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Abstract Now let us consider the analogous situation in the quan-
tum world. Alice and Bob are connected by a one-way
We investigate how a classical private key can be usedquantum channel, to which an eavesdropper Eve has com-
by two players, connected by an insecure one-way quantunplete access. Alice wants to transmit to Bob satagubit
channel, to perform private communication of quantum in- statep taken from some sef, without allowing Eve to ob-
formation. In particular we show that in order to transmit ~ tain any information aboup. Alice and Bob could eas-
qubits privately2n bits of shared private key are necessary ily achieve such security if they share EPR-pairs (or if
and sufficient. This result may be viewed as the quantumthey were able to establish EPR-pairs over a secure quan-
analogue of the classical one-time pad encryption schemetum channel), for then they can apply teleportation [1] and
transmit every qubit via 2 random classical bits, which will
give Eve no information whatsoever. But now suppose Al-
ice and Bob do not share EPR-pairs, but instead they only
have the resource of shared randomness, which is weaker
but easier to maintain.
A first question is: is it at all possible to send quantum
Secure transmission of classical information is a well information fully securely using only a finite amount of ran-
studied topic. Suppose Alice wants to sendnabit mes-  domness? At first sight this may seem hard: Alice and Bob
sageM to Bob over an insecure (i.e. spied-on) channel, in have to “hide” the amplitudes of a quantum state, which are
such a way that the eavesdropper Eve cannot obtain any ininfinitely precise complex numbers. Nevertheless, the ques-
formation about)/ from tapping the channel. If Alice and  tion has a positive answer. More precisely, to send privately
Bob share some secretbit key K, then here is a simple . qubits, a2n-bit classical key is sufficient. The encryp-
way for them to achieve their goal: Alice exclusive-ai5  tion technique is fairly natural. Alice applies to the state
with K and sends the resull’ = M @& K over the chan-  she wants to transmit a reversible quantum operation spec-
nel, Bob then xord/' again withK and obtains the original ified by the shared ke¥ (basically, she applies a random
messagé!’' @ K = M. Eve may see the encoded message Pauli matrix to each qubit), and she sends the reguio
M, but if she does not know then this will give herno  Bob. In the most general setting this reversible operation
information about the real messagg, since for any mes-  can be represented as doing a unitary operation on the state
sageM there is a keyl' giving rise to the same encoding  augmented with a known fixed ancilla state Know-
M'. This scheme is known as thérnam cipheror one- ing the keyK that Alice used, Bob knows which operation
time pad(“one-time” becausd( can be used only once if  Alice applied and he can reverse this, remove the ancilla,
we want information-theoretic security). It shows thdtits ~ and retrievep. In order for this scheme to be information-
of shared secret key are sufficient to securely tranarbits ~ theoretically secure against the eavesdropper, we have to
of information. Shannon [7, 8] has shown that this scheme require that Eve always “sees” the same density maityix
is optimal: » bits of shared key are alswecessaryn order  on the channel, no matter whatwas. Because Eve does
to transmit am-bit message in an information-theoretically not know K, this condition can indeed be satisfied. Ac-
secure way. cordingly, an insecure quantum channel can be made secure
(private) by means of shared classical randomness.
A second question is, thehow muctkey Alice and Bob
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amount of entropy required to create it. As one mightimag- are the 4Pauli matrices
ine, showing thakn bits of key are also necessary is the

most challenging part of this article. We prove this-bit o0 = < 10 > , o1 = ( 0 1 > ,
lower bound in Section 5, and show that it even holds if the 01 1.0
n qubits of the message are not entangled. Accordingly,in =~ _ ( 0 —i ) — ( 10 ) _
analogy with the classical one-time pad, we have an opti- i 0 )7 0 -1
mal quantum one-time pad which usks classical bits to i

Let |0),...,|M — 1) denote the basis states of sothe

completely “hide"n qubits from Eve. In particular, hiding a
qubit is only twice as hard as hiding a classical bit, despite
the fact that in the qubit we now have to hide amplitudes
coming from a continuous set.

