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1 Introduction

1.1 Background: low-degree approximations from efficient quantum algorithms

Since the introduction of quantum computing in the 1980s [1, 2], most research in this area

has focused on trying to find applications where quantum computers significantly outperform

their classical counterparts: new quantum algorithms, quantum cryptography, communication

schemes, uses of entanglement etc. One of the more surprising applications of quantum

computing in the last decade has been its use, in some way or other, in obtaining results in

classical computer science and mathematics (see [3] for a survey). One direction here has

been the use of quantum query algorithms to show the existence of low-degree polynomial

approximations to various functions. This direction started with the observation [4, 5] that the

acceptance probability of a T -query quantum algorithm with N -bit input can be written as an

N -variate multilinear polynomial of degree at most 2T . For example, Grover’s O(
√
N)-query

algorithm for finding a 1 in an N -bit input [6] implies the existence of an N -variate degree-

O(
√
N) polynomial that approximates the N -bit OR-function, and (by symmetrization) of a
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univariate polynomial p such that p(0) = 0 and p(i) ≈ 1 for all i ∈ {1, . . . , N}. Accordingly,

one way to design (or prove the existence of) a low-degree polynomial with a certain desired

behavior, is to design an efficient quantum algorithm whose acceptance probability has that

desired behavior. Results based on this approach include tight bounds on the degree of low-

error approximations for symmetric functions [7], a new quantum-based proof of Jackson’s

theorem from approximation theory [8], and tight upper bounds for sign-approximations of

formulas [9].

1.2 Quantum algorithms with postselection

In this paper we focus on a related but slightly more complicated connection, namely the use

of quantum query algorithms with postselection to show the existence of low-degree rational

approximations to various functions. We will define both terms in more detail later, but for

now let us just state that postselection is the (physically unrealistic) ability of an algorithm to

choose the outcome of a measurement, thus forcing a collapse of the state to the corresponding

subspace. Postselection allows some functions to be computed much more efficiently. A good

example of this is the N -bit OR function, which takes value 1 if the input x ∈ {0, 1}N
contains at least one 1, and takes value 0 otherwise. Grover’s algorithm takes O(

√
N) queries

to compute this, which is known to be optimal (precise understanding of this algorithm and its

optimality are not required for this paper). However, a postselection algorithm could choose

a tiny but positive ε and start with initial state

ε|0〉|1〉+
√

1− ε2

N

N∑

i=1

|i〉|0〉.

Making one quantum query to the input gives

ε|0〉|1〉+
√

1− ε2

N

N∑

i=1

|i〉|xi〉.

Now postselect on the last qubit having value 1. This collapses the state to

ε|0〉|1〉+
√

1− ε2

N

∑

i:xi=1

|i〉|1〉,

times a normalizing constant 1/
√
ε2 + |x|(1− ε2)/N . If x = 0N then the state is simply |0〉|1〉,

and measuring the first register gives outcome 0 with certainty. If x 6= 0N , then (assuming

ε2 ≪ 1/N) measuring the first register will probably give an index i for which xi = 1. Thus

we can compute OR using only one query. The error probability can be made arbitrarily

small (though not 0!) by choosing ε to be very small.

1.3 Rational functions

A rational function is the ratio of two polynomials. Its degree is the maximum of the degrees

of the numerator and denominator polynomials. For example, here is a degree-1 rational

approximation to OR (again fix small ε > 0):

∑N
i=1 xi

ε+
∑N

i=1 xi
.



U. Mahadev and R. de Wolf 297

This rational function equals 0 if x = 0N , and equals essentially 1 if x 6= 0N . Thus it

approximates the OR function very well, using only degree-1 numerator and denominator.

Again, the error can be made arbitrarily small (though not 0!) by choosing ε to be very

small. In contrast, a polynomial that approximates OR up to constant error needs degree

Θ(
√
N)[10].

It is no coincidence that for the OR function both the complexity of postselection algo-

rithms and the rational degree are small. The connection between postselection and rational

approximation was first made by Aaronson. In [11], he provided a new proof of the break-

through result of Beigel et al. [12] that the complexity class PP is closed under intersection.

