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t. We prove new bounds on the quantum 
ommuni
ation 
om-plexity of the disjointness and equality problems. For the 
ase of exa
tand non-deterministi
 proto
ols we show that these 
omplexities are allequal to n+1, the previous best lower bound being n=2. We show this byimproving a general bound for non-deterministi
 proto
ols of de Wolf. Wealso give an O(pn �
log� n)-qubit bounded-error proto
ol for disjointness,modifying and improving the earlier O(pn log n) proto
ol of Buhrman,Cleve, and Wigderson, and prove an 
(pn) lower bound for a 
lass ofproto
ols that in
ludes the BCW-proto
ol as well as our new proto
ol.1 Introdu
tionThe area of 
ommuni
ation 
omplexity deals with abstra
ted models of dis-tributed 
omputing, where one only 
ares about minimizing the amount of 
om-muni
ation between the parties and not about the amount of 
omputation doneby the individual parties. The standard setting is the following. Two parties,Ali
e and Bob, want to 
ompute some fun
tion f : f0; 1gn � f0; 1gn ! f0; 1g.Ali
e re
eives input x 2 f0; 1gn, Bob re
eives y 2 f0; 1gn, and they want to
ompute f(x; y). For example, they may want to �nd out whether x = y (theequality problem) or whether x and y are 
hara
teristi
 ve
tors of disjoint sets(the disjointness problem). A 
ommuni
ation proto
ol is a distributed algorithmwhere Ali
e �rst does some 
omputation on her side, then sends a message toBob, who does some 
omputation on his side, sends a message ba
k, et
. The
ost of the proto
ol is measured by the number of bits (or qubits, in the quantum
ase) 
ommuni
ated on a worst-
ase input (x; y).As in many other bran
hes of 
omplexity theory, we 
an distinguish betweenvarious di�erent \modes" of 
omputation. Letting P (x; y) denote the a

eptan
eprobability of the proto
ol (the probability of outputting 1), we 
onsider fourdi�erent kinds of proto
ols for 
omputing f ,{ An exa
t proto
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2 Peter H�yer and Ronald de Wolf{ A non-deterministi
 proto
ol has P (x; y) > 0 if and only if f(x; y) = 1, forall x; y{ A one-sided error proto
ol has P (x; y) � 1=2 if f(x; y) = 1, and P (x; y) = 0if f(x; y) = 0{ A two-sided error proto
ol has jP (x; y)� f(x; y)j � 1=3, for all x; y.These four modes of 
omputation 
orrespond to those of the 
omputational
omplexity 
lasses P, NP, RP, and BPP, respe
tively.Proto
ols may be 
lassi
al (send and pro
ess 
lassi
al bits) or quantum (sendand pro
ess quantum bits). Classi
al 
ommuni
ation 
omplexity was introdu
edby Yao [35℄, and has been studied extensively. It is well motivated by its intrinsi
interest as well as by its appli
ations in lower bounds on 
ir
uits, VLSI, datastru
tures, et
. We refer to the book of Kushilevitz and Nisan [26℄ for de�nitionsand results. We use D(f), N(f), R1(f), and R2(f) to denote the minimal 
ostof 
lassi
al proto
ols for f in the exa
t, non-deterministi
, one-sided error, andtwo-sided error settings, respe
tively.1 Note that R2(f) � R1(f) � D(f) � n+1and N(f) � R1(f) � D(f) � n+1 for all f . Similarly we de�ne QE(f), NQ(f),Q1(f), and Q2(f) for the quantum versions of these 
ommuni
ation 
omplexities(we will be a bit more pre
ise about the notion of a quantum proto
ol in thenext se
tion). For all of these 
omplexities, we assume Ali
e and Bob start outwithout any shared randomness or entanglement.Quantum 
ommuni
ation 
omplexity was introdu
ed by (again) Yao [36℄and the �rst examples of fun
tions where quantum 
ommuni
ation 
omplex-ity is less than 
lassi
al 
ommuni
ation 
omplexity were given in [14, 10, 11,15, 9℄. In parti
ular, Buhrman, Cleve, and Wigderson [9℄ showed for a spe-
i�
 promise version of the equality problem that QE(f) 2 O(logn) whileD(f) 2 
(n). They also showed for the interse
tion problem (the negation of thedisjointness problem) that Q1(INTn) 2 O(pn logn), whereas R2(INTn) 2 
(n)is a well known and non-trivial result from 
lassi
al 
ommuni
ation 
omplex-ity [20, 31℄. Later, Raz [30℄ exhibited a promise problem with an exponentialquantum-
lassi
al gap even in the bounded-error setting: Q2(f) 2 O(logn) ver-sus R2(f) 2 
(n1=4= logn). Other results on quantum 
ommuni
ation 
omplex-ity may be found in [25, 2, 28, 13, 21, 34, 24, 23℄.The aim of this paper is to sharpen the bounds on the quantum 
ommuni-
ation 
omplexities of the equality and disjointness (or interse
tion) problems,in the four modes we distinguished above. We summarize what was known priorto this paper,{ n=2 � Q1(EQn); QE(EQn) � n+ 1 [25, 13℄n=2 � NQ(EQn) � n+ 1 [34℄Q2(EQn) 2 �(logn) [25℄{ n=2 � Q1(DISJn); QE(DISJn) � n+ 1 [25, 13℄n=2 � NQ(DISJn) � n+ 1 [34℄logn � Q1(INTn); Q2(DISJn) 2 O(pn logn) [9℄.1 Kushilevitz and Nisan [26℄ use N1(f) for our N(f), R1(f) for our R1(f) and R(f)for our R2(f).



