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Harry Buhrman� Christoph Dürrz Mark Heiligmanx Peter Høyer{
Frédéric Magniezk Miklos Santha�� Ronald de Wolfyy

Abstract

We present several applications of quantum amplitude
amplification to finding claws and collisions in ordered or
unordered functions. Our algorithms generalize those of
Brassard, Høyer, and Tapp, and imply anO(N3=4 logN)
quantum upper bound for the element distinctness problem
in the comparison complexity model. This contrasts with�(N logN) classical complexity. We also prove a lower
bound of
(pN) comparisons for this problem and derive
bounds for a number of related problems.

1 Introduction

In the last decade, quantum computing has become a
prominent and promising area of theoretical computer sci-
ence. Realizing this promise requires two things: (1) actu-
ally building a quantum computer and (2) discovering tasks
where a quantum computer is significantly faster than a
classical computer. Here we are concerned with the sec-
ond issue. Few good quantum algorithms are known to
date, the two main examples being Shor’s algorithm for
factoring [20] and Grover’s algorithm for searching [14].
Whereas the first so far has remained a seminal but some-
what isolated result, the second has been applied as a build-
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durr@lri.fr.xNSA, Suite 6111, Fort George G. Meade, MD 20755, USA. Email:
mheilig@zombie.ncsc.mil.{ Dept. of Comp. Sci., University of Calgary, Alberta, Canada
T2N 1N4. email:hoyer@cpsc.ucalgary.ca. Research conducted
while at BRICS, University of Aarhus, 8000 Aarhus C, Denmark.kCNRS–LRI, UMR 8623 Université Paris–Sud, 91405 Orsay, France.
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ing block in quite a few other quantum algorithms [6, 8, 10,
11, 18, 7]. For a general introduction to quantum computing
we refer to [19].

One of the earliest applications of Grover’s algorithm
was the algorithm of Brassard, Høyer, and Tapp [8] for find-
ing a collision in a 2-to-1 functionf . A collision is a pair
of distinct elementsx; y such thatf(x) = f(y). Suppose
the size off ’s domain isN . For a classical randomized al-
gorithm,�(N1=2) evaluations of the function are necessary
and sufficient to find a collision. The quantum algorithm
of [8] finds a collision usingO(N1=3) evaluations off . No
non trivial quantum lower bound is known for this problem.
A notion related to collisions is that of aclaw. A claw in
functionsf andg is a pair(x; y) such thatf(x) = g(y). Iff andg are permutations on[N ℄ = f1; : : : ; Ng, then the
function on[2N ℄ that maps the first half of the domain ac-
cording tof and the second half according tog, is a 2-to-1
function. Thus the algorithm of Brassard, Høyer, and Tapp
can also find a claw in suchf andg usingO(N1=3) evalua-
tions off andg.

In this paper we consider the quantum complexity of
collision-finding or claw-finding with and without restric-
tions on the functionsf andg. In Section 3 we consider
the situation wheref : [N ℄ ! Z andg : [M ℄ ! Z are
arbitrary. Our aim is to find a claw betweenf andg, if one
exists. For now, let us assumeN = M (in the body of the
paper we treat the general case). The complexity measure
we use is the number ofcomparisonsbetween elements.
That is, we assume a total order onZ and our only way
to accessf andg is by comparingf(x) with f(y), g(x)
with g(y), or f(x) with g(y), according to this total order.
The ability to make such comparisons is weaker than the
ability to evaluate and actually obtain the function valuesf(x) andg(y), because if we can obtain the valuesf(x)
and g(y), we can of course also compare those two val-
ues. Accordingly, the existence of a quantum algorithm that
finds a claw usingT comparisons implies the existence of a
quantum algorithm that finds a claw usingO(T ) function-
evaluations. However, also ourlower bounds on the com-
plexity of claw-finding remain essentially the same if we
were to count the number of function-evaluations instead



of comparisons. This shows that it does not matter much
for our results whether we count comparisons or function-
evaluations.

