initial phase of language learning, achild cannot ask such questions, since the ability to even pose those questions13For context-free grammars, the grammatical representation is polynomially evaluable:the problem whether the language generated by some context-free grammar contains somesentence is solvable in polynomial time [HU79, pp. 139{141].

36 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGor pronounce the test-sentences already presupposes at least some linguisticcompetence. On the other hand, it seems fair to assume that in more advancedstages of language learning, the child is able to ask such questions. In sum,we may assume that membership queries are not available to the child early inthe learning process, but are available as soon as the child has acquired someof its native language. Thus the child's algorithm C might be an e�cient PACalgorithm for the class of regular languages.2.8 The Learnability of Type 2 Languages2.8.1 Of What Type Are Natural Languages?In the last section, we saw that C might be an e�cient PAC algorithm forthe class of regular languages|there are no computational barriers for this, ifwe allow membership queries. But, however this may be, it should be clearthat the regular languages are far too simple: full natural languages are muchmore complex than that.14 Where in the Chomsky hierarchy should we lookfor natural language?It appears that most linguists would agree that a natural language canbe described by a context-sensitive (Type 1) grammar. As Allport [All92,p. 107] writes: \: : : one is not asserting anything particularly remarkable ifone claims that all the structures of natural language can be described by acontext-sensitive grammar; grammars with great formal power can describe avast variety of structures, and so it is unsurprising if natural language structuresare all members of such an unrestricted set." Whether or not natural languagescan be described by context-free (Type 2) grammars seems to be a matter ofdispute. On the one hand we have Postal, who claims to prove that the Mo-hawk language is not context-free, and who provides fairly strong arguments forthe claim that the English language is not context-free either [Pos64]. BrandtCorstius disagrees with Postal's proof, but provides his own proof (in Dutch)that Dutch is not context-free [BC74, Stelling 4.9]. His idea applies to Englishas well. Consider the sentence scheme \These physicists, philosophers,: : : , from,respectively, the U.S., Holland,: : : , are, respectively, super-smart, smart,: : : ".The point is that an instance of this scheme is grammatical only if the se-quences �lled in on the three dotted parts agree in the number of terms. For14Certain rash claims by the supervisor of the present thesis notwithstanding: in [Lok91] itis claimed that human beings are deterministic �nite automata, which suggests that humannatural languages are regular (Type 3). This claim is based on the obviously true assumptionthat humans have a limited processing capacity (lifetime and memory), and hence cannotcomprehend sentences of more than, say, one billion words. In fact, assuming such a maximallength of sentences renders natural languages �nite, and hence only of Type 4! (Moreover, sucha length-bound would make the class of possible languages learnable as well, see Section 2.10.)However, we should distinguish between the sentences human beings can actually compre-hend or process (which is part of performance), and those that they would consider gram-matical (part of competence). It might well be that the set of sentences any human beingcan process is �nite, and hence of Type 4. Still, most native English speakers would considerthe in�nite class of \respectively"-sentences considered below to be acceptable (we can querythe whole set in a single question to a native speaker: \Do you consider all such sentencesacceptable?"), which would make natural language at least context-sensitive.

2.8. THE LEARNABILITY OF TYPE 2 LANGUAGES 37instance, \These physicists, philosophers, sociologists, from, respectively, theU.S., Holland, Belgium, are, respectively, super-smart, smart, not too dumb" isgrammatical, but \These physicists, philosophers, from, respectively, the U.S.,Holland, and Belgium, are, respectively, super-smart, smart, not too dumb,and totally silly" is not. It can be shown that a language containing such afragment is not context-free (abstractly, the language fanbncn j n � 1g is notcontext-free).On the other hand, more recently Gazdar et. al. [GKPS85] have conjec-tured that English can in fact be described by so-called generalized phrasestructure grammars, which are actually equivalent to context-free languages:a language can be generated by a generalized phrase structure grammar i�it can be generated by a context-free grammar. Thus it is not quite clear ifwe need context-sensitive (Type 1) grammars for natural language, or whethercontext-free (Type 2) grammars su�ce.However this may be, it is clear that we have to investigate the learnabilityof languages more complex than Type 3. In this section we look at Type 2languages, in the next at Type 1.2.8.2 A Negative ResultBecause the class of Type 2 languages is a superset of the class of Type 3languages, Theorem 2.3 immediately carries over to Type 2:Corollary 2.2 The class of context-free (Type 2) languages is not polynomial-time PAC predictable in the grammatical representation.What happens if we allow membership queries? Will this make these classese�ciently learnable? To my knowledge, no answer to this question has appearedin the literature, and neither have I been able to prove it myself. However, myconjecture would be that the class of context-free languages is not polynomial-time PAC predictable, even given an oracle for membership queries.2.8.3 k-Bounded Context-Free Languages Are LearnableAngluin [Ang87a] has proved a positive result for so-called k-bounded context-free languages. A context-free grammar is k-bounded if each of its productionshas at most k non-terminals (and any number of terminals) in its right-handside. A context-free language is k-bounded if it can be generated by a k-boundedcontext-free grammar. For example, the toy grammar from Section 2.3.2 is 2-bounded.Angluin's result assumes that there is not only a target language L, butalso a particular target grammar G for that language. The result depends onthe presence of an oracle for non-terminal membership queries. Such an oracletakes a string x and a non-terminal A as input, and anwers `yes' if x canbe generated from the productions in G using A as starting symbol, and `no'otherwise. Note that an ordinary membership query for the target language is anon-terminal membership query with A=S. For �xed k, the class of k-bounded

38 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGcontext-free languages is polynomial-time identi�able from equivalence and non-terminal membership queries, and hence polynomial-time PAC learnable fromnon-terminal membership queries alone.Angluin's result depends on a �xed k: in order to function properly, thealgorithm that learns k-bounded context-free languages has to know in advancewhat k is. Actually, since any context-free grammar can be put in Chomskynormal form [HU79, pp. 92{94], where each production has the form A ! aor A ! B C, any context-free language is 2-bounded. Thus there exists apolynomial-time PAC algorithm for the class of all context-free languages, if(and this is a very unrealistic \if") the target grammar is always in Chomskynormal form and the algorithm can make non-terminal membership querieswith regard to this grammar.How realistic are non-terminal membership queries, from the point of viewof a young child? In the previous section, we saw that ordinary membershipqueries correspond to questions like \Mummy, is this a good sentence?" Non-terminal membership queries are similar, except that the child may now posequestions about any grammatical category. That is, it may pose questions like\Mummy, is this a noun?", \Is this a prepositional phrase?", \Is this an aux-iliary verb?", etc. The ability to pose sensible questions about nouns, prepo-sitional phrases and what not, presupposes quite sophisticated grammaticalknowledge on the part of the child, and the ability to answer such questionspresupposes even more sophisticated grammatical knowledge on the part ofmummy. Therefore, it seems to be rather unrealistic to attribute the ability tomake such non-terminal membership queries to young children.2.8.4 Simple Deterministic Languages are LearnableAnother positive result for a subset of the context-free languages has beenestablished by Ishizaka. It is known that any context-free language can begenerated by a context-free grammar in Greibach normal form. Here eachproduction has the form A! a N , where `a' is a terminal and N is a stringof zero or more non-terminals [HU79, Theorem 4.6]. A simple deterministicgrammar (SDG) G is a grammar in Greibach normal form, such that for anyterminal `a' and any non-terminal A, G contains at most one production of theform A! a N . A simple deterministic language (SDL) is a language generatedby an SDG. The class of SDLs is a proper subset of the class of context-freelanguages, and properly includes the class of regular languages.Ishizaka [Ish90] provides a polynomial-time algorithm which exactly iden-ti�es any SDL from membership queries and extended equivalence queries.15However, it should be noted that even though the grammar that Ishizaka's al-gorithm learns does indeed generate the target SDL, that grammar will notalways be an SDG.15When we are learning a class of languages L, with an associated class of grammars Grepresenting those languages, an ordinary equivalence query may only query the correctnessof a grammar from G. An extended equivalence query may query the correctness of anygrammar.

2.9. THE LEARNABILITY OF TYPE 1 LANGUAGES 392.9 The Learnability of Type 1 LanguagesHere we will look into the learnability of the class of context-sensitive (Type 1)languages, where negative results abound. Firstly, as before, Theorem 2.3 car-ries over immediately to lower types:Corollary 2.3 The class of context-sensitive (Type 1) languages is not poly-nomial-time PAC predictable in the grammatical representation.Furthermore, in this case membership queries will no longer help us. Thereason for this is actually quite simple. E�cient learning can only be done in apolynomially evaluable representation, and for context-sensitive languages, thegrammatical representation is not polynomially evaluable: in general, the prob-lem of deciding whether a language generated by a context-sensitive grammarcontains a particular sentence is NP-complete, and therefore (in all likelihood)not solvable in polynomial time.16 Thus we have the following result:Theorem 2.5 If P 6= NP, then the class of context-sensitive languages is notpolynomial-time PAC predictable with membership queries in the grammaticalrepresentation.This result may be strengthened somewhat, since even for certain restrictedkinds of context-sensitive grammars, the problem of deciding whether a a gram-mar generates some sentence remainsNP-complete. In particular, Aarts provesthis for so-called acyclic context-sensitive grammars, which lie properly betweencontext-sensitive (Type 1) and context-free (Type 2) grammars. For the detailsof such acyclic grammars and the proof of the NP-completeness result, seeChapter 4 of [Aar95]. Aarts' result implies that the class of acyclic context-sensitive languages is not polynomial-time PAC predictable with membershipqueries in the grammatical representation either (assuming P 6= NP).2.10 Finite Classes Are LearnableFinally, let us end our investigations of formal language learnability with apositive result:16Very briey and informally: P is the class of all problems solvable in polynomial time(more precisely, solvable in time polynomial in the size of the problem instance), and NP isthe class of all problems for which the correctness of a solution can be veri�ed in polynomialtime. A problem � is NP-complete if � is a member of the class NP, and if every otherproblem in NP can be \translated" to � in polynomial time. A particular NP-completeproblem is polynomially solvable i� all NP-complete problems are polynomially solvable. Itis known that P � NP, and if P 6= NP, then the NP-complete problems are not solvablein polynomial time. The inequality of P and NP has been (and still is) the main openquestion in complexity theory, but it is conjectured by virtually everyone that the inequalityholds. It is in fact a common working assumption that the inequality holds, and, hence thatthe NP-complete problems are not solvable in polynomial time. It would have momentousconsequences (for instance on encryption methods) if this turned out otherwise.See [GJ79] for an introduction into NP-completeness, and p. 271 of that book for theparticular NP-completeness result about context-sensitive grammars mentioned here.

40 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGTheorem 2.6 Any �nite class of Type 0 languages is polynomial-time PAClearnable in the grammatical representation.Proof Let F = fL1; : : : ; Lkg be a �nite class of Type 0 languages, and letG1; : : : ; Gk be Type 0 grammars for those languages, respectively. This class iseasily seen to be identi�able from at most k equivalence queries: an algorithmthat makes an equivalence query for each Gi, ignoring the returned counterex-amples, will do the job. As soon as the oracle answers `yes' on some Gi, wehave identi�ed Li as the target language. Since k is �xed, it follows that F ispolynomial-time identi�able from equivalence queries. This implies that F ispolynomial-time PAC learnable as well. 2In some respects, this is a very interesting result, because if we ignore vari-ation in the lexicon, then Chomsky's current principles-and-parameters theoryonly allows a �nite number of distinct natural languages: there are only �nitelymany parameters, each of which can take on only a �nite number of distinctvalues, so the number of allowed sets of principles is �nite (see [Cho86, p. 146]and [Cho91, p. 26]). If we could somehow limit the set of allowed lexicons,it would follow that the class of natural languages is polynomial-time PAClearnable.Note, however, that the polynomial-time PAC learning algorithm for F =fL1; : : : ; Lkg must \know" in advance grammars G1; : : : ; Gk that generate thelanguages in F . Thus if the child's algorithm C is such an algorithm for a �niteclass of languages, the main claim of this chapter is vindicated: human languagelearning needs bias (in this case, pre-knowledge of the k possible languages).Note also that putting an upper bound on the length of sentences makesthe set of possible sentences �nite, which in turn makes the set of all possiblelanguages �nite, and hence polynomial-time PAC learnable. There may actuallybe some biological truth in an upper bound on the length of sentences that canbe processed, since any sentence-processing human being will have a limitedmemory and lifetime (see also footnote 14). However, the positive learnabilityresult in case of such a length-limitation is an artefact of our de�nitions ratherthan a positive result about learnability in practice. The result follows from thefact that a constant-bounded number of computational steps is polynomially-bounded, and therefore considered e�cient by our de�nitions, no matter howlarge the constant bound actually is.For instance, if we use the simple binary alphabet f0; 1g and limit the lengthof a sentence to a 1000 characters, there are 21000 � 1 sentences, and hence221000�1 possible languages. This class is learnable according to our de�ni-tions, because an algorithm needs at most a constant|and hence obviouslypolynomially-bounded|number of equivalence queries to identify a languagefrom this set. Unfortunately, this constant (221000�1 � 1010300) may be consid-ered in�nite for all practical purposes, since it is slightly larger than the numberof particles in the universe.

2.11. WHAT DOES ALL THIS MEAN? 412.11 What Does All This Mean?Let us now take stock. We have seen a whole bunch of formal theorems aboutthe learnability and non-learnability of various classes of formal languages.What does all this mean for language acquisition by children? Well, it fol-lows from the previous results that whatever the child's learning algorithm Cis, it cannot be an e�cient learning algorithm for all context-sensitive languages(not even for all acyclic ones), let alone for all possible Type 0 languages. Ac-cordingly, the class L of languages mentioned in the conjecture of Section 2.5.2must necessarily be a very restricted class of languages. Furthermore, learningalgorithms for such restricted classes will only work if they \know" in advancewhat they are looking for, that is, if they know the class of languages that thetarget language comes from. In other words, our algorithm C needs to knowin advance which class of languages are possible target languages|general-purpose learning mechanisms, which do not have such pre-knowledge, will notwork. This means that children must have a certain linguistic bias which enablesthem to learn certain languages e�ciently.This bias must largely be present \in" the child at the age when languagelearning commences. Where does it come from? There seem to be only twopossible sources for this bias: it can he hard-wired in the brain of the new-born child, and hence innate, or it can be learned in, say, the �rst year ofthe child's life, before the process of language learning starts. Probably bothsources contribute something to linguistic bias.17 However, since language doesnot play a large role in the environment of a very young child, it seems unlikelythat the second, non-innate source of bias contributes very much. After all,rattles and mother's milk have very little to do with passivizing transformationsand sundry lexical features. From this I conclude that the linguistic bias thatchildren must have is probably for a very large part innate|as Chomsky hasargued all along.Let us call the languages in L the Natural Languages (this includes allexisting natural languages), and let us call the set G of grammars that generatethe languages in L the Natural Grammars. Since L cannot contain all possibleType 0 languages, G cannot contain all possible grammars. What exactly arethe characteristics of the grammars that G does contain? As the quotation fromChomsky on p. 25 indicated, this question is an empirical one, which cannot befully answered by the mathematical approach of the present thesis. By formalmeans we can �nd restrictions on G, such as that it cannot contain all context-sensitive grammars, but these formal tools will not tell us which grammars Gactually does contain.Computational learning theory may provide suggestions as to the class L,but not proofs about its contents. For example, Angluin's positive result fork-bounded context-free grammars might suggest the possibility that G is the setof all k-bounded context-free grammars, for some �xed k (assuming the childcan somehow make non-terminal membership queries). If natural languages17Actually, it has been suggested that language learning already commences in utero, whichwould rule out this second possibility.

42 CHAPTER 2. APPLICATION TO LANGUAGE LEARNINGare context-free, as some linguists have argued, then this is a signi�cant result.Unfortunately, the formal approach used here will not tell us which �xed k isinvolved here.18 This k can only be determined from empirical work: writecontext-free grammars for all existing natural languages, and see by which kthey are all bounded. Similarly, the result of the previous section might suggestthat G is some �nite set, but no merely mathematical work will tell us which�nite set of grammars G actually is.The restriction of our language acquisition procedures (i.e., algorithm C)to languages with some Natural Grammar enables human beings to acquiretheir native language quite e�ciently. However, there is one disadvantage withpossibly far-reaching consequences. Namely, learning a language that does notconform to Natural Grammar might be exceedingly hard for us humans. Thissuggests that languages of beings whose \hard-wiring" or \cognitive structure"is quite di�erent from our own (e.g., martians and possibly some animals),would not be learnable for us|and hence we would not be able to understandand communicate with those beings.192.12 Wider Learning IssuesThe previous sections applied computational learning theory to the acquisitionof languages by children. To sum up the argument:1. The class of natural languages must be e�ciently learnable, because mostchildren successfully acquire one or more languages.2. Computational learning theory shows that only very restricted classes ofgrammars are e�ciently learnable. In particular, the classes of all Type 0or even Type 1 languages are not e�ciently learnable.3. Hence the class of natural languages cannot be the class of all languages;it must be some very restricted class.4. Children must have some pre-knowledge (or bias) of these restrictionsupon the class of natural languages in order to be able to learn. This biasis probably largely innate.However, language learning is just one example where learning from exam-ples takes place. Young children are exceedingly good at learning many otherthings besides language as well, such as learning to recognize faces, learning howobjects usually fall, how people walk, which species of animals are dangerous,and so on. Thus far, not much research has been devoted to the PAC learnabil-ity of faces or pictures, or of the behaviour of every-day objects. However, a18Since any context-free language can be generated by a 2-bounded grammar in Chomskynormal form, we might argue that k = 2. However, this would make the assumption thatchildren can make non-terminal membership queries even more unrealistic, since grammars inChomsky normal form look very unnatural. It is not very plausible to assume that parentscan answer non-membership queries for a \natural" context-free grammar of their language(involving familiar categories like nouns and verbs), let alone if this grammar is transformedinto an arti�cial Chomsky normal form.19This also sheds new light on Wittgenstein's famous dictum \Wenn ein L�owe sprechenk�onnte, wir k�onnten ihn nicht verstehen" [Wit53, II.xi, p. 568]: if the lion's language does notconform to our human Natural Grammar, we are probably not able to learn it.

2.13. SUMMARY 43number of general negative results on the learnability of formulas from proposi-tional logic (boolean functions) have appeared.20 Since propositional logic is arelatively simple system, we may also expect many negative learnability resultsfor the kinds of learning that children engage in every day. On the other hand,children achieve these learning tasks quite e�ciently and e�ortlessly. Thus weare again led to an explanation in terms of innate structures: apparently chil-dren are born with a certain bias or pre-knowledge (`knowledge' here taken ina very broad sense) that helps them to learn to deal with the kinds of objects,animals and humans that they are likely to encounter in the early phases oftheir lives.There are in fact many empirical results that point in this direction, seefor example Steven Pinker's discussion of the innateness of \intuitive mechan-ics" and \intuitive biology" [Pin94, pp. 420{426]. In Pinker's words: \Weall get away with induction because we are not open-minded logicians buthappily blinkered humans, innately constrained to make only certain kinds ofguesses|the probably correct kinds|about how the world and its occupantswork" [Pin94, pp. 153{154].2.13 SummaryThe main conclusion of this chapter: without a strong linguistic bias, childrenwould not be able to learn a language from examples e�ciently. Since it isevident that they do learn their native language quite fast and approximatelycorrectly, it follows that children must have such a bias. Because it is not veryplausible to assume that a child acquires this bias in the short period beforethe process of language learning starts, it is probably for a very large partinnate. This vindicates one of the main tenets of Chomskyan linguistics. Similararguments apply to many other kinds of learning that people in general|andyoung children in particular|engage in.

20See for instance [KV94, Theorem 6.3].