Quantum Communi
ation Complexity 3In Se
tion 3 we �rst sharpen the non-deterministi
 bounds, by proving a generalalgebrai
 
hara
terization of NQ(f). In [34℄ it was shown for all fun
tions f thatlognrank(f)2 � NQ(f) � log(nrank(f)) + 1;where nrank(f) denotes the rank of a \non-deterministi
 matrix" for f (to bede�ned more pre
isely below). It is interesting to note that in many pla
esin quantum 
omputing one sees fa
tors of 12 appearing that are essential, forexample in the query 
omplexity of parity [4, 17℄, in the bounded-error query
omplexity of all fun
tions [16℄, in superdense 
oding [5℄, and in lower boundsfor entanglement-enhan
ed quantum 
ommuni
ation 
omplexity [13, 28℄. In 
on-trast, we show here that the 12 in the above lower bound 
an be dispensed with,and the upper bound is tight,2NQ(f) = log(nrank(f)) + 1:Equality and disjointness both have non-deterministi
 rank 2n, so their non-deterministi
 
omplexities are maximal: NQ(EQn) = NQ(DISJn) = n + 1.(This 
ontrasts with their 
omplements: NQ(NEQn) = 2 [27℄ and NQ(INTn) �N(INTn) = logn+1.) Sin
e NQ(f) lower bounds Q1(f) and QE(f), we also ob-tain optimal bounds for the one-sided and exa
t quantum 
ommuni
ation 
om-plexities of equality and disjointness. In parti
ular, QE(EQn) = n + 1, whi
hanswers a question posed to one of us (RdW) by Gilles Brassard in De
ember2000.The two-sided error bound Q2(EQn) 2 �(logn) is easy to show, whereasthe two-sided error 
omplexity of disjointness is still wide open. In Se
tion 4 wegive a one-sided error proto
ol for the interse
tion problem that improves theO(pn logn) proto
ol of Buhrman, Cleve, and Wigderson by nearly a log-fa
tor,Q1(INTn) 2 O(pn � 
log? n);where 
 is a (small) 
onstant. The fun
tion log? n is de�ned as the minimumnumber of iterated appli
ations of the logarithm fun
tion ne
essary to obtaina number less than or equal to 1: log? n = minfr � 0 j log(r) n � 1g, wherelog(0) is the identity fun
tion and log(r) = log Æ log(r�1). Even though 
log? n isexponential in log? n, it is still very small in n, in parti
ular 
log? n 2 o(log(r) n)for every 
onstant r � 1. It should be noted that our proto
ol is asymptoti
allysomewhat more eÆ
ient than the BCW-proto
ol (pn
log? n versus pn logn),but is also more 
ompli
ated to des
ribe; it is based on a re
ursive modi�
ationof the BCW-proto
ol, an idea that previously has been used for 
law-�nding byBuhrman et al. [12, Se
tion 5℄.Proving good lower bounds on the Q2-
omplexity of the disjointness andinterse
tion problems is one of the main open problems in quantum 
ommuni-
ation 
omplexity. Only logarithmi
 lower bounds are known so far for general2 Similarly we 
an improve the query 
omplexity result ndeg(f)=2 � NQq(f) �ndeg(f) of [34℄ to the optimal NQq(f) = ndeg(f).