He did this in three steps:

1. Define a new class PostBQP, corresponding to polynomial-time quantum algorithms

augmented with postselection.

2. Prove that PP = PostBQP.

3. Observe that PostBQP is closed under intersection, which is obvious from its definition.

While very different from the proof of Beigel et al. (at least on the surface), Aaronson noted

that his proof could actually be viewed as implicitly constructing certain low-degree rational

approximations to the Majority functionb; the fact that the resulting polynomial has low

degree follows from the fact that Aaronson’s algorithm makes only few queries to the input

of Majority. Such rational approximations also form the key to the proof of Beigel et al.

Our goal in this paper is to work out this connection between rational functions and

postselection algorithms in much more detail, and to apply it elsewhere.

1.4 Definitions

In order to be able to state our results, let us be a bit more precise about definitions.

Polynomial approximation. An N -variate polynomial is a function P : SN → R that

can be written as P (x1, . . . , xN ) =
∑

d1,...,dN
cd1,...,dN

∏N
i=1 x

di

i with real coefficients cd1,...,dN
.

In our applications, the domain S of each input variable will be either R or {0, 1}. The degree
of P is deg(P ) = max{∑N

i=1 di | cd1,...,dN
6= 0}. When we only care about the behavior of

the polynomial on the Boolean cube {0, 1}N , then xdi = xi for all d ≥ 1, so then we can

restrict to multilinear polynomials, where the degree in each variable is at most 1 (and the

overall degree is at most N). Let ε ∈ [0, 1/2) be some fixed constant. A polynomial P ε-

approximates f : SN → R if |P (x) − f(x)| ≤ ε for all x ∈ SN . The ε-approximate degree

of f (abbreviated degε(f)) is the minimal degree among all such polynomials P . The exact

degree of f is deg(f) = deg0(f).

Rational approximation. A rational function is a ratio P/Q of two N -variate polynomials

P,Q : SN → R, where Q is required to be nonzero everywhere on SN to prevent division

by 0. Its degree is the maximum of the degrees of P and Q. A rational function P/Q ε-

approximates f if |P (x)/Q(x)− f(x)| ≤ ε for all x ∈ SN . The ε-approximate rational degree

bThe N -bit Majority is the Boolean function defined by MAJN (x) = 1 iff the Hamming weight |x| :=
∑N

i=1
xi

is ≥ N/2.
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of f (abbreviated rdegε(f)) is the minimal degree among all such rational functions. The

exact rational degree of f is rdeg0(f).

Quantum query algorithms with postselection. A quantum query algorithm with post-

selection (short: postselection algorithm) is a regular quantum query algorithm [16] with two

output bits a, b ∈ {0, 1}. We say the postselection algorithm computes a Boolean function

f : {0, 1}N → {0, 1} with error probability ε if for every x ∈ {0, 1}N , we have Pr[a = 1] > 0

and Pr[b = f(x) | a = 1] ≥ 1 − ε. The idea is that we can compute f(x) with error prob-

ability ε if we could postselect on measurement outcome a = 1. In other words, the second

output bit b computes the function when the first is forced to output 1. This “forcing” is

the postselection step, which is not something we can actually implement physically; in that

respect the model of postselection is mostly a tool for theoretical analysis, not a viable model

of computation. The postselection query complexity PostQε(f) of f is the minimal query

complexity among such algorithms.c

1.5 Our results

Rational degree ≈ quantum query complexity with postselection. Our first result

in this paper (Section 2) is to give a very tight connection between rational approximations

of a Boolean function f : {0, 1}N → {0, 1} and postselection algorithms computing f with

small error probability. We show that the minimal degree needed for the former equals the

minimal query complexity needed for the latter, to within a factor of 2:

1

2
rdegε(f) ≤ PostQε(f) ≤ rdegε(f).

In other words, minimal rational degree is essentially equal to quantum query complexity

with postselection. The fact that low query complexity of postselection algorithms gives

low rational degree has been known since Aaronson’s paper [11]; what we add in this paper

is the converse, that low rational degree also gives efficient postselection algorithms. This

tight relation (to within a factor of 2) should be contrasted with the better-studied case of

polynomial approximation, where the approximate degree degε(f) equals the bounded-error

quantum query complexity to within a polynomial factor [5], and there are actually polynomial

gaps [14].