44 CHAPTER 2. APPLICATION TO LANGUAGE LEARNING

Chapter 3Kolmogorov Complexity andSimplicity3.1 IntroductionThere is an interesting paradox about words that do or do not apply to them-selves (Grelling's paradox). Let us call a word that applies to itself or thatis true of itself autological. Examples are `English', which is itself an Englishword, and `old', a word which has been in use for many centuries now. Calla word that does not apply to itself heterological, such as the clearly non-redword `red', or the non-German word `German'. Now the question is: is theword `heterological' itself heterological? If it is, then it isn't; if it isn't, then itis|a puzzling paradox indeed.A clear example of a heterological word is `simplicity', which is exceedinglycomplex and hard to explain [Bun62]. Of course, we can teach this notionto someone (that is, to a human being with biases similar to ours) simply bygiving some examples, which will usually su�ce in practice, but it is very hardto state explicitly and generally what simplicity amounts to. Since the notionof simplicity is a rather important one in philosophy, we are obliged to devotea lot of e�ort at making it more perspicious: \What the problem of simplicityneeds is a lot of hard work" [Goo72c, p. 282]. Fortunately, most of the reallyhard work has already been done for us in mathematics and computer science,though most philosophers appear to be unacquainted with this work. Thefundamental measure of complexity or simplicity that has been developed iscalled Kolmogorov complexity and is the topic of the present chapter.The basic question to start with is:Can we objectively measure the complexity of an object?A �rst stab at an answer might be that the complexity of an object is propor-tonial to the number of its parts. This would require us to be able to identifyand count the parts of an object. However, what we recognize as a part of anobject is relative to our interests. Thus a car driver would describe a car asconsisting of four tires, a steering-wheel, windows etc., while a physicist would45

46 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYconsider it to be built up from particles like protons, neutrons, and electrons.1Moreover, it would be rather pointless to call the physicist's description the\more fundamental" or \better" description in general, since this physical de-scription will be quite useless to the ordinary car driver. Therefore, the level ofdescriptions is a more suitable level of analysis of complexity than the level ofobjects. Accordingly, we will redirect our basic question towards the complexityof descriptions, or, more generally, of strings of characters:2Can we objectively measure the complexity of a string?At �rst sight, the complexity of a string appears to be simply its length, i.e.,the number of character-tokens it contains, which is not very interesting from aphilosophical point of view. However, from simple examples it can already beseen that strings of equal length may diverge widely in complexity. Considerx1, which is a string of 10,000 1s, and x2, which gives the results of 10,000random coin ips (where the ith character of x2 is 1 if the ith coin ip comesup `heads', and the ith character is 0 in case of `tails'). The string x1, despitebeing 10,000 characters in length, is actually fairly simple: the string \10,0001s" fully describes x1 using only 9 characters. On the other hand, as each coinip is independent of the others, the shortest description of x2 will probably bex2 itself. Thus the complexity of x1 is much lower than the complexity of x2.The thing is, of course, that a string can be represented in many ways,and very \regular" or \simple" strings can be represented very economically.Thus, as we saw, the short string \10,000 1s" can represent the long stringx1. In this vein, we could identify the complexity of a string with the lengthof its shortest representation. However, the notion of a `representation' stillrequires clari�cation. What does it mean for one string to represent another?Clearly, in�nitely many representation-schemes are possible. We could simplywrite down a representation explicitly as a two-column table, where the stringsin the �rst column line-by-line represent the strings in the second column. Thistable, however, will grow to in�nite length if we want to be able to representan in�nite number of strings.Ideally, a string would itself give something like a \recipe" to generate thestring it represents; this would allow us to dispel with the two-column table.For example, the string \10,000 1s" tells us that putting 10,000 1s in a sequencegives us the string x1 that it represents. Now, the most basic idea of a recipethat we have, is the notion of an algorithm; and every algorithm is a Turingmachine; and every Turing machine can be encoded as a binary string. Thisgives us the following explication of what it means for one string to representanother:String y represents string x if y is the encoding of a Turing machinethat generates x (and then halts).Now we can identify the Kolmogorov complexity of a string x with its shortestrepresentation:1Compare [Wit53, x47].2Similarly, Bunge [Bun62] directs his attention at what he calls semiotic simplicity, not atontological simplicity.

3.2. DEFINITION AND PROPERTIES 47The Kolmogorov complexity of a string x is the length of a shortesty such that y represents x.We use the phrase \a shortest y" rather than \the shortest y", since in generalthere may be several distinct Turing machines of the same length that eachproduce x.The main aim of this chapter is to extract from the|often highly technical|literature on Kolmogorov complexity those aspects which are of interest to phi-losophy. Except for the selection of topics and their presentation, no originalityis claimed here. The chapter is organized as follows. We start with a precisede�nition of Kolmogorov complexity in the next section, and state some of itsmain properties, notably its objectivity up to a constant, its non-computability,and its relation to information theory. After that, we will discuss various philo-sophical issues where Kolmogorov complexity is relevant. The main application,as the title of this chapter already indicated, lies in a formalization of the notionof simplicity, which is omnipresent in philosophy in general and in the philos-ophy of science in particular. Secondly, Kolmogorov complexity also allowsus to clarify the notion of randomness, which will be taken up in Section 3.4.Thirdly and �nally, the de�nition of Kolmogorov complexity allows us to givea proof of G�odel's fundamental incompleteness theorem which does not makeus of self-referring sentences.As the reader will notice, the present chapter contains virtually nothingon learning theory, despite the title of this thesis. However, one of the mostimportant applications of Kolmogorov complexity lies in inductive learning.We will defer this till the next chapter. There Kolmogorov complexity will beused to formalize Occam's Razor, which says that simple hypotheses are to bepreferred over more complex ones.3.2 De�nition and PropertiesIn this section we will de�ne Kolmogorov complexity and state some of its mainproperties. The idea to de�ne the complexity of a string as the length of ashortest Turing machine that produces the string was developed independentlyand for di�erent purposes in the 1960s by three di�erent persons:� Ray Solomono� [Sol64] used it in order to de�ne a universal probabilitydistribution, which can be used for prediction.� Andrei Kolmogorov [Kol65, Kol68] primarily introduced the complexitymeasure named after him in order to study randomness.� Gregory Chaitin [Cha66, Cha69] de�ned Kolmogorov complexity for study-ing complexity as well as randomness.Though `Solomono�-Kolmogorov-Chaitin complexity' might be somewhat moreappropriate, the name `Kolmogorov complexity' appears to have stuck.

48 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITY3.2.1 Turing Machines and ComputabilityIn the introduction, we came up with the following de�nition:The Kolmogorov complexity of a string x is the length of a shortesty such that y represents x.Here y represents x if it encodes a Turing machine that generates x.In the next subsection we will make this de�nition precise. Here we will �rstexplain in some more detail what a Turing machine is, what it does, and what itcan do. Turing machines were introduced by Alan Turing [Tur36]. Informally,a Turing machine consists of a table of instructions, which describe how themachine manipulates the symbols on one or more in�nite tapes of cells. Eachinstruction tells what the machine should do, given the particular state it iscurrently in and the contents of the tape cell it is currently scanning. Givena state and tape contents, the instruction tells the machine which symbol towrite in its current cell, in which direction to move its tape head, and in whichstate to go next. All the machine does, is follow these instructions step-by-step,until (if ever) it reaches a point where none of its instructions is applicable, andthen it halts.We will restrict the alphabet of symbols allowed on the tapes to 0, 1, and`blank'. Since anything that can be stated in some language can be encodedin binary, this is not a real restriction. In particular, we can set up a corre-spondence between the natural numbers and binary strings, for instance thefollowing: (0; �); (1; 0); (2; 1); (3; 00); (4; 01); (5; 10); (6; 11); (7; 000); : : :Here � is the empty string. Note that the binary representation of a number nhas approximately length log n bits (here we use logarithms with base 2). Wewill be a bit informal about the distinction between numbers and the corre-sponding binary strings, switching back and forth whenever this is convenient;when we speak of some number x, it will be clear from the context whether wemean that number itself, or the corresponding binary string.A Turing machine T computes a function f from the natural numbers tothe natural numbers, as follows. Suppose we start executing T in some initialstate, with an initial tape that contains only one binary string, correspondingto the natural number n. If T 's execution terminates with some natural numberm (in binary) on its tape, we de�ne f(n) = m; otherwise, f(n) is unde�ned. Afunction is called total if it is de�ned on each element of its domain, so f is atotal function if T halts on all natural numbers.De�nition 3.1 A function f from N to N that is computed by some Turingmachine T is called partially recursive or computable. If f is total and T haltson all inputs, then f is called total recursive or recursive. 3By the Church-Turing thesis, any intuitively \mechanically computable"function is partially recursive.

3.2. DEFINITION AND PROPERTIES 49De�nition 3.2 A set A of natural numbers is recursive or decidable if there isa recursive function f , such that f(n) = 1 if n 2 A, and f(n) = 0 if n 62 A.A is recursively enumerable if there is a partial recursive function f suchthat f(n) = 1 if n 2 A, and f(n) = 0 or f(n) is unde�ned if n 62 A. 3The intuition behind the latter notion is that a set A is recursively enumer-able if there is a Turing machine which outputs a (possibly in�nite) sequencecontaining all and only members of A. We can also de�ne recursiveness andrecursive enumerability for sets of other objects, as long as we can encode theseas natural numbers. For example, the set of Turing machines that halt is notrecursive: there is no algorithm that takes a binary encoding of an arbitraryTuring machine as input, and determines whether this machine halts after a�nite number of steps. This is the well-known undecidability of the haltingproblem, due to Turing.We can also compute functions that have two or more natural numbers asinput, and/or two or more numbers as output, by letting the initial or �naltape contain two or more natural numbers, separated in some suitable way. Ann-tuple of numbers will be denoted by hx1; : : : ; xni. Using functions with twonatural numbers as output, we can also de�ne functions that range over theset of rational numbers Q: a (partial) recursive function f from N to N2 canalso be seen as a (partial) recursive function g from N to Q, where g(n) = p=qfor f(n) = hp; qi. Using this, we can also compute|or at least approximate|functions ranging over the set of real numbers R:De�nition 3.3 A function f from N to R is called enumerable if there is arecursive function g from N2 to Q, such that g(x; k) � g(x; k + 1) for all x; k,and limk!1 g(x; k) = f(x) (g approximates f from below). Analogously, thefunction f is co-enumerable if it can be approximated from above. Finally, f isrecursive if there is a recursive g from N2 to Q such that jf(x)� g(x; k)j < 1=kfor every x and k. 3Let T1; T2; : : : be a list of all Turing machines. Each of these computes apartial recursive function, so there is a corresponding list f1; f2; : : : of (all andonly) partial recursive functions. A very fundamental concept is the universalTuring machine. This is a Turing machine U that can \simulate" all otherTuring machines: for every i, there exists a number (or binary string) ti suchthat given inputs ti and a number n, U computes the same function as Ti onn, i.e., U(ti; n) = fi(n) for all n. Such a ti can be called an encoded Turingmachine or a program for U . It is a fundamental result that such universalTuring machines can actually be constructed (there are in fact in�nitely manyof them). If Ti is a Turing machine and ti is its shortest binary encoding(relative to U), then the length of Ti (relative to U) will be l(Ti) = l(ti), thestring length of ti.3.2.2 De�nitionLet us �x some particular universal Turing machine Tu, and let fu be thefunction fromN2 toN that Tu computes. If fi(y) = x, then Tu produces x when

50 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYits initial input tape contains program ti and y, i.e., fu(ti; y) = x. If y is empty,we simply write fu(ti) = x. Then we can de�ne the Kolmogorov complexityof a string x as the length of a shortest Turing machine that computes x:K(x) = minfl(t) j fu(t) = xg. However, for technical reasons we have to makeone important addition, namely that we encode the Turing machines in a pre�x-free way. That is, if t1 and t2 are encodings of Turing machines (programs forTu) then t1 is a pre�x of t2 only if t1 = t2 (x is a pre�x of y if y = xz for somez). For instance, it cannot be the case that 110 and 1101 are both encodings ofTuring machines, since the former is a pre�x of the latter.3 With this conditionin place, we can de�ne:De�nition 3.4 Let Tu be some �xed universal Turing machine whose set ofprograms is pre�x-free, and let fu be the function from N2 to N that Tu com-putes. The Kolmogorov complexity of a binary string x isK(x) = minfl(t) j fu(t) = xg: 3Thus, as promised, the Kolmogorov complexity of a string x is indeed the lengthof a shortest Turing machine that computes x (starting from an initially emptytape). The Kolmogorov complexity of a natural number n is the Kolmogorovcomplexity of the binary representation of n.It is fairly easy to show that there exists a constant c such that for every x,K(x) � l(x) + c. Informally, a simple computer program like print x su�cesto generate x. The length of this program will be the length of print, whichis a constant independent of x, plus the length of x. Thus the Kolmogorovcomplexity of a string cannot be much larger than its own length. This is howit should be, since a string is a complete description of itself.3.2.3 Objectivity up to a ConstantIn the introduction to this chapter we claimed Kolmogorov complexity to beobjective. But doesn't it depend on the particular universal Turing machineTu we use? Would not a di�erent choice of Tu lead to di�erent complexities?Indeed it would. But still Kolmogorov complexity can be called objective, dueto the following Invariance Theorem:Theorem 3.1 (Invariance) Let Tu and Tv be universal Turing machines, letKu(x) denote the Kolmogorov complexity of x relative to Tu, and Kv(x) bethe Kolmogorov complexity of x relative to Tv. Then there exists a constant c,depending on u and v but not on x, such that for every x:Ku(x) � Kv(x) + c:3There also exists a version of Kolmogorov complexity without this requirement. ThisC(x), discussed in Chapter 2 of [LV97], has some undesirable properties which make it lessinteresting than the pre�x-free version.

3.2. DEFINITION AND PROPERTIES 51This result is a fairly obvious consequence of the fact that any two universalTuring machines can simulate each other. Let Tu and Tv be two universal Turingmachines. Since Tu is a universal Turing machine, there exists a Tu-programs which computes the same function as Tv. This s can be called a simulationof Tv on Tu. Suppose T , with encoding t, is a shortest Turing machine thatcomputes x relative to Tv (so Kv(x) = l(t)). If we want to compute x relative toTu, then we can take the simulation-program s, feed t into it, and the programs will execute t for us (and hence generate x) on Tu. Thus Ku(x) is at mostKv(x) = l(t) plus a constant c which accounts for the length of the simulationprogram s and some overhead.The theorem implies that there is a constant c, such that for every xjKu(x)�Kv(x)j � c:Thus, though Kolmogorov complexity depends on the particular universal Tur-ing machine Tu we choose, for larger x and y the relative inuence of the choiceof Tu becomes negligible. For instance, if c = 1; 000 and we are dealing withobjects of Kolmogorov complexity more than 1; 000; 000, then the relative dif-ference jKu(x) � Kv(x)j=Ku(x) is less than 0:001. This makes Kolmogorovcomplexity su�ciently objective.3.2.4 Non-ComputabilityIn general, we can discern two distinct desirable goals in formal analysis. Firstly,it should provide us with a more clear insight in the analyzed topic. We will seein the next section how Kolmogorov complexity allows us to supply clear andprecise meanings to notions like simplicity and randomness. The second goalof formal analysis is to provide us with useful, practically applicable tools. Inorder for Kolmogorov complexity to be fully applicable, we should be able to�nd out what the Kolmogorov complexity of a given string is. Unfortunately,this is beyond us (at least, beyond algorithmic means): Kolmogorov complexityis not computable. For a proof, we refer to Theorem 2.3.2 of [LV97].Theorem 3.2 (Non-computability) The function K(x) is not recursive.However, we are able to approximate K(x). There exists a particular recur-sive function g(x; k) such that if we successively compute g(x; 1); g(x; 2); g(x; 3);: : :, then the sequence of numbers we obtain will converge to K(x) from above.For instance, given x and k, g might simulate the �rst k steps of the �rst kTuring machines, and output the length of a shortest of these k machines thatproduces x (if none of the �rst k machines produces x, let g be some huge, prac-tically in�nite number). It is clear that g(x; k) decreases when k grows. Fur-thermore, if the ith Turing machine is a shortest Turing machine that producesx, say after j steps, then g(x;maxfi; jg) = K(x), so limk!1 g(x; k) = K(x).Theorem 3.3 (Approximation) The function K(x) is co-enumerable.This result makes \approximate application" of Kolmogorov complexity atleast possible in principle (of course, computability of an approximation doesnot imply e�cient or practical computability of an approximation).

52 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITY3.2.5 Relation to Shannon's Information TheoryThe complexity K(x) of x may be seen as a measure of the amount of in-formation inherent in x, since we need a program of at least K(x) bits toreconstruct x. In this subsection we will see how Kolmogorov complexity re-lates to the older and more famous de�nition of information given by ClaudeShannon [Sha48, CT91]. (We will not use this in the remainder of the thesis,so the reader may wish to skip this section on a �rst reading.)Briey, in Shannon's framework a message is a �nite sequence of words. Wewill assume each word is a binary string. Each of the possible words w1; : : : ; wkhas a de�nite probability (frequency) of appearing. Let P be the probabilitydistribution over these words. The entropy of P is de�ned byH(P) = � kXi=1P(wi) logP(wi):For example, consider a simple language of three words: `0001', `0011', and`0111', with P-probabilities 1=2, 1=4, and 1=4, respectively. A message in thislanguage is simply a �nite sequence of these words, drawn according to P. Theentropy is H(P) = �(12 log 12 + 14 log 14 + 14 log 14) = 1:5 bits:H(P) is the information content, in bits, of a message of one word. A messageof n words then contains nH(P) bits of information.We can encode messages in this language by assigning each word wi a par-ticular codeword ci (another binary string), and by encoding each sequence ofwords as the corresponding sequence of codewords (this can be done in sucha way that a bitstring which is a sequence of codewords can always uniquelybe decomposed into those codewords again). If we do this in a smart way,assigning short codewords to high-probability words, we can achieve a muchmore e�cient and economical representation than if we represent words simplyby themselves. By a fundamental theorem of Shannon's, H(P) is an (almost)reachable lower bound for the length of binary encodings of messages: we canassign each word a codeword in such a way that if we draw a word according toP, then the expected length of its codeword equals H(P) to within one bit (see[CT91, Theorem 5.4.1] or [LV97, Theorem 1.11.2]). Thus, for an optimal en-coding of the language above, the expected codelength of an arbitrary messageof n words is approximately 1:5n bits, whereas if we use each of the three words(`0001', `0011', `0111') simply as its own codeword, the expected codelength is4n. Now, (sequences of) words are simply binary strings, and hence have aKolmogorov complexity. If we draw a word according to P, then the expectedKolmogorov complexity of this word is Pki=1P(wi)K(wi). Surprisingly, thisexpected Kolmogorov complexity is asymptotically equal to the entropy [LV97,p. 525], provided P is recursive:

3.3. SIMPLICITY 53Theorem 3.4 If P is a recursive probability distribution over words w1; : : : ; wk,then limH(P)!1Pki=1P(wi)K(wi)H(P) = 1:What does this mean? It means that if P is su�ciently complex (i.e.,H(P) is su�ciently large) and we draw a word w according to P, then onaverage K(w) will be approximately equal to H(P). Consequently, for a longmessage v1 : : : vn of n words, we can expect K(v1 : : : vn) to approximately equalthe information content nH(P) of the message, and we can use the shortestprograms that generate strings as approximately optimal codewords for thosestrings. Nevertheless, despite the fact that the Kolmogorov complexity of amessage converges to its Shannon-information content, we agree with Coverand Thomas [CT91, p. 3] that Kolmogorov complexity is more fundamentalthan Shannon entropy, because it does not depend on a particular probabilitydistribution P.43.3 SimplicityFrom a philosophical point of view, the most important contribution of thetheory of Kolmogorov complexity has been to provide us with a precise def-inition of the simplicity of individual strings. Particularly in the 1950s and1960s, many unsuccessful attempts were made to measure the complexity oftheories, especially when formulated in �rst-order logic. One of the most strik-ing of these was Popper's proposal to identify degree of simplicity with degreeof falsi�ability (or strength) [Pop59, p. 140]. However, the following exampleby Goodman [Goo72b, p. 335] shows that simplicity can neither be identi�edwith strength (as Popper wants) nor with safety:1. All maples, except perhaps those in Eagleville, are deciduous.2. All maples are deciduous.3. All maples whatsoever, and all sassafras trees in Eagleville, are deciduous.Clearly, the second of these hypotheses is the simplest, and is preferable to theothers if consistent with the data. However, 3 is stronger than 2, while 1 issafer (i.e., more likely to be true) than 2. Thus neither the strongest nor thesafest hypothesis need be the simplest.5Kolmogorov complexity does give us a sound and objective quantitativemeasure for complexity/simplicity. That is:A string x (a description, a theory, etc.) is simple to the extent thatit has low Kolmogorov complexity.4Some relations between Shannon information, Kolmogorov complexity, and informationand entropy in physics are described in Chapter 8 of [LV97].5See [Hes67] for an overview of some other approaches at measuring simplicity, and theirproblems. More recently, Elliott Sober [Sob75] has attempted to equate simplicity with in-formativeness relative to given questions (a theory is more informative to the extent that itneeds less additional information in order to be able to answer a given question).

