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Abstract. It has long been known that any Boolean function that depends

on n input variables has both degree and exact quantum query complexity

of Ω(log n), and that this bound is achieved for some functions. In this pa-

per we study the case of approximate degree and bounded-error quantum

query complexity. We show that for these measures the correct lower bound

is Ω(log n/ log log n), and we exhibit quantum algorithms for two functions

where this bound is achieved.
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1. Introduction

1.1. Degree of Boolean functions. The relations between Boolean

functions and their representation as polynomials over various fields

have long been studied and applied in areas like circuit complexity (Beigel

(1993)), decision tree complexity(Buhrman & de Wolf (2002); Nisan

& Szegedy (1994)) communication complexity(Buhrman & de Wolf

(2001); Sherstov (2008)) and many others. In a seminal paper, Nisan

& Szegedy (1994) made a systematic study of the representation and

approximation of Boolean functions by real polynomials, focusing in

particular on the degree of such polynomials. To state their and then

our results, let us introduce some notation.

◦ Every function f : {0, 1}n → R has a unique representation as

an n-variate multilinear polynomial over the reals, i.e., there exist
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real coefficients aS such that f =
∑

S⊆[n] aS
∏

i∈S xi. Its degree

is the number of variables in a largest monomial: deg(f) :=
max{|S| : aS 6= 0}.

◦ We say g ε-approximates f if |f(x) − g(x)| ≤ ε for all x ∈
{0, 1}n. The approximate degree of f is d̃eg(f) := min{deg(g) :
g 1/3-approximates f}. This is also sometimes called the “ap-

proximation degree”.

◦ For x ∈ {0, 1}n and i ∈ [n], xi is the input obtained from x
by flipping the bit xi. A variable xi is called sensitive or in-

fluential on x (for f ) if f(x) 6= f(xi). In this case we also

say f depends on xi. The influence of xi (on Boolean function

f ) is the fraction of inputs x ∈ {0, 1}n where i is influential:

Infi(f) := Prx[f(x) 6= f(xi)], where the subscript on the right-

hand side denotes probability taken over uniformly distributed

x ∈ {0, 1}n.

◦ The sensitivity s(f, x) of f at input x is the number of vari-

ables that are influential on x, and the sensitivity of f is s(f) :=
maxx∈{0,1}n s(f, x).

One of the main results of Nisan & Szegedy (1994) is that every func-

tion f : {0, 1}n → {0, 1} that depends on all n variables has de-

gree deg(f) ≥ logn − O(log logn) (our logarithms are to base 2).

Their proof goes as follows. On the one hand, the function fi(x) :=
f(x)− f(xi) is a polynomial of degree at most deg(f) that is not iden-

tically equal to 0. Hence by a version of the Schwartz-Zippel lemma,

fi is nonzero on at least a 2− deg(f)-fraction of the Boolean cube. Since

fi(x) 6= 0 iff i is sensitive on x, this shows

(1.1) Infi(f) ≥ 2− deg(f) for every influential xi.

On the other hand, with a bit of Fourier analysis (see Section 2.1) one

can show
n∑

i=1

Infi(f) ≤ deg(f)

and hence

(1.2) there is an influential xi with Infi(f) ≤ deg(f)/n.
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Combining (1.1) and (1.2) implies deg(f) ≥ logn − O(log logn).
As Nisan and Szegedy observe, this lower bound is tight up to the

O(log log n) term for the Address function (which was already used

by Simon (1983)): let k be some power of 2, n = k + log k, and view

the last log k bits of the n-bit input as an address in the first k bits. De-

fine f(x) as the value of the addressed variable. This function depends

on all n variables and has degree log k + 1 ≤ log n + 1, because we

can write it as a sum over all log k-bit addresses, multiplied by the ad-

dressed variable. More explicitly: if we write the input as x = zy with

z ∈ {0, 1}k and y ∈ {0, 1}logk, the polynomial representation of the

Address function is

∑

a∈{0,1}log k

za
∏

i:ai=1

yi
∏

i:ai=0

(1− yi).