Optimal postselection algorithm for Majority. In his paper, Aaronson [11, Theorem 4]

implicitly gave an efficient postselection algorithm for the Majority function with polynomially

small error probability:

PostQ1/N (MAJN ) = O
(
(logN)2

)
.

For constant error probability, one can obtain a postselection algorithm usingO(log(N) log log(N))

queries from his proof [3, Theorem 4.5].

Our second result in this paper is to optimize Aaronson’s construction to have minimal

query complexity up to a constant factor (and hence the induced rational approximation for

cThe way we defined it here, a postselection algorithm involves only one postselection-step, namely selecting
the value a = 1. However, we can also allow intermediate postselection steps without changing the power of
this model, see [3, Section 4.3].
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majority will have minimal degree), for every error probability ε ∈ (2−N , 1/2):

PostQε(MAJN ) = O (log(N/ log(1/ε)) log(1/ε)) .

Combined with the above constant-factor equivalence of rdegε(f) and PostQε(f), this re-

proves the upper bound of Sherstov [19, Theorem 1.7]. In fact, we could just have combined

Sherstov’s upper bound with that equivalence, but our derivation of minimal-degree polyno-

mials by means of a postselection algorithm is very different from Sherstov’s proof. Sherstov’s

matching lower bound for the degree of rational approximations shows that also our algorithm

is optimal (up to a constant factor).

Newman’s Theorem. One of the most celebrated results in rational approximation the-

ory is Newman’s Theorem [17]. This says that there is a degree-d rational function that

approximates the absolute-value function |x| on the interval x ∈ [−1, 1] up to error 2−Ω(
√
d).

In contrast, it can be shown that the smallest error achievable by degree-d polynomials is

Θ(1/d). The proof of Newman’s Theorem is not extremely complicated:

Define a = e−1/
√
d, p(x) =

∏d−1
k=0(a

k + x), and degree-d rational function r(x) =
p(x)−p(−x)
p(x)+p(−x) .

Half a page of calculations shows that r(x) ε-approximates the sign-function on

the interval [−1,−ε]∪ [ε, 1], for ε = e−Ω(
√
d). We have r(x) ∈ [−1, 1] and sgn(x) =

sgn(r(x)) on the whole interval [−1, 1], hence the degree-(d+ 1) rational function

x · r(x) ε-approximates the absolute-value function on the whole interval [−1, 1].

In fact the optimal error ε achievable by degree-d rational functions is known much more

precisely [18, Theorem 4.2]: it is Θ(e−π
√
d). The proof of this tighter bound is substantially

more complicated.d

In Section 4 we show how our postselection algorithm for Majority can be used to derive

Newman’s Theorem.eWhile this proof is not easier than Newman’s by any reasonable stan-

dard, it (like the reproof of Sherstov’s result mentioned above) is still interesting because it

gives a new, quantum-algorithmic perspective on these known results that may have other

applications.

2 Query complexity with postselection ≈ degree of rational approximation

We first show that rational approximation degree and quantum query complexity with post-

selection are essentially the same for all Boolean functions.

Theorem 1 For all ε ∈ [0, 1/2) and f : {0, 1}N → {0, 1} we have rdegε(f) ≤ 2PostQε(f).

Proof. Consider a postselection algorithm for f with T = PostQε(f) queries and error ε.

Then by [5], the probabilities Q(x) = Pr[a = 1] and P (x) = Pr[a = b = 1] can be written as

polynomials of degree ≤ 2T . Their ratio P/Q is a rational function that equals the conditional

probability Pr[b = 1 | a = 1]. By definition, the latter is in [1 − ε, 1] for inputs x ∈ f−1(1),

dIn fact, in the 19th century Zolotarev [20] already gave the optimal polynomial for each degree d. Later,
Akhiezer [13] worked out the asymptotic decrease of the error as a function of d, stating Newman’s Theorem
much before the paper of Newman (who was apparently unaware of this Russian literature).
eActually, Aaronson’s above-mentioned O((logN)2)-query postselection algorithm with error ε = 1/N can
already be used for this purpose; this application does not require our optimized version of the algorithm.
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and is in [0, ε] for x ∈ f−1(0). Hence P/Q is a rational function of degree ≤ 2T = 2PostQε(f)

that ε-approximates f . �

Theorem 2 For all ε ∈ [0, 1/2) and f : {0, 1}N → {0, 1} we have PostQε(f) ≤ rdegε(f).

