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tWe dis
uss several 
omplexity measures for Boolean fun
tions: 
erti�
ate 
omplex-ity, sensitivity, blo
k sensitivity, and the degree of a representing or approximatingpolynomial. We survey the relations and biggest gaps known between these mea-sures, and show how they give bounds for the de
ision tree 
omplexity of Booleanfun
tions on deterministi
, randomized, and quantum 
omputers.
1 Introdu
tionComputational Complexity is the sub�eld of Theoreti
al Computer S
ien
ethat aims to understand \how mu
h" 
omputation is ne
essary and suÆ
ientto perform 
ertain 
omputational tasks. For example, given a 
omputationalproblem it tries to establish tight upper and lower bounds on the length ofthe 
omputation (or on other resour
es, like spa
e).Unfortunately, for many, pra
ti
ally relevant, 
omputational problems no tightbounds are known. An illustrative example is the well known P versus NPproblem: for all NP-
omplete problems the 
urrent upper and lower boundslie exponentially far apart. That is, the best known algorithms for these 
om-putational problems need exponential time (in the size of the input) but thebest lower bounds are of a linear nature.One of the general approa
hes towards solving a hard problem (mathemati
alor otherwise) is to set the goals a little bit lower and try to ta
kle a simpler1 Partially supported by the EU �fth framework proje
t QAIP, IST{1999{11234.Preprint submitted to Elsevier Preprint 10 O
tober 2002



problem �rst. The hope is that understanding of the simpler problem will leadto a better understanding of the original, more diÆ
ult, problem.This approa
h has been taken with respe
t to Computational Complexity:simpler and more limited models of 
omputation have been studied. Perhapsthe simplest model of 
omputation is the de
ision tree. The goal here is to
ompute a Boolean fun
tion f : f0; 1gn ! f0; 1g using queries to the input. Inthe most simple form a query asks for the value of the bit xi and the answer isthis value. (The queries may be more 
ompli
ated. In this survey we will onlydeal with this simple type of query.) The algorithm is adaptive, that is the kthquery may depend on the answers of the k�1 previous queries. The algorithm
an therefore be des
ribed by a binary tree, when
e its name `de
ision tree'.For a Boolean fun
tion f we de�ne its deterministi
 de
ision tree 
omplexity,D(f), as the minimum number of queries that an optimal deterministi
 al-gorithm for f needs to make on any input. This measure 
orresponds to thedepth of the tree that an optimal algorithm indu
es. On
e the 
omputationalpower of de
ision trees is better understood, one 
an extend this notion tomore powerful models of query algorithms. This results in randomized andeven quantum de
ision trees.In order to get a handle on the 
omputational power of de
ision trees (whetherdeterministi
, randomized, or quantum), other measures of the 
omplexity ofBoolean fun
tions have been de�ned and studied. Some prime examples are
erti�
ate 
omplexity, sensitivity, blo
k sensitivity, the degree of a representingpolynomial, and the degree of an approximating polynomial. We survey theknown relations and biggest gaps between these 
omplexity measures and showhow they apply to de
ision tree 
omplexity, giving proofs of some of the 
entralresults. The main results say that all of these 
omplexity measures (with thepossible ex
eption of sensitivity) are polynomially related to ea
h other andto the de
ision tree 
omplexities in ea
h of the 
lassi
al, randomized, andquantum settings. We also identify some of the main remaining open questions.The 
omplexity measures dis
ussed here also have interesting relations with
ir
uit 
omplexity [47,4,7℄, parallel 
omputing [10,41,31,47℄, 
ommuni
ation
omplexity [33,9℄, and the 
onstru
tion of ora
les in 
omputational 
omplexitytheory [6,43,15,16℄, whi
h we will not dis
uss here.The paper is organized as follows. In Se
tion 2 we introdu
e some notation
on
erning Boolean fun
tions and multivariate polynomials. In Se
tion 3 wede�ne the three main variants of de
ision trees that we dis
uss: determin-isti
 de
ision trees, randomized de
ision trees, and quantum de
ision trees.In Se
tion 4 we introdu
e 
erti�
ate 
omplexity, sensitivity, blo
k sensitivity,and the degree of a representing or approximating polynomial. We survey themain relations and known upper and lower bounds between these measures.In Se
tion 5 we show how the 
omplexity measures of Se
tion 4 imply upper2



and lower bounds on deterministi
, randomized, and quantum de
ision tree
omplexity. This se
tion gives bounds that apply to all Boolean fun
tions.Finally, in Se
tion 6 we examine some spe
ial sub
lasses of Boolean fun
tionsand tighten the general bounds of Se
tion 5 for those spe
ial 
ases.2 Boolean Fun
tions and Polynomials2.1 Boolean fun
tionsA Boolean fun
tion is a fun
tion f : f0; 1gn ! f0; 1g. Note that f is total,i.e., de�ned on all n-bit inputs. For an input x 2 f0; 1gn, we use xi to denoteits ith bit, so x = x1 : : : xn. We use jxj to denote the Hamming weight of x(its number of 1s). If S is a set of (indi
es of) variables, then we use xS todenote the input obtained by 
ipping the S-variables in x. We abbreviate xfigto xi. For example, if x = 0011, then xf2;3g = 0101 and x4 = 0010. We 
allf symmetri
 if f(x) only depends on jxj. Some 
ommon symmetri
 fun
tionsthat we will refer to are:� ORn(x) = 1 i� jxj � 1� ANDn(x) = 1 i� jxj = n� PARITYn(x) = 1 i� jxj is odd� MAJn(x) = 1 i� jxj > n=2We 
all f monotone (in
reasing) if f(x) 
annot de
rease if we set more vari-ables of x to 1. A fun
tion that we will refer to sometimes is the \addressfun
tion". This is a fun
tion on n = k + 2k variables, where the �rst k bitsof the input provide an index in the last 2k bits. The value of the indexedvariable is the output of the fun
tion. Wegener [46℄ gives a monotone versionof the address fun
tion.2.2 Multilinear polynomialsIf S is a set of (indi
es of) variables, then the monomial XS is the produ
t ofvariables XS = �i2Sxi. The degree of this monomial is the 
ardinality of S. Amultilinear polynomial on n variables is a fun
tion p : Rn ! C that 
an bewritten as p(x) = PS�[n℄ 
SXS for some 
omplex numbers 
S. We 
all 
S the
oeÆ
ient of the monomial XS in p. The degree of p is the degree of its largestmonomial: deg(p) = maxfjSj j 
S 6= 0g. Note that if we restri
t attention tothe Boolean domain f0; 1gn, then xi = xki for all k > 1, so 
onsidering onlymultilinear polynomials is no restri
tion when dealing with Boolean inputs.3