54 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYNot surprisingly, simplicity shows up as a gradual notion here: things are notsimple per se, but they can be more simple or less simple. Because, as wehave seen, the Kolmogorov complexity of x is objective (to within a constantindependent of x), this de�nition of simplicity is objective as well. The onlysubjectivity lies in the choice of the particular universal Turing machine weuse, but the inuence of this choice becomes negligible for larger x. Actually,many philosophers have claimed that simplicity is too subjective and context-dependent to be objectively de�nable at all. For instance, Lakatos writes\No doubt, simplicity can always be de�ned for any pair of theoriesT1 and T2 in such a way that the simplicity of T1 is greater thanthat of T2." [Lak71, p. 131, note 106]To be sure, this also holds for Kolmogorov complexity. If we want to give aparticular string x a very low Kolmogorov complexity, we can achieve this bytinkering with some ordinary universal Turing machine Tu, in such a way thatit outputs x if it is given the string 1 as input. Thus the new machine wouldhave x somehow hardwired in its program. Then relative to this new machine,we will have K(x) = 1, so we can tinker in such a way that any particular stringgets a very low complexity. However, if we choose some reasonable universalTuring machine, where no information about particular strings is hardwired,this problem will not arise, and we can stick to the objectivity of Kolmogorovcomplexity.Why should we bother about simplicity? Because it is one of the guidingprinciples of science: simplicity of a theory is generally regarded as a virtue.Scientists generally follow the maxim that simple or elegant theories are to befavoured, both in their practice and in their own theorizing about science. AsQuine writes:\Consciously the quest [the \sifting of evidence"] seems to be for thesimplest story. [: : :] Simplicity is not a desideratum on a par withconformity to observation. Observation serves to test hypothesesafter adoption; simplicity promps their adoption for testing. Still,decisive observation is commonly long delayed or impossible; and,insofar at least, simplicity is �nal arbiter.Whatever simplicity is, it is no casual hobby. As a guide of inferenceit is implicit in unconscious steps as well as half explicit in deliberateones. The neurological mechanism of the drive for simplicity isundoubtedly fundamental though unknown, and its survival valueis overwhelming." [Qui60, pp. 19{20]Or in Goodman's words:\: : : simpli�cation is the heart of science. Science consists not ofcollecting particular truths but of relating, de�ning, demonstrating,organizing|in short of systematizing. And to systematize is to sim-plify; [: : :] Science is the search for the simplest applicable theory."[Goo72d, p. 351]

3.3. SIMPLICITY 55We will see more examples in the next chapter. Given the importance of sim-plicity, clarifying what makes a simple theory simple, and what makes a simpletheory favourable is an important topic in the philosophy of science.The idea that selecting simple theories is good, however, already brings usto Occam's Razor, to which we will devote the whole next chapter. In thissection, we will ignore the prescriptive aspects of simplicity (that simplicity isgood), restricting attention to its conceptual aspects. Most important amongthese: what are its relations to the notions of elegance and beauty?In general, if we do not restrict attention to science, what we would call`simple', `elegant', or `beautiful' can diverge widely. For instance, the word `ele-gant' often has the connotation of `slightly super�cial', and hence diverges from`beautiful'. Furthermore, simple works of art need not be beautiful (\Who'safraid of red, yellow, and blue"); conversely, many of the most beautiful piecesof art are highly complex and dense with connotations. On the other hand,simple works of art can be very beautiful|examples that come to mind areMondriaan's abstract paintings and Satie's early piano music. Moreover, bothelegance and beauty are irreducibly subjective, whereas simplicity could to alarge extent be made objective, as we have seen.6However, when we do restrict attention to the roles of simplicity, elegance,and beauty in science, particularly their roles as properties of scienti�c theo-ries, things start to get interesting. Many a scientist or philosopher has usedthese notions in the same breath, and it is not at all clear how they can bedistinguished. Ordinary usage of these terms does not seem to provide us withclear boundaries. On the one hand this is a nuisance, but, on the other, it alsoleaves us plenty of room to specify these boundaries for ourselves, supplyingour own de�nitions. I would like to propose the following informal de�nitions:� A theory is simple to the extent that it can be described easily. This cansatisfactorily be formalized in terms of low Kolmogorov complexity.� A theory is elegant to the extent that it is simple (in the above sense) andeasy to handle.� A theory is beautiful to the extent that it causes feelings of pleasure,delight, reverence, and wonder.Because of the vagueness of natural language, any boundary will be somewhatarbitrary. Whether these particular boundaries diverge too far from ordinaryusage I leave for the native speakers of English to decide.Our earlier statement that `simplicity' is largely objective while `elegance'and `beauty' are subjective, is clearly in accordance with these de�nitions. Sim-plicity can be de�ned in terms of Kolmogorov complexity, and hence is su�-ciently objective. On the other hand, a simple theory is elegant only if it is easy6Even the complexity of works of art is amenable to analysis in terms of Kolmogorovcomplexity. Literature or musical scores can easily be transformed into bitstrings, which canbe assigned a Kolmogorov complexity. Similarly, by treating it as a matrix of colour dots andassigning each dot a number, a painting can be transformed into a bitstring. Very regularpaintings will have low complexity, visually very complex paintings will have high complexity.

56 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYto handle, easy to use|and this depends, of course, partly on the person whoactually uses it: a complex theory is often easy to handle for those having muchexperience with it, but di�cult for �rst-year students. Thus elegance is partlysubjective. That beauty is also subjective will not surprise us: some people feelpleasure, delight, reverence, and wonder very easily, while others remain numband uninterested even when faced with the theory of relativity. Despite thesubjectivity of the elegance or beauty of scienti�c theories, both are stronglylinked to the objectively de�nable simplicity. In case of elegance, this is im-mediately apparent from the de�nition. But also beauty is strongly correlatedwith simplicity; we will see some examples of this in the next chapter. For onething, in order to appreciate the beauty of some theory, we should be able tocomprehend it fully|which can only be if the theory is su�ciently simple forus to be comprehensible in the �rst place. Extremely complex theories maysometimes be great predictors, but they will generally not be considered verybeautiful.The subjectivity of beauty in scienti�c theories also shows up in the vari-ance of scientists' aesthetic canons over time. To end this section, let us brieylook at James McAllister's interesting recent account of the role of aestheticalcriteria in science [McA96]. According to this account, empirical criteria for the-ory choice, such as predictive success and consistency with other theories, aresupplemented by aesthetic criteria. McAllister mentions �ve classes of such aes-thetic criteria: symmetry, invocation of a model, visualizability/abstractness,methaphysical allegiance, and|most interesting for us|simplicity.7 Aestheticvalue is projected onto an object (for instance a scienti�c theory) according tosuch aesthetic criteria or canons. The content and weighing of these criteria arenot constant over time, but are (unconsciously) inductively derived from theproperties of recent successful theories: our sense of what is beautiful derivesfrom, and varies with, what is successful. Whenever theories are replaced bymore successful ones, our aesthetic canons are to some extent adjusted as well.In McAllister's model, a scienti�c revolution occurs if the aesthetic criteriastart lagging too far behind the empirical criteria, and these two sets of criteriastart coming in severe conict. In this case a progressive faction of scientists,which places more value on empiricial than on aesthetic criteria, supersedes aconservative faction that wants to hold on to older theories they perceive asmore beautiful. This is corroborated by the fact that many of the truly revo-lutionary new ideas and theories (such as Kepler's elliptical orbits, or quantummechanics) were considered by many rather ugly early after their inception,7An important di�erence between McAllister's handling of simplicity and our own: whilewe ascribe simplicity to representations of scienti�c theories (namely bitstrings), McAllis-ter ascribes simplicity to those theories themselves, not to particular representations ofthem [McA96, p. 24{26]. The fact that we looking only at representations avoids the problemsassociated with McAllister's almost Platonic view of theories as abstract entities.Furthermore, McAllister explicitly rejects using Kolmogorov complexity as the measure ofsimplicity, since there are alternatives, for instance measuring the number of assumptions orthe number of variables in a theory [McA96, pp. 119{120]. Nevertheless, we consider simplicityas measured by Kolmogorov complexity to be more fundamental than other measures, becauseits foundation (the Turing machine as a model of e�ective computability) is more fundamentaland less ad hoc than others.

3.4. RANDOMNESS 57but are considered much more beautiful and elegant now that we have gottenused to them and have been convinced of their empirical success|our aestheticcanons have been adjusted to them.3.4 RandomnessActually, despite our focusing on the use of Kolmogorov complexity as a for-malization of simplicity, the initial motivation of its development lay elsewhere:namely in the notion of randomness of strings. From the point of view of philos-ophy of science, it is very interesting to specify randomness. After all, scientistsaim at �nding structure, regularity, causes, etc., in the world, but we cannotrule out a priori that some domains have no regularity whatsoever. Intuitively,if some domain possesses no regularity at all, then descriptions that stem fromthis domain will be random strings. Accordingly, ways to recognize randomnessare important.Before the advent of Kolmogorov complexity, several attempts had beenmade to de�ne necessary and su�cient conditions for randomness, for instanceby Von Mises, Wald, and Church.8 However, each of those de�nitions includedsome strings as random which we intuitively would not consider random, andhence failed.3.4.1 Finite Random StringsIn this subsection, we will characterize the property of randomness of �nitebinary strings, in the next we will deal with in�nite strings. It should benoted that when dealing with �nite strings, it is rather arbitrary to �x a sharpboundary between random and non-random �nite strings: randomness is amatter of degree here. Furthermore, strings are not random per se, but randomwith respect to a certain probability distribution. For example, a binary stringof length 10,000 consisting of about equally many 0s and 1s, distributed in anirregular way over the string, will be fairly random with respect to a probabilitydistribution induced by a fair coin. However, it would be rather surprising if thisstring were generated by tossing an unfair coin that comes up `heads' 70% ofall tosses, and the string is not random with respect to the distribution inducedby the unfair coin.The way we will de�ne randomness here, is via tests for randomness: astring is random if it passes certain tests. For instance, one test for randomnessmight say that a string that contains much more 0s than 1s is not randomwith respect to the probability distribution induced by a fair coin, another testmight say that a string which starts with a 1,000 1s is not random with respectto that distribution. Thus we could de�ne a string as random if it passes allconceivable tests for randomness. The theory of tests for randomness describedbelow shows that we can actually formalize this. This framework is due to theSwedish mathematician Martin-L�of [ML66], who co-operated with Kolmogorov.8See [LV97, pp. 49{56] for an overview of the various approaches, and why they failed.

58 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYA string is random if it passes all conceivable tests for randomness. Butwhat constitutes a \conceivable test for randomness"? Firstly, in order for usto be able to carry out such a test, we should in any case be able to computeor approximate its outcome. Secondly, a test for the randomness of a stringx is a test whether x is a \typical" string for that distribution. For instance,1010100010110 would be a typical outcome for the fair-coin-distribution, while1111111111111 (13 times `heads' in a row) would not. The typical strings forma \reasonable majority" of all strings; a majority on which most probabilityconcentrates. Each test is a way of specifying such a majority and of testingwhether a given string x belongs to it or not. A string will be called random ifit belongs to every \reasonable majority" speci�ed in this way, i.e., if it passeseach test. We now �rst give the de�nition of a test, and then explain what isintended by this idea of a majority.De�nition 3.5 Let P be a recursive probability distribution on f0; 1g� (theset of �nite binary strings). A total function � : f0; 1g� ! N is a P-test (or aMartin-L�of test for randomness with respect to P) if it satis�es the followingtwo conditions:1. � is enumerable.2. PfP(x) j �(x) � m; l(x) = ng � 2�m, for every m and n. 3What is going on here? The �rst condition is fairly plain: � can only bean \implementable" or \e�ective" test for randomness if we can computablyapproximate it. The second condition requires some more explanation. Theidea here is that the elements of f0; 1g� that do not belong to some \reason-able majority" of typical strings, are assigned high values by the test �. Theset Vm;n = fx j �(x) � m; l(x) = ng singles out all strings of length n thatare special in having �-value at least m; this set forms the complement of the\reasonable majority" of typical strings. The second condition in the de�nitionis to ensure that Vm;n is indeed the complement of a reasonable majority, byrequiring that Vm;n becomes ever more more improbable for larger m (equiv-alently, the probability concentrates on the complement of Vm;n, which is tocontain the typical strings):P(V1;n) =PfP(x) j �(x) � 1; l(x) = ng � 0:5.P(V2;n) =PfP(x) j �(x) � 2; l(x) = ng � 0:25.P(V3;n) =PfP(x) j �(x) � 3; l(x) = ng � 0:125.: : :Thus, if we draw an arbitrary x of length n according to P, it is very unlikelythat x belongs to Vm;n for higher m. If x does belong to Vm;n, we have goodreason to believe that it is a non-typical string, and we can consider it non-random accordingly. In statistical terms, each Vm;n is a critical region. Ifx 2 Vm;n, then we can reject the hypothesis that x is random with signi�cancelevel 1 � 2�m. Suppose for instance that we have a string x of length n, and

3.4. RANDOMNESS 59we want to know whether this string is random with respect to a distributionP, using some particular P-test �. Suppose �(x) = 10. The second conditionin the above de�nition tells us that the probability that an arbitrary elementof length n is a member of V10;n is at most 2�10, which is less than 0:1%, andhence rather improbable. However, our string x is a member of this set, soapparently it is a rather special, non-typical string, which does not belong tothe \reasonable majority" tested by �: we can reject the hypothesis that x israndom with 99:9% con�dence. Thus a P-test gives us information about the\typicalness" of its argument: x tends to be less typical (with respect to P) if�(x) is higher (i.e., x 2 Vm for higher m).Recall that we wanted to de�ne a string as random if it belongs to all\reasonable majorities", i.e., if it passes all tests for randomness (at a certaincon�dence level). Now, there are clearly in�nitely many di�erent P-tests forany probability distribution P, and it would be rather cumbersome to checkwhether a string x passes each of those tests before we can assign it the predicate\random with respect to P". Instead, it would be much more interesting tohave a single P-test which only the random strings pass. It is in fact possibleto \combine" all possible P-tests into a single P-test. Such a test is calleduniversal:De�nition 3.6 A P-test �u is universal if, for every P-test �, there exists aconstant c � 0 such that for every string x, �u(x) � �(x) � c. 3A universal P-test �u is such that no other P-test can �nd more than aconstant amount of regularity in x more than �u. It is a fundamental resultthat for each recursive probability distribution P there is a universal P-test.Theorem 3.5 Let P be a recursive probability distribution, and �1; �2; �3; : : :be an enumeration of all P-tests. Then �u(x) = maxf�i(x) � i j i � 1g is auniversal P-test.The main element in the proof of this theorem (Theorem 2.4.1 of [LV97]) isto show that the sequence �1; �2; �3; : : : is indeed recursively enumerable. Giventhat fact, it is fairly easy to show that �u as de�ned here is itself a P-test andhas �u(x) � �i(x)� i, for every i. Hence �u is indeed a universal P-test, and canbe used to measure the degree of randomness of �nite strings: x is less randomif �u(x) is higher.If we �x some universal P-test and some constant c (for instance c = 1),then randomness of �nite strings with respect to P can be de�ned as follows:De�nition 3.7 Let P be a recursive probability distribution and x a �nitebinary string. Fix some universal P-test �u and constant c. We call x P-random if �u(x) � c. 33.4.2 In�nite Random StringsIn the case of �nite binary strings we cannot distinguish sharply between ran-dom and non-random strings, but in the case of in�nite strings we can. In this

60 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYsubsection we will generalize the previous de�nitions of tests for randomness tothe case of in�nite strings. We use B = f0; 1g1 to denote the set of all in�nitebinary strings. If ! is some in�nite binary string, we use !1:n to denote the �nitestring consisting of the �rst n bits of !. For instance, if ! = 110110110 : : :, then!1:5 = 11011. Because we cannot computably deal with probability distribu-tions on the set of in�nite strings (no Turing machine can completely \swallow"an in�nite string as input and compute its probability), we have to use some-thing else. We will use a function � that assigns a number �(x) 2 [0; 1] to any�nite binary string x, with the following restrictions:9�(�) = 1:�(x) = �(x0) + �(x1):Here �(x) is interpreted as the probability that a string from B starts withx. The �rst restriction simply says that any string must start with the emptystring (which is fairly obvious). The second says that the probability that anin�nite string starts with x equals the sum of the probabilities that it startswith x0 or with x1 (which is obvious as well, because x can only be followedby a 0 or a 1). Such a function � is called a measure on B.For a recursive measure on B, Martin-L�of's de�nition of a test for random-ness of in�nite strings can be stated as follows:De�nition 3.8 Let � be a recursive measure on B = f0; 1g1. A total function� : B ! N [f1g is a sequential �-test (or a sequential Martin-L�of test forrandomness) if it satis�es the following two conditions:1. There exists an enumerable total function : f0; 1g� ! N such that�(!) = supn2Nf(!1:n)g.(Notational remark: the supremum of a set A of numbers, denoted supA,is the maximum of A if A contains a greatest element, and1 otherwise.)2. �f! j �(!) � mg � 2�m, for every m. 3Such tests are called sequential, because we can use the function to ap-proximate �(!) by sequentially approximating (!1:n) for n = 1; 2; 3; : : :.Just as in the case of �nite strings, a high value for �(x) indicates that xis non-typical and hence non-random. Let Vm = fx j �(x) � mg. The set Vmcontains all strings that are identi�ed as special or non-typical in the sense ofbeing assigned a �-value of m or more. A string x may be said to pass the test �if it is not special for higher m: x 62 Vm for some m, equivalently ! 62 T1m=1 Vm.An in�nite string is random if it passes all tests in this way:De�nition 3.9 Let � be a recursive measure on f0; 1g1, and V be the set ofall sequential �-tests. An in�nite binary string ! is called �-random if it passesall sequential �-tests: ! 62 T1m=1 Vm for every �. 39x0 is the string which is the concatenation of x and 0; x1 is the concatenation of x and 1.

3.4. RANDOMNESS 61Analogous to the case of �nite strings, for each recursive measure � on theset of in�nite strings there is a universal sequential �-test (see Theorem 2.5.2of [LV97]).De�nition 3.10 A sequential �-test �u is universal if, for every sequential �-test �, there exists a constant c � 0 such that for every in�nite string !, wehave �u(!) � �(!)� c. 3Theorem 3.6 Let � be a recursive measure, and �1; �2; �3 : : : be an enumerationof all sequential �-tests. Then �u(x) = supf�i(x) � i j i � 1g is a universalsequential �-test.It is not very di�cult to see that the set of in�nite strings ! that are randomin the sense of De�nition 3.9 are exactly the strings for which �u(!) is �nite.Thus an alternative equivalent de�nition of randomness is: ! is �-random i��u(!) is �nite. Note that if �u and �v are two distinct universal sequential �-tests, then j�u(!)� �v(!)j � c, for some constant c and for all !. Hence �u(!)is �nite i� �v(!) is �nite, which shows that it does not matter which particulartest we use: each universal sequential �-test picks out exactly the same set ofrandom strings.The above paragraphs de�ned randomness in terms of tests for randomness.How does all this relate to Kolmogorov complexity? Kolmogorov complexityallows us to formalize another intuition about randomness: a string is non-random to the extent that it contains many regularities. Very vaguely andabstractly, a regularity is some kind of repetition, the recurrence of a certainpattern. Now, if a string contains some kind of repetition, then we can make useof this to represent the string more e�ciently. For instance, a string of length10,000 that consists of the string `10', repeated 5,000 times, can be representedby the much shorter string \5,000 times `10' ". In other words, if a stringcontains regularities, we can use these to compress the string. Thus a �nitestring is non-random to the extent that it can be compressed, and is randomto the extent that it cannot be compressed.10 Extending this to the in�nitecase, an in�nite string ! may be said to be random if all of its pre�xes areincompressible, or at least compressible at most a �xed number of bits. Thatis, basically the shortest description of its pre�xes are those pre�xes themselves,and the shortest description of the whole sequence is that sequence itself. The10In the case of �nite strings, the de�nition of K(x) does not enable us to state a clearrelation between Kolmogorov complexity and randomness. However, if we temporarily dropthe condition that the set of encodings of Turing machines should be pre�x-free, and de�neC(xjl(x)) as the length of a shortest Turing machine that generates x, given l(x) on a specialinput tape, we can state such a relation. De�ne the randomness de�ciency of a �nite stringx to be f(x) = l(x) � C(xjl(x)) � 1. This de�ciency is higher if x is more compressible(more regular). Theorem 2.4.2 of [LV97] states that f(x) is a universal test with respect tothe uniform measure. Hence high compressibility indicates non-randomness, and vice versa.(Incidentally, since pseudo random number generators are usually fairly short programs, the\random" numbers that these programs generate will not really be random at all.)Dennett [Den91] uses Kolmogorov complexity (without mentioning this name) to argue thatstrings contain real patterns if those strings are compressible.

62 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYfollowing fundamental result ([LV97, Theorem 3.6.1]) shows this intuition to becorrect if we consider randomness with respect to the uniform measure �, whichassigns �(x) = 2�l(x). This � is a very natural measure, because it distributesprobability in an unbiased, uniform way: all distinct pre�xes of length n areequally probable.Theorem 3.7 An in�nite binary sequence ! is �-random i� there is a constantc such that K(!1:n) � n� c, for every n � 1.3.4.3 An Interesting Random StringIn the previous pages we have characterized randomness for �nite and in�nitestrings. As the number of in�nite strings is uncountable, whereas the numberof Turing machines is only countably in�nite, it is clear that there are in�nitelymany in�nite strings that are random with respect to the uniform measure. Itis, however, equally clear that we can never e�ectively describe one. (How couldwe?|a random in�nite string has no �nite e�ective description.) Nevertheless,we can give non-e�ective descriptions of random strings.A very interesting example of such a string is the real number
. This isde�ned as follows, where U is some �xed universal Turing machine:
 = Xft j U(t) haltsg 2�l(t):It can be shown that 0 <
 < 1; in binary expansion, we can write
 =0:!1!2!3 : : :, where each !i is a bit.11 We use
1:n to denote !1!2 : : : !n, thestring of the �rst n bits of
's binary expansion.This very abstract number is called the halting probability, because it is theprobability that when we feed a sequence of fair coin ips into the universalTuring machine U , the machine U halts.12 This can be seen as follows. Considera monkey who repeatedly ips a fair coin. If the coin comes up `heads' we writedown a 1, and a 0 otherwise, thus producing a growing binary string. As soonas the binary string x is the encoding of a Turing machine, we let the monkeystop ipping coins. Now consider the in�nite sequence of all �nite binary stringsthat encode halting Turing machinesx1; x2; x3; : : :For each xi, the probability that the monkey produces xi is 2�l(xi). (Sincethe x1; x2; : : :-sequence is pre�x-free, these events are mutually exclusive, sowe can add the probabilities.) For instance, the probability of producing 10111The �rst bit in a binary expansion corresponds to 2�1 = 0:5, the second bit to 2�2, thethird to 2�3, etc. Thus, for example, the binary number 0:11001 corresponds to the decimal1 � 2�1 + 1 � 2�2 + 0 � 2�3 + 0 � 2�4 + 1 � 2�5 = 0:5 + 0:25 + 0 + 0 + 0:03125 = 0:78125.12Note that
 is de�ned relative to U ; distinct universal Turing machines induce distinct
s.Furthermore, here we have one of the technical points where the importance of using pre�x-free Turing machines shows: if we considered Turing machines encoded in a non-pre�x-freeway, the sumPft j U(t) haltsg 2�l(t) could go to in�nity.