1.2. Approximate degree of Boolean functions. Our focus in this

paper is on what happens if instead of considering representation by

polynomials we consider approximation by polynomials. While Nisan

and Szegedy studied some properties of approximate degree in their pa-

per, they did not state a general lower bound for all functions depending

on n variables. Can we modify their proof to work for approximating

polynomials? While (1.2) still holds if we replace the right-hand side

by approximate degree, (1.1) becomes much weaker. Since it is known

that Infi(f) ≥ 2−2s(f)+1 (Simon 1983, p. 443) and s(f) = O(d̃eg(f)2)
(Nisan & Szegedy (1994)), we have

(1.3) Infi(f) ≥ 2−O(d̃eg(f)2) for every influential xi.

This lower bound on Infi(f) is in fact optimal. For example for the n-

bit OR-function each variable has influence (n+1)/2n and the approx-

imate degree is Θ(
√
n). Hence adapting Nisan and Szegedy’s proof of

the Ω(log n) lower bound on exact degree will only give an Ω(
√
log n)

bound on approximate degree. Another way to prove that same bound

is to use the facts that s(f) = O(d̃eg(f)2) and s(f) = Ω(log n) if f
depends on n bits (Simon (1983)).

In Section 2 we improve this bound to Ω(log n/ log log n). The

proof idea is the following. Suppose P is a degree-d polynomial that

approximates f . First, by a bit of Fourier analysis we show that there
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is a variable xi such that the function Pi(x) := P (x) − P (xi) (which

has degree ≤ d and expectation 0) has low variance. We then use

a concentration result for low-degree polynomials to show that Pi is

close to its expectation for almost all of the inputs. On the other hand,

since xi has nonzero influence, (1.3) implies that |Pi| must be close to 1

(and hence far from its expectation) on at least a 2−O(d2)-fraction of all

inputs. Combining these things then yields d = Ω(log n/ log logn).

1.3. Relation with quantum query complexity. One of the main

reasons that the degree and approximate degree of a Boolean func-

tion are interesting measures, is their relation to the quantum query

complexity of that function. We define QE(f) and Q2(f) as the mini-

mal query complexity of exact (errorless) and 1/3-error quantum algo-

rithms for computing f , respectively, referring to Buhrman & de Wolf

(2002) for precise definitions.

Beals et al. (2001) established the following lower bounds on quan-

tum query complexity in terms of degrees:

QE(f) ≥ deg(f)/2 and Q2(f) ≥ d̃eg(f)/2.

They also proved that classical deterministic query complexity is at

most O(d̃eg(f)6), improving an earlier 8th-power result of Nisan &

Szegedy (1994), so this lower bound is never more than a polynomial

off for total Boolean functions. While the polynomial method some-

times gives bounds that are polynomially weaker than the true com-

plexity (Ambainis (2006)), still many tight quantum lower bounds are

based on this method (Aaronson & Shi (2004); Klauck et al. (2007)).

The classical bounded-error query complexity is lower bounded

by sensitivity (Nisan & Szegedy (1994)) and hence always Ω(log n).
In contrast, our new lower bound on approximate degree implies that

Q2(f) = Ω(log n/ log log n) for all total Boolean functions that de-

pend on n variables. In Section 3 we construct two functions that meet

this bound, showing that Q2(f) can be O(logn/ log log n) for a total

function that depends on n bits. Since Q2(f) ≥ d̃eg(f)/2, we imme-

diately also get that d̃eg(f) can be O(logn/ log log n). Interestingly,

the only way we know to construct f with asymptotically minimal

d̃eg(f) is through such quantum algorithms—this fits into the grow-

ing sequence of classical results proven by quantum means (Drucker &
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de Wolf (2011)).

The idea behind our construction is to modify the Address function

(which achieves the smallest degree in the exact case). Let n = k+m.