4 Peter H�yer and Ronald de Wolfproto
ols [25, 2, 13℄. A lower bound of 
(n1=k) is shown in [24℄ for proto
olsex
hanging at most k 2 O(1) messages. In Se
tion 4.1 we prove a nearly tightlower bound of 
(pn) qubits of 
ommuni
ation for all proto
ols that satisfy the
onstraint that their a

eptan
e probability is a fun
tion of x^y (the n-bit ANDof Ali
e's x and Bob's y), rather than of x and y \separately." Sin
e DISJn itselfis also a fun
tion only of x ^ y, this does not seem to be an extremely strong
onstraint. The 
onstraint is satis�ed by a 
lass of proto
ols that in
ludes theBCW-proto
ol and our new proto
ol. It seems plausible that the general boundis Q2(DISJn) 2 
(pn) as well, but we have so far not been able to weaken the
onstraint that the a

eptan
e probability is a fun
tion of x ^ y.2 Preliminaries2.1 Quantum ComputingHere we brie
y sket
h the setting of quantum 
omputation, referring to the bookof Nielsen and Chuang [29℄ for more details. An m-qubit quantum state j�i is asuperposition or linear 
ombination over all 
lassi
al m-bit states,j�i = Xi2f0;1gm �ijii;with the 
onstraint that Pi j�ij2 = 1. Equivalently, j�i is a unit ve
tor in C 2m .Quantum me
hani
s allows us to 
hange this state by means of unitary (i.e.,norm-preserving) operations: j�newi = U j�i, where U is a 2m � 2m unitarymatrix. A measurement of j�i produ
es the out
ome i with probability j�ij2,and then leaves the system in the state jii.The two main examples of quantum algorithms so far, are Shor's algorithmfor fa
toring n-bit numbers using a polynomial number (in n) of elementaryunitary transformations [32℄ and Grover's algorithm for sear
hing an unorderedn-element spa
e using O(pn) \look-ups" or queries in the spa
e [18℄. Belowwe use a te
hnique 
alled amplitude ampli�
ation, whi
h generalizes Grover'salgorithm.Theorem 1 (Amplitude ampli�
ation [7℄). There exists a quantum algo-rithm QSear
h with the following property. Let A be any quantum algorithmthat uses no measurements, and let � : f1; : : : ; ng ! f0; 1g be any Boolean fun
-tion. Let a denote the initial su

ess probability of A of �nding a solution (i.e.,the probability of outputting some i 2 f1; : : : ; ng so that �(i) = 1). AlgorithmQSear
h �nds a solution using an expe
ted number of O � 1pa� appli
ations ofA, A�1, and � if a > 0, and it runs forever if a = 0.Consider the problem of sear
hing an unordered n-element spa
e. An algo-rithm A that 
reates a uniform superposition over all i 2 f1; : : : ; ng has su

essprobability a � 1=n, so plugging this into the above theorem and terminatingafter O(pn) appli
ations gives us an algorithm that �nds a solution with prob-ability at least 1=2 provided there is one, and otherwise outputs `no solution'.



Quantum Communi
ation Complexity 52.2 Communi
ation ComplexityFor 
lassi
al 
ommuni
ation proto
ols we refer to [26℄. Here we brie
y de�nequantum 
ommuni
ation proto
ols, referring to the surveys [33, 8, 22, 6℄ for moredetails. The spa
e in whi
h the quantum proto
ol works, 
onsists of three parts:Ali
e's part, the 
ommuni
ation 
hannel, and Bob's part (we do not write thedimensions of these spa
es expli
itly). Initially these three parts 
ontain only0-qubits, j0ij0ij0i:We assume Ali
e starts the proto
ol. She applies a unitary transformation UA1 (x)to her part and the 
hannel. This 
orresponds to her initial 
omputation andher �rst message. The length of this message is the number of 
hannel qubitsa�e
ted. The state is now (UA1 (x) 
 IB)j0ij0ij0i;where 
 denotes tensor produ
t, and IB denotes the identity transformation onBob's part. Then Bob applies a unitary transformation UB2 (y) to his part andthe 
hannel. This operation 
orresponds to Bob reading Ali
e's message, doingsome 
omputation, and putting a return-message on the 
hannel. This pro
essgoes ba
k and forth for some k messages, so the �nal state of the proto
ol oninput (x; y) will be (in 
ase Ali
e goes last)(UAk (x)
 IB)(IA 
 UBk�1(y)) � � � (IA 
 UB2 (y))(UA1 (x)
 IB)j0ij0ij0i:The total 
ost of the proto
ol is the total length of all messages sent, on a worst-
ase input (x; y). For te
hni
al 
onvenien
e, we assume that at the end of theproto
ol the output bit is the �rst qubit on the 
hannel. Thus the a