The next lemma implies that if multilinear polynomials p and q are equal onall Boolean inputs, then they are identi
al:Lemma 1 Let p; q : Rn ! R be multilinear polynomials of degree at most d.If p(x) = q(x) for all x 2 f0; 1gn with jxj � d, then p = q.Proof De�ne r(x) = p(x) � q(x). Suppose r is not identi
ally zero. LetV be a minimal-degree term in r with non-zero 
oeÆ
ient 
, and x be theinput where xj = 1 i� xj o

urs in V . Then jxj � d, and hen
e p(x) = q(x).However, sin
e all monomials in r ex
ept for V evaluate to 0 on x, we haver(x) = 
 6= 0 = p(x) � q(x), whi
h is a 
ontradi
tion. It follows that r isidenti
ally zero and p = q. 2Below we sket
h the method of symmetrization, due to Minsky and Papert [28℄(see also [4, Se
tion 4℄). Let p : Rn ! R be a polynomial. If � is somepermutation and x = x1 : : : xn, then �(x) = (x�(1); : : : ; x�(n)). Let Sn be theset of all n! permutations. The symmetrization psym of p averages over allpermutations of the input, and is de�ned as:psym(x) = P�2Sn p(�(x))n! :Note that psym is a polynomial of degree at most the degree of p. Symmetrizingmay a
tually lower the degree: if p = x1 � x2, then psym = 0. The followinglemma allows us to redu
e an n-variate polynomial to a single-variate one.Lemma 2 (Minsky & Papert) If p : Rn ! R is a multilinear polynomial,then there exists a single-variate polynomial q : R! R, of degree at most thedegree of p, su
h that psym(x) = q(jxj) for all x 2 f0; 1gn.Proof Let d be the degree of psym, whi
h is at most the degree of p. Let Vjdenote the sum of all �nj� produ
ts of j di�erent variables, so V1 = x1+� � �+xn,V2 = x1x2 + x1x3 + � � � + xn�1xn, et
. Sin
e psym is symmetri
al, it is easilyshown by indu
tion that it 
an be written aspsym(x) = 
0 + 
1V1 + 
2V2 + � � �+ 
dVd;with 
i 2 R. Note that Vj assumes value �jxjj � = jxj(jxj�1)(jxj�2) � � � (jxj�j+1)=j! on x, whi
h is a polynomial of degree j of jxj. Therefore the single-variatepolynomial q de�ned byq(jxj) = 
0 + 
1 jxj1 !+ 
2 jxj2 !+ � � �+ 
d jxjd !satis�es the lemma. 24



3 De
ision Tree Complexity on Various Ma
hine ModelsBelow we de�ne de
ision tree 
omplexity for three di�erent kinds of ma
hinemodels: deterministi
, randomized, and quantum.3.1 Deterministi
A deterministi
 de
ision tree is a rooted ordered binary tree T . Ea
h internalnode of T is labeled with a variable xi and ea
h leaf is labeled with a value 0or 1. Given an input x 2 f0; 1gn, the tree is evaluated as follows. Start at theroot. If this is a leaf then stop. Otherwise, query the variable xi that labelsthe root. If xi = 0, then re
ursively evaluate the left subtree, if xi = 1 thenre
ursively evaluate the right subtree. The output of the tree is the value (0 or1) of the leaf that is rea
hed eventually. Note that an input x deterministi
allydetermines the leaf, and thus the output, that the pro
edure ends up in.We say a de
ision tree 
omputes f if its output equals f(x), for all x 2 f0; 1gn.Clearly there are many di�erent de
ision trees that 
ompute the same f . The
omplexity of su
h a tree is its depth, i.e., the number of queries made on theworst-
ase input. We de�ne D(f), the de
ision tree 
omplexity of f , as thedepth of an optimal (= minimal-depth) de
ision tree that 
omputes f .3.2 RandomizedAs in many other models of 
omputation, we 
an add the power of random-ization to de
ision trees. There are two ways to view a randomized de
isiontree. Firstly, we 
an add (possibly biased) 
oin 
ips as internal nodes to thetree. That is, the tree may 
ontain internal nodes labeled by a bias p 2 [0; 1℄,and when the evaluation pro
edure rea
hes su
h a node, it will 
ip a 
oin withbias p and will go to the left 
hild on out
ome `heads' and to the right 
hildon `tails'. Now an input x no longer determines with 
ertainty whi
h leaf ofthe tree will be rea
hed, but instead indu
es a probability distribution overthe set of all leaves. Thus the tree outputs 0 or 1 with a 
ertain probability.The 
omplexity of the tree is the number of queries on the worst-
ase inputand worst-
ase out
ome of the 
oin 
ips. A se
ond way to de�ne a randomizedde
ision tree is as a probability distribution � over deterministi
 de
ision trees.The tree is evaluated by 
hoosing a deterministi
 de
isions tree a

ording to�, whi
h is then evaluated as before. The 
omplexity of the randomized treein this se
ond de�nition is the depth of the deepest T that has �(T ) > 0. Itis not hard to see that these two de�nitions are equivalent.5



We say that a randomized de
ision tree 
omputes f with bounded-error ifits output equals f(x) with probability at least 2/3, for all x 2 f0; 1gn. R2(f)denotes the 
omplexity of the optimal randomized de
ision tree that 
omputesf with bounded error. 23.3 QuantumWe brie
y sket
h the framework of quantum 
omputing, referring to [30℄ formore details. The 
lassi
al unit of 
omputation is a bit, whi
h 
an take on thevalues 0 or 1. In the quantum 
ase, the unit of 
omputation is a quantum bitor qubit, whi
h is a linear 
ombination or superposition of the two 
lassi
alvalues: �0j0i+ �1j1i:More generally, an m-qubit state j�i is a superposition of all 
lassi
al m-bitstrings: j�i = Xi2f0;1gm �ijii:Here �i is a 
omplex number, 
alled the amplitude of basis state jii. We requirePi j�ij2 = 1. Mathemati
ally speaking, the set of m-qubit quantum states isthe set of all unit ve
tors in the Hilbert spa
ed that has fjii j i 2 f0; 1gmg asan orthonormal basis.There are two things we 
an do to su
h a state: measure it or apply a unitarytransformation to it. One of the axioms of quantum me
hani
s says that if wemeasure them-qubit register j�i, then we will see the basis state jii with prob-ability j�ij2. Sin
e Pi j�ij2 = 1, we thus have a valid probability distributionover the 
lassi
al m-bit strings. After the measurement, j�i has \
ollapsed"to the spe
i�
 observed basis state jii and all other information in the statewill be lost.Apart from measuring j�i, we 
an also apply a unitary transformation toit. That is, viewing the 2m amplitudes of j�i as a ve
tor in C2m , we 
anobtain some new state j i = Pi2f0;1gm �ijii by multiplying j�i with a unitarymatrix U : j i = U j�i. A matrix U is unitary i� its inverse U�1 equals the
onjugate transpose matrix U�. Be
ause unitarity is equivalent to preservingEu
lidean norm, the new state j i will still have Pi j�ij2 = 1. There is anextensive literature on how su
h large U 
an be obtained from small unitarytransformations (\quantum gates") on few qubits at a time, see [30℄.2 The subs
ript `2' in R2(f) refers to the 2-sided error of the algorithm: it mayerr on 0-inputs as well as on 1-inputs. We will not dis
uss zero-error (Las Vegas)or one-sided error randomized de
ision trees here. See [38,31,22,23,20,8℄ for someresults 
on
erning su
h trees. 6