3.4. RANDOMNESS 63is 12 � 12 � 12 = 2�3. Adding up the probabilities for these xi, we get the totalprobability that U will halt on the string produced by the monkey:1Xi=1 2�l(xi) = Xft j U(t) haltsg 2�l(t);which is our number
.It is quite remarkable that we can actually de�ne a number which givesthe probability that an arbitrary Turing machine halts. Apart from this,
has some more interesting properties. Firstly, since it is undecidable whether agiven Turing machine halts, it follows that
 is not recursive. (It is, however,enumerable by a procedure outlined below.)The most interesting property of
, however, is that knowledge of its �rst nbits (that is, of
1:n) enables us to �nd out which of the �rst n Turing machineshalt. Suppose we know the number
1:n, and we want to �nd out whether someparticular Turing machine T , of length n, halts. Consider a program P whichsimulates all Turing machines: �rst it executes the �rst step of the �rst Turingmachine; then it executes the �rst two steps of the �rst two Turing machines;then it executes the �rst three steps of the �rst three Turing machines; and soon. Then, if we run this procedure forever, each Turing machine which haltswill be found to halt after a �nite number of steps. Suppose this program Pmaintains a variable
0, initially zero. For each Turing machine, of length l,that it �nds to halt, let our program P add 2�l to
0. Then during the executionof P ,
0 will approach
 from below. (This procedure can be used to show that
 is enumerable.) Let P terminate as soon as
0 �
1:n. What do we knowonce P has halted? If T has been found to halt during P 's execution, then ofcourse we know T halts. Now suppose T has not halted during the execution ofP . Is it possible that T would halt later on? If so, then
0+2�n �
, since T 'scontribution of 2�n to the halting probability has not yet been incorporated in
0. However, since
 and
1:n can only di�er in the n+1-th and later bits, wehave
1:n �
 <
1:n+2�n. Thus, if T does not halt during the execution of Pbut would halt eventually, then
0 + 2�n �
 <
1:n + 2�n, which contradicts
0 �
1:n. Accordingly, if T halts during the execution of P then we know ithalts; and if it does not halt during the execution of P , then we know it neverhalts.Knowledge of whether or not certain Turing machines halt is tantamount toknowing the answers to many mathematical questions. Consider for instanceGoldbach's famous conjecture, which says that every even number is the sumof two primes.13 We can easily program a Turing machine T which checks if nis the sum of two prime numbers (which each should be smaller than n), �rstfor n = 0, then for n = 1, then for n = 2, and so on, and which halts if it�nds an n which is not the sum of two primes. This Turing machine T haltsi� Goldbach's conjecture is false. Suppose T has length at most n bits, andsomehow we know
1:n. Using the procedure outlined above, we can �nd out13To the knowledge of the author, this problem is still open. Fermat's even more famouslast theorem (there are no natural numbers x; y; z � 1 and n � 3 such that xn + yn = zn) isoften cited in this context, but this theorem has �nally been proved a few years ago.

64 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYwhether or not T halts, and hence whether or not Goldbach's conjecture is true.And similarly for all other statements that can be encoded in Turing machinesof length at most n. Accordingly, if some mathematician had a secret way toaccess
, and su�cient computing power to extract from this whether a givenTuring machine halts, he could answer any major question statable in termsof the halting of Turing machines|and become the world's most celebratedmathematician overnight. Unfortunately, the non-computability of
 tells usthat there is no systematic way to access
.Furthermore, it can be shown that
 is a random in�nite string, which willbecome important in the next section: there is a constant c such thatK(
1:n) � n� c; for every n � 1:This can be seen as follows. Given
1:n, we can compute the set T of all Turingmachines of length at most n that halt. There clearly exists a �nite string xthat is not computed by any of the Turing machines in T , and hence for whichwe must have K(x) > n. Now, we can de�ne a Turing machine T in which
1:nis somehow encoded, and which uses those n bits to exhibit one such x. This Trequires only K(
1:n) bits to encode
1:n, plus some constant c to compute anx from
1:n. Here c does not depend on n. Since K(x) > n and T generates x,we must have that l(T) = K(
1:n) + c > n; for every n � 1:Accordingly, by Theorem 3.7 we know
 is random in the sense of passing allsequential tests for randomness with respect to the uniform measure.The above proof is related to the Richard-Berry paradox, which asks for thefollowing number:Let x be the smallest number not de�nable in less than 20 words.We have just de�ned x in less than 20 words, despite the fact that x's ownde�nition rules this out! Analogously, the set of all Turing machines of lengthat most n bits speci�es the set of of all strings \e�ectively de�nable" in atmost n bits. The Turing machine T mentioned above exhibits a string x thatis not de�nable in n or less bits. If its length l(T) were n bits or less, than wehad e�ectively de�ned x in n or less bits, which would turn the Richard-Berryparadox into a formal contradiction. Hence l(T) must be greater than n, fromwhich the non-compressibility of the pre�xes of
 follows.3.5 G�odel's Theorem Without Self-ReferenceOne further application of Kolmogorov complexity lies in a new proof of G�odel'scelebrated �rst incompleteness theorem [G�od31]. G�odel's theorem shows a fun-damental limitation of computers: no single computer can fully capture mathe-matics, in the sense of being able to prove every true mathematical proposition.The philosophical relevance of this theorem shows up for instance in discussionson the philosophy of mind, in particular on theories which take the mind/brain

3.5. G �ODEL'S THEOREM WITHOUT SELF-REFERENCE 65to be something like a computer. Do human beings have the same limitations ascomputers? People like Roger Penrose [Pen89] answer negatively, and concludethat the mind/brain must be something more than a computer. Many others,such as Douglas Hofstadter [Hof79], hold on to the idea that the mind/brain isa computer. For them, the importance of G�odels's theorem lies in self-reference,in particular the analogy between the self-referring sentence used in the stan-dard proof of G�odel's theorem, and the self-consciousness (the ability to thinkabout ourselves) that is a fundamental aspect of our main/brain. Hofstadterand others take this notion of self-reference or self-consciousness to be more orless the \essence" of mind, and consider G�odel's theorem important because ittells us something fundamental about self-reference. What is interesting, how-ever, is that G�odel's theorem can be proved without making use of self-referringsentences at all, thus undermining the analogy with self-consciousness.3.5.1 The Standard ProofLet us �rst spell out G�odel's theorem and its \standard proof" in some moredetail. A full introduction to �rst-order logic lies beyond the scope of the presentthesis; we will only explain the things we need, referring to [BJ89] for the manytechnical details swept under the rug here.Consider the �rst-order language of arithmetic, the alphabet of which con-sists of a constant a, a successor function symbol s, two binary function symbols+ and �, the binary predicate symbol =, the usual quanti�ers 8 (for all) and 9(there exists), and connectives : (not), ^ (and), _ (or), ! (if: : : then), and $(if and only if), and some variables and interpunction symbols. We assume thereader to be familiar with the usual syntactical rules that specify how termsand formulas are formed from this alphabet. We de�ne a sentence as a formulain which all variables are quanti�ed.Now consider the interpretation of this language which has the set of naturalnumbers as domain, which assigns the number 0 to the constant a, the successorfunction (+1) to s, the addition function to + and the multiplication functionto �, and the equality relation over the domain to =. In this interpretation,every term in the language denotes a natural number: a denotes the number0, s(a) denotes 1, s(s(a)) denotes 2, +(s(s(a)); s(s(a))) denotes 2 + 2 = 4,etc. Furthermore, every sentence in the language has a truth value in thisinterpretation. For instance, 8x 9y y = s(x) is true, because every number hasa successor, while +(s(a); s(a)) = s(s(s(a))) is false, because 1 + 1 does notequal 3. This interpretation of the language of arithmetic is called the StandardModel of arithmetic; in the sequel, when we speak of a \true" sentence, we meana sentence that is true in this Standard Model.Let us denote the set of true sentences by T . For every sentence � inthe language of arithmetic, either � or :�, but not both, is a member of T .Thus T contains all and only true arithmetical statements. Since large partsof mathematics can be translated into arithmetic, the contents of T are clearlyof the utmost importance. In fact, if we had e�cient mechanical access to T ,many mathematicians would be out of work. How can we get a grip on T ? Wecan, of course, do what arithmeticians have done for ages: simply try to prove

66 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYor disprove some interesting statements with hitherto unknown truth values.From a systematic point of view, however, it would be much more satisfactoryto have an adequate axiomatization of T . An axiomatization is a recursivelyenumerable set of sentences. We will call an axiomatization A sound if it impliesonly true sentences (and hence no false ones), and we callA complete if it impliesall true sentences. Clearly, what we are looking for is an axiomatization whichis both sound and complete, i.e., which implies exactly the sentences in T ,nothing more and nothing less. In case such an axiomatization exists, we wouldbe able to enumerate T : then there is an algorithm which produces (ever longer�nite pre�xes of) an in�nite list containing all and only formulas from T . If weare interested in the truth value of a sentence �, we can simply enumerate thislist until we encounter � (in which case � is true) or :� (then � is false). Thusif we have a sound and complete axiomatization of T , we e�ectively hold everyarithmetical truth in our hands!Unfortunately, G�odel's theorem tells us that such an axiomatization doesnot exist. The proof that G�odel himself gave, which is repeated in some formor other in most logic books, makes use of a self-referring sentence, similar tothe liar's paradox (i.e., the mindboggling sentence \This sentence is false").Ignoring many technicalities, for which see [BJ89, Chapter 15], this proof runsas follows.Suppose A is an axiomatization. We will show that A cannot be sound andcomplete at the same time. We can assign to each sentence in the languageits own unique natural number, the G�odel number of that sentence. Similarly,we can assign G�odel numbers to proofs (formal derivations from the axiomsof A).14 Now suppose A is complete. Then we must be able to express eachrecursive function. In particular, we can construct a formula P (x; y), with twovariables x and y, which is true just in case x is the G�odel number of a proofof the sentence of which y is the G�odel number. Informally, P (x; y) means \xis a proof (from A) of y". Thus for a particular sentence S with G�odel numbers, S is provable i� 9x P (x; s) is true.Now comes the really interesting and technical part: the diagonal lemma,which we will not prove here [BJ89, Lemma 2, p. 173]. It says that for anyformula G(y), with variable y, there is a sentence L, with G�odel number l,such that A implies L$ G(l). Suppose we substitute \:9xP (x; y)" (\y is notprovable") for G(y). Then we get that there is a sentence L, with G�odel numberl, such that A implies L$:9x P (x; l). Thus A implies that L is true i� L isnot provable from A! Informally, L can be seen as saying \I am not provablefrom A". In order for A to be sound as well as complete, the true statementsshould coincide exactly with the provable ones. But if L is true then L is notprovable, and if L is provable then L is not true! Hence A cannot be bothsound and complete at the same time.14We assume some complete proof procedure is used, so the set of sentences provable fromA is exactly the set of sentences that are logically implied by A. That such complete proofprocedures exist is G�odel's completeness theorem from 1930.

3.5. G �ODEL'S THEOREM WITHOUT SELF-REFERENCE 673.5.2 A Proof Without Self-ReferenceIn this subsection we will use Kolmogorov complexity to outline an alternativeproof of G�odel's theorem, due to Chaitin [Cha74, Cha75, Cha87], which doesnot require the construction of a self-referring sentence. Apparently, thoughself-reference can be used to establish G�odel's theorem, it is not necessary forits proof. This sheds new light on the many cases where G�odel's theorem isinvoked in discussions about self-reference and self-consciousness.So, how can we prove G�odel's theorem without self-reference? By makinguse of the incompressibility of the number
 we saw earlier. We can de�ne aformula O(n; y), with two variables n and y, which is true i� y =
1:n, i.e., y isthe �rst n bits of
 (again, we leave out the technical details of the de�nition).Thus exactly the following instances of O(n; y) are true:O(1;
1:1)O(2;
1:2)O(3;
1:3): : :(In order to improve readability, we have written 1 instead of the more corrects(a) in the above formulas, 2 instead of s(s(a)), etc.) Now, we can show thatfor every sound axiomatization A, there exists a number k such that A cannotimply any true sentence of the form O(n; y) for n > k. In other words, thepre�xes of
 longer than k bits are \beyond the grasp of A". From this G�odel'stheorem immediately follows, since each of the formulasO(k + 1;
1:k+1)O(k + 2;
1:k+2)O(k + 3;
1:k+3): : :will be true but unprovable!Given a sound A, how can we prove the existence of such a k? Supposesuch a k does not exist. Then for every k, there is an n > k such that Aimplies O(n;
1:n). There exists a Turing machine which enumerates all logicalconsequences of A, including O(n;
1:n). Let Tn be the shortest such Turingmachine, and bn be its length. Then we can construct from Tn a Turing machineT 0n that generates
1:n: this T 0n simply enumerates all logical consequences ofA, using Tn, until it �nds some O(n; y), and then outputs y, which must be
1:n. The length of T 0n will be at most bn+2 log n+d, where d is some constantindependent of n (the 2 log n term is due to the fact that Tn must know n inorder to know what it is looking for). Since T 0n generates
1:n, we must haveK(
1:n) � bn + 2 log n+ d: (3.1)However, recall from Section 3.4.3 that because
 is random, there is a c suchthat K(
1:n) � n� c; for every n � 1. (3.2)Now choose a su�ciently large m such that bm + 2 logm + d < m � c and Aimplies O(m;
1:m). We must have K(
1:m) � bm+2 logm+d (because of 3.1)

68 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITYand K(
1:m) � m � c (because of 3.2), which is a contradiction. Hence theremust be a k such that A does not imply any of the true formulas:O(k + 1;
1:k+1)O(k + 2;
1:k+2)O(k + 3;
1:k+3): : :Note that while the standard proof provides us with only one example of atrue but unprovable formula, namely L =\I am unprovable from A", the aboveproof gives in�nitely many such formulas.In a nutshell: any axiomatization of arithmetic will contain only a �niteamount of information, and hence cannot capture all truths about the in�nite,incompressible string
.3.5.3 Randomness in Mathematics?Because
 is random, it contains no regularities whatsoever (at least, no algo-rithmically detectable regularities): each of its in�nitely many bits is in a wayindependent of the other bits. This means that the only way to know these bits,is to know them explicitly|no formal system is able to unveil each of them forus. From this, as we saw, G�odel's theorem immediately follows. Our inabilityto fully capture
 in a formal system, no matter how complicated, shows a clearlimit of formal mathematical reasoning.Now
 is a rather outlandish real number, and one may wonder whethermathematicians in general should be much bothered by its existence. However,the number can be translated to the most elementary part of mathematics: el-ementary number theory. Chaitin has constructed an exponential Diophantineequation En (an equation built up from nonnegative integer variables and con-stants, and a �nite number of additions, multiplications, and exponentations)with one parameter n, such that En has �nitely many solutions if the nth bit of
 is 0, and En has in�nitely many solutions if this bit is 1 (see [LV97, pp. 224{225]). Since
 is incompressible, each of its bits is independent of the others,and hence the existence of �nitely or in�nitely many solutions of En for someparticular n is as it were a \brute fact". This is a very strong form of G�odel'stheorem: formal systems are not even powerful enough to fully capture thissingle parameterized equation. Chaitin draws rather strong conclusions fromthis fact:\: : :we see that proving whether particular exponential Diophantineequations have �nitely or in�nitely many solutions, is absolutely in-tractable. Such questions escape the power of mathematical reason-ing. This is a region in which mathematical truth has no discerniblestructure or pattern and appears to be completely random. Thesequestions are beyond the power of human reasoning. Mathematicscannot deal with them. Nonlinear dynamics and quantum mechan-ics have shown that there is randomness in nature. I believe that wehave demonstrated in this book that randomness is already present

3.6. SUMMARY 69in pure mathematics, in fact, even in rather elementary branches ofnumber theory." [Cha87, p. 160].Here Chaitin's rhetorical step from \no single formal system can deal with allsolutions to this equation" to \mathematics cannot deal with them" seems arather hasty one, since no one has a precise de�nition of what `mathematics' is.It certainly seems that mathematics (in the vague sense of \the community ofmathematicians and their work") cannot be equated with some single formalsystem. Moreover, we can agree with Van Lambalgen that the analogy be-tween
's randomness and physical randomness is \rather farfetched" [Lam89,p. 1398].Still, the intractability of even a single equation clashes with the usual waywe look at mathematics, as a supremely reasonable and reasoned science, wherethe true facts are true for a reason. Chaitin even goes so far as to suggest thatthe existence of such randomness should change the way mathematicians work.Rather than formulating axiomatic systems and trying to prove conjectureswithin these systems, Chaitin argues, mathematicians should work much morein the way of physics. If some conjecture seems plausible but you are not ableto prove it (and, by G�odel's theorem, it may actually be true and unprovableat the same time), you may tentatively accept it as a working hypothesis, as anew axiom, experiment with it and see what happens. Indeed, this pragmaticstance|despite being in strong contradiction with the Olympian image manypeople hold of mathematics|seems to be forced upon parts of mathematicswhere certain central conjectures turn out to be extremely hard to prove ordisprove. An example is the adoption of P 6= NP as a working hypothesis incomplexity theory (see footnote 16 on p. 39).3.6 SummaryThe Kolmogorov complexityK(x) of a string x is the length of its shortest e�ec-tive description, that is, the length of a shortest Turing machine that generatesx, relative to some �xed universal Turing machine U . K(x) is independent (upto a �xed constant) of the choice of U , it is non-computable, and convergesto Shannon's measure of information content. It allows us to give an objectiveformalization of the notion of simplicity : a string (theory, description) is simpleif it has low Kolmogorov complexity. Furthermore, the random in�nite binarystrings can be identi�ed exactly as those strings whose pre�xes are incompress-ible. Finally, Kolmogorov complexity enables us to show that G�odel's theoremcan be proved without self-referring sentences.

70 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITY

Chapter 4Occam's Razor4.1 IntroductionOccam's Razor is one of the most important principles of method in science. Inits best known formulation, it says that \entities are not to be multiplied beyondnecessity". This means that if we can explain some phenomenon in two ways,the �rst postulating less entities than the second, then we should choose the�rst. Somewhat more liberally, without focusing on \entities", we may say thatOccam's Razor tells us that among the theories, hypotheses, or explanationsthat are consistent with the facts, we are to prefer simpler over more complexones. In other words, we should weed out all unnecessary complexity. (Othernames for this are the `principle of simplicity' or the `principle of parsimony').How exactly are we to interpret this principle? We can discern at least threedi�erent interpretations of the razor:1. Methodological. In this interpretation, selecting simple theories is sim-ply a part of the scienti�c method, perhaps because simpler theories areeasier to work with.2. Ontological (or metaphysical). In this interpretation, Occam's Razoris a statement about the world, akin to the laws of physics: it says that theworld itself is relatively simple and well-organized, and preferring simpletheories is advisable precisely because the world itself is simple.3. Aesthetical. In this third interpretation, beauty is taken to be a positiveindicator of truth: simple theories tend to be beautiful and beautifultheories tend to be true, so selecting simple theories is a good thing.1Note that the second and third of these are stronger than the �rst: if theworld itself is simple (ontological interpretation) or if simplicity indicates truth(aesthetical interpretation), then it is clearly good method to favour simple1 \Beauty is truth, truth beauty,"|that is allYe know on earth, and all ye need to know.John Keats, Ode on a Grecian Urn. 71

72 CHAPTER 4. OCCAM'S RAZORtheories (methodological interpretation). The converse need not hold: the worldmay be complex and the right theories may be rather ugly, while favouringsimple theories may still be good method, because simple theories are easiestfor us to deal with.Occam's Razor plays a prominent role in science, as well as in philosophyof science and philosophy in general; the next section will illustrate this witha number of examples. However, most of those who do the shaving seem toaccept the razor more or less as an article of faith, as something intuitivelyacceptable, which need not or cannot be proved itself. This is a somewhat oddstance. After all, the simplest theory consistent with the available data is notguaranteed to be the right one, and indeed, in many cases it will be wrong. Forexample, there once were times when circular planetary orbits were consistentwith the data available at that time. Would it not be simpler if the planetsmoved in circles rather than approximate ellipses? Still they don't. Or, as asecond example, the overly simple early model of the atomic nucleus: \: : : oneof the most striking examples of how physicists can temporarily be lead astrayby the selection of complexes from nature on grounds of simplicity. The case inpoint is the model of the nucleus built of protons and electrons." [Pai82, p. 326].So following Occam's Razor in these two cases would lead to false results.Despite the fact that the razor may yield incorrect results in particular cases,it still remains a quite successful guiding principle in science and elsewhere.Accordingly, an important question is: what are the justi�cations for Occam'sRazor? Of course, we can give a fairly shallow inductive argument to the e�ectthat the razor|in each of its three interpretations|has worked quite well inthe past, and hence will probably keep doing so in the future. This, however,is rather circular: since considerations of simplicity (i.e., Occam's Razor itself)are crucial for induction, we cannot simply use an inductive argument to justifyOccam's Razor.Quine is one of the few who have looked a little closer at why we prefersimple theories. His conclusions:\We have noticed four causes for supposing that the simpler hy-pothesis stands the better chance of con�rmation. There is wishfulthinking. There is a perceptual bias that slants the data in favor ofsimple patterns. There is a bias in the experimental criteria of con-cepts, whereby the simpler of two hypotheses is sometimes openedto con�rmation while its alternative is left inaccessible. And �nallythere is a preferential system of scorekeeping, which tolerates widerdeviations the simpler the hypothesis [for instance, changing thesimple value 5.2 to 5.23 is more likely to be seen as a re�nement(rather than a refutation) of an hypothesis than a change from 5.21to 5.23, RdW]. These last two of the four causes operate far morewidely, I suspect, than appears on the surface. Do they operatewidely enough to account in full for the crucial role that simplicityplays in scienti�c method?" [Qui76, p. 258]Quine leaves the last question as a real question. But his conclusions are notvery encouraging as they stand, since they consider the success of simplicity

4.2. OCCAM'S RAZOR 73(Occam's Razor) to be mainly an artifact of the way we perceive and the waywe do science.However, we can actually do much better than that: in certain formal set-tings we can, more or less, prove that certain versions of Occam's Razor work.This is the topic of the present chapter, which is organized as follows. In thenext section, we start with a brief historical overview of Occam's Razor andsome examples of its application in science and philosophy. Then in the threeensuing sections, we provide three di�erent formal justi�cations of Occam'sprinciple. In each of these, simplicity is measured by means of Kolmogorovcomplexity. Finally, in Section 4.6 we briey look at what the theory of Kol-mogorov complexity has to say on the very possibility of science.4.2 Occam's RazorIn this section we will �rst make some historical remarks on the razor, and thendescribe some examples of its inuence in science and philosophy.4.2.1 HistoryAn appropriate place to start the history of Occam's Razor is, of course, Williamof Occam himself (also sometimes spelled `Ockham'). Occam was an Englishtheologian who lived from c. 1285 to c. 1349. Despite his rather exciting life,involving conicts with the Pope and others, and his relatively modern phi-losophy, Occam is nowadays mainly remembered for his razor. This is oftencited as \Entia non sunt multiplicanda sine necessitate" (entities should notbe multiplied without necessity; don't postulate more things than you reallyneed). Notoriously, however, this formulation has not been found anywhere inOccam's actual writings, as was noted by Thornburn [Tho18].2 Some similarformulations which can be found in Occam's work are the following (these andothers are cited on pp. 115{117 of [Der93]):Pluralitas non est ponenda sine necessitate. (A plurality should notbe postulated without necessity.)Nulla pluralitas est ponenda nisi per rationem vel experiantiam velauctoritatem illius, qui non potest falli nec errare, potest convivi.(A plurality should only be postulated if there is some good reason,experience, or unfallible authority for it.)Frustra �t per plura, quod potest �eri per pauciora. (It is vain todo with more what can be done with less.)However, formulations like these were not originally introduced by Occam him-self; similar ones can be found in the writings of Occam's teacher, Duns Scotus,as well as in many other medieval philosophers/theologicians. Moreover, asWil Derkse shows, Occam's Razor might as well be called Aristotle's Razor,2As far as we know, the term `razor' was not used by Occam himself, either. The �rstknown to use the word (the French `rasoir') in this connection was Pierre Bayle, in the indexof his Pens�ees from 1704 (see pp. 97{98 of [Der93]).