We use the last m bits of the input to build a quantum addressing

scheme that specifies an address in the first k bits. The value of the

function is then defined to be the value of the addressed bit. The fol-

lowing requirements need to be met by the addressing scheme:

◦ There is a quantum algorithm to compute the index i addressed

by y ∈ {0, 1}m, using few queries to y;

◦ For every index i ∈ {1, . . . , k}, there is a string y ∈ {0, 1}m that

addresses i (so that the function depends on all of the first k bits);

◦ Every string y ∈ {0, 1}m addresses one of 1, . . . , k (so the result-

ing function on k +m bits is total);

In Section 3 we give two constructions of addressing schemes that ad-

dress k = dΘ(d) bits using d quantum queries. Each construction gives

a total Boolean function on n ≥ dΘ(d) bits that is computable with

d+ 1 = O(logn/ log log n) quantum queries: d queries for computing

the address i and 1 query to retrieve the addressed bit xi.
1

To summarize, all total Boolean functions that depend on n vari-

ables have approximate degree and bounded-error quantum query com-

plexity at least Ω(log n/ log logn), and that lower bound is tight for

some functions.

2. Approximate degree is Ω(logn/ log logn) for all

total f

2.1. Tools from Fourier analysis. We use the framework of Fourier

analysis on the Boolean cube. We will just introduce what we need

1It is interesting to contrast this with “quantum oracle interrogation” (van Dam

(1998)). An arbitrary m-bit string can be recovered using roughly m/2 quantum

queries (van Dam (1998)), but not less (Ambainis et al. (2013)). In other words, d
quantum queries can recover an address of roughly 2d bits. In the addressing schemes

we consider here, where differentm-bit strings can point to the same address, d quan-

tum queries can recover an address of roughly d log d bits encoded in a larger m-bit

string.
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here, referring to O’Donnell (2008, 2014); de Wolf (2008) for more

details and references. In this section it will be convenient to denote bits

as +1 and −1, so a Boolean function will now be f : {±1}n → {±1}.

Unless mentioned otherwise, expectations and probabilities below are

taken over a uniformly random x ∈ {±1}n.

Define the inner product between functions f, g : {±1}n → R as

〈f, g〉 = 1

2n

∑

x∈{±1}n

f(x)g(x) = E[f · g].

For S ⊆ [n], the function χS is the product (parity) of the variables in-

dexed in S. These functions form an orthonormal basis for the space of

all real-valued functions on the Boolean cube. The Fourier coefficients

of f are f̂(S) = 〈f, χS〉, and we can write f in its Fourier decomposi-

tion

f =
∑

S⊆[n]

f̂(S)χS.

The degree deg(f) of f is max{|S| : f̂(S) 6= 0}. The expectation or

average of f is E[f ] = f̂(∅), and its variance is Var[f ] = E[f 2] −
E[f ]2 =

∑
S 6=∅ f̂(S)

2. For p ≥ 1, the p-norm of f is defined as

‖f‖p = E[|f |p]1/p.

This is monotone non-decreasing in p. For p = 2, Parseval’s identity

says

‖f‖22 =
∑

S

f̂(S)2.

For low-degree f , the famous hypercontractive inequality (sometimes

called the Bonami-Beckner inequality) implies that higher norms can-

not be much bigger than the 2-norm.2

THEOREM 2.1. Let f be a multilinear n-variate polynomial. If q ≥ 2,
then

‖f‖q ≤ (q − 1)deg(f)/2‖f‖2.
2See for example (O’Donnell 2014, Section 9.5) or (de Wolf 2008, after Theo-

rem 4.1) for a derivation of this statement from the hypercontractive inequality. See

(O’Donnell 2014, Chapters 9 and 10) or (Janson 1997, Chapter 5) for more back-

ground on hypercontractivity.
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The main tool we use is the following concentration result for degree-

d polynomials (the degree-1 case is essentially the familiar Chernoff

bound). Its derivation from Theorem 2.1 is folklore, see for exam-

ple (Dinur et al. 2007, Section 2.2) or (O’Donnell 2008, Theorem 5.4).

For completeness we include the proof below.

THEOREM 2.2. Let F be a multilinear n-variate polynomial of degree
at most d, with expectation 0 and variance σ2 = ‖F‖22. For all t ≥
(2e)d/2 it holds that

Pr[|F | ≥ tσ] ≤ exp
(
−(d/2e) · t2/d

)
.