We formalize a query to an input x 2 f0; 1gn as a unitary transformation Othat maps ji; b; zi to ji; b � xi; zi. Here ji; b; zi is some m-qubit basis state,where i takes dlogne bits, b is one bit, z denotes the (m � dlogne � 1)-bit\workspa
e" of the quantum 
omputer, whi
h is not a�e
ted by the query,and � denotes ex
lusive-or. This 
learly generalizes the 
lassi
al setting wherea query inputs an i into a bla
k-box, whi
h returns the bit xi: if we apply Oto the basis state ji; 0; zi we get ji; xi; zi, from whi
h the ith bit of the input
an be read. Be
ause O has to be unitary, we spe
ify that it maps ji; 1; zi toji; 1�xi; zi. Note that a quantum 
omputer 
an make queries in superposition:applying O on
e to the state 1pnPni=1 ji; 0; zi gives 1pnPni=1 ji; xi; zi, whi
h insome sense 
ontains all bits of the input.A quantum de
ision tree has the following form: we start with anm-qubit statej~0i where every bit is 0. Then we apply a unitary transformation U0 to thestate, then we apply a query O, then another unitary transformation U1, et
. AT -query quantum de
ision tree thus 
orresponds to a big unitary transforma-tion A = UTOUT�1 � � �OU1OU0. Here the Ui are �xed unitary transformations,independent of the input x. The �nal state Aj~0i depends on the input x onlyvia the T appli
ations of O. The output is obtained by measuring the �nalstate and outputting the rightmost bit of the observed basis state (withoutloss of generality we 
an assume there are no intermediate measurements).We say that a quantum de
ision tree 
omputes f exa
tly if the output equalsf(x) with probability 1, for all x 2 f0; 1gn. The tree 
omputes f with bounded-error if the output equals f(x) with probability at least 2/3, for all x 2 f0; 1gn.QE(f) denotes the number of queries of an optimal quantum de
ision tree that
omputes f exa
tly, Q2(f) is the number of queries of an optimal quantumde
ision tree that 
omputes f with bounded-error. Note that we just 
ountthe number of queries, not the 
omplexity of the Ui.Unlike the 
lassi
al deterministi
 or randomized de
ision trees, the quantumalgorithms are not really trees anymore (the names `quantum query algo-rithm' or `quantum bla
k-box algorithm' are also in use). Nevertheless weprefer the term `quantum de
ision tree', be
ause su
h quantum algorithmsgeneralize 
lassi
al trees in the sense that they 
an simulate them, as sket
hedbelow. Consider a T -query deterministi
 de
ision tree. It �rst determines whi
hvariable it will query initially; then it determines the next query dependingupon its history, and so on for T queries. Eventually it outputs an output-bitdepending on its total history. The basis states of the 
orresponding quan-tum algorithm have the form ji; b; h; ai, where i; b is the query-part, h rangesover all possible histories of the 
lassi
al 
omputation (this history in
ludesall previous queries and their answers), and a is the rightmost qubit, whi
hwill eventually 
ontain the output. Let U0 map the initial state j~0; 0;~0; 0i toji; 0;~0; 0i, where xi is the �rst variable that the 
lassi
al tree would query. Nowthe quantum algorithm applies O, whi
h turns the state into ji; xi;~0; 0i. Then7



the algorithm applies a transformation U1 that maps ji; xi;~0; 0i to jj; 0; h; 0i,where h is the new history (whi
h in
ludes i and xi) and xj is the variable thatthe 
lassi
al tree would query given the out
ome of the previous query. Thenthe quantum tree applies O for the se
ond time, it applies a transformationU2 that updates the workspa
e and determines the next query, et
. Finally,after T queries the quantum tree sets the answer bit to 0 or 1 depending onits total history. All operations Ui performed here are inje
tive mappings frombasis states to basis states, hen
e they 
an be extended to permutations ofbasis states, whi
h are unitary transformations. Thus a T -query determinis-ti
 de
ision tree 
an be simulated by an exa
t T -query quantum algorithm.Similarly a T -query randomized de
ision tree 
an be simulated by a T -queryquantum de
ision tree with the same error probability (basi
ally be
ause a su-perposition 
an \simulate" a probability distribution). A

ordingly, we haveQ2(f) � R2(f) � D(f) � n and Q2(f) � QE(f) � D(f) � n for all f .4 Some Complexity MeasuresLet f : f0; 1gn ! f0; 1g be a Boolean fun
tion. We 
an asso
iate severalmeasures of 
omplexity with su
h fun
tions, whose de�nitions and relationsare surveyed below.4.1 Certi�
ate 
omplexityCerti�
ate 
omplexity measures how many of the n variables have to be givena value in order to �x the value of f .De�nition 1 Let C be an assignment C : S ! f0; 1g of values to some subsetS of the n variables. We say that C is 
onsistent with x 2 f0; 1gn if xi = C(i)for all i 2 S.For b 2 f0; 1g, a b-
erti�
ate for f is an assignment C su
h that f(x) = bwhenever x is 
onsistent with C. The size of C is jSj, the 
ardinality of S.The 
erti�
ate 
omplexity Cx(f) of f on x is the size of a smallest f(x)-
erti�
ate that is 
onsistent with x. The 
erti�
ate 
omplexity of f is C(f) =maxxCx(f). The 1-
erti�
ate 
omplexity of f is C(1)(f) = maxfxjf(x)=1g Cx(f),and similarly we de�ne C(0)(f).For example, C(1)(ORn) = 1 sin
e it suÆ
es to set one variable xi = 1 to for
ethe OR-fun
tion to 1. On the other hand, C(ORn) = C(0)(ORn) = n.8