74 CHAPTER 4. OCCAM'S RAZORbecause each of its various aspects|the methodological, the ontological, andthe aesthetical|can already be found in texts of Aristotle.3To what extent is it still appropriate to call Occam's Razor Occam's? Fromthe above quotations from his work, it is fairly obvious that Occam accepted therazor in its methodological interpretation. On the other hand, the aestheticalaspect seems to be missing [Der93, p. 135]. It remains to examine to whatextent Occam acccepted the ontological interpretation of the razor. Admittedly,Occam is well-known for his parsimonious, nominalist ontology. In particular,he denied separate existence to various kinds of abstractions, such as species,relations, causation, motion etc. This is usually taken to be the result of hisrazor. However, one might question whether the sparseness of Occam's ontologyis due to an application of the razor, or to other reasons. In fact, Roger Ariewargues for the latter view. For Occam, the basic principle is not parsimony butabsolute divine omnipotence. Now suppose, for instance, that relations couldhave an existence separate from the relata. Since God is omnipotent, this wouldimply that He could create a relation without creating the relata. But that isabsurd, so relations cannot be separate \things" [Ari76, p. 11]. In general,for Occam God's omnipotence bars the ontological assumption that the worlditself is simple, since God can|and sometimes does|make it more complexthan strictly necessary:\God does many things by means of more which He could have doneby means of fewer simply because He wishes it. No other cause mustbe sought for and from the very fact that God wishes, He wishes ina suitable way, and not vainly."(Occam, as cited on p. 19 of [Ari76]).Thus for Occam the razor is a methodological, but not an ontological principle:\The razor must be viewed as a restriction on men, not on God or any of itsworks" [Ari76, p. 24]. Weinberg reaches the same conclusion: \For Ockhamthere is a principle of Parsimony which applies to human thought, not to theuniverse" [Wei64, p. 239].4.2.2 Applications in ScienceHere we will illustrate the inuence of Occam's Razor in science with someexamples.The starting point of modern science is usually taken to be the work ofCopernicus, Kepler, and Galileo, which put cosmology on its present heliocen-tric feet. Each of these men had a strong preference for simplicity, and can beregarded as adherent of the ontological interpretation of Occam's Razor: natureitself is simple and economical. For instance, Copernicus writes:\Attacking a problem obviously di�cult and almost inexplicable, atlength I hit upon a solution whereby this could be reached by fewerand much more convenient constructions than had been handed3See [Boa59] and [Der93, Chapter II] for numerous illuminating citations from Aristotle'swork.

4.2. OCCAM'S RAZOR 75down of old, if certain assumptions, which are called axioms, begranted me." [i.e., Copernicus claims his heliocentic model requiresfar fewer epicycles than Ptolemy's geocentric one](Copernicus, as cited on p. 50 of [Bur80]).Many historians and philosophers of science repeat the claim that Copernicus'system is much simpler than Ptolemy's (for instance [Bur80, p. 38]), stating thatPtolemy requires some 80 epicycles, while Copernicus needs only 34.4 However,much like the usual wording of Occam's Razor, this is a myth which has to betaken \cum grano salis, in fact, with the whole saltcellar" [Coh85, p. 111].Copernicus' epicycles are not quite the same as Ptolemy's, and there are manydi�erent ways of counting and comparing the number of cycles each requires.On quite a few of those counts, Copernicus' system comes out more complexthan Ptolemy's [Coh85, p. 119].5The real simpli�cation actually only occurred somewhat later, when Keplerdropped Copernicus' assumption that planetary orbits are basically circular(with some additional epicycles thrown in to get empirical adequacy), in favourof ellipsoid orbits. Like Copernicus, Kepler explicitly endorsed simplicity:\Natura simplicitatem amat." (Nature loves simplicity.)\Natura semper quod potest per faciliora, non agit per ambagesdi�ciles." (Nature does not use di�cult roundabout ways to dowhat can be done with simpler methods.)(Kepler, as cited on p. 57 of [Bur80]).And �nally Galileo:\Nature: : : doth not that by many things, which may be done byfew." (Galileo, Dialogues Concerning the Two Great Systems ofthe World, Salusbury translation, London, 1661, p. 99, as cited onpp. 74{75 of [Bur80].)\When, therefore, I observe a stone initially at rest falling froma considerable height and gradually acquiring new increments ofspeed, why should I not believe that such increases come about inthe simplest, the most plausible way? On close scrutiny we shall�nd that no increase is simpler than that which occurs in alwaysequal amounts." [i.e., gravitation causes constant acceleration](Galileo, as cited on p. 138 of [Der93].)Isaac Newton hugely contributed to the simpli�cation of physics by bringingvery di�erent phenomena (falling bodies, the tides, the movements of the plan-ets, etc.) under the same relatively simple system of general laws, inventing therequired mathematics along the way. He, like his predecessors, was explicitlyguided by a preference for simplicity. In the third edition of his Philosophiae4Copernicus himself claimed greater simplicity for his system in his early Commentariolus(1510{1514), but no longer in his later and more famous De revolutionibus orbium coelestium(1543).5And his system wasn't more empirically accurate than Ptolemy's, either [Coh85, pp. 116{118]!

76 CHAPTER 4. OCCAM'S RAZORNaturalis Principia Mathematica, he included the following as the �rst of the\Regulae Philosophandi":\We are to admit no more causes of natural things than such asare both true and su�cient to explain their appearances. To thispurpose, the philosophers say, that nature does nothing in vain,and more is in vain when less will serve; for nature is pleased withsimplicity, and a�ects not the pomp of superuous causes."(Newton, Principles, II, p. 314, as cited on p. 218 of [Bur80].)This rule of Newton's is just another formulation of Occam's Razor.Apart from Newton, Albert Einstein is probably the most important physi-cist of all times. Not only is he arguably this century's greatest scientist (andcertainly the most idolized one), he also was one of those who were most inu-enced by simplicity. As Derkse writes: \Albert Einstein can be considered as aparadigmatical example of a great scientist who valued simplicity heuristically,sought for simplicity methodologically and believed in simplicity ontologically"[Der93, p. 143]. This is a recurring theme in Abraham Pais' superb biographyof Einstein. In fact, Pais concludes that simplicity was the most importantdriving force behind Einstein's development of relativity:\Einstein was driven to the special theory of relativity mostly byaesthetic arguments, that is, arguments of simplicity. This samemagni�cent obsession would stay with him for the rest of his life. Itwas to lead him to his greatest achievement, general relativity, andto his noble failure, uni�ed �eld theory." [Pai82, p. 140]6This is corroborated by many of Einstein's own writings, particularly thosefrom his later years, for instance:\I do not consider the main signi�cance of the general theory ofrelativity to be the prediction of some tiny observable e�ects, butrather the simplicity of its foundations and its consistency."(Einstein, as cited on p. 273 of [Pai82].)As with Newton and the others, the preference for simplicity is not merely amethodological or heuristical tool, but is taken to correspond to simplicity inthe world itself:\In my opinion, there is the correct path and : : : it is in our powerto �nd it. Our experience up to date justi�es us in feeling sure thatin nature is actualized the ideal of mathematical simplicity."(Einstein, as cited on pp. 466{467 of [Pai82].)Apart from adopting the ontological form of the razor, Einstein and many otherscientists also followed its aesthetical interpretation. For instance, Paul Diracwrites:6Notice that Pais seems to identify `aesthetic arguments' with `arguments of simplicity'.As far as science is concerned, he is probably to a very large extent in the right. However, inother areas such as art, equating aesthetics and simplicity would be too simple.

4.2. OCCAM'S RAZOR 77\It is more important to have beauty in one's equations than tohave them �t experiment. [: : :] It seems that if one is working fromthe point of view of getting beauty in one's equations, and if onehas really a sound insight, one is on a sure line of progress."([Dir63, p. 47], as cited on p. 15 of [McA96].)We may conclude that some of the greatest advances in modern science|Copernicus' heliocentric model, Newton's theory of gravition, and Einstein'stheory of relativity|were highly inuenced by the value those scientists them-selves bestowed on simplicity as a virtue of theories and as an indicator of thetruth of those theories. In sum, many of the greatest scientists held Occam'sRazor in its ontological as well as in its aesthetical form, believing in the sim-plicity of the world and the truth-indicating properties of beauty.4.2.3 Applications in PhilosophyWhether or not philosophy is \continuous" with science (and what exactly thismight mean) is a debatable issue, which we shall not go into here. One impor-tant feature that philosophy shares with science is the importance it places onsimplicity as a desirable feature of theories and explanations, and accordinglyon Occam's Razor. Particularly in our century, many a philosopher invested alot of time and e�ort in Occam's Razor. For instance, Bertrand Russell usedthe razor so extensively that Passmore calls it \his main philosophical occupa-tion" [Pas67, p. 229]. In this subsection we will mention some applications ofOccam's Razor|mainly in its ontological form|in philosophy.The �rst and foremost application in philosophy lies in the philosophy ofscience: Occam's Razor closes the gap between observation and theory. Whatis this gap, how does it arise, and how can it be closed? The available data|observations, experiments, etc.|constitute the raw material on which a scien-ti�c theory is to be built. However, usually more than one theory is consistentwith the available data: the data underdetermine the theory. That is, usuallywe can construct many|mutually inconsistent|theories to explain the sameset of observational data, and the data do not provide us with further criteriato choose between these various theories. Thus the data leaves open a lot ofpossible choices. Now Occam's Razor closes this gap by stating that of all the-ories consistent with the data, we are to choose the simplest one. Accordingly,if we accept Occam's Razor (in some precise form, where `simplicity' is measur-able), there is hardly any underdetermination left!7 Informally, we might evensay that the conjunction of the observational data and Occam's Razor entailswhich theory we are to adopt. Thus Occam's Razor may be seen as one of thecornerstones of science.Our second example concerns logical positivism, the logico-scienti�cally min-ded movement that sprung from the Wiener Kreis and included people likeSchlick, Carnap, and Reichenbach. Following the lead of Wittgenstein's Trac-tatus 3.328 (\Wird ein Zeichen nicht gebraucht, so ist es bedeutungslos. Das ist7The only case where some underdetermination remains, is where the simplest theory doesnot exist, i.e., where several among the consistent theories share the lowest complexity.

78 CHAPTER 4. OCCAM'S RAZORder Sinn der Devise Occams.")8, they attempted to cut away metaphysics byshowing its propositions to be meaningless. If some term or proposition has notestable links to our experiental world, they contended, it can only be used inempty babble, but not in any proper, scienti�cally relevant way. Accordingly,we can do without it, and by Occam's Razor we should do without it. Sincethe logical positivists thought they could show all metaphysical terms|suchas `God', `spirit', `Ding an sich'|to be without testable empirical content, thisallowed them to cleanly shave away all of metaphysics.Our third example is from the philosophy of mind. Here Occam's Razoris used to argue against dualism, the position which says that the physicaland the mental are di�erent kinds of \stu�". Are statements like \I am inpain" about something irreducibly mental, or are they actually about materialbrain processes? A number of materialists|mainly Australian ones, for somereason|have argued for the latter [Pla95, Sma95]. Why? \Mainly because ofOccam's Razor" [Sma95, p. 118]. The Australian strategy is to show that mate-rialism, which says that the mental is identical to a brain process, is consistentwith the facts and much simpler than competing positions like dualism. Afterall, materialism requires only one kind of stu�, dualism requires two (which,moreover, do not seem to �t together very well). An application of Occam'sRazor then su�ces to eliminate the competition, leaving materialism as the glo-rious winner. We can see Occam's Razor at work in the following quote fromthe notable materialist Jack Smart:\If it be agreed that there are no cogent philosophical argumentswhich force us into accepting dualism, and if the brain process the-ory and dualism are equally consistent with the facts, then the prin-ciples of parsimony and simplicity [= Occam's Razor] seem to meto decide overwhelmingly in favour of the brain-process theory."[Sma95, p. 130].If Occam's Razor helps us decide between dualism and materialism, it is a verysharp and powerful razor indeed!A fourth example is in the �eld of ontology. Here trope theory has fairlyrecently been put forward as an alternative to the ancient substance/propertyontology [Wil66, Cam90, Bac88]. According to the latter, there are two separateontological categories: the world consists of things (substances), which haveproperties. Trope theory, on the other hand, argues that there is only onecategory, namely tropes. A trope is in a way the intersection of a substance anda property: it is a particular property of a particular thing, like the greenness ofthis particular pea. According to trope theory, tropes are the only ontologicalcategory: the world consists of tropes, all tropes, and nothing but tropes. Giventhat one ontological category is simpler than two, Occam's Razor induces us tofavour trope theory over the substance/property ontology.98A similar attitude also appears in the later Wittgenstein, for instance \Hier m�ochte ichsagen: das Rad geh�ort nicht zur Maschine, das man drehen kann, ohne da� Anderes sichmitbewegt" [Wit53, x271].9However, it should be noted that this example di�ers somewhat from the others. Namely,

4.3. OCCAM AND PAC LEARNING 79Our �fth and �nal example uses Occam's Razor as an argument for atheism,or at least for agnosticism (both atheism and agnosticism would horrify Occamhimself!). Basically, the argument is that science is su�cient to explain thephenomena, and hence there is no need to invoke the existence of a God, in someform or other, as an additional explanatory factor. But if we do not need Godin our explanations, Occam's Razor tells us that we should not postulate Hisexistence, thus making us either an atheist (if we postulate His non-existence)or an agnostic (if we suspend judgment as to His existence).As a �nal comment on the application of Occam's Razor, it should be notedthat such razing arguments are not conclusive, in the sense that they do notestablish something beyond any doubt. In each of the �ve above examples,Occam's Razor provides one argument, one good reason for the simpler position,but not a conclusive proof. After all, Occam's Razor cannot be conclusivealways, because sometimes the simplest explanation or hypothesis simply is notthe right one and turns out to be false later on. Nevertheless, arguing for someposition on the basis of Occam's Razor is not futile or empty either, becauseas we will see, one can establish a positive correlation (though clearly not aperfect one) between simplicity on the one hand, and \truth" or adequacy onthe other. Thus, given competing positions, it still makes sense to favour thesimpler.4.3 Occam and PAC LearningThe examples given in the previous section are probably su�cient to convincethe reader of the central place Occam's Razor holds in science and philosophy.In this and the following two sections, we will see how we can mathematicallyformalize and \prove" versions of Occam's Razor. Each of these three versionsis closer to the methodological than to the ontological interpretation of the ra-zor, though they also capture the aesthetical interpretation to the extent thatsimplicity can be equated with beauty. Clearly, in order to formalize Occam'sRazor, we need some quantitative measure of simplicity. Not surprisingly, Kol-mogorov complexity will serve this role in each of the three settings. The �rstof these, the topic of the present section, deals with PAC learning.Occam's Razor states that the simplest consistent hypothesis should beselected. However, in many cases it is computationally rather costly to really�nd the simplest hypothesis, while it is often much easier to �nd a relativelysimple hypothesis. For instance, given two �nite sets S and T of sentences(known to be grammatical and ungrammatical, respectively), it is not verydi�cult to �nd a Deterministic Finite Automaton (or a regular grammar) whichgenerates a language L that contains S and is disjoint from T , whereas �ndingthe smallest such DFA is known to be NP-complete, and hence probably note�ciently solvable [GJ79, p. 267]. Accordingly, we will weaken Occam's Razorsomewhat to the following:Selecting relatively simple hypotheses is a good strategy.the choice of substance/property versus a trope ontology is more like a choice of conceptualscheme (or language), than a choice between competing empirical hypotheses.

80 CHAPTER 4. OCCAM'S RAZORBelow we give a theorem which can be seen as a formal counterpart to thisversion of the razor within the PAC learning framework. Here we will assumesome representation R, without explicitly mentioning R each time. Further-more, we assume R as well as the domain have a binary alphabet f0; 1g, so allnames of concepts and all examples are binary strings.An Occam algorithm is a learning algorithm that follows Occam's preferredstrategy: it reads examples and outputs a consistent hypothesis that is signi�-cantly simpler than those examples. The main result of this section will be thatan e�cient Occam algorithm is an e�cient PAC learning algorithm. Informallythis means that if we follow Occam's Razor, then we thereby automatically learnprobably approximately correctly!There exist several subtly di�ering versions of the Occam's Razor theo-rem. It was originally proved by Blumer, Ehrenfeucht, Haussler, and Warmuth[BEHW87], but see also [AB92, Theorem 6.5.1], [Nat91, Theorem 3.3], [KV94,Theorems 2.1 and 2.2], [LV97, Theorem 5.4.1]. Most of these results measurethe simplicity of a hypothesis by the length of the name the learning algorithmoutputs. [LV97] is the only one that uses the more sophisticated approachof measuring simplicity by the Kolmogorov complexity of that name. Unfor-tunately, the PAC-framework used there is somewhat simpler than the oneadopted by us (in particular, it takes � = ", and there is no length parame-ter n). Accordingly, we will have to prove a version of our own, adapting andcombining some de�nitions and proofs that can be found in the literature.Formally, an Occam algorithm is de�ned as an algorithm that, when given aset of examples, outputs the name of a concept (consistent with those examples)with \small" Kolmogorov complexity:De�nition 4.1 Let F be a concept class. A learning algorithm L for F iscalled an Occam algorithm if there exist constants 0 � � < 1 and � � 1 suchthat, whenever L is given a set S of m examples for a target concept f , Loutputs a name r of a concept g satisfying� g is consistent with S.� K(r) � (mn)�lmin(f)�, where n is the length parameter.Moreover, L is a polynomial-time Occam algorithm if also� There is a polynomial p(n;m) such that, given length parameter n andm examples, L needs at most p(n;m) steps. 3The interesting and perhaps puzzling part of this de�nition is the conditionK(r) � (mn)�lmin(f)�. It says that the Kolmogorov complexity of the outputshould be bounded by a polynomial in mn (the number of examples timesthe maximal length of examples) and lmin(f) (the shortest name of the targetconcept f). If we have a set S ofm examples, each of length at most n bits, thenwe can often simply construct a consistent hypothesis by recording the givenexamples and their labels explicitly, and assigning all other, unseen elements

4.4. OCCAM AND MINIMUM DESCRIPTION LENGTH 81of the domain the label 0. Since each example is at most n bits, recording mexamples and their labels takes roughly mn bits. This concept represents theexamples explicitly, but does not really \learn" anything. However, because � <1 and lmin(f)� and n are �xed, for su�ciently large m we get (mn)�lmin(f)� <mn, so an Occam algorithm will have to �nd a g which is simpler than theconcept that simply records the given examples. Accordingly, for su�cientlylargem an Occam algorithm will have to compress the data: the output conceptshould be simpler than the examples themselves.The following theorem shows that Occam's Razor really works, in the sensethat an Occam algorithm can meet the requirements of a PAC algorithm. Inorder not to impair readability, we have deferred the very technical proof to theappendix of this chapter.Theorem 4.1 Let F be a concept class. If there is a polynomial-time Occamalgorithm for F , then F is polynomial-time PAC learnable.Cutting through the above notation, the result says the following: if wecan follow Occam's Razor in the sense of having an e�cient algorithm thatselects short hypotheses, then this algorithm is automatically guaranteed tolearn probably approximately correctly. In less words: e�ciently selecting shorthypotheses is a good strategy, and we can formally prove this in the PACframework!It is important to note carefully what has and has not been proved here.What has been proved, is that if we can follow Occam's Razor in the senseof having an e�cient Occam algorithm, then this algorithm will be a \good"(i.e., PAC) hypothesis selector. What has not been proved, is that we canalways follow Occam's Razor. One can easily think of cases (for instance, ifthe domain X consists of all �nite binary strings, and as concept class we haveF = 2X) where a su�ciently long given sequence of m examples, each of lengthn, has a Kolmogorov complexity of about mn. In such cases, compression ofthe examples to within the boundK(r) � (mn)�lmin(f)� < mn will not alwaysbe possible; no Occam algorithm will exist in this case. In sum: we can provethat following Occam's Razor is a good thing, but in some cases it may not bepossible to implement the razor.104.4 Occam and Minimum Description LengthOf the three formalizations of Occam's Razor discussed in this chapter, theMinimum Description Length (MDL) principle probably comes closest to ourinformal understanding of Occam's Razor. It was invented by Jorma Rissa-nen [Ris78, Ris89], motivated by Ray Solomono�'s work (to be described in thenext section) and tells us to select the theory which most compresses the data:10There actually exist some weak converses to related forms of this theorem (see [KV94,Exercises 2.3 and 4.2] and [Nat91, Theorem 3.4]), which show that, under certain conditions,classes that are e�ciently learnable are also learnable using Occam algorithms. Unfortunately,we have not been able to prove an exact converse to our present version of the theorem.