Proof. Consider a rational function P/Q of degree d = rdegε(f) that ε-approximates f . It

will be convenient to convert f to a ±1-valued function. Define F (x) = 1 − 2f(x) ∈ {±1}
and R(x) = Q(x)− 2P (x), then R/Q = 1− 2P/Q is in [−1− 2ε,−1 + 2ε] if F (x) = −1, and

in [1− 2ε, 1 + 2ε] if F (x) = 1. We will write R and Q in their Fourier decompositions :f

R(x) =
∑

S⊆[N ]

R̂(S)(−1)x·S and Q(x) =
∑

S⊆[N ]

Q̂(S)(−1)x·S .

Now set up the following (N + 1)-qubit state (up to a global normalizing constant):

|0〉
∑

S

Q̂(S)|S〉+ |1〉
∑

S

R̂(S)|S〉,

where |S〉 is the N -bit basis state corresponding to the characteristic vector of S. Note that

R̂(S) and Q̂(S) are 0 whenever |S| > d. Hence by making d queries to x, successively querying

the indices i ∈ S and adding their value as a phase (−1)xi , we can add the phases (−1)x·S :

|0〉
∑

S

Q̂(S)(−1)x·S |S〉+ |1〉
∑

S

R̂(S)(−1)x·S |S〉.

Now a Hadamard transform on each of the n qubits of the second register gives a state

proportional to

|0〉
(
∑

S

Q̂(S)(−1)x·S |0N 〉+ · · ·
)

+ |1〉
(
∑

S

R̂(S)(−1)x·S |0N 〉+ · · ·
)

= |0〉
(
Q(x)|0N 〉+ · · ·

)
+ |1〉

(
R(x)|0N 〉+ · · ·

)
,

where the · · · indicates all the basis states other than |0N 〉. Postselect on measuring |0N 〉 in
the second register (more precisely, set the bit a to 1 only for basis state |0N 〉). What is left

in the first register is the following qubit:

|βx〉 = c(Q(x)|0〉+R(x)|1〉) = cQ(x)

(
|0〉+ R(x)

Q(x)
|1〉
)
,

where c = 1/
√
Q(x)2 +R(x)2 is a normalizing constant. Since R(x)/Q(x) ≈ F (x) ∈ {±1},

a Hadamard transform followed by a measurement will with high probability tell us the sign

F (x) of R(x)/Q(x). If F (x) = 1, the error probability equals

|〈−|βx〉|2 =
(Q(x)−R(x))2

2(Q(x)2 +R(x)2)
=

(1−R(x)/Q(x))2

2(1 + (R(x)/Q(x))2)
≤ (2ε)2

2(1 + (1− 2ε)2)
=

ε2

1− 2ε+ 2ε2
≤ ε,

where the last inequality used that ε ≤ 1 − 2ε + 2ε2 for all ε ∈ [0, 1/2). If F (x) = −1 then

an analogous calculation works. Hence we have found a d-query postselection algorithm that

computes f with error probability ≤ ε. �

fThe Fourier coefficients of a function g : {0, 1}N → R are ĝ(S) = 1

2N

∑
x∈{0,1}N g(x)(−1)x·S , where

S ∈ {0, 1}n corresponds to a subset of [N ] (i.e., a subset of the N input variables); x · S denotes the inner
product between the two N -bit strings x and S. The Fourier decomposition of g is g(x) =

∑
S ĝ(S)(−1)x·S .
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3 An optimal postselection algorithm for Majority

In this section we give an optimized postselection algorithm for Majority, slightly improving

Aaronson’s construction. We will require the following result from [11, first paragraphs of

proof of Theorem 4]:

Lemma 1 (Aaronson) Let α, β > 0 satisfy α2 + β2 = 1. Using one query to input x ∈
{0, 1}N and postselection, we can construct the following qubit:

c

(
α|x||0〉+ β

N − 2|x|√
2

|1〉
)
, (1)

where c = 1/
√
α2|x|2 + β2

2 (N − 2|x|)2 is a normalizing constant.