The article is organized as follows. Section 2 introduces
some notation and some properties of Von Neumann en-
tropy. In Section 3 we give a formal definition of a private
guantum channeRQC). In Section 4 we give some exam-
ples of PQCs. In particular we show that there isPQC

dimensional Hilbert spacH ;. We useH.- for the Hilbert
space whose basis states arethelassicah-bit strings. A
pure quantum statgb) is a norm-1 vector it ;. We treat
|¢) as anM -dimensional column vector and uég for the
row vector that is its conjugate transpose. Trreer product
between pure statés) and|«) is (¢|¢)). A mixed quantum
stateor density matrix is a non-negative Hermitian matrix
that has trac@r(p) = 1. The density matrix corresponding

that privately sends any-qubit state usin@n bits of ran- to a pure state) is |¢) (¢|. Because a density matrjxis

.. . . .. N
domness (shared key). We also exhibit a non-trivial set of 1€rmitian, it has a diagonalization= >_,_, pi[) (¢,

n-qubit states, namely the tensor products of qubits with v;/]here t?epi are itsheigenvallueggi Zh 0, Ziﬁi =1 a;d
real amplitudes, for which there RQC requiring onlyn (e /¢:) form an orthonormal set. Thyscan be viewed as

bits of randomness. The latter result includes the classicaldescf'b'ng a probability distribution over pure states. We

_ 1 _ 1 M . .
one-time pad. In Section 5 we show thatbits of random- ~ US€Im = 3pln = 5 >_i=1 1) (i| to denote the totally

ness are necessary if we want to be able to send.aqubit mixed _state, which represents the unlform distribution on
state privately. all basis states. If two systems are in pure stat¢sand

|1, respectively, then their joint state is the tensor product
pure statéd) ® |¢) = |¢) |¢). If two systems are in mixed
Remarks about related work. Several recent papers in- statesp; and p», respectively, then their joint state is the
dependently discussed issues similar to our work. In atensor produch; ® p,. Note that(|¢) @ |¢))((¢] ® (]) is
related but slightly different setting, Braunstein, Lo, and the same aBp) (¢| ® |¢) (¢|.

Spiller [4, 5] have shown that 2 bits of entropy are neces-  Applying a unitary transformatioly to a pure statép)
sary and sufficient to “randomize” a qubit. Very recently, gives pure staté&’ |¢), applyingU to a mixed state gives
Boykin and Roychowdhury [3] exhibited th-bit Pauli- mixed statd/pU*. We will use€ = {,/p;U; | 1 <i < N}
matrix one-time pad. They also gave a general characteri-to denote thesuperoperatowhich applieslU; with proba-
zation of all possible encryption schemes without ancilla, a bility p; to its argument (we assume, p; = 1). Thus
characterization which can also be derived from the simulta- £(p) = 3~ p; U;pU;. Quantum mechanics allows for more
neous and independent work of Werner [10]. Furthermore, general superoperators, but this type suffices for our pur-
Boykin and Roychowdhury proved-bit lower bound for  poses. If two superoperatofs= {,/p;U; | 1 < i < N}

the case where the encryption scheme does not allow the usgng g’ = {/PU! | 1 < i < N'} are identical £(p) =

of an ancilla state. In Section 5 we start with a simplified ¢/(,) for all p), then they are unitarily related in the follow-
proof of the lower bound for the no-ancilla case and give a jng way [6, Theorem 8.2] (where we assutNe> N’ and
different and more complicated proof for the lower bound jf N > N’ we pade’ with zero operators to mak&ande’

in the case where we do allow an ancilla. of equal size): there exists a unitaly x N matrix A such
that for alli

2 Preliminaries N
j=1
2.1 States and operators !

2.2 Von Neumann entropy

We usel|v|| for the Euclidean norm of vectar. If A is
a matrix, then we usel! for its conjugate transpose and ~ Let density matrix p have the diagonal-
Tr(A) for its trace (the sum of its diagonal entries). A ization >, p; |¢;) (¢;]. TheVon Neumann entropyf p
square matrix4 is Hermitianif A = A, andunitary if isS(p) = H(p1,...,pN) = — Zfilpi log p;, whereH is
A~! = Af. Important examples of unitary transformations the classical entropy function. Thi&(p) can be interpreted



as the minimal Shannon entropy of the measurement out- Note that by linearity, if thePQC works for all pure
come, minimized over all possible complete measurementsstates inS, then it also works for density matrices over
Note thatS(p) only depends on the eigenvaluespfThe S: applying thePQC to a mixture of states fron$ gives
following properties of Von Neumann entropy will be use- the samepg as when we apply it to a pure state. Accord-