PROOF. Theorem 2.1 implies

E[|F |q] = ‖F‖qq ≤ (q − 1)dq/2‖F‖q2 = (q − 1)dq/2σq.

Using Markov’s inequality gives

Pr[|F | ≥ tσ] = Pr[|F |q ≥ (tσ)q] ≤ E[|F |q]
(tσ)q

≤ (q − 1)dq/2σq

(tσ)q
≤ qdq/2

tq
.

Choosing q = t2/d/e gives the theorem (note that our assumption on t
implies q ≥ 2). �

2.2. The lower bound proof. Here we prove our main lower bound.

THEOREM 2.3. Every Boolean function f that depends on n input bits
has

d̃eg(f) = Ω(log n/ log log n).

PROOF. Let P : Rn → [−1, 1] be a 1/3-approximating polynomial

for f . We assume that the range of f is [−1, 1] rather than [−4/3, 4/3].
This does not change anything significant in the result but simplifies

the calculations (by avoiding some factors of 4/3 in various places be-

low). Our goal is to show that d := deg(P ) is Ω(log n/ log logn).
If d > log n/ log log n then we are already done, so assume d ≤
log n/ log log n.

For each i ∈ [n], we define fi by fi(x) = (f(x)− f(xi))/2, and Pi

by Pi(x) = (P (x)− P (xi))/2. Note that both fi and Pi have expecta-

tion 0. We have fi(x) ∈ {±1} if i is sensitive for x, and fi(x) = 0 oth-

erwise. Similarly we have Pi(x) ∈ [−1,−2/3]∪ [2/3, 1] if i is sensitive
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for x, and Pi(x) ∈ [−1/3, 1/3] otherwise. The Fourier decomposition

of Pi is

Pi(x) =
1

2

(
∑

S

P̂ (S)χS(x)−
∑

S

P̂ (S)χS(x
i)

)

=
1

2

(
∑

S

P̂ (S)χS(x)−
∑

S

P̂ (S)(−1)[i∈S]χS(x)

)

=
1

2

∑

S

(
1− (−1)[i∈S]

)
P̂ (S)χS(x).

Hence P̂i(S) = P̂ (S) if i ∈ S and P̂i(S) = 0 if i 6∈ S. Then

n∑

i=1

‖Pi‖22 =
n∑

i=1

∑

S

P̂i(S)
2 =

n∑

i=1

∑

S∋i

P̂ (S)2 =
∑

S

|S|P̂ (S)2

≤ d
∑

S

P̂ (S)2 = d‖P‖22 ≤ d.

Therefore there exists an i ∈ [n] for which

‖Pi‖22 ≤ d/n.

Assume that i = 1 is one such index. Because every variable (including

x1) is influential, Eq. (1.3) implies

Inf1(f) ≥ 2−O(d2).

Define σ2 = Var[P1], and note that this variance is not very large:

σ2 = ‖P1‖22 ≤ d/n. Set t = 1/2σ ≥
√
n/4d. Then t ≥ (2e)d/2

for sufficiently large n, because we assumed d ≤ logn/ log log n. Now

use Theorem 2.2 to get

Inf1(f) = Pr[f1(x) ∈ {±1}]
= Pr[|P1(x)| ≥ 1/2]

= Pr[|P1(x)| ≥ tσ]

≤ exp
(
−(d/2e) · t2/d

)

≤ exp
(
−(d/2e) · (n/4d)1/d

)
.
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Combining the upper and lower bounds on Inf1(f) gives

2−O(d2) ≤ exp
(
−(d/2e)(n/4d)1/d

)
.

Taking logarithms of left and right-hand side and negating gives

O(d2) ≥ (d/2e)(n/4d)1/d.

Dividing by d and using our assumption that d ≤ logn/ log logn im-

plies, for sufficiently large n:

logn ≥ (n/4d)1/d.