For the sake of being self-contained, we repeat Aaronson’s proof below.

Proof. Assume for simplicity that N is a power of 2, so N = 2n and we can identify the

indices i ∈ [N ] with n-bit strings. Let s = |x|. Start with (n + 1)-qubit state |0n+1〉, and
apply Hadamard transforms to the first n qubits and then one query to x, to obtain

1√
N

∑

i∈{0,1}n

|i〉|xi〉.

Again apply Hadamard transforms to the first n qubits, and postselect on the first n qubits

being all-0. Up to a normalizing constant, the last qubit will now be in state

|ψ〉 = (N − s)|0〉+ s|1〉.

Add a new qubit prepared in state α|0〉+ β|1〉 to (the left of) this qubit |ψ〉. Conditioned on

this new qubit, apply a Hadamard transform to |ψ〉, giving

α|0〉|ψ〉+ β|1〉H|ψ〉 = α|0〉 ((N − s)|0〉+ s|1〉) + β|1〉
(
N√
2
|0〉+ N − 2s√

2
|1〉
)

=

(
α(N − s)|0〉+ β

N√
2
|1〉
)
|0〉+

(
αs|0〉+ β

N − 2s√
2

|1〉
)
|1〉.

If we now postselect on the last qubit being 1, the first qubit collapses to the state promised

in the lemma. �

Our goal is to decide whether |x| ≥ N/2 or not. Consider the qubit of Eq. (1). If

0 < |x| < N/2 then this qubit is strictly inside the first quadrant (i.e., both |0〉 and |1〉 have
positive amplitude), and if |x| ≥ N/2 then it is not. In the first case, for some choice of α, β

the qubit will be close to the state |+〉 = 1√
2
(|0〉+ |1〉), while in the second case it will be far

from |+〉 for every choice of α, β. The algorithm tries out a number of (α, β)-pairs in order to

distinguish between these two cases. Let t be some positive integer (which we will later set

to ⌈log(2/ε)⌉ for our main algorithm). Let

A = {−⌈log(N/t)⌉, . . . ,−1, 0, 1, . . . , ⌈log(N/t)⌉},

and for all i ∈ A let |ai〉 be the qubit of Eq. (1) with α
β = 2i. Let

B = {0, . . . , t− 1} ∪ {N/2− t+ 1, . . . , N/2− 1}
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if t ≥ 2, and B = ∅ otherwise. For all i ∈ B let |bi〉 be the qubit of Eq. (1) with α
β = N−2i√

2i
.

Note that |b|x|〉 = |+〉.
The intuition of the algorithm is that we are trying to eliminate from A and B all i

corresponding to states whose squared inner product with |+〉 is at most 1/2. If |x| ≥ N/2

(i.e., MAJN (x) = 1) then we expect to eventually eliminate all i, while if |x| < N/2 (i.e.,

MAJN (x) = 0) then for at least one i, the squared inner product with |+〉 will be close to 1,

and this i will probably not be eliminated by the process. We start with a procedure that

tries to eliminate the elements of A:

Lemma 2 For every integer t ∈ {1, . . . , N/4} there exists a postselection algorithm that uses

O(log(N/t)) queries to its input x ∈ {0, 1}N and distinguishes (with success probability ≥ 2/3)

the case |x| ∈ {t, . . . , N/2− t} from the case |x| ≥ N/2.

Proof. The algorithm is as follows:

1. Initialize k = 1 and A1 = A.

2. Repeat the following until 180 log(N/t) queries have been used (or until Ak is empty):

(a) For all i ∈ Ak:

create 5k copies of |ai〉 and measure each in the |+〉, |−〉 basis;
set Mk,i = 1 if this resulted in a majority of |+〉 outcomes, and set Mk,i = 0

otherwise.