A simple yet essentially optimalclassicalalgorithm for
this general claw-finding problem is the following. Viewingf as a list ofN items, we can sort it usingN logN +O(N)
comparisons. Oncef is sorted, we can for a giveny 2 [N ℄
find anx such thatf(x) = g(y) provided such anx exists,
usinglogN comparisons (by utilizing binary search onf ).
Thus exhaustive search on ally yields anO(N logN) al-
gorithm for finding a claw with certainty, provided one ex-
ists. ThisN logN is optimal up to constant factors even
for bounded-error classical algorithms, as follows from the
classical
(N logN) bounds for theelement distinctness
problem, explained below. In this paper we show that
a quantum computer can do better: we exhibit a quan-
tum algorithm that finds a claw with high probability usingO(N3=4 logN) comparisons. We also prove a lower bound
for this problem of
(N1=2) comparisons for bounded-
error quantum algorithms and
(N) for exact quantum al-
gorithms.

Our algorithm for claw-finding also yields anO(N3=4 logN) bounded-error quantum algorithm for find-
ing a collision for arbitrary functions. Note thatdecidingif
a collision occurs inf is equivalent to deciding whetherf
maps allx to distinct elements. This is known as theelement
distinctnessproblem and has been well studied classically,
see e.g. [21, 16, 13, 4]. Element distinctness is particularly
interesting because its classical complexity is related tothat
of sorting, which is well known to requireN logN+�(N)
comparisons. If we sortf , we can decide element distinct-
ness by going through the sorted list once, which gives a
classical upper bound ofN logN + O(N) comparisons.
Conversely, element distinctness requires
(N logN) com-
parisons in case of classical bounded-error algorithms (even
in a much stronger model, see [13]), so sorting and element
distinctness are equally hard for classical computers. On a
quantum computer, the best known upper bound for sort-
ing is roughly0:53 N logN comparisons [12], and it was
recently shown that such a linear speed-up is the best pos-
sible: quantum sorting requires
(N logN) comparisons,
even if one allows a small probability of error [15]. Ac-
cordingly, ourO(N3=4 logN) quantum upper bound shows
that element distinctness is significantly easier than sorting
for a quantum computer, in contrast to the classical case.

In Section 4, we consider the case wheref is ordered
(monotone non-decreasing):f(1) � f(2) � � � � �f(N). In this case, the quantum complexity of claw-
finding and collision finding drops fromO(N3=4 logN) toO(N1=2 logN). In Section 5 we show how to remove thelogN factor (replacing it by a near-constant function) if
bothf andg are ordered. The lower bound for this restricted
case remains
(N1=2).

In Section 6 we give some problems related to the el-
ement distinctness problem for which quantum computers
cannot help. We then, in Section 7, give bounds for the
number of edges a quantum computer needs to query in or-
der to find atriangle in a given graph (which, informally,
can be viewed as a collision between three nodes). Finally,
we end with some concluding remarks in Section 8.

2 Preliminaries

We consider the following problems:

Claw-finding problem
Given two functionsf : X ! Z andg : Y ! Z, find
a pair(x; y) 2 X � Y such thatf(x) = g(y).

Collision-finding problem
Given a functionf : X ! Z, find two distinct ele-
mentsx; y 2 X such thatf(x) = f(y).

We assume thatX = [N ℄ = f1; : : : ; Ng and Y =[M ℄ = f1; : : : ;Mg with N �M .
For general details about quantum computing we refer

to [19]. We formalize a comparison betweenf(x) andf(y)
as an application of the following unitary transformation:jx; y; bi 7�! jx; y; b� [f(x) � f(y)℄i;
whereb 2 f0; 1g and[f(x) � f(y)℄ denotes the truth-value
of the statement “f(x) � f(y)”. We formalize comparisons
betweenf(x) andg(y) similarly.

We are interested in the number of comparisons required
for claw-finding or collision-finding. We will consider the
complexity ofexactalgorithms, which are required to solve
the problem with certainty, as well asbounded-erroralgo-
rithms, which are required to solve the problem with prob-
ability at least2=3, for every input. We useQE(P ) andQ2(P ) for the worst-case number of comparisons required
for solving problemP by exact and bounded-error quantum
algorithms, respectively. (The subscripts ‘E’ and ‘2’ refer
to exact computation and 2-sided bounded-error computa-
tion, respectively.) In our algorithms we make abundant use
of quantumamplitude amplification[7], which generalizes
quantum search [14]. The essence of amplitude amplifica-
tion can be summarized by the following theorem.