Taking logarithms once more we get

d ≥ log(n/4d)/ log log n = log n/ log log n− O(1),

which proves the theorem. �

Note that the constant factor in the Ω(·) is essentially 1 for any con-

stant approximation error. The Ω(log n/ log logn) bound remains valid

even for quite large errors: the same proof shows that for every con-

stant γ < 1/2, every polynomial P for which sgn(P (x)) = f(x) and

|P (x)| ∈ [1/nγ, 1] for all x ∈ {±1}n, has degree Ω(log n/ log logn).
This lower bound no longer holds if γ = 1; for example for odd n,

the degree-1 polynomial
∑n

i=1 xi/n has the same sign as the majority

function, and |P (x)| ∈ [1/n, 1] everywhere.

3. Functions with quantum query complexity

O(logn/ log logn)

In this section we exhibit two n-bit Boolean functions whose bounded-

error quantum query complexity (and hence approximate degree) is

O(logn/ log log n).

THEOREM 3.1. There is a Boolean function f : {0, 1}n → {0, 1} that
depends on all n variables and has

Q2(f) = O

(
logn

log log n

)
.

PROOF. Let us call a function a(x1, . . . , xm) ofm variables x1, . . . , xm ∈
{0, 1} a k-addressing scheme if a(x1, . . . , xm) ∈ [k] and, for every

i ∈ [k], there exist x1, . . . , xm ∈ {0, 1} such that a(x1, . . . , xm) = i.
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LEMMA 3.2. For every t > 0, with k = tt and m = t2, there exists
a k-addressing scheme a(x1, . . . , xm) that can be computed with error

probability ≤ 1/3 using O(t) quantum queries.

PROOF. In Section 3.1 and Section 3.2 we give two constructions of

addressing schemes achieving this bound. �

First assume for simplicity that n is of the form n = tt + t2 for

some integer t. Set k = tt and m = t2. Without loss of generality,

we assume the k-addressing scheme a(x1, . . . , xm) from Lemma 3.2

depends on all variables x1, . . . , xm. The last m input bits will provide

an address of one of the first k input bits. Define the following n-bit

Boolean function:

f(x1, . . . , xn) = xa(xk+1,xk+2,...,xk+m).

Since a(x1, . . . , xm) can be computed with O(t) quantum queries, we

have that f(x1, . . . , xn) can be computed with O(t) + 1 queries. Its

number of variables is n > k = tt. Hence,

logn

log log n
≥ t log t

log t + log log t
= (1 + o(1))t.

If n is not of the form n = tt + t2, then let t be the smallest inte-

ger such that n < tt + t2. The above construction gives an m-bit

k-addressing scheme a (with k = tt and m = t2), and a Boolean

function f on N := k + m bits. We will now reduce the number of

input bits from N to n by dropping the last N − n input bits of the

k-bit part. More precisely, define a new addressing scheme a′ such that

a′(x1, . . . , xm) = 1 if a(x1, . . . , xm) > N − n, and a′ = a otherwise.

This new scheme a′ now addresses k′ := k − (N − n) bits, and with-

out loss of generality a′ still depends on all m input bits. The induced

Boolean function f ′(x1, . . . , xn) = xa′(xk′+1,xk′+2,...,xk′+m) depends on

k′ + m = k − (N − n) + m = n input bits and is computable using

O(t) + 1 = O(logn/ log logn) quantum queries. �

3.1. Addressing scheme: 1st construction. Our first addressing scheme

is based on the Bernstein-Vazirani algorithm (Bernstein & Vazirani

(1997)). For simplicity assume t is a power of 2. For a string z ∈
{0, 1}log t, let h(z) be its t-bit Hadamard codeword: h(z)j = z · j
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mod 2, where j ranges over {0, 1}log t, and z · j denotes inner product.

The Bernstein-Vazirani algorithm recovers z with probability 1 using

only one quantum query if its t-bit input is of the form h(z). The m-bit

input x to the addressing scheme consists of t blocks x(1), . . . , x(t) of t
bits each, so m = t2. Define the addressing scheme as follows:

If x is of the form h(z(1)) . . . h(z(t)) then set a(x) := z(1) . . . z(t).
Otherwise set a(x) := 0t log t.