eptan
eprobability P (x; y) of the proto
ol is the probability that a measurement of the�nal state gives a `1' in the �rst 
hannel-qubit. Note that we do not allow inter-mediate measurements during the proto
ol. This is without loss of generality:it is well known that su
h measurements 
an be postponed until the end of theproto
ol at no extra 
ommuni
ation 
ost. As mentioned in the introdu
tion, weuse QE(f), NQ(f), Q1(f), and Q2(f) to denote the 
ost of optimal exa
t, non-deterministi
, one-sided error, and two-sided error proto
ols for f , respe
tively.The following lemma was stated summarily without proof by Yao [36℄ andin more detail by Kremer [25℄. It is key to many of the earlier lower bounds onquantum 
ommuni
ation 
omplexity as well as to ours, and is easily proven byindu
tion on `.Lemma 2 (Yao [36℄; Kremer [25℄). The �nal state of an `-qubit proto
ol oninput (x; y) 
an be written asXi2f0;1g` jAi(x)iji`ijBi(y)i;where the Ai(x); Bi(y) are ve
tors (not ne
essarily of norm 1), and i` denotesthe last bit of the `-bit string i (the output bit).



6 Peter H�yer and Ronald de WolfThe a

eptan
e probability P (x; y) of the proto
ol is the squared norm of thepart of the �nal state that has i` = 1. Letting aij be the 2n-dimensional 
omplex
olumn ve
tor with the inner produ
ts hAi(x)jAj(x)i as entries, and bij the 2n-dimensional 
olumn ve
tor with entries hBi(y)jBj(y)i, we 
an write P (viewedas a 2n � 2n matrix) as the sum Pi;j:i`=j`=1 aijbTij of 22`�2 rank 1 matri
es,so the rank of P is at most 22`�2. For example, for exa
t proto
ols this givesimmediately that ` is lower bounded by 12 times the logarithm of the rank of the
ommuni
ation matrix, and for non-deterministi
 proto
ols ` is lower boundedby 12 times the logarithm of the non-deterministi
 rank (de�ned below). In thenext se
tion we show how we 
an get rid of the fa
tor 12 in the non-deterministi

ase.We use x^y to denote the bitwise-AND of n-bit strings x and y, and similarlyx � y denotes the bitwise-XOR. Let OR denote the n-bit fun
tion whi
h is 1 ifat least one of its n input bits is 1, and NOR be its negation. We 
onsider thefollowing three 
ommuni
ation 
omplexity problems,{ Equality: EQn(x; y) = NOR(x � y){ Interse
tion: INTn(x; y) = OR(x ^ y){ Disjointness: DISJn(x; y) = NOR(x ^ y).3 Optimal Non-Deterministi
 BoundsLet f : f0; 1gn � f0; 1gn ! f0; 1g. A 2n � 2n 
omplex matrix M is 
alled anon-deterministi
 matrix for f if it has the property that Mxy 6= 0 if and only iff(x; y) = 1 (equivalently, Mxy = 0 if and only if f(x; y) = 0). We use nrank(f)to denote the non-deterministi
 rank of f , whi
h is the minimal rank among allnon-deterministi
 matri
es for f . In [34℄ it was shown thatlognrank(f)2 � NQ(f) � log(nrank(f)) + 1:In this se
tion we show that the upper bound is the true bound. The proof usesthe following te
hni
al lemma.Lemma 3. If there exist two families of ve
tors fA1(x); : : : ; Am(x)g � C d andfB1(y); : : : ; Bm(y)g � C d su
h that for all x 2 f0; 1gn and y 2 f0; 1gn, we havemXi=1 Ai(x)
Bi(y) = 0 if and only if f(x; y) = 0;then nrank(f) � m.Proof. Assume there exist two su
h families of ve
tors. Let Ai(x)j denote thejth entry of ve
tor Ai(x), and let similarly Bi(y)k denote the kth entry of ve
torBi(y). We use pairs (j; k) 2 f1; : : : ; dg2 to index entries of ve
tors in the d2-dimensional tensor spa
e. Note that