ful later (for proofs see for instance [9]). ingly, if [S,{\/piUi | 1 <i < N},pa,po] isaPQC, then
H(p,...,pn) bits of shared randomness are sufficient for
1. S(|) (¢|) = 0, for every pure statep). Alice to send any mixture of S-states to Bob in a secure
2. S(p1 ® p2) = S(p1) + S(p). way. Alice encodeg in a reversible way depending on her
keyi and Bob can decode because he knows the $@me
3. S(UpU™) = S(p). hence can reverse Alice’s operatibi On the other hand,
4. S(mpr+dopa -+ Anpn) > MS(p1)+ A0S (o) + Eve has no information about the kéwpart from the dis-

tribution p;, so from her point of view the channel is in state
PEve = po. This is independent of thethat Alice wants to

5. 1f p = YN pi |¢4) (¢] with the|¢;) not necessarily send, and hence gives Eve no information agout
orthogonal, ther§ (p) < H(p1,...,pN)-

o+ A S(pn) iFA; >0 andzi Ai =1

4 Examples and properties of PQCs

3 Private Quantum Channels
In this section we exhibit some private quantum chan-
Let us sketch the scenario for a private quantum chan-nels. The first usegn bits of key to send privately any
nel. There areN possible keys, which we identify for ~7n-qubit state. The idea is simply to apply a random Pauli
convenience with the numbelsl . N. Theith key has matrix to each bit |nd|V|dua”y This takes 2 random bits
probabilityp;, so the key has entropf (p1, . .., px) When per qubit and it is well known that the resulting qubit is
viewed as a random variable. Each kegorresponds to a in the completely mixed state. For notational convenience
unitary transformatio/;. Suppose Alice wants to send a We identity the numberg0, ...,2*" — 1} with the set
pure state¢) from some sefS to Bob. She appends some {0,1,2,3}". Forz € {0,1,2,3}" we usez; € {0,1,2,3}
fixed ancilla qubits in statg, to |¢) (¢| and then applies; foritsith en_try, and we usg, to denote the-qubit unitary
to |¢) (¢| @ pa, Wherei is her key. She sends the resulting transformation,, @ --- ® o,
state to Bob. Bob, who shares the kayith Alice, applies
U,! to obtain|¢) (4| ® p., removes the ancilla,, and is Theorem~4.1 Iif& =1
left with Alice’s messagép) (¢|. One can verify that thisis  [H2», &, I>n] is aPQC.
the most general setting allowed by quantum mechanics if ) ) - ) )
we want Bob to be able to recover the state perfectly. Now Proof Itis easily verified that applying eaeh with proba-
in order for this to be secure against an eavesdropper EvePility 1/4 to a qubit puts that qubit in the totally mixed state
we have to require that if Eve does not knéwthen the 12_(no matter if itis entangled with other qubltg,). Operator
density matrixp, that she gets from monitoring the channel € just applies this treatment to each of thejubits, hence
is independent of). This implies that she gets no infor-  £(|¢) (¢]) = I»» for every|¢) € Han. 0
mation at all about¢). Of course, Eve’'s measuring the
channel might destroy the encoded message, but this is like  Since the abové contain2>” operations and they have
classically jamming the channel and cannot be avoided. Theuniform probability, it follows that2n bits of private key
point is thatif Eve measures, then she receives no informa- suffice to privately send any state froky- .
tion about ). We formalize this scenario as follows. The next theorem shows that there is some nontrivial
o _ subspace of{,» wheren bits of private key suffice, namely
Definition 3.1 LetS C H,» be a set of pure-qubitstates,  the set of all tensor products of real-amplitude qubits:
& ={ypiUi |1 <i < N} be asuperoperator where each
U; is a unitary mapping or{;m, Zﬁ\;pi =1, p, be an Theorem 4.2 1f B = {cos(f) |0) +sin(f)|1) | 0 < 6 <
(m — n)-qubit density matrix, ang, be anm-qubit den- 27}, S = B®", and¢ = {#E |z € {0,2}"}, then
sity matrix. TheriS, &, pa, po] is called aPrivate Quantum (s, ¢, [,.] is aPQC.
Channel PQC) if and only if for all|¢) € S we have

ﬁa_z |z € {0,1,2,3}"}, then

Proof This is easily verified: applying, ando,, each

_ . - with probability 1/2, puts any qubit fron® in the totally
E(1¢) (¢l @ pa) = ZPZU’ (1) (¢ & pa) Ui = po. mixed state. Operatdf does this to each of the qubits
=t individually. m

If n = m (i.e. no ancilla), then we omj,,.