(b) Set Ak+1 = {i ∈ Ak |Mk,i = 1}. Set k to k + 1.

3. Output 0 if the final Ak is nonempty, and output 1 otherwise.

Clearly the query complexity is O(log(N/t)). We now analyze what happens in both cases.

Case 1: |x| ∈ {t, . . . , N/2− t}. For these values of |x|, the ratio between |x| and N − 2|x|
lies between t/N and N/t. Hence there exists an i ∈ A such that |ai〉 and |ai+1〉 lie on opposite

sides of |+〉. In the worst case, |+〉 lies exactly in the middle between |ai〉 and |ai+1〉, in which

case 〈+|ai〉 = 〈+|ai+1〉. In this case, |ai〉 =
√

1
3 |0〉+

√
2
3 |1〉, so 〈+|ai〉 = 1+

√
2√

6
=: λ. We will

show that this i is likely to remain in all sets Ak, in which case the algorithm outputs the

correct answer 0.

Each iteration of step 2 will be called a “trial”. Let m be the number of the trial being

executed when the algorithm stops (this m is a random variable). The algorithm gives the

correct output 0 iff Am is nonempty. First, by a Chernoff boundgfor every k

Pr[Mk,i = 0] ≤ exp
(
−2 · 5k(λ2 − 1/2)2

)
≤ 2−(k+2).

Now by the union bound, the error probability in this case is

Pr[Am = ∅] ≤ Pr[i /∈ Am] = Pr[∃ k s.t. Mk,i = 0] ≤
∞∑

k=1

2−(k+2) =
1

4
.

gFor K coin flips X1, . . . , XK , each taking value 1 with probability p, the probability that their sum
∑K

i=1
Xi

is at most K(p− ε), is upper bounded by exp(−2Kε2). See for example [15, Appendix A]. We apply this here
with K = 5k, p = λ2 ≈ 0.97, and ε = p− 1/2.
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Case 2: |x| ≥ N/2. We first show that the algorithm is likely to go through at least

logN trials. Since |x| ≥ N/2, for all i ∈ A we have |〈+|ai〉|2 ≤ 1
2 and hence Pr[Mk,i = 1] ≤ 1

2

for all k. Therefore

E[|Ak+1|] =
∑

i∈A

k∏

ℓ=1

Pr[Mℓ,i = 1] ≤ |A|
2k

≤ log(N/t)

2k−1
.

Let Q =
∑logN

k=1 5k|Ak| be the number of queries used in the first logN trials (with the number

of queries set to 0 for the non-executed trials after the mth). Now:

E[Q] ≤ 5 log(N/t)

logN∑

k=1

k

2k−1
≤ 20 log(N/t),

where we used

∞∑

k=1

k

2k−1
=

∞∑

k=1

∞∑

ℓ=k

1

2ℓ−1
= 4

∞∑

k=1

2−k
∞∑

ℓ=1

1

2ℓ
= 4

∞∑

k=1

2−k = 4.

By Markov’s inequality

Pr[Q ≥ 180 log(N/t)] ≤ Pr[Q ≥ 9E[Q]] ≤ 1

9
.

So with probability at least 8
9 we have Q < 180 log(N/t), meaning the algorithm executes at

least logN trials before it terminates. In that case each element of A has probability at most

1/2logN = 1/N to survive logN trials. Hence, by the union bound

Pr[A2 logN+1 6= ∅] ≤ |A|
N

≤ 1

4
,

for N sufficiently large. Therefore the final error probability is at most 8
9
1
4 + 1

9 = 1
3 in this

case. �

Note that if we set t = 1 in this lemma then we obtain an O(logN)-query postselection

algorithm that computes MAJN with error probability ≤ 1/3 for all x 6= 0N (we can ensure

x 6= 0N for instance by fixing the first two bits of x to 01, so then we would be effectively

computing MAJN−2). This improves upon the O(log(N) log log(N)) algorithm mentioned in

Section 1.5.