82 CHAPTER 4. OCCAM'S RAZORGiven a sample of data and an e�ective enumeration of the appro-priate alternative theories, the best theory is the one that minimizesthe sum of� the length (in bits) of the description of the theory;� the length (in bits) of the data when encoded with the help ofthe theory.The idea here is that we should balance between putting too much and toofew detail in the theory. In the most likely cases, the data contain a more orless regular pattern with some additional noise (irregularities due to measuringerrors, etc.). If we tried to include the noise in the theory, the description of thetheory would get rather large and detailed, while the length of the data encodedwith the help of the theory would get smaller, since the data can then alreadybe reconstructed largely from the theory itself. However, in this case we wouldprobably over�t the data, i.e., we would lose predictive power by focussing toomuch on the accidental noisy details of the given data. On the other hand, wecan minimize the length of the theory by including all the details of the data inthe second part. But in this case, we would have a virtually empty theory and,again, no predictive power. The right approach lies somewhere in the middle,and achieves predictive power by balancing the descriptions of the theory anddata by minimizing the sum of their lengths.To the extent that Occam's Razor is intuitively acceptable, the MDL prin-ciple seems acceptable as well. In fact, however, under certain conditions itcan be proved that MDL does indeed work well. Suppose we want to explainsome data D. Let H = fH1;H2; : : :g be the (�nite or countably in�nite) set ofall possible hypotheses or theories. We assume each possible D and each Hiis somehow encoded as a binary string. These Hi are assumed to be exhaus-tive as well as mutually exclusive. Furthermore, we assume each Hi inducesa probability distribution Pr(�jHi) on the possible data D, so it makes senseto speak of the conditional probability Pr(DjHi) that D arises, given that Hiis true. We will asume each Pr(�jHi) to be recursive. For a recursive prob-ability distribution P , we de�ne K(P) to be the length of a shortest Turingmachine that computes P (x) given x, for all x. Let P be an a priori probabil-ity distribution on the possible hypotheses (PH2HP(H) = 1). P(Hi) can beinterpreted as the probability we are willing to confer upon Hi before havingseen any data. P can be used to de�ne an a priori probability on the possibleD:Pr(D) =PH2H Pr(DjH)P(H). This is the sum, over all H, of the probabilitythat H is true and causes D. If both Pr and P are computable, then Pr(D)can be computed (or approximated if H is in�nite).So, we have a prior distribution on the hypotheses and on the data. Nowwe observe the data D, which induces us to adjust the probabilities we conferupon the di�erent hypotheses. For example, if Pr(DjHi) = 0, then observingD e�ectively rules out the possibility that Hi is the right hypothesis, and wecan put the probability Pr(HijD) = 0: given D, we know Hi is impossible.Similarly we can update the other probabilities, incorporating the fact thatD was observed. Bayes's Theorem or Bayes's Rule (which is actually due toLaplace rather than Bayes) is basically a rule which tells us how to update the

4.4. OCCAM AND MINIMUM DESCRIPTION LENGTH 83a priori probability P(H) to an a posteriori probability Pr(HjD):Pr(HjD) = Pr(DjH)P(H)Pr(D) :This rule gives a mathematically sound way to update the probabilities con-ferred upon the hypotheses, given that D has been observed. The best hypoth-esis H is the most probable one, given D, i.e., the H that maximizes Pr(HjD)(there may actually be several di�erent such H, so we should rather speak of abest hypothesis rather than the best hypothesis).11This approach gives a sound and objective way to select an optimal hypoth-esis, and if we have P (as well as the resources to do all required computation)then this approach is the best way to select a hypothesis. Unfortunately, theproblem is that we usually will not know P. Thus the Bayesian approach is anoptimal but usually unworkable hypothesis selection scheme.However, using Kolmogorov complexity we can show that the MDL principleis often a very good approximation to the above Bayesian approach. First, if wetake negative logarithms on both sides of Bayes's Rule, we get the equivalent� log Pr(HjD) = � logP(H)� log Pr(DjH) + log Pr(D): (4.1)Since log Pr(D) is �xed independent of H, choosing a hypothesis H which max-imizes Pr(HjD) is equivalent to choosing an H which minimizes � logP(H)�log Pr(DjH). Thus hypothesis selection according to Bayes's Rule is equiva-lent to selecting a hypothesis H that minimizes � logP(H)� log Pr(DjH). Ofcourse, the same old problem still obtains: we do not know P(H).Now suppose we replace this unknown prior P by the following universaldistribution: m(x) = 2�K(x):This distribution assigns each natural number or binary string x a non-zeroprobability.12 The universal distribution incorporates Occam's Razor by giv-ing simple hypotheses high probability: if K(H) is small, then m(H) will berelatively high. This m is enumerable, but not recursive. It has the propertythat for every enumerable probability distribution P (in particular, for everyrecursive P), there is a constant c such that for every x we have cm(x) � P (x).What happens if we replace P by m? Let us �rst impose three conditions:(1) we restrict attention to recursive P, (2) the \true" hypothesis H is P-random, and (3) the data D is Pr(�jH)-random. The latter two conditions11An alternative is to use the Maximum Likelihood principle, which selects a H with highestPr(DjH). In other words, this principle favours a hypothesis that makes the data mostprobable. However, this principle may give strongly counterintuitive results. For instance, theprinciple may well select D as its rather useless hypothesis, because Pr(DjD) = 1 is maximal.12It can be shown thatPxm(x) < 1 [LV97, Lemma 4.3.2], so m is not quite a probabilitydistribution. However, we can construct an additional dummy object u and de�ne m(u) =1�Pxm(x) in order to make probabilities sum to one.It should be noted that we attach no \objective" character to the universal prior probability;we do not consider it the \true" probability of theories (it is not even clear what this mightmean). Rather, we take an instrumentalist stance, satisfying ourselves with the conclusionthat using m as a prior gives good results.

84 CHAPTER 4. OCCAM'S RAZORinformally mean that H is a \typical" hypothesis for P, and D is \typical"data for H. Since an overwhelming majority of all strings will be \typical" inthis sense, this is not a very strong restriction.13 Under these conditions it canbe shown that the following inequality holds [LV97, p. 357]:K(H)�K(P) � � logP(H) � K(H): (4.2)This means that � logP(H) and � logm(H) = K(H) are equal to within a�xed constant (namely K(P)), which is independent of H.Similarly, if we de�ne K(xjy) as the length of a shortest Turing machinethat generates x, given string y on a special input tape, then, under the aboveconditions, � log Pr(DjH) and K(DjH) are approximately equal:K(DjH)�K(Pr(�jH)) � � log Pr(DjH) � K(DjH): (4.3)As we saw, our original aim to maximize Pr(HjD) is equivalent to mini-mizing � logP(H) � log Pr(DjH). Since K(H) approximates � logP(H) andK(DjH) approximates � log Pr(DjH), minimizing � logP(H) � log Pr(DjH)now turns out to be approximately equivalent to minimizing K(H) +K(DjH).That is, we want to select a H which minimizes the description length of H andthe description length of the data D, encoded with the help of H. But this isjust what the MDL principle says! Therefore the Bayesian approach, which isoptimal but infeasible because we do not know the priorP, can be approximatedusing Kolmogorov complexity, which gives us the MDL principle.How good an approximation is MDL to the Bayesian selection scheme? Ifwe de�ne �(P;H) = K(Pr(�jH))+K(P) and add up inqualities 4.2 and 4.3, weobtain the following:K(H) +K(DjH)� �(P;H) � � logP(H)� log Pr(DjH) � K(H) +K(DjH):We call an H admissible if it satis�es this inequality. As we can see, if thisinequality holds and �(P;H) is small, then K(H)+K(DjH) and � logP(H)�log Pr(DjH) will be close to each other, and the MDL principle will provide agood approximation to Bayesian hypothesis selection. The following is Theo-rem 5.5.1 of [LV97]:Theorem 4.2 Let �(P;H) be small. Then Bayes's Rule and MDL are op-timized (or almost optimized) by the same hypothesis among the admissibleH's. That is, there is one admissible H that simultaneously (almost) mini-mizes both � logP(H)� log Pr(DjH) (selection according to Bayes's Rule) andK(H) +K(DjH) (selection according to MDL).13It is not a very surprising requirement that the data should be random or typical in orderfor MDL to work. After all, non-typical data may well be very misleading. For example,suppose we are given some data pertaining to the movements of the planets (a number ofpoints in space and time). Since the planetary orbits are not circular, typical data will beinconsistent with the theory that planets move in perfect circles around the sun. However, ifwe are given non-typical data which are consistent with this theory, then we cannot be blamedfor jumping to the simple but wrong conclusion that planets move in circles. Analogously,MDL's preference for simple theories may go wrong if the given data is non-typical and justhappens to be consistent with one or more very simple but wrong theories. MDL would selectan overly simple and incorrect theory, but it cannot be blamed for this: if the right informationjust isn't there, MDL can't be expected to extract it from the data.

4.5. OCCAM AND UNIVERSAL PREDICTION 85Thus Occam's Razor in the form of the MDL principle can be justi�edif the true hypothesis and the data are typical. Notice, however, that thenon-computability of Kolmogorov complexity makes MDL in this form stillbeyond algorithmic means. The problem now is no longer that we do not knowthe prior P, but that we generally cannot compute the description lengthsK(H) and K(DjH). Therefore most \real-world" versions of MDL restrict thedomain of application such that description lengths are (e�ciently) computable.Nevertheless, despite the fact that Occam's Razor in its MDL-form is not fullyimplementable, the above results do vindicate the razor by showing that if wesomehow follow the razor, we will probably get good results.4.5 Occam and Universal PredictionIn this section we will not be concerned with choosing a good theory or hy-pothesis, but with predicting the future from the past. Here we will describeRay Solomono�'s prediction procedure, for which Kolmogorov complexity wasinitially introduced [Sol64].14First, let us mention explicitly that optimal prediction does not coincidewith prediction according to the best hypothesis H. In fact, sometimes predic-tion can yield better results if we refrain from explicitly selecting one hypothesisamong the many possibilities. Consider an unfair coin which has an unknownchance p of coming up `heads'. Suppose there are only two hypotheses possible,H1 says that p = p1 = 1=3 and H2 says p = p2 = 2=3, and we have determinedthat the probability of H1 being true is 2=3, the probability of H2 is 1=3. Thenwe clearly should select H1 as the best (most likely) hypothesis. Yet the bestprediction for p, given our knowledge, is 2=3 � p1 + 1=3 � p2 = 4=9. If we wereto bet against this coin, then the prediction p = 4=9 would be more pro�tablethan the H1-prediction p = 1=3. Thus the best hypothesis need not give thebest prediction.The formal setting in which the prediction will take place is simple, abstract,and austere. We are given a �nite initial segment x of a binary sequence, andour aim is to predict how the sequence will continue. Intuitively, we can thinkof the given initial segment x as a description of relevant aspects of the past,and our predicting the continuation of the sequence is like predicting the future.Where does this x come from? Informally, it may be seen as the outcome ofpast observations or experiments. Formally, we assume it is drawn accordingto some unknown semimeasure � on the set of in�nite binary sequences.What is a semimeasure? Recall from Section 3.4.2 that ameasure on f0; 1g1(the set of in�nite binary sequences) is a function �, from f0; 1g� to [0; 1], suchthat: �(�) = 1:�(x) = �(x0) + �(x1):14An interesting historical point for the relation between philosophy and Kolmogorov-complexity-based prediction: during his physics studies at the University of Chicago in thelate 1940s, Solomono� followed a course given by Rudolf Carnap, who was at that time veryactive in research on induction and prior probabilities.

86 CHAPTER 4. OCCAM'S RAZORHere �(x) is interpreted as the probability that a string from f0; 1g1 startswith x. A semimeasure needs to satisfy only the following weaker conditions:�(�) � 1:�(x) � �(x0) + �(x1):Clearly, a measure is a semimeasure, but not always vice versa.15As mentioned, our given x is a description of (parts of) the world, and weassume this world to behave in accordance with some unknown semimeasure �,which assigns a number �(x) to every �nite binary string x. Given �, we cande�ne the conditional semimeasure �(yjx) as�(yjx) = �(xy)�(x) :Intuitively, �(yjx) is the \probability" that, given an initial segment x, thesequence will continue with y (it's not quite a probability, because the proba-bilities need not sum to one in a semimeasure and need to be renormalized, butit is easiest still to think of �(x) and �(yjx) as probabilities). So, for example,if �(1010) = 0:5 and �(10100) = 0:2, then �(0j1010) = 0:2=0:5 = 0:4. If, more-over, �(1j1010) = 0:1, then we can interpret this as an 80% chance that the nextbit will be a 0 and a 20% chance that it will be 1, given 1010 as initial segment.Note that this setting is able to incorporate a non-deterministic world.Given x, we want to predict how the sequence continues, in such a way thatour predictions do not diverge too far from the true but unknown distribution �.Let us restrict attention to predicting only the next bit of the sequence (furtherbits can then be predicted by reiterating the procedure). As our world may beprobabilistic (non-deterministic), it is best if our predictions are probabilisticas well: rather than de�nitely predicting \the next bit will be a 0", we shouldmake predictions of the form \with probability 0.6, the next bit will be a 0".How can we make a good prediction in a uniform way? In general, we can't:if we allow arbitrary semimeasures � as our \world", then basically anythingcan happen, and there is no prediction method that will work well universally.However, now suppose we restrict attention to recursive �'s, that is, to �'s forwhich there is an e�ective procedure to calculate �(x) for every x. This is nota very strong restriction; for example, all usual distributions one �nds in bookson statistics (the normal one, the uniform one, the exponential one, etc.) arerecursive.Now, almost miraculously, under this mild restriction we can use a singlesemimeasure, the universal semimeasureM, to predict how the sequence x willcontinue, no matter what the actual � is! Informally, this universal M in away \combines" all enumerable semimeasures, weighed according to their Kol-mogorov complexity. We know what the Kolmogorov complexity of a binary15The fact that probabilities need not sum to one in a semimeasure is a technical con-venience. One can always \renormalize" a semimeasure to a measure. For example, if weare given x as initial segment, and we have �(x0) = 0:3 and �(x1) = 0:2, then we can useP (x0) = 0:6 and P (x1) = 0:4 as probabilities, which sum to one. However, in general themeasure obtained by renormalizing an enumerable semimeasure need not be enumerable itself(an example is M, de�ned below).

4.5. OCCAM AND UNIVERSAL PREDICTION 87string is, but what is the Kolmogorov complexity of an enumerable semimea-sure? One can e�ectively enumerate all enumerable semimeasures|more pre-cisely, the Turing machines that enumerate them|in a sequence �1; �2; �3; : : :(see the proof of Theorem 4.3.1 of [LV97]). Given a particular enumeration likethis, we can de�ne K(�i) = K(i): the complexity of an enumerable semimea-sure is the complexity of its index in the enumeration (after all, given a Turingmachine that constructs the enumeration, all we need in order to be able toconstruct �i is its index i). Now M is de�ned as the weighed sum of all these�i: M(x) = 1Xn=1 2�K(�n)�n(x):Each �i is a possibility for the true � (the one from which x has been drawn),and hence may be seen as a possible hypothesis. The above de�nition of M in-corporates Occam's Razor in giving preference to simple hypotheses: the simpleones (the ones with lowK(�i)) are considered more preferable, and are assignedhigh weight 2�K(�i) accordingly. The universal M is an enumerable semimea-sure, but it is not recursive. `Universal' here means that M multiplicativelydominates all enumerable semimeasures: for every such semimeasure �i, thereis a constant ci such that ciM(x) � �(x), for every x.16 Namely, if we putci = 2K(�i), then ciM(x) = ciP1n=1 2�K(�n)�n(x) � ci2�K(�i)�i(x) = �i(x), forevery x. (Actually, the particular M that we de�ned here is just one exampleof a universal distribution; there are others with the same property.)To repeat our prediction problem once more: we get an initial segment x,and we want to predict the next bit, which is either 0 or 1. Let us look atpredicting the probability of getting a 0 as next bit. The true prediction wouldof course be �(0jx). But, alas, � is not known, and there would not be muchto learn if it were. What happens if we use M(0jx)(= M(x0)=M(x)) as ourprediction? Surprisingly, it can be shown that this gives a very good predictionindeed, still assuming � to be recursive. How good a prediction is M(0jx),compared to �(0jx)? Suppose our initial segment x has length n � 1, and wewant to predict the nth bit. The following Sn measures the sum of the errorsfor all possible x of length n�1 (we square the errors in order to avoid positiveand negative errors to cancel out each other):De�nition 4.2 Sn is the �-expected square of the di�erence in �-probabilityand M-probability of 0 occurring at the nth prediction:Sn = Xl(x)=n�1�(x)(M(0jx) � �(0jx))2: 3The following result [LV97, Theorem 5.2.1] tells us that M is a good pre-dictive tool for any recursive �.16This is analogous to the universal distribution m of the last section. However, note thedistinction between m and M: m assigns a probability to �nite strings, while M assigns aprobability to �nite pre�xes of in�nite strings.

88 CHAPTER 4. OCCAM'S RAZORTheorem 4.3 If � is a recursive semimeasure, thenP1n=1 Sn � 0:5 ln 2�K(�)(�0:35K(�)).This means not only that the error Sn converges to 0, but also that itdoes so rather fast: Sn must converge to 0 faster than 1=n does, in order forP1n=1 Sn � 0:5 ln 2 �K(�) to hold.17It is instructive to see exactly in which way Occam's Razor is justi�ed bythe above results. These results do not prove a version of Occam's Razor;rather, we presuppose Occam's Razor (by weighing the di�erent �i accordingto their complexity in the construction of M) and show that it has bene�cialconsequences to do so, namely a provably successful induction procedure. Letus stress again, however, that such an abstract justi�cation of Occam's Razordoes not imply its e�cient applicability. In particular, the universal measureM, though enumerable, is not recursive, and getting a good approximation ofits value can be very expensive computationally.4.6 On the Very Possibility of ScienceScience aims at describing the multitude of observations and data in simpleand elegant theories. In other words, science aims at compression. As we haveseen in the last three sections, that compression is a good strategy can evenbe justi�ed mathematically. However, in order for science to be possible in the�rst place, compression should be possible|if there is nothing we can compress,there is nothing to learn, and everything will just be an incomprehensible urry.Let us consider the possibility that there is nothing we can compress, sonothing that science can successfully work on. Suppose the long binary stringx is a complete description (in some sense) of our universe. We can roughlydistinguish two cases: (1) x is signi�cantly compressible (i.e., K(x) is muchsmaller than the length of x), or (2) it is not. In the �rst case, there is clearlya structure inherent in x that scienti�c research can latch on to. But whatabout the second case: if x is completely random, how then is science possible?Fortunately, in this case it can be shown that the irregular x will probablycontain some very regular non-random substrings! ([LV97, Section 2.6] containssome results to this e�ect.) This result is not as surprising as it may seem at�rst sight. After all, if we ip a fair coin a huge number of times, then theresulting sequence of `heads'/`coins' will probably be completely random; butstill a long sequence of `heads' is bound to come up at some point, simplybecause of the laws of probability. So in this second case, even though \theworld as a whole" (i.e., x) is random and a successful \theory of everything"would be beyond us, some parts of the world (substrings of x) will be non-random and will enable fruitful scienti�c research to take place. In either case,whether x is compressible or not, we can rest (?) assured: it is reasonable toexpect that science is at least possible in some domains or parts of the world.Accordingly, scienti�c research is concerned, �rst, with identifying whichsubstrings (i.e., which parts of the world) are su�ciently regular to enable17This is so becauseP1n=1 1=n =1 > 0:5 ln 2 �K(�).