Theorem 1 (Amplitude amplification)
There exists a quantum algorithmQSearchwith the follow-
ing property. LetA be any quantum algorithm that uses
no measurements, and let� : Z! f0; 1g be any Boolean
function. Letp denote the initial success probability ofA
of finding a solution (i.e., the probability of outputtingz
s.t. �(z) = 1). Algorithm QSearch finds a solution us-
ing an expected number ofO(1=pp) applications ofA andA�1 if p > 0, and otherwise runs forever.



Very briefly, QSearch works by iterating the unitary
transformationQ = �AS0A�1S� a number of times, start-
ing with initial stateAj0i. HereS�jzi = (�1)�(z)jzi, andS0j0i = �j0i andS0jzi = jzi for all z 6= 0. The analysis
of [7] shows that doing a measurement afterO(1=pp) it-
erations ofQ will yield a solution with probability close to
1. The algorithmQSearchdoes not need to know the value
of p in advance, but ifp is known, then a slightly modified
QSearchcan find a solutionwith certaintyusingO(1=pp)
applications ofA andA�1.

Grover’s algorithm for searching a space ofN items is
a special case of amplitude amplification, whereA is the
Hadamard transform on each qubit. ThisA has probabilityp � 1=N of finding a solution (if there is one), so amplitude
amplification implies anO(N1=2) quantum algorithm for
searching the space. We sometimes refer to this process as
“quantum searching”.

3 Finding claws if f and g are not ordered

First we consider the most general case, wheref andg are arbitrary, possibly unordered functions. Our claw-
finding algorithms are instances of the following generic
algorithm, which is parameterized by an integer` �minfN;pMg:

Algorithm: Generic claw-finder

1. Select a random subsetA � [N ℄ of size`
2. Select a random subsetB � [M ℄ of size`2
3. Sort the elements inA according to theirf -value

4. For a specificb 2 B, we can check if there is ana 2 A
such that(a; b) is a claw using classical binary search
on the sorted version ofA. Combine this with quantum
search on theB-elements to search for a claw inA�B.

5. Apply amplitude amplification on steps 1–4

We analyze the comparison-complexity of this algo-
rithm. Step 3 just employs classical sorting and
hence takes̀ log ` + O(`) comparisons. Step 4 takesO(pjBj log jAj) = O(` log `) comparisons, since testing
if there is anA-element colliding with a givenb 2 B takesO(logA) comparisons (via binary search on the sortedA)
and the quantum search needsO(pjBj) such tests to find
a B-element that collides with an element occurring inA
(if there is one). In total, steps 1–4 takeO(` log `) compar-
isons.

If no claws betweenf and g exist, then this algo-
rithm does not terminate. Now suppose there is a claw(x; y) 2 X � Y . Then (x; y) 2 A � B with proba-
bility (`=N) � (`2=M), and if indeed(x; y) 2 A � B,

then step 4 will find this (or some other) collision with
probability at least1=2 in at mostO(` log `) comparisons.
Hence the overall success probability of steps 1–4 is at leastp = `3=2NM , and the amplitude amplification of step 5
requires an expected number ofO(pNM=`3) iterations of
steps 1–4. Accordingly, the total expected number of com-

parisons to find a claw isO(qNM̀ log `), provided there is
one. In order to minimize the number of comparisons, we
maximize`, subject to the constraint̀� minfN;pMg.
This gives upper bounds ofO(N1=2M1=4 logN) compar-
isons ifN �M � N2, andO(M1=2 logN) if M > N2.

What aboutlower bounds for the claw-finding problem?
We can reduce theOR-problem to claw-finding as follows.
Given a functiong : [M ℄ ! f0; 1g, by definitionOR(g)
is 1 if there is ani such thatg(i) = 1. To determine this
value, we setN = 1 and definef(1) = 1. Then there is
a claw betweenf andg if and only if OR(g) = 1. Thus
if we can find a claw using
 comparisons, we can decide
OR using2
 queries tog (two g-queries suffice to imple-
ment a comparison). Using known lower bounds for the
OR-function [5, 3], this gives an
(M) bound for exact
quantum and an
(pM) bound for bounded-error quantum
algorithms. The next theorem follows.