Quantum Communi
ation Complexity 7if f(x; y) = 0 then Pmi=1 Ai(x)jBi(y)k = 0 for all (j; k),if f(x; y) = 1 then Pmi=1 Ai(x)jBi(y)k 6= 0 for some (j; k).As a �rst step, we want to repla
e the ve
tors Ai(x) and Bi(y) by numbers ai(x)and bi(y) that have similar properties. We use the probabilisti
 method [1℄ toshow that this 
an be done.Let I be an arbitrary set of 22n+1 numbers. Choose 
oeÆ
ients �1; : : : ; �dand �1; : : : ; �d, ea
h 
oeÆ
ient pi
ked uniformly at random from I . For every x,de�ne ai(x) = Pdj=1 �jAi(x)j , and for every y de�ne bi(y) = Pdk=1 �kBi(y)k.Consider the numberv(x; y) = mXi=1 ai(x)bi(y) = dXj;k=1�j�k mXi=1 Ai(x)jBi(y)k! :If f(x; y) = 0, then v(x; y) = 0 for all 
hoi
es of the �j ; �k.Now 
onsider some (x; y) with f(x; y) = 1. There is a pair (j0; k0) for whi
hPmi=1Ai(x)j0Bi(y)k0 6= 0. We want to prove that v(x; y) = 0 happens only withvery small probability. In order to do this, �x the random 
hoi
es of all �j ,j 6= j0, and �k, k 6= k0, and view v(x; y) as a fun
tion of the two remainingnot-yet-
hosen 
oeÆ
ients � = �j0 and � = �k0 ,v(x; y) = 
0�� + 
1�+ 
2� + 
3:Here we know that 
0 =Pmi=1 Ai(x)j0Bi(y)k0 6= 0. There is at most one value of �for whi
h 
0�+
2 = 0. All other values of � turn v(x; y) into a linear equation in�, so for those � there is at most one 
hoi
e of � that gives v(x; y) = 0. Hen
e outof the (22n+1)2 di�erent ways of 
hoosing (�; �), at most 22n+1+(22n+1�1) �1 <22n+2 
hoi
es give v(x; y) = 0. ThereforePr[v(x; y) = 0℄ < 22n+2(22n+1)2 = 2�2n:Using the union bound, we now havePr �there is an (x; y) 2 f�1(1) for whi
h v(x; y) = 0�� X(x;y)2f�1(1)Pr[v(x; y) = 0℄ < 22n � 2�2n = 1:This probability is stri
tly less than 1, so there exist sets fa1(x); : : : ; am(x)g andfb1(y); : : : ; bm(y)g that make v(x; y) 6= 0 for every (x; y) 2 f�1(1). We thus havethat mXi=1 ai(x)bi(y) = 0 if and only if f(x; y) = 0:View the ai and bi as 2n-dimensional ve
tors, let A be the 2n�m matrix havingthe ai as 
olumns, and B be the m � 2n matrix having the bi as rows. Then(AB)xy = Pmi=1 ai(x)bi(y), whi
h is 0 if and only if f(x; y) = 0. Thus AB is anon-deterministi
 matrix for f , and nrank(f) � rank(AB) � rank(A) � m. ut



8 Peter H�yer and Ronald de WolfLemma 3 allows us to prove tight bounds for non-deterministi
 quantumproto
ols.Theorem 4. NQ(f) = log(nrank(f)) + 1.Proof. The upper bound NQ(f) � log(nrank(f))+1 was shown in [34℄ (a
tually,the upper bound shown there was log(nrank(f)) for proto
ols where only Bobhas to know the output value). For the sake of 
ompleteness we repeat that proofhere. Let r = nrank(f) and M be a rank-r non-deterministi
 matrix for f . LetMT = U�V be the singular value de
omposition of the transpose of M [19℄, soU and V are unitary, and � is a diagonal matrix whose �rst r diagonal entries arepositive real numbers and whose other diagonal entries are 0. Below we des
ribea one-round non-deterministi
 proto
ol for f , using log(r)+1 qubits. First Ali
eprepares the state j�xi = 
x�V jxi, where 
x > 0 is a normalizing real numberthat depends on x. Be
ause only the �rst r diagonal entries of � are non-zero,only the �rst r amplitudes of j�xi are non-zero, so j�xi 
an be 
ompressed intolog r qubits. Ali
e sends these qubits to Bob. Bob then applies U to j�xi andmeasures the resulting state. If he observes jyi, then he puts 1 on the 
hanneland otherwise he puts 0 there. The a