4.7. SUMMARY 89fruitful research, and, second, with identifying what exactly the structure inthose regular substrings is. Clearly, whether a particular science can be suc-cessful depends on the regularity of its subject matter; it seems fair to say thatthe substrings of our world that successful sciences like physics are working on,are much more regular than the substrings that are the object of, for instance,sociology.4.7 SummaryOccam's Razor tells us that we should prefer simpler theories over more complexones; a prescription which is generally followed in science as well as philosophy.What justi�es this razor? We described three di�erent formal settings in whicha form of Occam's razor could be mathematically justi�ed. Firstly, in the PACframework, an Occam algorithm is an algorithm that outputs names of conceptswith \small" Kolmogorov complexity, compared to the given examples and thetarget concept. An e�cient Occam algorithm automatically learns probablyapproximately correct concepts. Secondly, the Minimum Description Lengthprinciple tells us to select a hypothesis such that the Kolmogorov complexity ofhypothesis + examples is minimized. It can be shown that in \typical" cases,this approach does indeed select an approximately optimal hypothesis. Thirdly,Solomono�'s prediction procedure predicts the continuation of binary sequencesusing a combination of all possible (computable) probability measures, weighedaccording to their complexity. Such predictions quickly converge to the truevalues.What these three approaches have in common, is that they show that sim-plicity is to be favoured, and hence compression is a good thing in science.In the last section, we saw how the theory of Kolmogorov complexity rendersit very likely that compression|and hence successful scienti�c activity|is atleast possible in some domains.

90 CHAPTER 4. OCCAM'S RAZOR4.A Proof of Occam's Razor (PAC Version)In this appendix we give the proof of Theorem 4.1 from Section 4.3, whichstated a version of Occam's Razor in the framework of PAC learning. Exceptfor using a Kolmogorov complexity bound rather than a simple length bound onthe names the algorithm outputs, this proof is analogous to the proof of [AB92,Theorem 6.5.1].Theorem 4.1 Let F be a concept class. If there is a polynomial-time Occamalgorithm for F , then F is polynomial-time PAC learnable.Proof Let L be a polynomial-time Occam algorithm for F . Consider a targetconcept f 2 F and a distribution P on the domain. L reads a set S of mexamples for f , and outputs a name r of a concept g 2 F , consistent with S,satisfying K(r) � (mn)�lmin(f)� . We will see how we can choose m in sucha (polynomially-bounded) way that the requirements of a PAC algorithm aresatis�ed. In the following, we use `l' to abbreviate `lmin(f)'.First note that the number of binary strings of length at most (mn)�l� is20 + 21 + 22 + : : :+ 2(mn)�l� = 2(mn)�l�+1 � 1:L can only output a name r for a concept g if K(r) � (mn)�l�. Hence thenumber C of concepts for which L can output a name satis�es C < 2(mn)�l�+1.Let us call a concept g 2 F bad if it has too large an error: P(f�g) > ". Theprobability that some particular bad concept g is consistent with one examplefor f is 1 � P(f�g) < 1 � "; hence the probability that g is consistent witheach of our m examples is at most (1� ")m. Now, the probability that at leastone of the C possible output concepts of L is bad, is at mostC(1� ")m < 2l�(mn)�+1(1� ")m:If we can bound this probability by �, then with probability at least 1 � �, Lwill output a good (i.e., non-bad) concept, thus satisfying the requirements ofa PAC algorithm. Accordingly, we want to choose m such that:2(mn)�l�+1(1� ")m < �:Equivalently, taking natural logarithms on both sides:(mn)�l� ln 2 + ln 2 + ln(1� ")m < ln �:If we abbreviate A = n�l� ln 2 and B = ln(2=�), we can rewrite this to:Am� +B < � ln(1� ")m = �m ln(1� "):Because " < � ln(1� "), the above inequality is implied by the following:Am� +B < m":

4.7. SUMMARY 91Dividing by m�" yields: A+B=m�" < m1��:Since B=m� � B, the above inequality is implied by:A+B" < m1��:This inequality holds if we choosem > �A+B" �1=(1��) :Thus, choosing m in this way, L will output a name of a concept g such thatwith probability at least 1� �, we have P(f�g) � ".It remains to check the e�ciency of L. Since L is an Occam algorithm, itruns in time polynomial in m and n. Furthermore, it is easy to see that ourchoice of m can be bounded from above by a polynomial in 1=�, 1=", n, and l.It follows that L runs in time polynomial in 1=", 1=�, n, and l, in accordancewith De�nition 1.12. Hence F is polynomial-time PAC learnable. 2

92 CHAPTER 4. OCCAM'S RAZOR

Chapter 5Summary and ConclusionThough each of the previous chapters had its own short summary, it mightbene�t the reader's overview of the thesis if we wrap things up once more.Accordingly, in the following pages we will take stock, summarizing in non-technical language what we have done.5.1 Computational Learning TheoryChapter 1 introduced computational learning theory, the branch of Arti�cial In-telligence which studies the complexity and other theoretical properties of mech-anisms for learning. Given some examples|positive and negative instances ofsome unknown target concept (a subset of a domain of objects)|our aim is tolearn this concept. However, since the examples will usually not give completeinformation about the target, we cannot expect to learn this target perfectly.Instead, we can only hope to learn an approximately correct concept: a con-cept which diverges only slightly from the target, in the sense that the targetand the learned concept will agree on most members of the domain. Moreover,since the given set of examples may be biased and need not always be a goodrepresentative of the target concept as a whole, we cannot even expect to learnapproximately correctly every time. Accordingly, the best we can do, is learna concept which is probably approximately correct (PAC).The model of PAC learning formalizes this idea in precise mathematicalterms. In this model, a class of concepts is considered to be learnable1, if thereexists an algorithm which e�ciently learns a PAC concept whenever the targetis drawn from that class. This can both be seen as a rough model of learningby children or human beings generally, and as a model of theory constructionin empirical science.The PAC model can be extended in various ways. Firstly, we may allow thelearning algorithm access to an oracle. The oracle can answer certain questionsposed by the learner, for instance membership queries (which ask whether acertain object is a member of the target), or equivalence queries (which askwhether a certain concept is equal to the target). In the latter case, the PAC1Polynomial-time PAC learnable or polynomial-time PAC predictable.93

94 CHAPTER 5. SUMMARY AND CONCLUSIONrequirement is usually strengthened to the requirement that the target is iden-ti�ed exactly by the learning algorithm. Learnability in this stronger modelimplies learnability in the PAC model. Secondly, we can make the PAC modelmore realistic by allowing the examples to contain some noise (errors), andexamining learnability in the presence of such noise.5.2 Language LearningSince the late 1950s, the work of Noam Chomsky has dominated linguistics,and has revived the old debate about innate knowledge. Speci�cally, Chomskyargues that the speed and accurateness with which children learn their nativelanguage|despite the poverty of the \input sentences", the examples they re-ceive from parents and others|can only be explained by postulating that thechild is already born with some linguistic bias, some pre-knowledge of its na-tive language. Without such a bias, natural languages would not be learnable.Chomsky particularly focuses on syntax, identifying a hierarchy of four classesof languages, Type 3 to Type 0, with increasing syntactical complexity. Each ofthese classes properly includes the simpler ones. The class of Type 0 languagescontains all languages that can be enumerated by an algorithm, and hence isthe broadest class that lies within the reach of algorithmic means.In Chapter 2, we looked at learnability results pertaining to such classes oflanguages, and the results were rather negative. The class of Type 3 languagesis not learnable in the PAC model (without membership queries), and neitherare the more complex classes. We de�ned an even simpler class, the class ofType 4 languages, which also turned out to require too much examples to bee�ciently learnable. The Type 3 class is learnable given the ability to makemembership queries, and the Type 2 class may be learnable in this case (thisis not known to the author). However, these classes are still too restricted tocontain natural languages such as English and Dutch. Finally, the Type 1 andType 0 classes are not even learnable with membership queries.We can see from ordinary children that the class of natural languages islearnable in some non-technical sense. Assuming the PAC model to be su�-ciently realistic, we conjectured that this class is also learnable in the technicalPAC sense. From this it follows that the class of languages that children canlearn cannot be some broad class such as the Type 1 or Type 0 languages.Therefore, in order to be able to explain how language learning can take place,we must conclude that the class of natural languages is very restricted, and achild must somehow have pre-knowledge of the particular restrictions. Thus in-deed we must have a linguistic bias in favour of languages of some speci�c kind,as Chomsky argued. Whether this bias is innate cannot conclusively be provedusing learnability arguments, but does seem to be the most likely option.5.3 Kolmogorov ComplexityChapter 3 discussed Kolmogorov complexity and some of its philosophically in-teresting consequences and applications. Technicalities apart, the Kolmogorov

5.4. OCCAM'S RAZOR 95complexity K(x) of a �nite binary string x is the length of a shortest Turingmachine which produces that string, when fed into some universal Turing ma-chine U . The choice of U can a�ect the value of K(x) only up to a constantthat does not depend on x, which makes K(x) a su�ciently objective measureof the complexity of x. The function K is not computable, but it can be algo-rithmically approximated. For longer strings it converges to Shannon's measureof information content.Kolmogorov complexity can be used to give an objective de�nition of thedegree of simplicity of descriptions (data, theories, etc., represented as binarystrings): a description is simple to the extent that it has low Kolmogorov com-plexity. Because of the great importance of the notion of simplicity|especiallyin Occam's Razor, see next section|this is a signi�cant formalization. Partic-ularly as a property of scienti�c theories, simplicity is strongly correlated withthe subjective notions of elegance and beauty.Secondly, Kolmogorov complexity can be used in a formalization of theproperty of randomness of �nite or in�nite binary strings with respect to someprobability distribution P. Roughly, a string is P-random if it possesses allproperties one can attribute to random strings, i.e., if it passes all e�ectivetests for randomness. The set of all tests for P-randomness can be combinedin a single universal test. In case P is the uniform measure, which distributesprobability uniformly, randomness varies with incompressibility: a �nite stringis random to the extent that it is incompressible (x is incompressible if K(x) isnear to the length of x), and an in�nite string is random if each of its pre�xesis incompressible. One important example of a random in�nite string is thebinary expansion of the number
, which is the probability that a randomlydrawn binary string encodes a halting Turing machine. The �rst n bits of thisnumber contain su�cient information to �nd out whether any Turing machineof length at most n halts, and hence to �nd out the answers to the questionsthat can be encoded in such machines.Finally, we can use Kolmogorov complexity to prove G�odel's important in-completeness theorem, without invoking the self-referring constructs employedin the usual proof. Basically, the proof shows that any �nite (or recursivelyenumerable) set of axioms will have only a �nite complexity, and hence will notcontain su�cient \information" to prove all truths about the in�nite incom-pressible string
. Hence it is not possible to capture all mathematical truthsin a formal, axiomatic theory.5.4 Occam's RazorChapter 4 dealt with mathematical justi�cations of Occam's Razor. In itsmost often cited form|which cannot be found in Occam's writings|this saysthat \entities are not to be multiplied without necessity". More broadly, wecan render Occam's Razor as saying that we should always prefer the simplesthypothesis or theory among those that are consistent with the data. This prin-ciple can be interpreted in at least three ways: as merely a principle of method;ontologically (\Selecting simple theories is good because the world itself is rela-

96 CHAPTER 5. SUMMARY AND CONCLUSIONtively simple"); or aesthetically (\Beauty|of which simplicity is an importantaspect|indicates truth"). The preference for simplicity profoundly inuencesscience and philosophy, but is usually accepted without further justi�cation.The problem in formally justifying Occam's Razor lies in the notion of sim-plicity. If we solve this by identifying simplicity with low Kolmogorov complex-ity, we can give formal justi�cations of the razor in three di�erent contexts.Firstly, in the PAC model, an Occam algorithm is a learning algorithm whichoutputs a concept that is consistent with the examples as well as relatively sim-ple compared to those examples. An e�cient Occam algorithm can be shownto be an e�cient PAC algorithm. Hence, if a learning algorithm can su�cientlycompress the examples, it will automatically learn PAC.Secondly, the Minimum Description Length principle tells us to select thesimplest hypothesis, i.e., a hypothesis which most compresses the data. Undercertain mild assumptions, this hypothesis selection scheme can be shown to beapproximately equivalent to the optimal but infeasible hypothesis selection thatis based on Bayes's Theorem. Accordingly, under those assumptions, Occam'sRazor is an approximately optimal rule for hypothesis selection.Thirdly and �nally, Kolmogorov complexity was originally introduced inorder to give a universal method for prediction. We are given an initial �nitebinary sequence, drawn according to some unknown computable \probabilitydistribution", and we are to predict how the sequence will continue. We can pre-dict this by combining the predictions of all computable distributions, weighingthose predictions according to the Kolmogorov complexity of the distributions.Here distributions with low complexity are given high weight, in accordancewith the Occamite preference for simplicity. This Occam-based prediction canbe shown to converge very quickly to the true values.5.5 ConclusionThe main aim of this thesis has been to examine the philosophical relevanceof recent results from the �eld of computational learning theory. The mod-els of learning put forward in that �eld are abstract and mathematical, butstill capture much of what is important in \real world" learning. Accordingly,they can be used as (1) models of learning by human beings, and (2) as mod-els of inductive theory construction in the empirical sciences. For the formercase, the main application we discussed was a computational analysis of humanlanguage learning; for the latter, we discussed various formal justi�cations ofOccam's Razor, using Kolmogorov complexity as a measure of simplicity. Wefeel that these results|as well as others that we discussed, and others we didnot discuss|are highly relevant for philosophy and merit more attention thanthey presently receive. Let me end by expressing the hope that this thesiswill contribute something to an increased awareness of formal learning theoryamong philosophers.

List of Symbols
2 element� subset� proper subset� superset� proper superset[union\ intersectionn set di�erence� symmetric di�erencefx j C(x)g set of all x that satisfy condition C; empty setjSj cardinality (number of elements) of set Sjrj absolute value of number r2S power set (set of all subsets) of set SS � T Cartesian product of sets S and TS2 Cartesian product of set S with itselff : S ! T function f , with set S as domain and set T as rangeN set of natural numbersQ set of rational numbersR set of real numbers1 in�nityPS summation over all members of set Slog logarithm with base 2ln natural logarithm (base e = 2:71 : : :)" empty stringS� set of all �nite strings over alphabet Sf0; 1g� set of all �nite binary stringsS1 set of all in�nite strings over alphabet Sf0; 1g1 set of all in�nite binary strings!1:n �rst n bits of in�nite binary string !X [n] set of all strings of length at most n in domain Xf [n] projection of concept f on X [n]F [n] projection of concept class F on X [n]97

98 CHAPTER 5. SUMMARY AND CONCLUSIONP(A) probability of event AP(AjB) probability of A, given B� con�dence parameter" error parameter� rate of malicious or random classi�cation noiselmin(f;R) size (shortest name) of concept f , in representation Rlmin(S;R) size of smallest concept consistent with examples S, in RDV C Vapnik-Chervonenkis dimensionl(x) length of binary string xl(T) length of shortest program for Turing machine TK(x) Kolmogorov complexity of binary string xK(xjy) Kolmogorov complexity of string x, given string y
 halting probabilitym universal distributionM universal semimeasure

Bibliography[Aar95] E. Aarts. Investigations in Logic, Language and Computation. PhDthesis, University of Utrecht, 1995.[AB92] M. Anthony and N. Biggs. Computational Learning Theory. Cam-bridge University Press, Cambridge, UK, 1992.[AL88] D. Angluin and P. Laird. Learning from noisy examples. MachineLearning, 2(4):343{370, 1988.[All92] D. Allport. The changing relationship between AI program-ming languages and natural language processing formalisms. InR. Spencer-Smith and S. Torrance, editors, Machinations: Compu-tational Studies of Logic, Language, and Cognition, pages 91{125.Ablex Publishing Corporation, Norwood, NJ, 1992.[Ang87a] D. Angluin. Learning k-bounded context-free grammars. TechnicalReport YALEU/DCS/RR{557, Department of Computer Science,Yale University, 1987.[Ang87b] D. Angluin. Learning regular sets from queries and counterexam-ples. Information and Computation, 75(2):87{106, 1987.[Ang88] D. Angluin. Queries and concept learning. Machine Learning,2(4):319{342, 1988.[Ari60] Aristotle. Posterior Analytics. Harvard University Press, Cam-bridge, MA, 1960. Edited and translated by Hugh Tredennick.[Ari76] R. Ariew. Ockham's Razor: A Historical and Philosophical Analysisof Ockham's Principle of Parsimony. PhD thesis, University ofIllinois, Urbana-Champaign, 1976.[Bac88] J. Bacon. Four modal modellings. Journal of Philosophical Logic,17:207{220, 1988.[Bac94] F. Bacon. Novum Organum. Open Court, Chicago, IL, 1994. Editedand translated by P. Urbach and J. Gibson. First published in 1620.[BC74] H. Brandt Corstius. Algebra��sche Taalkunde. Oosthoek, Utrecht,1974. In Dutch. 99

100 BIBLIOGRAPHY[BEHW87] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Oc-cam's razor. Information Processing Letters, 24(6):377{380, 1987.[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learn-ability and the Vapnik-Chervonenkis dimension. Journal of theACM, 36(4):929{965, 1989.[BGT91] R. Boyd, P. Gasper, and J. Trout, editors. The Philosophy of Sci-ence. MIT Press, Cambridge, MA, 1991.[BJ89] G. S. Boolos and R. C. Je�rey. Computability and Logic. CambridgeUniversity Press, Cambridge, UK, third edition, 1989.[Boa59] G. Boas. Some assumptions of Aristotle. Transactions of the Amer-ican Philosophical Society, N. S. 49:5{98, 1959.[Bot89] R. P. Botha. Challenging Chomsky. Basil Blackwell, 1989.[Bun62] M. Bunge. The complexity of simplicity. Journal of Philosophy,59:113{135, 1962.[Bur80] E. A. Burtt. The Metaphysical Foundations of Modern Science.Routledge, London, revised edition, 1980. First edition 1924.[Cam90] K. Campbell. Abstract Particulars. Basil Blackwell, Oxford, 1990.[Car50] R. Carnap. Logical Foundations of Probability. Routledge & KeganPaul, London, 1950.[Car52] R. Carnap. The Continuum of Inductive Methods. The Universityof Chicago Press, Chicago, IL, 1952.[Cha66] G. J. Chaitin. On the length of programs for computing �nitebinary sequences. Journal of the ACM, 13:547{569, 1966.[Cha69] G. J. Chaitin. On the length of programs for computing �nitebinary sequences: Statistical considerations. Journal of the ACM,16:407{422, 1969.[Cha74] G. J. Chaitin. Information-theoretic limitations of formal systems.Journal of the ACM, 21:403{424, 1974.[Cha75] G. J. Chaitin. Randomness and mathematical proof. Scienti�cAmerican, 232:47{52, May 1975.[Cha87] G. J. Chaitin. Algorithmic Information Theory. Cambridge Uni-versity Press, Cambridge, UK, 1987.[Che86] C. Cherniak. Minimal Rationality. MIT Press, Cambridge, MA,1986.[Cho57] N. Chomsky. Syntactic Structures. Mouton, The Hague, 1957.

BIBLIOGRAPHY 101[Cho65] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cam-bridge, MA, 1965.[Cho75] N. Chomsky. Quine's empirical assumptions. In Davidson andHintikka [DH75], pages 53{68.[Cho81] N. Chomsky. Lectures on Government and Binding. Fortis, Dor-drecht, 1981.[Cho83] N. Chomsky. On cognitive structures and their development: Areply to Piaget. In Piattelli-Palmarini [PP83].[Cho86] N. Chomsky. Knowledge of Language: Its Nature, Origin, and Use.Praeger, 1986.[Cho91] N. Chomsky. Linguistics and cognitive science: Problems and mys-teries. In Kasher [Kas91], pages 26{53.[Coh85] I. B. Cohen. Revolution in Science. Belknap/Harvard UniversityPress, Cambridge, MA, and London, 1985.[CT91] T. Cover and J. Thomas. Elements of Information Theory. Wiley,New York, 1991.[Den91] D. C. Dennett. Real patterns. Journal of Philosophy, 88:27{51,1991.[Der93] W. Derkse. On Simplicity and Elegance: An Essay in IntellectualHistory. PhD thesis, University of Amsterdam, 1993.[DH75] D. Davidson and J. Hintikka, editors. Words and Objections: Es-says on the Work of W. V. Quine. Reidel, revised edition, 1975.[Dir63] P. A. M. Dirac. The evolution of the physicist's picture of the world.Scienti�c American, 208(5):45{53, 1963.[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: AGuide to the Theory of NP-Completeness. Freeman, New York,1979.[GKPS85] G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized PhraseStructure Grammar. Basil Blackwell, Oxford, 1985.[G�od31] K. G�odel. �Uber formal unentscheidbare S�atze der Principia Math-ematica und verwandter Systeme I. Monatshefte f�ur Mathematikund Physik, 38:173{198, 1931.[Gol67] E. M. Gold. Language identi�cation in the limit. Information andControl, 10:447{474, 1967.[Goo72a] N. Goodman. Problems and Projects. Bobbs-Merrill, Indianapolisand New York, 1972.