Theorem 2 The comparison-complexity of the claw-
finding problem is� 
(M1=2) � Q2(Claw)� � O(N1=2M1=4 logN) if N �M � N2O(M1=2 logN) if M > N2� 
(M) � QE(Claw) � O(M logN).

The bounds for the caseM > N2 and the case of ex-
act computation are tight up to thelogN term, but the
caseM � N2 is nowhere near tight. In particular, forN = M the complexity lies somewhere betweenN1=2 andN3=4 logN .

Now consider the problem of finding acollision for an
arbitrary functionf : [N ℄ ! Z, i.e., to find distinctx; y 2 [N ℄ such thatf(x) = f(y). A simple modification
of the above algorithm for claw-finding works fine to find
such(x; y)-pairs if they exist (putg = f and avoid claws of
the form(x; x)), and gives a bounded-error algorithm that
finds a collision usingO(N3=4 logN) comparisons. This
algorithm may be viewed as a modification of the Generic
claw finder withjAj = ` = O(pN) andB = [N ℄nA. Note
that now the choice ofA determinesB, so our algorithm
only has to storeA and sort it, which means that thespace
requirement of steps 1–3 isO(pN logN) qubits. The am-
plitude amplification of step 4 requires not more space than
the algorithm that is being amplified, so the total space com-
plexity of our algorithm isO(pN logN) as well.



As mentioned in the introduction, the problem of de-
ciding if there is a collision is equivalent to the element
distinctness (ED) problem. The best known lower bounds
follow again via reductions from theOR-problem: givenX 2 f0; 1gN , we definef : [N + 1℄ ! f0; : : : ; Ng asf(i) = i(1� xi) andf(N + 1) = 0. Now OR(X) = 1 if
and only iff contains a collision. Thus we obtain:

Theorem 3 The comparison-complexity of the element dis-
tinctness problem is� 
(N1=2) � Q2(ED) � O(N3=4 logN)� 
(N) � QE(ED) � O(N logN).

In contrast, for classical (exact or bounded-error) algo-
rithms, element distinctness is as hard as sorting and re-
quires�(N logN) comparisons.

Collision-finding requires fewer comparisons if we know
that some valuez 2 Z occurs at leastk times. If we
pick a random subsetS of 10N=k of the domain, then with
high probability at least two pre-images ofz will be con-
tained inS. Thus running our algorithm onS will find
a collision with high probability, resulting in complexityO((N=k)3=4 log(N=k)). Also, if f is a 2-to-1 function, we
can rederive theO(N1=3 logN) bound of Brassard, Høyer,
and Tapp [8] by taking̀ = N1=3. This yields constant suc-
cess probability after steps 1–4 in the generic algorithm, and
hence no further rounds of amplitude amplification are re-
quired. As in the case of [8], this algorithm can be made ex-
act by using the exact form of amplitude amplification (the
success probability can be exactly computed in this case, so
exact amplitude amplification is applicable).

In another direction, we may extend our results by con-
sidering the problem of finding a claw betweenthreeun-
ordered functionsf; g; h with domains of sizeN . That is,
we want to findx; y; z such thatf(x) = h(y) = g(z).
Classically, the best algorithm requires�(N logN) com-
parisons. The following quantum algorithm solves the prob-
lem inO(N7=8 logN) comparisons and bounded error:

Algorithm: Claw-finder for 3 functions

1. Select a random subsetA of N3=4 elements from the
domain off and sort these according to theirf -value

2. Select a random subsetB of sizeN1=2 from the do-
main ofg and sort these according to theirg-value

3. Search the domain ofh for an element that forms a
claw with a pair inA�B

4. Apply amplitude amplification on steps 2–3

5. Apply amplitude amplification on steps 1–4

Step 1 takesO(N3=4 logN) comparisons, steps 2 and 3
each takeO(N1=2 logN) comparisons. If there is a claw(x; y; z) with x 2 A, theny 2 B with probability1=pN ,
so step 4 requiresO(N1=4) rounds of amplitude amplifi-
cation, hence steps 1–4 together takeO(N3=4 logN) com-
parisons. Steps 1–4 have probability� 1=N1=4 of find-
ing a claw, so step 5 in turn requiresO(N1=8) rounds of
amplitude amplification. In total, the algorithm thus takesO(N7=8 logN) comparisons. More generally, finding a

claw amongk functions can be done inO(N1� 12k logN)
comparisons (for fixedk).