We can reduce the error probability to any ε ∈ (0, 1/2) by the standard method of running

the algorithm O(log(1/ε)) times and taking the majority value among the outputs. This gives

an ε-error algorithm using O(log(N) log(1/ε)) queries. However, a slightly more efficient

algorithm is possible if we set t = ⌈log(2/ε)⌉ and separately handle the inputs with |x| /∈
{t, . . . , N/2− t}.
Lemma 3 For every integer t ∈ {2, . . . , N/4} there exists a postselection algorithm that uses

O(t) queries to its input x ∈ {0, 1}N and distinguishes (with success probability ≥ 1 − 2−t)

the case |x| ∈ {0, . . . , t− 1} ∪ {N/2− t+ 1, . . . , N/2− 1} from the case |x| ≥ N/2.

Proof. The algorithm is as follows:

1. Initialize B = {0, . . . , t− 1} ∪ {N/2− t+ 1, . . . , N/2− 1}
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2. Repeat the following 8t times (or until B is empty):

take the first i ∈ B, create one copy of |bi〉 and measure it in the |+〉, |−〉 basis;
if the outcome was |−〉 then remove i from B.

3. Output 0 if the final B is nonempty, and output 1 otherwise.

Clearly the query complexity is O(t). We now analyze what happens in both cases.

Case 1: |x| ∈ {0, . . . , t− 1} ∪ {N/2− t+1, . . . , N/2− 1}. Because |b|x|〉 = |+〉, the index

i = |x| will remain in B with certainty.

Case 2: |x| ≥ N/2. In this case, for all i in the initial set B we have |〈+|bi〉|2 ≤ 1
2 . Hence

each measurement has probability at least 1/2 of producing outcome |−〉 and reducing the

size of B by 1. Since B initially has 2t − 1 elements, it will only end up nonempty if there

are fewer than 2t− 1 |−〉 outcomes among all 8t measurements. The probability of this event

is upper bounded by the probability of < 2t − 1 “heads” among K = 8t fair coin flips. By

the Chernoff bound (see footnote g, with p = 1/2 and ε = 1/4), that probability is at most

exp(−2K(1/2− 1/4)2) = exp(−t) ≤ 2−t. �

To obtain our main algorithm we set t = ⌈log(2/ε)⌉. If ε ≤ 2−Ω(N) then the trivial

algorithm that queries all N bits to determine Majority will be optimal up to a constant

factor, so below we may assume t ≤ N/4. We now run the algorithm of Lemma 2 with error

reduced to ε/2, and the algorithm of Lemma 3 (with error ≤ 2−t ≤ ε/2), and we output

1 if both algorithms outputted 1. It is easy to see that this computes Majority with error

probability ≤ ε on every input. This proves:

Theorem 3 For every ε ∈ (2−N , 1/2) there exists a postselection algorithm that computes

MAJN using O (log(N/ log(1/ε)) · log(1/ε)) queries with error probability ≤ ε.

The latter algorithm is asymptotically better than the earlier O(log(N) log(1/ε)) algorithm

if ε is slightly bigger than 2−N . For example, if ε = 2−N/ logN then the earlier algorithm has

query complexity O(N) while Theorem 3 gives O(N log log(N)/ log(N)) = o(N).

Sherstov [19, Theorem 1.7] proved an Ω(log(N/ log(1/ε)) · log(1/ε)) lower bound on the

degree of ε-approximating rational functions for MAJN , for all ε ∈ (2−N , 1/2). Together with

our Theorem 1, this shows that the algorithm of Theorem 3 has optimal query complexity up

to a constant factor.

4 Deriving Newman’s Theorem

We now use the postselection algorithm for Majority to derive a good, low-degree rational

approximation for the sign-function:

Theorem 4 For every d there exists a degree-d rational function that ε-approximates the

sign-function sgn(z) on [−1,−ε] ∪ [ε, 1] for ε = 2−Ω(
√
d) (and which lies in [−1, 1] for all

z ∈ [−1, 1]).