4.2 Sensitivity and blo
k sensitivitySensitivity and blo
k sensitivity measure how sensitive the value of f is to
hanges in the input. Sensitivity was introdu
ed in [10℄ (under the name of
riti
al 
omplexity) and blo
k sensitivity in [31℄. 3De�nition 2 The sensitivity sx(f) of f on x is the number of variables xi forwhi
h f(x) 6= f(xi). The sensitivity of f is s(f) = maxx sx(f).The blo
k sensitivity bsx(f) of f on x is the maximum number b su
h that thereare disjoint sets B1; : : : ; Bb for whi
h f(x) 6= f(xBi). The blo
k sensitivity off is bs(f) = maxx bsx(f). (If f is 
onstant, we de�ne s(f) = bs(f) = 0.)Note that sensitivity is just blo
k sensitivity with the size of the blo
ks Birestri
ted to 1. Simon [41℄ gave a general lower bound on s(f):Theorem 1 (Simon) If f depends on all n variables, then we have s(f) �12 logn� 12 log logn + 12 .Wegener [46℄ proved that this theorem is tight up to the O(log logn)-term forthe monotone address fun
tion.We now prove some relations between C(f), s(f), and bs(f). Clearly, for all xwe have sx(f) � bsx(f) and bsx(f) � Cx(f) (sin
e a 
erti�
ate for x will haveto 
ontain at least one variable of ea
h sensitive blo
k). Hen
e:Proposition 1 s(f) � bs(f) � C(f).The biggest gap known between s(f) and bs(f) is quadrati
 and was exhibitedby Rubinstein [37℄:Example 1 Let n = 4k2. Divide the n variables in pn disjoint blo
ks of pnvariables: the �rst blo
k B1 
ontains x1; : : : ; xpn, the se
ond blo
k B2 
ontainsxpn+1; : : : ; x2pn, et
. De�ne f su
h that f(x) = 1 i� there is at least one blo
kBi where two 
onse
utive variables have value 1 and the other pn�2 variablesare 0. It is easy to see that s(f) = pn and bs(f) = n=2, so we have a quadrati
gap between s(f) and bs(f). Sin
e bs(f) � C(f), this is also a quadrati
 gapbetween s(f) and C(f) (Wegener and Z�adori give a di�erent fun
tion with asmaller gap between s(f) and C(f) [48℄).It has been open for quite a while whether bs(f) 
an be upper bounded by apolynomial in s(f). It may well be true that bs(f) 2 O(s(f)2).3 There has also been some work on average (blo
k) sensitivity [5℄ and its appli-
ations [7,40,2℄. In parti
ular, Shi [40℄ has shown that the average sensitivity of atotal fun
tion f is a lower bound on its approximate degreegdeg(f).9



Open problem 1 Is bs(f) 2 O(s(f)k) for some k?We pro
eed to give Nisan's proof [31℄ that C(f) is bounded by bs(f)2.Lemma 3 If B is a minimal sensitive blo
k for x, then jBj � s(f).Proof If we 
ip one of the B-variables in xB, then the fun
tion value must 
ipfrom f(xB) to f(x) (otherwise B would not be minimal), so every B-variableis sensitive for f on input xB. Hen
e jBj � sxB(f) � s(f). 2Theorem 2 (Nisan) C(f) � s(f)bs(f).Proof Consider an input x 2 f0; 1gn and let B1; : : : ; Bb be disjoint minimalsets of variables that a
hieve the blo
k sensitivity b = bsx(f) � bs(f). We willshow that the fun
tion C : [iBi ! f0; 1g that sets variables a

ording to x isa suÆ
iently small 
erti�
ate for f(x).If C is not an f(x)-
erti�
ate, then let x0 be an input that is 
onsistent withC, su
h that f(x0) 6= f(x). De�ne Bb+1 by x0 = xBb+1 . Now f is sensitive toBb+1 on x and Bb+1 is disjoint from B1; : : : ; Bb, whi
h 
ontradi
ts b = bsx(f).Hen
e C is an f(x)-
erti�
ate. By the previous lemma we have jBij � s(f)for all i, hen
e the size of this 
erti�
ate is j [i Bij � s(f)bs(f). 2No quadrati
 gap between bs(f) and C(f) seems to be known. Some sub-quadrati
 gaps may be found in [48, Se
tion 3℄.4.3 Degree of representing polynomialDe�nition 3 A polynomial p : Rn ! R represents f if p(x) = f(x) for allx 2 f0; 1gn.Note that sin
e x2 = x for x 2 f0; 1g, we 
an restri
t attention to multilinearpolynomials for representing f . It is easy to see that ea
h f 
an be representedby a multilinear polynomial p. Lemma 1 implies that this polynomial is unique,whi
h allows us to de�ne:De�nition 4 The degree deg(f) of f is the degree of the multilinear polyno-mial that represents f .For example, deg(ANDn) = n, be
ause the representing polynomial is themonomial x1 : : : xn. The degree deg(f) may be signi�
antly larger than s(f),bs(f), and C(f): 10



Example 2 Let f on n = k2 variables be the AND of k ORs of k variablesea
h. Both ANDk and ORk are represented by degree-k polynomials, so the rep-resenting polynomial of f has degree deg(f) = k2 = n. On the other hand, it isnot hard to see that s(f) = bs(f) = C(f) = pn. Thus deg(f) is quadrati
allylarger than s(f), bs(f), and C(f) in this 
ase. 4On the other hand, deg(f) may also be signi�
antly smaller than s(f) andbs(f), as the next example from Nisan and Szegedy [32℄ shows.Example 3 Consider the fun
tion E12 de�ned by E12(x1; x2; x3) = 1 i� jxj 2f1; 2g. This fun
tion is represented by the following degree-2 polynomial:E12(x1; x2; x3) = x1 + x2 + x3 � x1x2 � x1x3 � x2x3:De�ne Ek12 as the fun
tion on n = 3k variables obtained by building a 
om-plete re
ursive ternary tree of depth k, where the 3k leaves are the variablesand ea
h node is the E12-fun
tion of its three 
hildren. For k > 1, the rep-resenting polynomial for Ek12 is obtained by substituting independent 
opiesof the Ek�112 -polynomial in the above polynomial for E12. This shows thatdeg(f) = 2k = n1= log 3. On the other hand, it is easy to see that 
ippingany variable in the input ~0 
ips the fun
tion value from 0 to 1, hen
e s(f) =bs(f) = C(f) = n = deg(f)log 3 (Kushilevitz has found a slightly bigger gap,based on the same te
hnique with a slightly more 
omplex polynomial, see [33,footnote 1 on p.560℄).Below we give Nisan and Szegedy's proof that deg(f) 
an be no more thanquadrati
ally smaller than bs(f) [32℄. This shows that the gap of the lastexample is 
lose to optimal. The proof uses the following theorem from [12,36℄:Theorem 3 (Ehli
h & Zeller; Rivlin & Cheney) Let p : R ! R be apolynomial su
h that b1 � p(i) � b2 for every integer 0 � i � n, and its deriva-tive has jp0(x)j � 
 for some real 0 � x � n. Then deg(p) � q
n=(
+ b2 � b1).Theorem 4 (Nisan & Szegedy) bs(f) � 2 deg(f)2.Proof Let polynomial p of degree d represent f . Let b = bs(f), and a andB1; : : : ; Bb be the input and sets that a
hieve the blo
k sensitivity. We assumewithout loss of generality that f(a) = 0. We transform p(x1; : : : ; xN ) into apolynomial q(y1; : : : ; yb) by repla
ing every xj in p as follows:(1) xj = yi if aj = 0 and j 2 Bi4 It will follow from Theorem 10 and Corollary 2 that deg(f) � C(f)2, so thisquadrati
 gap between deg(f) and C(f) is optimal. Theorem 10 and Corollary 1will imply deg(f) � bs(f)3, but the quadrati
 gap between deg(f) and bs(f) of thisexample is the best we know of. 11