Note that the value of a(x) is a t log t-bit string, and that the function

is surjective. Hence the function a addresses a space of k = 2t log t = tt

bits.

The following algorithm computes a(x) withO(t) quantum queries:

1. Use the Bernstein-Vazirani algorithm t times, once on each x(j),
with outputs z(1), . . . , z(t) ∈ {0, 1}log t.

2. Use Grover’s search algorithm (Brassard et al. (2002); Grover

(1996)) to check if x = x(1) . . . x(t) equals h(z(1)) . . . h(z(t)), i.e.,

to search for a bit-position where these two m-bit strings are dif-

ferent.

3. If yes, output a(x) = z(1) . . . z(t). Else output 0t log t.

The query complexity is t queries for the first step and O(
√
m) = O(t)

for the second.

If the input x is the concatenation of tHadamard codewords h(z(1)),
. . ., h(z(t)), then the first step will identify the correct z(1), . . . , z(t) with

probability 1, and the second step will not find any discrepancy.3 On

the other hand, if the input is not the concatenation of t Hadamard

codewords then the two strings compared in step 2 are not equal, and

Grover search will find a discrepancy with probability at least 2/3, in

which case the algorithm outputs the correct value 0t log t.

3Note that the probability that a random x ∈ {0, 1}t2 is of this concatenated-

Hadamard form is tt/2t
2

= 2−(1−o(1))t2 . Since the Boolean function f based on this

addressing scheme will have approximate degree O(t), the influence of each of the

t2 address bits on f matches the lower bound of Eq. (1.3). Whenever the address bits

are not of the concatenated-Hadamard form, the address 0t log t points to the first bit

of the input, so this variable has influence nearly 1 on f . The probability that any of

the 2nd to kth bits are addressed is exactly 2−t
2

, so their influences are 2−t
2

, again

matching Eq. (1.3).
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3.2. Addressing scheme: 2nd construction. The second address-

ing scheme is defined as follows. We select k = tt words w(i) of

m = t2 bits each, such that any two distinct words w(i) and w(j) have

Hamming distance in the interval I = [m
2
− ct

√
t log t, m

2
+ ct

√
t log t].

One can for example show the existence of such strings using a

standard application of the probabilistic method, as follows. Select the

w(i) randomly from {0, 1}m. For distinct i and j, the expected Ham-

ming distance betweenw(i) andw(j) equalsm/2. By a Chernoff bound,

the probability that this Hamming distance is outside of the interval I
is 2−Ω(c2t3 log(t)/m) = 2−Ω(c2t log t). If we choose c a sufficiently large

constant then this probability is o(1/
(
k
2

)
). Since there are

(
k
2

)
distinct

i, j-pairs, the union bound implies that with probability 1 − o(1), all

pairs of words w(i) and w(j) have Hamming distance in the interval I .

For input x ∈ {0, 1}m, define a(x) := i if x = w(i), and a(x) := 1
if x does not equal any of w(1), . . . , w(k). We select t′ = O(t) so that

(
2c
√
log t√
t

)t′

≤ 1

t2t
.

Let

|ψ〉 = 1√
m

m∑

j=1

(−1)xj |j〉.

Let |ψi〉 be the state |ψ〉 defined above if x = w(i). If i 6= j, we have

〈ψ⊗t′

i |ψ⊗t′

j 〉 = (〈ψi|ψj〉)t
′ ≤

(
2c
√
log t√
t

)t′

≤ 1

t2t
.

The following lemma is quantum computing folklore. For the sake

of completeness we give a proof.

LEMMA 3.3. Let k ≥ 1 and |φ1〉, . . . , |φk〉 be states such that |〈φi|φj〉| ≤
1/k2 whenever i 6= j. Then there is a measurement that, given |φi〉,
produces outcome i with probability at least 2/3.

PROOF. The lemma is obvious for k = 1, so we can assume k ≥ 2.