Note that if we restrictB to classical bits (i.ef €
{0,7/2}) then the abovePQC reduces to the classical
one-time pad: flipping each bit with probability 1/2 gives
information-theoretical security. Note also that tRQC
does not work for arbitrary entangled real-amplitude states;
for instance the entangled sta{%(\oo) + |11)) is not
mapped to the totally mixed state. For= 1, 2, 3 there ex-
ist PQCs that require exactly bits of entropy and can pri-
vately transmit any entangled real-amplitudgubit state.
However, forn > 4 we can show that suchRQC requires
entropy strictly more tham bits. This marks a difference

between sending entangled and unentangled real-amplitude

states. We omit the technical proofs for reasons of space.

In the previou$QCs, pg was the completely mixed state
I,». This is no accident, and holds whenewver= m and
I~ is one of the states that tRQC can send:

Theorem 4.3 If [S, £, po] is aPQC without ancilla andls~
can be written as a mixture &f-states, themy = I».

Proof If I,» can be written as a mixture &f-states, then

N N
pPo = E(izn) = ZpiUifQ" Uj = ZpiiQn = an.
i=1

i=1

In generalp, need not bel,.. For instance, letS

(1 1 .
(00, 50+ = (R B (]} )ywin
3 1
p1=p2 = 1/2,andpy = | 1 1§ ) Then it is easily
4 4

verified that S, £, po] is aPQC.

Finally we prove that aPQC for n-qubit states and
a PQC for m-qubit states can easily be combined to a
PQC for n + m-qubit states: entanglement between the
n-qubit andm-qubit parts is dealt with automatically. If

& ={ypiUi} andf' = {\/EU;} are superoperators, then

we usef ® &' = {, /pip;.Ui ® U]’-} for their tensor product.

We will need the following lemma, the technical proof of
which is deferred to the appendix.

Lemma 4.4 Suppose thaf (|¢) (¢| ® p.) = po Whenever
|¢) is a tensor product of qubits. Therf (|z) (y|®p,) = 0
whenever,y € {0,1}" andx # y.

Theorem 4.5If [Han, &, pa, po] @nd[Ham , E', po’, po'] are
PQCs, thenHan+m,E R E', pa ® pa’, po ® po'] is aPQC.

Proof For notational convenience we will assumg =
Pa’ 0. Consider anyn + m-qubit pure statd¢) =

>re{o,1}m yefo,1pm Yoy [2) [y). We have:

(E®&(l¢) (4])

(5®5')( Y by f2) (@@ ly) (]
l‘,y,l‘,,/yl

|

Y anyany, E(l2) (@) @ € (ly) ')

[
LY, T Y

Yy, € (o) (2]) €' (|y) (y])

.Y

Z |azy|2P0 ® pOI
z,y

—
*
~

po @ po’.

In the step marked byx) we used tha€(|z) (z'|) = 0
unlesse = z’' (Lemma 4.4). |

The above proof also shows thaPC for S = H$"
(the set of all unentangled-qubit states) is automatically
also aPQC for S = Hy- (the set of alln-qubit states).

Finally, the same technique shows that Alice can employ
a PQC to privately send part of an entangled state to Bob
in a way that preserves the entanglement. PIQC puts
this part of the state in thgy-state, so Eve can obtain no
information from the channel. When Bob reconstructs the
original state, this will still be entangled with the part of the
state that Alice kept.

5 Lower bound on the entropy of PQCs

Above we showed thaln bits of entropy suffice for a
PQC that can send arbitrany-qubit states. In this section
we will show that2n bits are alsmecessaryor this. Very
recently and independently of our work, this-bit lower
bound was also proven by Boykin and Roychowdhury [3]
for the special case where tRC is not allowed to use any
ancilla qubits. We will first give a shorter version of their
proof, basically by observing that a large part of it can be re-
placed by a reference to the unitary equivalence of identical
superoperators stated at the end of Section 2.1.

Theorem 5.1 If [Han, {\/p;U; | 1 < i < N}, Ialis a
PQC, thenH (p1,...,pN) > 2n.