(2) xj = 1� yi if aj = 1 and j 2 Bi(3) xj = aj if j 62 Bi for every iNow it is easy to see that q has the following properties:(1) q is a multilinear polynomial of degree � d(2) q(y) 2 f0; 1g for all y 2 f0; 1gb(3) q(~0) = p(x) = f(x) = 0(4) q(ei) = p(xBi) = f(xBi) = 1 for all unit ve
tors ei 2 f0; 1gbLet r be the single-variate polynomial of degree � d obtained from symmetriz-ing q over f0; 1gb. Note that 0 � r(i) � 1 for every integer 0 � i � b, and forsome x 2 [0; 1℄ we have r0(x) � 1 be
ause r(0) = 0 and r(1) = 1. ApplyingTheorem 3 we get d � qb=2. 2The following two theorems give, respe
tively, a weak bound for all fun
tions,and a strong bound for almost all fun
tions. We state the �rst without proof(see [32℄).Theorem 5 (Nisan & Szegedy) If f depends on all n variables, then wehave deg(f) � logn�O(log logn).The address fun
tion on n = k+2k variables has deg(f) = k+1, whi
h showsthat the previous theorem is tight up to the O(log logn)-term.For the se
ond result, de�ne Xeven1 = fx j jxj is even and f(x) = 1g, similarlyfor Xodd1 . Let X1 = Xeven1 [Xodd1 . Let p = PS 
SXS be the unique polynomialrepresenting f , with 
S the 
oeÆ
ient of the monomial XS = �i2Sxi. TheMoebius inversion formula (see [4℄) says:
S = XT�S(�1)jSj�jT jf(T );where f(T ) is the value of f on the input where exa
tly the variables in Tare 1. We learned about the next lemma via personal 
ommuni
ation withYaoyun Shi.Lemma 4 (Shi & Yao) deg(f) = n i� jXeven1 j 6= jXodd1 j.Proof Applying the Moebius formula with S = f1; : : : ; ng, we get
S = XT�S(�1)jSj�jT jf(T ) = (�1)n Xx2X1(�1)jxj = (�1)n �jXeven1 j � jXodd1 j� :Sin
e deg(f) = n i� the monomial x1 : : : xn has non-zero 
oeÆ
ient, the lemmafollows. 212



As a 
onsequen
e, we 
an exa
tly 
ount the number of fun
tions that haveless than full degree:Theorem 6 There are � 2n2n�1� fun
tions f : f0; 1gn ! f0; 1g with deg(f) < n.Proof We will 
ount the number E of f for whi
h jXeven1 j = jXodd1 j; byLemma 4 these are exa
tly the f satisfying deg(f) < n. Suppose we want toassign f -value 1 to exa
tly i of the 2n�1 inputs for whi
h jxj is even. There are�2n�1i � ways to do this. If we want jXeven1 j = jXodd1 j, then there are only �2n�1i �ways to 
hoose the f -values of the odd x. Hen
eE = 2n�1Xi=0  2n�1i ! 2n�1i ! =  2n2n�1!:The se
ond equality is Vandermonde's 
onvolution [18, p.174℄. 2Note that � 2n2n�1� 2 �(22n=p2n) by Stirling's formula. Sin
e there are 22nBoolean fun
tions on n variables, we see that the fra
tion of fun
tions withdegree < n is o(1). Thus almost all fun
tions have full degree.4.4 Degree of approximating polynomialApart from representing a fun
tion f exa
tly by means of a polynomial, wemay also only approximate it with a polynomial, whi
h 
an sometimes be ofa smaller degree. 5De�nition 5 A polynomial p : Rn ! R approximates f if jp(x)�f(x)j � 1=3for all x 2 f0; 1gn. The approximate degree gdeg(f) of f is the minimum degreeamong all multilinear polynomials that approximate f .As a simple example: 23x1 + 23x2 approximates OR2, so gdeg(OR2) = 1. In
ontrast, deg(OR2) = 2. Note that there may be many di�erent minimal-degree polynomials that approximate f , whereas there is only one polynomialthat represents f .By the same te
hnique as Theorem 4, Nisan and Szegedy [32℄ showedTheorem 7 (Nisan & Szegedy) bs(f) � 6 gdeg(f)2.5 Also non-deterministi
 polynomials for f have been studied [49℄, but we will not
over that notion in this survey. 13



The approximate degree of f 
an sometimes be signi�
antly smaller than thedegree of f . Nisan and Szegedy [32℄ 
onstru
ted a degree-O(pn) polynomialthat approximates ORn. Sin
e bs(ORn) = n, the previous theorem impliesthat this degree is optimal. Sin
e deg(ORn) = n we have a quadrati
 gapbetween deg(f) and gdeg(f). This is the biggest gap known.Ambainis [1℄ showed that almost all fun
tions have high approximate degree:Theorem 8 (Ambainis) Almost all f have gdeg(f) � n=2� O(pn logn).5 Appli
ation to De
ision Tree ComplexityThe 
omplexity measures dis
ussed above are intimately related to the de
isiontree 
omplexity of f in various models. In fa
t, D(f), R2(f), QE(f), Q2(f),bs(f), C(f), deg(f), and gdeg(f) are all polynomially related.5.1 Deterministi
We start with two simple lower bounds on D(f).Theorem 9 bs(f) � D(f).Proof On input x with disjoint sensitive blo
ks B1; : : : ; Bbs(f), a deterministi
de
ision tree must query at least one variable in ea
h blo
k Bi, for otherwise we
ould 
ip that blo
k (and hen
e the 
orre
t output) without the tree noti
ingit. Thus the tree must make at least bs(f) queries on input x. 2Theorem 10 deg(f) � D(f).Proof Consider a de
ision tree for f of depth D(f). Let L be a 1-leaf (i.e., aleaf with output 1) and x1; : : : ; xr be the queries on the path to L, with valuesb1; : : : ; br. De�ne the polynomial pL(x) = �i:bi=1xi�i:bi=0(1� xi). Then pL hasdegree r � D(f). Furthermore, pL(x) = 1 if leaf L is rea
hed on input x, andpL(x) = 0 otherwise. Let p = PL pL be the sum of all pL over all 1-leaves.Then p has degree � D(f), and p(x) = 1 i� a 1-leaf is rea
hed on input x, sop represents f . 2Below we give some upper bounds on D(f) in terms of bs(f), C(f), deg(f),and gdeg(f). Beals et al. [3℄ prove 14