Let Hilbert space H be the span of the states |φ1〉, . . . , |φk〉, and define

A =
∑k

i=1 |φi〉〈φi| as an operator on this space. We want to show that
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A is close to the identity operator on H. We first show that A|φj〉 is

close to |φj〉 for all j ∈ [k]. Define |δj〉 = A|φj〉 − |φj〉. We have

‖|δj〉‖ =

∥∥∥∥∥∥

∑

i∈[k]\{j}

|φi〉〈φi||φj〉

∥∥∥∥∥∥
≤

∑

i∈[k]\{j}

|〈φi|φj〉| ≤
k − 1

k2
.

Now we show A|v〉 is close to |v〉 for an arbitrary unit vector |v〉 =∑k
j=1 αj|φj〉 in H. Define a :=

∑k
j=1 |αj|2. We have

1 = 〈v|v〉 =
k∑

i,j=1

α∗
iαj〈φi|φj〉 = a+

∑

i 6=j

α∗
iαj〈φi|φj〉.

Also, using the Cauchy-Schwarz inequality,

∑

i 6=j

α∗
iαj〈φi|φj〉 ≤

√∑

i 6=j

|αi|2|αj|2
√∑

i 6=j

|〈φi|φj〉|2

≤
√∑

i,j

|αi|2|αj |2
√∑

i,j

1/k4 = a/k.

This implies 1 ≥ a − a/k and hence a ≤ 1/(1 − 1/k) = k/(k − 1).
We have

A|v〉 =
k∑

j=1

αjA|φj〉 =
k∑

j=1

αj(|φj〉+ |δj〉) = |v〉+
k∑

j=1

αj |δj〉.

This implies, again using Cauchy-Schwarz,

‖A|v〉 − |v〉‖ ≤
k∑

j=1

αj‖|δj〉‖ ≤

√√√√
k∑

j=1

|αj|2
√√√√

k∑

j=1

‖|δj〉‖2

≤
√

k

k − 1

√
k(k − 1)2

k4
=

√
k − 1

k2
≤ 1

2
.

Hence A ≤ 3
2
I .

Our measurement will consist of the operators Ei =
2
3
|φi〉〈φi| for

all i ∈ [k], andE0 = I−∑k
i=1Ei. By the previous discussionE0 = I−

2
3
A ≥ 0, so {Ei}ki=0 is a well-defined measurement (more precisely, a

POVM). Given state |φi〉, i ∈ [k], the probability that our measurement

produces the correct outcome i equals Tr(Ei|φi〉〈φi|) = 2/3. �
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We will apply this lemma to the k states |φi〉 = |ψi〉⊗t′ . OurO(t)-query

quantum algorithm is as follows:

1. Use t′ = O(t) queries to generate |ψ〉⊗t′ .

2. Apply the measurement of Lemma 3.3.

3. If the measurement gives some i 6= 1, then use Grover’s search

algorithm (Brassard et al. (2002); Grover (1996)) (with error

probability ≤ 1/3) to search for j ∈ [m] such that xj 6= w
(i)
j .

4. If no such j is found, then output i. Else output 1.

The number of queries is O(t) to generate |ψ〉⊗t′ and O(
√
m) = O(t)

for Grover search, so O(t) in total.

If the input x equals somew(i), then the measurement of Lemma 3.3

will produce the correct i with probability at least 2/3 and Grover

search will not find j s.t. xj 6= w
(i)
j . Hence, the whole algorithm will

output i with probability at least 2/3. If the input x is not equal to any

w(i), then the measurement will produce some i but Grover search will

find j s.t. xj 6= w
(i)
j , with probability at least 2/3. As a result, the algo-

rithm will output the correct answer 1 with probability at least 2/3 in

this case.

4. Conclusion

We analyzed how low approximate degree and bounded-error quantum

query complexity can be for total Boolean functions that depend on n
bits, and gave an optimal answer to this question. We proved a gen-

eral lower bound of Ω(log n/ log log n) on approximate degree (and

hence also on quantum query complexity), by combining a tight lower

bound on influence in terms of approximate degree (Eq. (1.3)) with

the hypercontractive inequality. We also exhibited functions where this

bound is achieved. These functions are variations of the Address func-

tion that have lower quantum query complexity, based on addressing

schemes where d log d address-bits can be recovered using O(d) quan-

tum queries.
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