Proof. Set ε = 2−Ω(
√
d) with a sufficiently small constant in the Ω(·), and N = ⌈ 2

ε⌉. Consider
the algorithm described after Lemma 2 with t = 1 and error reduced to ε/2. It provides

two N -variate multilinear polynomials P and Q, each of degree d = O(log(N) log(1/ε)) =

O(log(1/ε)2), such that for all x ∈ {0, 1}N ,

∣∣∣∣
P (x)

Q(x)
−MAJN (x)

∣∣∣∣ ≤
ε

2
.
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Note that P can be written as
∑

j cj(
∑

i xi)
j , as can Q, because the amplitudes of the

states |ai〉 and |bi〉 in the proof of Theorem 3 are functions of |x| = ∑
i xi. To convert P

to a univariate polynomial p, replace
∑

i xi with real variable z to obtain p(z) =
∑

j cjz
j .

Similarly convert Q(x) to q(z). Let majN represent the univariate version of MAJN : majN
returns 0 on input x ∈ [0, . . . , N2 ) and returns 1 on x ∈ [N/2, . . . , N ]. We now have:

∣∣∣∣
p(x)

q(x)
−majN (x)

∣∣∣∣ ≤
ε

2

for x ∈ {0, . . . , N}. Crucially, this inequality also holds for real values z ∈ [1, N/2 − 1] ∪
[N/2, N ]. This is because the analysis of the algorithm described after Lemma 2 (with t = 1

and error reduced to ε/2) still works when we replace the integer |x| with real value z. Since

sgn(z) = 2majN (N(z+1)
2 )− 1, we have

∣∣∣∣∣∣

2p
(

N(z+1)
2

)
− q

(
N(z+1)

2

)

q
(

N(z+1)
2

) − sgn(z)

∣∣∣∣∣∣
≤ ε

for all z ∈ [−1,− 2
N ]∪ [0, 1]. Since N = ⌈ 2

ε⌉, we have the desired approximation on [−1,−ε]∪
[ε, 1]. �

It is easy to see that multiplying the above rational function by z gives an approximation

of the absolute-value function |z| on the whole interval z ∈ [−1, 1]. Thus we have reproved

Newman’s Theorem in a new, quantum-based way:

Corollary 1 (Newman) For every integer d ≥ 1 there exists a degree-d rational function

that approximates |z| on [−1, 1] with error ≤ 2−Ω(
√
d).

5 Open questions

We mention a few open questions. First, we have very few techniques for quantum algorithms

with postselection. Aaronson’s techniques from [11] (and our variations thereof) is the main

technique we know that makes non-trivial use of the power of postselection. What other algo-

rithmic tricks can we play using postselection? Using the equivalence between postselection

algorithms and rational degree, we can try to obtain new algorithms from known rational ap-

proximations. Very tight bounds are known for the rational degree of approximations of the

univariate exponential functions exp(x) and exp(−x) [18, Sections 4.4 and 4.5]. In particular,

rational degree d is necessary and sufficient to achieve approximation-error exp(−Θ(d)) for

the function exp(−x) on the interval [0,∞). This implies the following for postselection algo-

rithms. Consider the real-valued n-bit function f : {0, 1}n → R defined by f(x) = exp(−|x|).
Then for every integer d > 0 there exists a quantum algorithm with postselection, that makes

O(d) queries to its input x ∈ {0, 1}n, and whose acceptance probability is within exp(−d) of
f(x). Can we use such a postselection algorithm to compute something useful?

Second, we showed here how a classical but basic theorem in rational approximation

theory (Newman’s theorem) could be reproved based on efficient quantum algorithms with

postselection. Is it possible to prove new results in rational approximation theory using such

algorithms?

Finally, the following is a long-standing open question attributed to Fortnow by Nisan

and Szegedy [10, p. 312]: is there a polynomial relation between the exact rational degree of
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a Boolean function f : {0, 1}N → {0, 1} and its usual polynomial degree? It is known that

exact and bounded-error quantum query complexity and exact and bounded-error polynomial

degree are all polynomially close to each other [16], so rephrased in our framework Fortnow’s

question is equivalent to the following: can we efficiently simulate an exact quantum algorithm

with postselection by a bounded-error quantum algorithm without postselection?hWe hope

this more algorithmic perspective will help answer his question.

Acknowledgments
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