Proof Let & {(VoiUi}, & = {40z | = €
{0,1,2,3}"} be the superoperator of Theorem 4.1, and let
K = max(2?", N). Since&(p) = £'(p) = I» for all n-
qubit statesp, we have that and&’ are unitarily related
in the way mentioned in Section 2.1: there exists a unitary
K x K matrix A such that foralll <i < N we have

Z 1
z€{0,1,2,3}n V22"

Oz

Az’ac

VpiU;



We view the set of all™ x 2" matrices as a%"-dimensional
vector space with inner produ@/, M') = Tr(M*M") /2"
and induced norm|M|| = /(M, M) (as done in [3]).
Note that||M|| = 1if M is unitary. The set of ali; forms
an orthonormal basis for this vector space, so:

H\/p_zUHZ—HZAm\/— 7’
2
%Z\AM SQTn

HenceN > 22" andH (py, .. .

Di

However, even granted this result it is still conceivable
that aPQC might require less randomness if it can “spread
out” its encoding over many ancilla qubits — it is even con-
ceivable that those ancilla qubits can be useédtblish

witho,; = 0., ® --- ® g,, asin Theorem 4.1. Also define
U; = (I»» ® U;)U. It remains to show thaf’(|z) (z|) =
Irn ® Po for all ‘.’I?) € C22'n:

E'(|z) (x))

N

Zpi(bn ®U;)
L

1
(07 ® Irn) [Q—n Zpi(IQ" ® U;)
=1

(= @ L) (%2_ > w y>>

> 0y ® I2n)T] (In @ U;)1

V2r &

(I» @ U | (77 @ Io» )"

> )

y,z€{0,2" -1}

z| @ |y) (2|

privately shared randomness using some variant of quan-

tum key distribution. The general case with ancilla is not
addressed in [3], and proving that tBe-bit lower bound

extends to this case requires more work. The next few the-

orems will do this. These show thatP®C that can trans-
mit any unentanglech-qubit state already requir@s bits

of randomness, no matter how many ancilla qubits it uses.
Thus Theorem 4.1 exhibits an optimal quantum one-time

pad, analogous to the optimal classical one-time pad men-

tioned in the introduction.

We use the notatiofy, = {]i) | 0 < i < k—1} forthe set
of the firstk classical states. The next theorem implies that
a PQC that privately conveys unentangled qubits using
m bits of key, can be transformed intd®C that privately
conveys anyi) € Cyzx, still using onlym bits of key.

Theorem 5.2 If there exists PQC [H5", € = {/piU; |
1 <i < N}, pa, pol, then there exists RQC [Cyzn, &' =
{\/p_ZUzI ‘ 1 S i S N}apaaI2" ® Po]-

Proof For ease of notation we assume without loss of gen-
erality that€ uses no ancilla, so we assurpg is an n-
qubit state and omip, (this does not affect the proof in
any way). We will defin&€’ and show that it is QC. In-
tuitively, £’ maps every state froif,2. to a tensor product

of n Bell states by mapping pairs of bits to one of the four
Bell states’ The second bits of the pairs are then moved to
the second half of the state and encrypted by appl¥ing
them. Because of the entanglement between the two halve
of each Bell state, the resulti2zg-qubit density matrix will
bel,» ® po. More specifically, define

DL

2The 4 Bells states ar%(\oo) +11)) and L

Ulz) = (05 @ Irn)

75 (101) £ [10)).

1

277.

(7 ® Ian)

>

y,z€{0,2" -1}

N
(ZPiUz’ ly) <Z|U2'T>

ly) (2| ®

(T @ Ion)t

1

= 7 ® L) > ) (zl@ E(y) (2]) | 7z @ Ion)t
[yAE{OZ" 1} J
= (mb")l%” S 1) (vl @ Edly) )| @7 Ion)

(@ & Ie) [Br @ po| @7 & B
Irn ® po.

In the step marked bfx) we used thaf (|y) (z|) = 0 unless
y = z (Lemma 4.4). m|

Privately sending any state frofh.» corresponds to pri-
vately sending any classicat-bit string. If communica-
tion takes place througtiassicalchannels, then Shannon'’s
theorem implies thatn bits of shared key are required to
achieve such security. Shannon’s classical lower bound
does not translate automatically to the quantum world (it
is in fact violated if atwo-way quantum channel is avail-
able, see Footnote 1). Nevertheless, if Alice and Bob com-

Thunicate via a one-way quantum channel, then Shannon'’s

theorem does generalize to the quantum world:

Theorem 5.3 If [Com, {\/piU; | 1 < i < N}, pa,po]is a
PQC, thenH (py,...,pn) > m.