Theorem 11 D(f) � C(1)(f)bs(f).Proof The following des
ribes an algorithm to 
ompute f(x), querying atmost C(1)(f)bs(f) variables of x (in the algorithm, by a \
onsistent" 
erti�
ateC or input y at some point we mean a C or y that agrees with the values ofall variables queried up to that point).(1) Repeat the following at most bs(f) times:Pi
k a 
onsistent 1-
erti�
ate C and query those of its variables whosex-values are still unknown (if there is no su
h C, then return 0 andstop); if the queried values agree with C then return 1 and stop.(2) Pi
k a 
onsistent y 2 f0; 1gn and return f(y).The nondeterministi
 \pi
k a C" and \pi
k a y" 
an easily be made determin-isti
 by 
hoosing the �rst C resp. y in some �xed order. Call this algorithm A.Sin
e A runs for at most bs(f) stages and ea
h stage queries at most C(1)(f)variables, A queries at most C(1)(f)bs(f) variables.It remains to show that A always returns the right answer. If it returns ananswer in step (1), this is either be
ause there are no 
onsistent 1-
erti�
atesleft (and hen
e f(x) must be 0) or be
ause x is found to agree with a parti
ular1-
erti�
ate C. In both 
ases A gives the right answer.Now 
onsider the 
ase where A returns an answer in step (2). We will showthat all 
onsistent y must have the same f -value. Suppose not. Then thereare 
onsistent y; y0 with f(y) = 0 and f(y0) = 1. A has queried b = bs(f) 1-
erti�
ates C1; C2; : : : ; Cb. Furthermore, y0 
ontains a 
onsistent 1-
erti�
ateCb+1. We will derive from these Ci disjoint sets Bi su
h that f is sensitiveto ea
h Bi on y. For every 1 � i � b + 1, de�ne Bi as the set of variableson whi
h y and Ci disagree. Clearly, ea
h Bi is non-empty, for otherwise thepro
edure would have returned 1 in step (1). Note that yBi agrees with Ci, sof(yBi) = 1, whi
h shows that f is sensitive to ea
h Bi on y. Suppose variablek o

urs in some Bi (1 � i � b), then xk = yk 6= Ci(k). If j > i, then Cj hasbeen 
hosen 
onsistent with all variables queried up to that point (in
ludingxk), so we 
annot have xk = yk 6= Cj(k). This shows that k 62 Bj, hen
e allBi and Bj are disjoint. But then f is sensitive to bs(f) + 1 disjoint sets on y,whi
h is a 
ontradi
tion. A

ordingly, all 
onsistent y in step 2 must have thesame f -value, and A returns the right value f(y) = f(x) in step 2, be
ause xis one of those 
onsistent y. 2Combining with C(1) � C(f) � s(f)bs(f) (Theorem 2) we obtain:Corollary 1 D(f) � s(f)bs(f)2 � bs(f)3.15



It might be possible to improve this to D(f) � bs(f)2. This would be optimal,sin
e the fun
tion f of Example 2 has bs(f) = pn and D(f) = n.Open problem 2 Is D(f) 2 O(bs(f)2)?Of 
ourse, Theorem 11 also holds with C(0) instead of C(1). Sin
e bs(f) �maxfC(0)(f); C(1)(f)g, we also obtain the following result, due to [6,21,43℄.Corollary 2 D(f) � C(0)(f)C(1)(f).Now we will show that D(f) is upper bounded by deg(f)4 and gdeg(f)6. The�rst result is due to Nisan and Smolensky, below we give their (previouslyunpublished) proof. It improves the earlier result D(f) 2 O(deg(f)8) of Nisanand Szegedy [32℄. Here a maxonomial of f is a monomial with maximal degreein f 's representing polynomial p.Lemma 5 (Nisan & Smolensky) For every maxonomial M of f , there isa set B of variables in M su
h that f(~0B) 6= f(~0).Proof Obtain a restri
ted fun
tion g from f by setting all variables outsideof M to 0. This g 
annot be 
onstant 0 or 1, be
ause its unique polynomialrepresentation (as obtained from p) 
ontains M . Thus there is some subset Bof the variables in M that makes g(~0B) 6= g(~0) and hen
e f(~0B) 6= f(~0). 2Lemma 6 (Nisan & Smolensky) There exists a set of deg(f)bs(f) vari-ables that interse
ts ea
h maxonomial of f .Proof Greedily take all variables in maxonomials of f , as long as there isa maxonomial that is still disjoint from those taken so far. Sin
e ea
h su
hmaxonomial will 
ontain a sensitive blo
k for ~0, and there 
an be at mostbs(f) disjoint sensitive blo
ks, this pro
edure 
an go on for at most bs(f)maxonomials. Sin
e ea
h maxonomial 
ontains deg(f) variables, the lemmafollows. 2Theorem 12 (Nisan & Smolensky) D(f) � deg(f)2bs(f) � 2deg(f)4.Proof By the previous lemma, there is a set of deg(f)bs(f) variables thatinterse
ts ea
h maxonomial of f . Query all these variables. This indu
es arestri
tion g of f on the remaining variables, su
h that deg(g) < deg(f) (be-
ause the degree of ea
h maxonomial in the representation of f drops at leastone) and bs(g) � bs(f). Repeating this indu
tively for at most deg(f) times,we rea
h a 
onstant fun
tion and learn the value of f . This algorithm uses atmost deg(f)2bs(f) queries, hen
e D(f) � deg(f)2bs(f). Theorem 4 gives these
ond inequality of the theorem. 216



Combining Corollary 1 and Theorem 7 we obtain the following result from [3℄(improving the earlier D(f) 2 O(gdeg(f)8) result of Nisan and Szegedy [32℄):Theorem 13 D(f) 2 O(gdeg(f)6).Finally, sin
e deg(f) may be polynomially larger or smaller than bs(f), thefollowing theorem may be weaker or stronger than Theorem 11. The proofuses an idea similar to the above Nisan-Smolensky proof.Theorem 14 D(f) � C(1)(f)deg(f).Proof Let p be the representing polynomial for f . Choose some 
erti�
ate C :S ! f0; 1g of size � C(1)(f). If we �ll in the S-variables a

ording to C, then pmust redu
e to a 
onstant fun
tion (
onstant 0 if C is a 0-
erti�
ate, 
onstant1 if C is a 1-
erti�
ate). Hen
e the 
erti�
ate has to interse
t ea
h maxonomialof p. A

ordingly, querying all variables in S redu
es the polynomial degreeof the fun
tion by at least 1. Repeating this deg(f) times, we end up with a
onstant fun
tion and hen
e know f(x). In all, this algorithm takes at mostC(1)(f)deg(f) queries. 25.2 RandomizedHere we show thatD(f), R2(f), bs(f), and gdeg(f) are all polynomially related.We �rst give the bounded-error analogues of Theorems 10 and 9:Theorem 15 gdeg(f) � R2(f).Proof Consider a randomized de
ision tree for f of depth R2(f), viewed as aprobability distribution � over di�erent deterministi
 de
ision trees T , ea
h ofdepth at most R2(f). Using the te
hnique of Theorem 10, we 
an write ea
hof those T as a 0/1-valued polynomial pT of degree at most R2(f). De�nep = PT �(T )pT , whi
h has degree at most R2(f). Then it is easy to see thatp gives the a

eptan
e probability of R, so p approximates f . 2Nisan [31℄ provedTheorem 16 (Nisan) bs(f) � 3 R2(f).Proof Consider an algorithmwith R2(f) queries, and an input x that a
hievesthe blo
k sensitivity. For every set S su
h that f(x) 6= f(xS), the probability17