102 BIBLIOGRAPHY[Goo72b] N. Goodman. Safety, strength, simplicity. In Problems and Projects[Goo72a], pages 334{336. First published in 1961.[Goo72c] N. Goodman. The test of simplicity. In Problems and Projects[Goo72a], pages 279{294. First published in 1958.[Goo72d] N. Goodman. Uniformity and simplicity. In Problems and Projects[Goo72a], pages 347{354. First published in 1967.[Goo83] N. Goodman. Fact, Fiction, and Forecast. Harvard UniversityPress, Cambridge, MA, fourth edition, 1983.[Har93] R. A. Harris. The Linguistics Wars. Oxford University Press, NewYork, 1993.[Haw88] J. A. Hawkins, editor. Explaining Language Universals. Basil Black-well, Oxford, 1988.[Hem45a] C. G. Hempel. Studies in the logic of con�rmation (part I). Mind,54(213):1{26, 1945.[Hem45b] C. G. Hempel. Studies in the logic of con�rmation (part II). Mind,54(214):97{121, 1945.[Hem66] C. G. Hempel. Philosophy of Natural Science. Prentice-Hall, En-glewood Cli�s, NJ, 1966.[Hes67] M. B. Hesse. Simplicity. In P. Edwards, editor, The Encyclopediaof Philosophy, pages 445{448, Volume 7. Macmillan, London, 1967.[Hof79] D. R. Hofstadter. G�odel, Escher, Bach: An Eternal Golden Braid.Basic Books, New York, 1979.[Hom24] Homer. The Iliad. Harvard University Press, Cambridge, MA, 1924.Translated by A. T. Murray. Two volumes.[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,Languages, and Computation. Addison Wesley, Reading, MA, 1979.[Hum56] D. Hume. An Enquiry Concerning Human Understanding. Gatewayedition, Chicago, IL, 1956. First published in 1748.[Hum61] D. Hume. A Treatise of Human Nature. Dolphin Books. Doubleday,1961. First published in 1739{1740.[Ish90] H. Ishizaka. Polynomial time learnability of simple deterministiclanguages. Machine Learning, 5(2):151{164, 1990.[Jev74] W. S. Jevons. The Principles of Science: A Treatise. Macmillan,London, 1874.[Kas91] A. Kasher, editor. The Chomskyan Turn. Basil Blackwell, 1991.

BIBLIOGRAPHY 103[Kol65] A. N. Kolmogorov. Three approaches to the quantitative de�nitionof information. Problems of Information Transmission, 1(1):1{7,1965.[Kol68] A. N. Kolmogorov. Logical basis for information theory and prob-ability theory. IEEE Transactions on Information Theory, IT-14(5):662{664, 1968.[Kuh77] T. Kuhn. Second thoughts on paradigms. In F. Suppe, editor,The Structure of Scienti�c Theories, pages 459{482. University ofIllinois Press, second edition, 1977.[KV94] M. J. Kearns and U. V. Vazirani. An Introduction to ComputationalLearning Theory. MIT Press, Cambridge, MA, 1994.[Lai88] P. D. Laird. Learning from Good and Bad Data. Kluwer AcademicPublishers, Boston, MA, 1988.[Lak71] I. Lakatos. History of science and its rational reconstructions. InR. C. Buck and R. S. Cohen, editors, Philosophy of Science As-sociation 1970, volume 8 of Boston Studies in the Philosophy ofScience, pages 91{136. Reidel, Dordrecht, 1971.[Lam89] M. van Lambalgen. Algorithmic information theory. Journal ofSymbolic Logic, 54(4):1389{1400, 1989.[Loc93] J. Locke. An Essay Concerning Human Understanding. Every-man Library, David Campbell Publishers, London, abridged edi-tion, 1993. First published in 1690.[Lok91] G. J. C. Lokhorst. Is de mens een eindige automaat? In F. Geraedtsand L. de Jong, editors, Ergo Cogito III: Portret van een generatie,pages 89{105. Historische Uitgeverij Groningen, 1991.[LV97] M. Li and P. M. B. Vit�anyi. An Introduction to Kolmogorov Com-plexity and its Applications. Springer-Verlag, Berlin, second edition,1997.[Lyo95] W. Lyons, editor. Modern Philosophy of Mind. Everyman, London,1995.[McA96] J. W. McAllister. Beauty & Revolution in Science. Cornell Univer-sity Press, Ithaca, NY, and London, 1996.[Mil58] J. S. Mill. A System of Logic, Ratiocinative and Inductive. Harper,New York, 1858.[Min68] M. L. Minsky, editor. Semantic Information Processing. MIT Press,Cambridge, MA, 1968.[ML66] P. Martin-L�of. The de�nition of random sequences. Informationand Control, 9:602{619, 1966.

104 BIBLIOGRAPHY[Nat91] B. K. Natarajan. Machine Learning: A Theoretical Approach. Mor-gan Kaufmann, San Mateo, CA, 1991.[New91] F. J. Newmeyer. Rules and principles in the historical developmentof generative syntax. In Kasher [Kas91], pages 200{230.[NW97] S-H. Nienhuys-Cheng and R. de Wolf. Foundations of InductiveLogic Programming, volume 1228 of Lecture Notes in Arti�cial In-telligence. Springer-Verlag, Berlin, May 1997.[Pai82] A. Pais. `Subtle is the Lord: : : ' The Science and the Life of AlbertEinstein. Oxford University Press, Oxford, 1982.[Pas67] J. A. Passmore. A Hundred Years of Philosophy. Penguin, secondedition, 1967.[Pei58] C. S. Peirce. Collected Papers. Harvard University Press, Cam-bridge, MA, 1958. Edited by C. Harstshorne and P. Weiss. VolumesI{VII.[Pen89] R. Penrose. The Emperor's New Mind, Concerning Computers,Minds, and the Laws of Physics. Oxford University Press, Oxford,1989.[Pin84] S. Pinker. Language Learnability and Language Development. Har-vard University Press, Cambridge, MA, 1984. The 1996 editioncontains new commentary by Pinker.[Pin94] S. Pinker. The Language Instinct. Penguin Books, 1994.[Pla95] U. T. Place. Is consciousness a brain process? In Lyons [Lyo95],pages 106{116. First published in 1956.[Pop59] K. R. Popper. The Logic of Scienti�c Discovery. Hutchinson, Lon-don, 1959.[Pos64] P. M. Postal. Limitations of phrase structure grammars. In J. A.Fodor and J. J. Katz, editors, The Structure of Language: Readingsin the Philosophy of Language, pages 137{151. Prentice Hall, 1964.[PP83] M. Piattelli-Palmarini, editor. Language and Learning: The De-bate Between Jean Piaget and Noam Chomsky. Routledge, London,1983.[PR73] S. Peters and R. Ritchie. On the generative power of transforma-tional grammars. Information Sciences, 6:49{83, 1973.[PS97] A. Prince and P. Smolensky. Optimality: From neural networks touniversal grammar. Science, 275:1604{1610, 14 March 1997.[Put71] H. Putnam. The \innateness hypothesis" and explanatory modelsin linguistics. In J. Searle, editor, The Philosophy of Language.Oxford University Press, New York, 1971.

BIBLIOGRAPHY 105[Put83] H. Putnam. What is innate and why: Comments on the debate. InPiattelli-Palmarini [PP83], pages 287{309.[Qui60] W. V. O. Quine. Word and Object. MIT Press, Cambridge, MA,1960.[Qui69] W. V. O. Quine. Natural kinds. In Ontological Relativity and OtherEssays, pages 114{138. Columbia University Press, New York, 1969.Reprinted in [BGT91], pages 159{170.[Qui75] W. V. O. Quine. Reply to Chomsky. In Davidson and Hintikka[DH75], pages 302{311.[Qui76] W. V. O. Quine. On simple theories of a complex world. In TheWays of Paradox and Other Essays, pages 255{258. Harvard Uni-versity Press, Cambridge, MA, revised and enlarged edition, 1976.[Rei49] H. Reichenbach. The Theory of Probability. University of CaliforniaPress, Berkeley, 1949.[Ris78] J. Rissanen. Modeling by shortest data description. Automatica,14:465{471, 1978.[Ris89] J. J. Rissanen. Stochastical Complexity and Statistical Inquiry, vol-ume 15 of Series in Computer Science. World Scienti�c, Singapore,1989.[Ros78] H. Rosemont. Gathering evidence for linguistic innateness. Syn-these, 38:127{148, 1978.[Rus48] B. Russell. Human Knowledge: It's Scope and Limits. George Allenand Unwin, London, 1948.[Rus80] B. Russell. The Problems of Philosophy. Oxford University Press,Oxford, 1980. First published in 1912.[Rus91] S. Russell. Inductive learning by machines. Philosophical Studies,64:37{64, 1991.[Sei97] M. S. Seidenberg. Language acquisition and use: Learning and ap-plying probabilistic constraints. Science, 275:1599{1603, 14 March1997.[Sha48] C. E. Shannon. A mathematical theory of communication. BellSystems Technology Journal, 27:379{423, 623{656, 1948.[Slo95] R. H. Sloan. Four types of noise in PAC learning. InformationProcessing Letters, 54:157{162, 1995.[Sma95] J. J. C. Smart. Sensations and brain processes. In Lyons [Lyo95],pages 117{132. First published in 1959.

106 BIBLIOGRAPHY[Sob75] E. Sober. Simplicity. Clarendon Press, Oxford, 1975.[Sol64] R. J. Solomono�. A formal theory of inductive inference, part 1and 2. Information and Control, 7:1{22, 224{254, 1964.[Tha90] P. Thagard. Philosophy and machine learning. Canadian Journalof Philosophy, 20(2):261{276, 1990.[Tho18] W. M. Thornburn. The myth of Ockham's razor. Mind, 27:345{353,1918.[Tur36] A. M. Turing. On computable numbers, with an application to theEntscheidungproblem. In Proceedings of the London Mathemati-cal Society, volume 42, pages 230{265, 1936. Correction, ibidem(vol. 43), pages 544{546.[Val84] L. G. Valiant. A theory of the learnable. Communications of theACM, 27(11):1134{1142, 1984.[Val85] L. G. Valiant. Learning disjunctions of conjunctions. In Proceedingsof the 9th International Joint Conference on Arti�cial Intelligence(IJCAI-85), pages 560{566. Morgan Kaufmann, 1985.[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergenceof relative frequencies of events to their probabilities. Theory ofProbability and its Applications, 16(2):264{280, 1971.[Wei64] J. Weinberg. A Short History of Medieval Philosophy. PrincetonUniversity Press, Princeton, NJ, 1964.[Wil66] D. C. Williams. Principles of Empirical Realism. CharlesC. Thomas, Spring�eld, 1966.[Wit53] L. Wittgenstein. Philosophische Untersuchungen. Suhrkamp, 1953.Edition 1995, published together with Tractatus and Tageb�ucher.

Index of NamesAarts, E., 39Allport, D., 36Angluin, D., 15, 16, 35, 37, 41Anthony, M., 6, 13, 80, 90Ariew, R., 74Aristotle, 3, 73Bacon, F., 3Bacon, J., 78Bayes, T., 82Bayle, P., 73nBiggs, N., 6, 13, 80, 90Blumer, A., 9, 80Boas, G., 74nBoolos, G., 10n, 65, 66Botha, R., 20n, 25Brandt Corstius, H., 23, 36Bunge, M., 45, 46nBurtt, E., 75, 76Campbell, K, 78Carnap, R., 4, 77, 85nChaitin, G., 47, 67{69Cherniak, C., vChervonenkis, A., 8Chomsky, N., vi, 3n, 19{27, 30n, 40,41, 94Church, A., 57Cohen, I. B., 75Copernicus, N., 74, 75, 77Cover, T., 52, 53Dennett, D., 61Derkse, W., 73{76Descartes, R., 23Dirac, P., 76Duns Scotus, 73Ehrenfeucht, A., 9, 80Einstein, A., 76, 77

Galileo, G., 75Garey, M., 39n, 79Gazdar, G., 37G�odel, K., 64, 66, 95Gold, E. M., 4Goodman, N., 4, 45, 53, 54Harris, R., 20n, 21Haussler, D., 9, 80Hawkins, J., 21nHempel, C., 4Hesse, M., 53nHofstadter, D., 29, 65Homer, 1Hopcroft, J., 10n, 28, 35, 38Hume, D., 3, 23Ishizaka, H., 38Je�rey, R., 10n, 65, 66Jevons, S., 3Johnson, D., 39n, 79Kearns, M., 6, 13, 14, 35, 43n, 80,81nKeats, J., 71nKepler, J., 75Klein, E., 37Kolmogorov, A., 47, 57Kuhn, T., 4nLaird, P., 16Lakatos, I., 54Lambalgen, M. van, 69Laplace, P., 82Leibniz, G. W., 23Li, M., 50n, 51, 52, 53n, 57, 59, 61,62, 68, 80, 83, 84, 87, 88Locke, J., 23Lokhorst, G-J., 36n107

108 INDEX OF NAMESMartin-L�of, P., 57McAllister, J., v, 56, 77Mill, J. S., 3Minsky, M., 4Mises, R. von, 57Mondriaan, P., 55Natarajan, B., 6, 9, 12, 13, 80, 81nNewmeyer, F., 20nNewton, I., 75, 77Occam, W. of, 73, 74, 79, 95Pais, A., 72, 76Passmore, J., 77Peirce, C. S., 3Penrose, R., 65Peters, S., 23Pinker, S., 20n, 32n, 43Place, U. T., 78Popper, K., 4, 53Postal, P., 36Prince, A., 23nPtolemy, 75Pullum, G., 37Putnam, H., 19, 24Quine, W. V. O., 19, 24, 54, 72Reichenbach, H., 4, 77Rissanen, J., 81Ritchie, R., 23Rosemont, H., 24Russell, B., 4, 77Russell, S., vSag, I., 37Satie, E., 55Schlick, M., 77Seidenberg, M., 23nShannon, C., 52, 95Skinner, B. F., 20Sloan, R., 16Smart, J., 78Smolensky, P., 23nSober, E., 53nSolomono�, R., 47, 81, 85Thagard, P., v

Thomas, J., 52, 53Thornburn, W., 73Turing, A., 48, 49Ullman, J., 10n, 28, 35, 38Valiant, L., v, 4, 16Vapnik, V., 8Vazirani, U., 6, 13, 14, 35, 43n, 80,81nVit�anyi, P., 50n, 51, 52, 53n, 57, 59,61, 62, 68, 80, 83, 84, 87, 88Wald, A., 57Warmuth, M., 9, 80Weinberg, J., 74Williams, D. C., 78Wittgenstein, L., 42n, 46n, 77

Index of Subjectsa posteriori probability, 83a priori probability, 82, 83adversarial noise, 16aesthetic canons, 56agnosticism, 79AI, see Arti�cial Intelligencealgorithm, 2, 29, 46approximately correct, 4, 7, 93art, 55Arti�cial Intelligence, v, 1, 4, 93atheism, 79autological, 45axiomatization, 66Bayes's Theorem, 82, 96beauty, 55, 71, 95, 96behaviorism, 20binary expansion, 62Chomsky hierarchy, 27, 32, 36, 94Chomsky normal form, 38, 42nChurch-Turing thesis, 29, 30, 48co-enumerable function, 49COLT, see computational learningtheorycompetence, 21complete axiomatization, 66complete proof procedure, 66ncomplexity theory, vcompression, 61, 88, 95, 96computable function, 48computational learning theory, v, 1,2, 19, 93, 96concept, 6concept class, 6concept learning, 3con�dence parameter, 7, 10n, 31consistent (with examples), 12

context-free grammar, see Type 2grammarcontext-sensitive grammar, see Type1 grammardecidable set, 49deep structure, 22deterministic �nite automaton, 35,79DFA, see deterministic �nite automa-tondiagonal lemma, 66Diophantine equation, 68domain, 6dualism, 78elegance, 55, 95empiricism, 23encoded Turing machine, 49entropy, 52enumerable function, 49equivalence query, 15, 35, 93error parameter, 7, 10n, 31example, 3, 6extended equivalence query, 38Fermat's last theorem, 63n�tting, 12formal language, 25G�odel number, 66G�odel's Theorem, 64, 68, 95Goldbach's conjecture, 63grammar, 26, 29Greibach normal form, 38Grelling's paradox, 45halting probability (
), 62, 67, 68,95is enumerable, 63109

110 INDEX OF SUBJECTSis random, 64halting problem, 49heterological, 45identi�cation from equivalence queries,16, 94induction, 3inductive logic programming, viinformation, 52, 95innateness, 19, 23, 41, 94intuitive biology, 43intuitive mechanics, 43k-bounded grammar, 37, 41k-recursive language, 34know-how knowledge, 3, 29Kolmogorov complexity, vi, 45, 47,50, 53, 56n, 61, 73, 79, 83,85, 90, 94, 96and information theory, 52is co-enumerable, 51is not recursive, 51objectivity of, 50label (of an example), 6language, 19language faculty, 21language instinct, 21language learning, vi, 3, 19, 24, 28{30, 32, 41, 94, 96�nite classes, 40, 42Type 0 languages, 94Type 1 languages, 39, 94Type 2 languages, 37, 94Type 3 languages, 35, 94Type 4 languages, 34, 94language of arithmetic, 65language organ, 21learning, v, 2, 47, 93length (of a name), 11length (of an example), 6length parameter, 7lexicon, 22, 23, 40liar's paradox, 66linguistic bias, 19, 21, 24, 28, 40, 41,94linguistics, 19, 23n, 94logical positivism, 77

Machine Learning, v, 4malicious noise, 16materialism, 78Maximum Likelihood, 83nMDL, seeMinimumDescription Lengthmeasure, 60, 85membership query, 15, 35, 93, 94message, 52mind/brain, 21, 64MinimumDescription Length, 81, 96Moore's law, 5�-random, 60Natural Grammars, 41, 42nnatural language, 36, 94Natural Languages, 41negative example, 6neural network, 2n, 23nnoise, 16, 30, 94nominalism, 74non-terminal, 26non-terminal membership queries, 37,41NP-completeness, 5n, 39, 69, 79Occam algorithm, 80, 96Occam's Razor, vi, 47, 55, 71, 75,77{79, 95, 96aesthetical interpretation, 71, 74,76, 77, 79, 96and prediction, 88, 96and universal distribution, 83and universal semimeasure, 87as MDL principle, 81, 85, 96formulations of, 73, 76, 79in PAC learning, 81, 90in philosophy (examples), 77in science (examples), 74justi�cations for, 72methodological interpretation, 71,74, 76, 79, 95ontological interpretation, 71, 74,76, 77, 79, 96ontological simplicity, 46nontology, 78oracle, 15, 93P-random, 59

INDEX OF SUBJECTS 111P-test, 58PAC algorithm, 4, 7, 93, 96admissible, 8randomized, 7, 12PAC learning, v, 4, 31, 79, 93, 96and e�ciency, 5of formal languages, 31with noise, 16PAC predicting, 14PAC prediction algorithm, 14partial recursive function, 48performance, 21philosophy of mind, 64, 78philosophy of science, 55, 57, 77phrase structure rule, 22polynomial, 5polynomial VC-dimension, 9polynomial-sample PAC learnable, 8,9polynomial-time �tting, 12polynomial-time identi�cation fromequivalence queries, 16implies polynomial-time PAC learn-ability, 16polynomial-time Occam algorithm,80polynomial-time PAC learnable, 11,93npolynomial-time PAC predictable, 14,93npositive example, 6prediction, 85, 96not equal to hypothesis selec-tion, 85pre�x-free, 50principle of parsimony or simplicity,see Occam's Razorprinciples-and-parameters theory, 23,30, 40probability distribution, 7, 31, 52,53, 57, 82, 83, 95, 96probably approximately correct learn-ing, see PAC learningproduction, 26program (for a universal machine),49

projection (of a concept or conceptclass), 9propositional logic, 43query, 15random classi�cation noise, 16random number generator, 61nrandomness, 57, 95and compression, 61, 95de�ciency, 61nin mathematics, 68of �nite strings, 57, 59of in�nite strings, 59, 60, 62rationalism, 23real function, 49recursive function, 48recursive language, 28recursive set, 49recursively enumerable language, 28recursively enumerable set, 49regular grammar, see Type 3 gram-marrepresentation, 10, 46evaluable, 11polynomially evaluable, 11Richard-Berry paradox, 64sample complexity, 5, 8sciencepossibility of, 88scienti�c revolution, 56self-consciousness, 65self-reference, 65{67semantics, 30semimeasure, 85semiotic simplicity, 46nsentence, 65sequential �-test, 60shatters, 8simple deterministic grammar, 38simplicity, vi, 45, 53, 55, 73, 74, 77,95, 96size of a concept, 11sound axiomatization, 66Standard Model of arithmetic, 65surface structure, 22symmetric di�erence, 6

112 INDEX OF SUBJECTSsyntax, 22, 30, 94target concept, 4, 93terminal, 26test for randomness, 58, 60, 95time complexity, 5, 10, 11transformational-generative grammar,22, 30traveling salesman problem, 5trope theory, 78Turing machine, 10, 28, 46, 48, 56n,62, 95Type 0 grammar, 28, 30, 94Type 1 grammar, 28, 36, 39, 94not polynomially evaluable, 39Type 2 grammar, 28, 37, 94polynomially evaluable, 35nType 3 grammar, 27, 33, 35, 36n, 94Type 4 grammar, 33, 34, 36n, 94underdetermination of theory by data,77uniform measure, 62, 95universal P-test, 59, 95universal distribution (m), 83Universal Grammar, 21, 23, 32nuniversal semimeasure (M), 86universal sequential �-test, 61universal Turing machine, 49, 62, 95Vapnik-Chervonenkis dimension, seeVC-dimensionVC-dimension, 9, 12Wiener Kreis, 77