Proof Diagonalize the ancilla gs, = Z;Zl q; |¥;) (W51,
S0S(pa) = H(q1, gr). First note that the properties of



Von Neumann entropy (Section 2) imply:

(sz (10) (0] ®pa>U*>
ZZMJ

i=1 j=1

S(po)

(10) 0] @ Ja;) (b DU

< H(pi1q1,p1G2,- -, PNGr—1,PNr)

= H(plaapN)+H(Q17,Q7‘)

Secondly, note that

S(po) =

(sz (Iym ® pa)U] )
ZPZS (I}m ®pa)

N
= Y pilm+S(pa))

i=1
= m+S(pa).

v

Combining these two inequalities gives the theorem.O

In particular, for sending arbitrary states frafp. we

need entropy at leagh. Combining Theorems 5.2 and 5.3

we thus obtain:

Corollary 5.4 If [H5",{\/piU; | 1 <i < N}, pa, po] is @
PQC, thenH (p1,...,pn) > 2n (and hence in particular
N > 22m),

SinceHS™ C Han, we have also proved the optimality
of thePQC of Theorem 4.1

Corollary 5.5 If [Hon, {\/BiU; | 1 < i < N}, pa,pol is a
PQC, thenH (py,...,pn) > 2n.

In relation to Theorem 4.2, note that. C B®". Hence

another corollary of Theorem 5.3 is the optimality of the

PQC of Theorem 4.2:
Corollary 5.6 If [B®™ {,/p;U; | 1 < i < N}, pa,po] is

aPQC, thenH(p1,...,pn) > n (and hence in particular
N >2m).

6 Summary

The main result of this paper is an optimal quantum ver-
sion of the classical one-time pad. On the one hand, if Al-

ice and Bob sharén bits of key, Alice can send Bob any
n-qubit statep, encoded in anothet-qubit state in a way

which conveys no information aboptto the eavesdropper.
This is a simple scheme which works locally (i.e. deals with
each qubit separately) and uses no ancillary qubits. On the
other hand, we showed that even if Alice and Bob are al-
lowed to use any number of ancilla qubits, then they still
require2n bits of entropy.
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i|y)) are tensor products, and we have:
po= & (5() (x| +1v) (W)

= 5(E(a) (al) + EIy) ()
po= € ((L5(2) + )zl + @)
= 3 (E() ) + ) (wl) + E2) () + E(Iy) {21)
po=€((Lle) +i \y>>><¢%<<x\ ~i)
)

= 3 (&(z
The first and second equality imply
E(lx) (yl) + E(ly) (2]) =0,
the first and third equality imply

E(lx) (yl) = E(y) (xl) =
Hencet (|2) (y[) = £(Jy) (z]) = 0.

Induction step. Letz,y € {0,1}™ have Hamming dis-
tanced > 1. Without loss of generality we assume= 0z
andy = 17z for somez € {0,1}" <. We have to show
E(lz) (y]) = 0.

Letv € {0,1}?. We consider the pure-qubit state

1 V1 3 z
|¢v>:ﬁ(|0>+z 1) @@ (|0) +i° 1)) @ |2).

Letu - v =}, u;v; denote the inner product of bitstrings
u andv, and letz denote the negation af (all bits flipped).
Since|¢,) is a tensor product, we have

E(¢) (90])
= } Yoo =) () (u] @ |2) (2

u,u’ €{0,1}4

Po

Note that the2? terms withu = ' in the latter expression
sum tope. Furthermore, by the induction hypothesis we
have&(Ju) (u'| ® |z) (z|) = 0 whenever the Hamming dis-
tance between andu’ lies between 1 and — 1. Thus the
only terms left in the above equation are the ones where
andu' have Hamming distancé(i.e. v’ = u). Now, using
iV (—i)% = (—i)l*l(=1)*7, the equation reduces to:
1
0= Yo (D)) @ ® |2) (2).

ue{0,1}4

Summing over al and using thab~, (-1)*" = 2 for
u = 0% and 0 foru # 07, we obtain:

0 = o > > (D"E(u) (@ @]z (=)

vE{O 1}4 ue{0,1}4

= £(10...0)(1...1] @ |2) {z]).

Since|0...0)(1...1] ® |z) (2] = |z) {y], this concludes
the proof. |