eptan
e probability of this proto
ol isP (x; y) = jhyjU j�xij2 = 
2xjhyjU�V jxij2 = 
2xjMTyxj2 = 
2xjMxyj2:Sin
e Mxy is non-zero if and only if f(x; y) = 1, P (x; y) will be positive if andonly if f(x; y) = 1. Thus we have a non-deterministi
 quantum proto
ol for fwith log(r) + 1 qubits of 
ommuni
ation.For the lower bound, 
onsider a non-deterministi
 `-qubit proto
ol for f . ByLemma 2, its �nal state on input (x; y) 
an be written asXi2f0;1g` jAi(x)iji`ijBi(y)i:Without loss of generality we assume the ve
tors Ai(x) and Bi(y) all have thesame dimension d. Let S = fi 2 f0; 1g` j i` = 1g and 
onsider the part of thestate that 
orresponds to output 1 (we drop the i` = 1 and the j�i-notation here),�(x; y) =Xi2S Ai(x) 
Bi(y):Be
ause the proto
ol has a

eptan
e probability 0 if and only if f(x; y) = 0, thisve
tor �(x; y) will be the zero ve
tor if and only if f(x; y) = 0. The previouslemma gives nrank(f) � jSj = 2`�1, and hen
e that log(nrank(f)) + 1 � NQ(f).utNote that any non-deterministi
 matrix for the equality fun
tion has non-zeroes on its diagonal and zeroes o�-diagonal, and hen
e has full rank. ThusNQ(EQn) = n + 1, whi
h 
ontrasts sharply with the non-deterministi
 
om-plexity of its 
omplement (inequality), whi
h is only 2 [27℄. Similarly, a non-deterministi
 matrix for disjointness has full rank, be
ause reversing the order-ing of the 
olumns gives an upper triangular matrix with non-zero elements on
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ation Complexity 9the diagonal. This gives tight bounds for the exa
t, one-sided error, and non-deterministi
 settings.Corollary 5. We have that QE(EQn) = Q1(EQn) = NQ(EQn) = n + 1 andthat QE(DISJn) = Q1(DISJn) = NQ(DISJn) = n+ 1.4 On the Bounded-Error Complexity of Disjointness4.1 Improved Upper BoundHere we show that we 
an take o� most of the logn fa
tor from the O(pn logn)proto
ol for the interse
tion problem (the 
omplement of disjointness) that wasgiven by Buhrman, Cleve, and Wigderson in [9℄.Theorem 6. There exists a 
onstant 
 su
h that Q1(INTn) 2 O(pn � 
log? n).Proof. We re
ursively build a one-sided error proto
ol that 
an �nd an index isu
h that xi = yi = 1, provided su
h an i exists (
all su
h an i a `solution').Clearly this suÆ
es for 
omputing INTn(x; y). Let Cn denote the 
ost of ourproto
ol on n-bit inputs.Ali
e and Bob divide the n indi
es f1; : : : ; ng into n=(logn)2 blo
ks of (logn)2indi
es ea
h. Ali
e pi
ks a random number j 2 f1; : : : ; n=(logn)2g and sends thenumber j to Bob. Now they re
ursively run our proto
ol on the jth blo
k, at a
ost of C(logn)2 qubits of 
ommuni
ation. Ali
e then measures her part of thestate, and they verify whether the measured i is indeed a solution. If there is asolution in the jth blo
k, then Ali
e �nds one with probability at least 1=2, so theoverall probability of �nding a solution (if there is one) is at least (logn)2=2n. Byusing a superposition over all j we 
an push all intermediate measurements to theend without a�e
ting the su