that the algorithm queries a variable in S must be � 1=3, otherwise thealgorithm 
ould not \see" the di�eren
e between x and xS with suÆ
ientprobability. Hen
e on input x the algorithm has to make an expe
ted numberof at least 1=3 queries in ea
h of the bs(f) sensitive blo
ks, so the total expe
tednumber of queries on input x must be at least bs(f)=3. Sin
e the worst-
asenumber of queries on input x is at the least the expe
ted number of querieson x, the theorem follows. 2Combined with Corollary 1 we see that the gap between D(f) and R2(f) 
anbe at most 
ubi
 [31℄:Corollary 3 (Nisan) D(f) � 27 R2(f)3.There may be some room for improvement here, be
ause the biggest gap knownbetween D(f) and R2(f) is mu
h less than 
ubi
:Example 4 Let f on n = 2k variables be the 
omplete binary AND-OR-treeof depth k. For instan
e, for k = 2 we have f(x) = (x1 _ x2) ^ (x3 _ x4). It iseasy to see that deg(f) = n and hen
e D(f) = n. There is a simple randomizedalgorithm for f [42,38℄: randomly 
hoose one of the two subtrees of the rootand re
ursively 
ompute the value of that subtree; if its value is 0 then output 0,otherwise 
ompute the other subtree and output its value. It 
an be shown thatthis algorithm always gives the 
orre
t answer with expe
ted number of queriesO(n�), where � = log((1 + p33)=4) � 0:7537 : : :. Saks and Wigderson [38℄showed that this is asymptoti
ally optimal for zero-error algorithms for thisfun
tion, and Santha [39℄ proved the same for bounded-error algorithms. Thuswe have D(f) = n = �(R2(f)1:3:::).Open problem 3 What is the biggest gap between D(f) and R2(f)?5.3 QuantumAs in the 
lassi
al 
ase, deg(f) and gdeg(f) give lower bounds on quantumquery 
omplexity. The next lemma from [3℄ is also impli
it in the 
ombinationof some proofs in [15,16℄.Lemma 7 Let A be a quantum de
ision tree that makes T queries. Then thereexist 
omplex-valued n-variate multilinear polynomials �i of degree at most T ,su
h that the �nal state of A is Xi2f0;1gm �i(x)jii;for every input x 2 f0; 1gn. 18



Proof Let j�ki be the state of quantum de
ision tree (on input x) just beforethe kth query. Note that j�k+1i = UkOj�ki. The amplitudes in j�0i dependon the initial state and on U0 but not on x, so they are polynomials of x ofdegree 0. A query maps basis state ji; b; zi to ji; b� xi; zi, so if the amplitudeof ji; 0; zi in j�0i is � and the amplitude of ji; 1; zi is �, then the amplitude ofji; 0; zi after the query be
omes (1� xi)� + xi� and the amplitude of ji; 1; zibe
omes xi� + (1 � xi)�, whi
h are polynomials of degree 1. (In general,if the amplitudes before a query are polynomials of degree � j, then theamplitudes after the query will be polynomials of degree � j + 1.) Betweenthe �rst and the se
ond query lies the unitary transformation U1. However, theamplitudes after applying U1 are just linear 
ombinations of the amplitudesbefore applying U1, so the amplitudes in j�1i are polynomials of degree at most1. Continuing indu
tively, the amplitudes of the �nal state are found to bepolynomials of degree at most T . We 
an make these polynomials multilinearwithout a�e
ting their values on x 2 f0; 1gn, by repla
ing all xmi by xi. 2Theorem 17 deg(f) � 2 QE(f).Proof Consider an exa
t quantum algorithm for f with QE(f) queries. LetS be the set of basis states 
orresponding to a 1-output. Then the a

eptan
eprobability is P (x) = Pk2S j�k(x)j2. By the previous lemma, the �k are poly-nomials of degree � QE(f), so P (x) is a polynomial of degree � 2QE(f). ButP represents f , so it has degree deg(f) and hen
e deg(f) � 2QE(f). 2By a similar proof:Theorem 18 gdeg(f) � 2 Q2(f).Both theorems are tight for f = PARITYn: here we have deg(f) = gdeg(f) =n [28℄ and QE(f) = Q2(f) = dn=2e [3,13℄. No f is known withQE(f) > deg(f)or Q2(f) > gdeg(f), so the following question presents itself:Open problem 4 Are QE(f) 2 O(deg(f)) and Q2(f) 2 O(gdeg(f))?Note that the degree lower bounds of Theorems 6 and 8 now imply stronglower bounds on the quantum de
ision tree 
omplexities of almost all f . Inparti
ular, Theorem 8 implies that Q2(f) � n=4� O(pn logn) for almost allf . In 
ontrast, Van Dam [45℄ has shown that Q2(f) � n=2 +pn for all f .Combining Theorems 17 and 18 with Theorems 12 and 13 we obtain thepolynomial relations between 
lassi
al and quantum 
omplexities of [3℄:Corollary 4 D(f) 2 O(QE(f)4) and D(f) 2 O(Q2(f)6).19



Some other quantum lower bounds via degree lower bounds may be foundin [3,1,29,14,8℄.The biggest gap that is known between D(f) and QE(f) is only a fa
tor of2: D(PARITYn) = n and QE(PARITYn) = dn=2e. The biggest gap we knowbetween D(f) and Q2(f) is quadrati
:D(ORn) = n and Q2(ORn) 2 �(pn) byGrover's quantum sear
h algorithm [19℄. Also, R2(ORn) 2 �(n), deg(ORn) =n, gdeg(ORn) 2 �(pn).Open problem 5 What are the biggest gaps between the 
lassi
alD(f), R2(f)and their quantum analogues QE(f), Q2(f)?The previous two open problems are 
onne
ted via the fun
tion f = Ek12 onn = 3k variables (Example 3): this has D(f) = s(f) = n but deg(f) = n1= log 3.The 
omplexity QE(f) is unknown; it must lie between n1= log 3=2 and n. How-ever, it must either show a gap between D(f) and QE(f) (partly answeringthe last question) or between deg(f) and QE(f) (answering the penultimatequestion).6 Some Spe
ial Classes of Fun
tionsHere we look more 
losely at several spe
ial 
lasses of Boolean fun
tions.6.1 Symmetri
 fun
tionsRe
all that a fun
tion is symmetri
 if f(x) only depends on the Hammingweight jxj of its input, so permuting the input does not 
hange the value of thefun
tion. A symmetri
 f is fully des
ribed by giving a ve
tor (f0; f1; : : : ; fn) 2f0; 1gn+1, where fk is the value of f(x) for jxj = k. Be
ause of this andLemma 2, there is a 
lose relationship between polynomials that representsymmetri
 fun
tions, and single-variate polynomials that assume values 0 or 1on f0; 1; : : : ; ng. Using this relationship, von zur Gathen and Ro
he [17℄ provedeg(f) = (1� o(1))n for all symmetri
 f :Theorem 19 (von zur Gathen & Ro
he) If f is non-
onstant and sym-metri
, then deg(f) = n � O(n0:548). If, furthermore, n + 1 is prime, thendeg(f) = n.In fa
t, von zur Gathen and Ro
he 
onje
ture that deg(f) = n� O(1) for allsymmetri
 f . The biggest gap they found is deg(f) = n� 3 for some spe
i�
f and n. Via Theorems 10 and 17, the above degree lower bounds give stronglower bounds on D(f) and QE(f). 20