ess probability. Therefore, applying O(pn= logn)rounds of amplitude ampli�
ation (Theorem 1) boosts this proto
ol to havingerror probability at most 1=2. We thus have the re
urren
eCn � O(1) pnlogn �C(log n)2 +O(logn)� :Sin
e C1 = 2, this re
ursion unfolds to the bound Cn 2 O(pn � 
log? n) forsome 
onstant 
. Careful inspe
tion of the proto
ol gives that the 
onstant 
 isreasonably small. ut4.2 Lower Bound for a Spe
i�
 Class of Proto
olsWe give a lower bound for two-sided error quantum proto
ols for disjointness.The lower bound applies to all proto
ols whose a

eptan
e probability P (x; y)is a fun
tion just of x^ y, rather than of x and y \separately." In parti
ular, theproto
ols of [9℄ and of our previous se
tion fall in this 
lass.The lower bound basi
ally follows by 
ombining various results from [13℄.



10 Peter H�yer and Ronald de WolfTheorem 7. Any two-sided error quantum proto
ol for DISJn whose a

eptan
eprobability is a fun
tion of x ^ y, has to 
ommuni
ate 
(pn) qubits.Proof. Consider an `-qubit proto
ol with error probability at most 1=3. By the
omment following Lemma 2, we 
an write its a

eptan
e probability P (x; y) asa 2n � 2n matrix P of rank r � 22`�2.We now invoke a relation between the rank of the matrix P and properties ofthe 2n-variate multilinear polynomial that equals P (x; y).3 There is an n-variatefun
tion g su
h that P (x; y) = g(x ^ y). Let g(z) =PS aSzS be the polynomialrepresentation of g. Then P (x; y) = g(x^ y) =PS aS(x^ y)S =PS aSxSyS , sothe 2n-variate multilinear polynomial P only 
ontains monomials in whi
h theset of x-variables is the same as the set of y-variables. For polynomials of thisform (
alled \even"), [13, Lemmas 2 and 3℄ imply that the number of monomialsin P (x; y) equals the rank r of the matrix P .Setting y = x in P (x; y) gives a polynomial p(x) =PS aSxS that has r mono-mials and that approximates the n-bit fun
tion NOR, sin
e jp(x)� NOR(x)j =jP (x; x) � DISJ(x; x)j � 1=3. But [13, Theorem 8℄ implies that every polyno-mial that approximates NOR must have at least 2pn=12 monomials. Hen
e2pn=12 � r � 22`�2, whi
h gives ` �pn=48 + 1. ut5 Open ProblemsThis paper �ts in a sequen
e of papers that (slowly) extend what is known forquantum 
ommuni
ation 
omplexity, e.g. [9, 2, 30, 13, 21, 34, 24, 23℄. The mainopen question is still the bounded-error 
omplexity of disjointness. Of interestis whether it is possible to prove an O(pn) upper bound for disjointness, thusgetting rid of the fa
tor of 
log? n in our upper bound of Theorem 6, and whetherit is possible to extend the lower bound of Theorem 7 to broader 
lasses ofproto
ols. Sin
e disjointness is 
oNP-
omplete for 
ommuni
ation 
omplexityproblems [3℄, strong lower bounds on the disjointness problem imply a host ofother lower bounds.A se
ond question is whether qubit 
ommuni
ation 
an be signi�
antly re-du
ed in 
ase Ali
e and Bob 
an make use of prior entanglement (shared EPR-pairs). Giving Ali
e and Bob n shared EPR-pairs trivializes the non-deterministi

omplexity (use the EPR-pairs as a publi
 
oin to randomly guess some n-bit z,Ali
e then sends Bob 1 bit indi
ating whether x = z, if x = z then Bob 
an 
om-pute the answer f(x; y) and send it to Ali
e, if x 6= z then they output 0), butfor the exa
t and bounded-error models it is open whether prior entanglement
an make a signi�
ant di�eren
e.3 For S � [n℄ = f1; : : : ; ng, we use xS for the monomialQi2S xi. An n-variate multilin-ear polynomial p(x) =PS�[n℄ aSxS, aS 2 R, is a weighted sum of su
h monomials.The number of monomials in p is the number of S for whi
h aS 6= 0. One 
anshow that for every fun
tion g : f0; 1gn ! R there is a unique n-variate multilinearpolynomial p su
h that g(x) = p(x) for all x 2 f0; 1gn.
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