For the 
ase of approximate degrees of symmetri
 f , Paturi [34℄ gave thefollowing tight 
hara
terization. De�ne �(f) = minfj2k� n+ 1j : fk 6= fk+1g.Informally, this quantity measures the length of the interval around Hammingweight n=2 where fk is 
onstant.Theorem 20 (Paturi) If f is non-
onstant and symmetri
, then gdeg(f) =�(qn(n� �(f))).Paturi's result implies lower bounds on R2(f) and Q2(f). For Q2(f) thesebounds are in fa
t tight (a mat
hing upper bound was shown in [3℄), but forR2(f) a stronger bound 
an be obtained from Theorem 16 and the followingresult [44℄:Proposition 2 (Tur�an) If f is non-
onstant and symmetri
, then s(f) �dn+12 e.Proof Let k be su
h that fk 6= fk+1, and jxj = k. Without loss of generalityassume k � b(n� 1)=2
 (otherwise give the same argument with 0s and 1sreversed). Note that 
ipping any of the n�k 0-variables in x 
ips the fun
tionvalue. Hen
e s(f) � sx(f) � n� k � d(n+ 1)=2e. 2This lemma is tight, sin
e s(MAJn) = d(n+ 1)=2e.Colle
ting the previous results, we have tight 
hara
terizations of the variousde
ision tree 
omplexities of all symmetri
 f :Theorem 21 If f is non-
onstant and symmetri
, then� D(f) = (1� o(1))n� R2(f) = �(n)� QE(f) = �(n)� Q2(f) = �(qn(n� �(f)))6.2 Monotone fun
tionsOne ni
e property of monotone fun
tions was shown in [31℄:Proposition 3 (Nisan) If f is monotone, then C(f) = s(f) = bs(f).Proof Sin
e s(f) � bs(f) � C(f) for all f , we only have to prove C(f) �s(f). Let C : S ! f0; 1g be a minimal 
erti�
ate for some x with jSj = C(f).Without loss of generality we assume f(x) = 0. For ea
h i 2 S it musthold that xi = 0 and f(xi) = 1, for otherwise i 
ould be dropped from the21




erti�
ate, 
ontradi
ting minimality. Thus ea
h variable in S is sensitive in x,hen
e C(f) � sx(f) � s(f). 2Theorem 11 now implies:Corollary 5 If f is monotone, then D(f) � s(f)2.This 
orollary is exa
tly tight, sin
e the fun
tion f of Example 2 has D(f) = nand s(f) = pn and is monotone.Also, the lower bound of Theorem 4 
an be improved toProposition 4 If f is monotone, then s(f) � deg(f).Proof Let x be an input on whi
h the sensitivity of f equals s(f). Assumewithout loss of generality that f(x) = 0. All sensitive variables must be 0 inx, and setting one or more of them to 1 
hanges the value of f from 0 to 1.Hen
e by �xing all variables in x ex
ept for the s(f) sensitive variables, weobtain the OR fun
tion on s(f) variables, whi
h has degree s(f). Thereforedeg(f) must be at least s(f). 2The above two results strengthen some of the previous bounds for monotonefun
tions:Corollary 6 If f is monotone, then D(f) 2 O(R2(f)2), D(f) 2 O(QE(f)2),and D(f) 2 O(Q2(f)4).For the spe
ial 
ase where f is both monotone and symmetri
, we have:Proposition 5 If f is non-
onstant, symmetri
, and monotone, then deg(f) =n.Proof Note that f is simply a threshold fun
tion: f(x) = 1 i� jxj � t for somet. Let p : R! R be the non-
onstant single-variate polynomial obtained fromsymmetrizing f . This has degree � deg(f) � n and p(i) = 0 for i 2 f0; : : : ; t�1g, p(i) = 1 for i 2 ft; : : : ; ng. Then the derivative p0 must have zeroes in ea
hof the n � 1 intervals (0; 1); (1; 2); : : : ; (t � 2; t � 1); (t; t + 1); : : : ; (n � 1; n).Hen
e p0 has degree at least n � 1, whi
h implies that p has degree n anddeg(f) = n. 222



6.3 Monotone graph propertiesAn interesting and well studied sub
lass of the monotone fun
tions are themonotone graph properties. Consider an undire
ted graph on n verti
es. Thereare N = �n2� possible edges, ea
h of whi
h may be present or absent, so we
an pair up the set of all graphs with the set of all N -bit strings. A graphproperty P is a set of graphs that is 
losed under permutation of the verti
es(so isomorphi
 graphs have the same properties). The property is monotoneif it is 
losed under the addition of an edge. We are now interested in thequestion: At how many edges must we look in order to determine if a graphhas the property P ? This is just the de
ision-tree 
omplexity of P if we viewP as a total Boolean fun
tion on N bits.A property P is 
alled evasive if D(P ) = N , so if we have to look at alledges in the worst 
ase. The evasiveness 
onje
ture (also sometimes 
alledAanderaa-Karp-Rosenberg 
onje
ture) says that all non-
onstant monotonegraph properties P are evasive. This 
onje
ture is still open; see [27℄ for anoverview. The 
onje
ture has been proved for graphs where the number ofverti
es is a prime power [25℄, but the best known general bound is D(P ) 2
(N) [35,25,26℄. This bound also follows from a degree-bound by Dodis andKhanna [11, Theorem 2℄:Theorem 22 (Dodis & Khanna) If P is a non-
onstant monotone graphproperty, then deg(P ) 2 
(N).Corollary 7 If P is a non-
onstant monotone graph property, then D(P ) 2
(N) and QE(P ) 2 
(N).Thus the evasiveness 
onje
ture holds up to a 
onstant fa
tor for both de-terministi
 
lassi
al and exa
t quantum algorithms. D(P ) = N may a
tuallyhold for all monotone graph properties P , but [8℄ exhibit a monotone P withQE(P ) < N . Only mu
h weaker lower bounds are known for the bounded-error
omplexity of su
h properties [26,20,8℄.Open problem 6 Are D(P ) = N and R2(P ) 2 
(N) for all non-
onstantmonotone graph properties P?There is no P known with R2(P ) 2 o(N), but the OR-problem 
an triviallybe turned into a monotone graph property P with Q2(P ) 2 o(N), in fa
tQ2(P ) 2 �(n) [8℄.Finally we mention a result about sensitivity from [46℄:Theorem 23 (Wegener) s(P ) � n�1 for all non-
onstant monotone graphproperties P . 23



This theorem is tight, as witnessed by the property \No vertex is isolated" [44℄.A
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