4 Finding claws if f is ordered

Now suppose that functionf is ordered:f(1) � f(2) �� � � � f(N), and that functiong : [M ℄! Z is not necessar-
ily ordered. In this case, given somey 2 [M ℄, we can find
anx 2 [N ℄ such that(x; y) is a claw using binary search
on f . Thus, combining this with a quantum search on ally 2 [M ℄, we obtain the upper bound ofO(pM logN) for
finding a claw inf andg. The lower bounds of the last sec-
tion via theOR-reduction still apply, and hence we obtain
the following theorem.

Theorem 4 The comparison-complexity of the claw-
finding problem with orderedf is� 
(M1=2) � Q2(Claw) � O(M1=2 logN)� 
(M) � QE(Claw) � O(M logN).

Note that collision-finding for an orderedf : [N ℄ ! Z
is equivalent to searching a space ofN � 1 items (namely
all consecutive pairs in the domain off ) and hence requires�(pN) comparisons.

5 Finding claws if both f and g are ordered

Now consider the case where bothf andg are ordered.
Assume for simplicity thatN = M . Again we get an
(pN) lower bound via a reduction from theOR-problem:
given anOR-instanceX 2 f0; 1gN , we definef; g : [N ℄!Z by f(i) = 2i+1 andg(i) = 2i+xi for all i 2 [N ℄. Thenf andg are ordered, andOR(X) = 1 if and only if there is
a claw betweenf andg. The lower bound follows.

We give a quantum algorithm that solves the problem us-
ingO�pN
log?(N)� comparisons for some constant
 > 0.
The functionlog?(N) is defined as the minimum number
of iterated applications of the logarithm function necessary
to obtain a number less than or equal to 1:log?(N) =minfi � 0 j log(i)(N) � 1g, wherelog(i) = log Æ log(i�1)
denotes theith iterated application oflog, and log(0) is
the identity function. Even though
log?(N) is exponen-
tial in log?(N), it is still very small inN , in particular




log?(N) 2 o(log(i)(N)) for any constanti � 1. Thus we
replace thelogN in the upper bound of the previous section
by a near-constant function. Our algorithm defines a set of
subproblems such that the original problem(f; g) contains
a claw if and only if at least one of the subproblems con-
tains a claw. We then solve the original problem by running
the subproblems in quantum parallel and applying ampli-
tude amplification.

Let r > 0 be an integer. We define2 �Nr � subproblems
as follows.

Definition 5 Let r > 0 be an integer andf; g : [N ℄ ! Z.
For each0 � i � dN=re�1, define the subproblem(fi; g0i)
by lettingfi denote the restriction off to subdomain[ir +1; (i+1)r℄ andg0i the restriction ofg to [j; j+ r� 1℄ wherej is the minimumj0 2 [N ℄ such thatg(j0) � f(ir + 1).

Similarly, for each0 � j � dN=re � 1, define the sub-
problem (f 0j ; gj) by letting gj denote the restriction ofg
to [jr+1; (j+1)r℄, andf 0j the restriction off to [i; i+r�1℄
wherei is the minimumi0 2 [N ℄ such thatf(i0) � g(jr+1).

It is not hard to check that these subproblems all together
provide a solution to the original problem.

Lemma 6 Let r > 0 be an integer andf; g : [N ℄ ! Z.
Then(f; g) contains a claw if and only if for somei or j in[0; dN=re � 1℄ the subproblem(fi; g0i) or (f 0j ; gj) contains
a claw.

Each of these2 �Nr � subproblems is itself an instance of
the claw-finding problem of sizer. By running them all
together in quantum parallel and then applying amplitude
amplification, we obtain our main result.

Theorem 7 There exists a quantum algorithm that outputs
a claw betweenf andg with probability at least23 provided
one exists, usingO�pN
log?(N)� comparisons, for some
constant
.
Proof Let T (N) denote the worst-case number of compar-
isons required iff andg have domain of sizeN . We show
that T (N) � 
0rNr �dlog(N + 1)e+ T (r)�; (1)

for some (small) constant
0. Let 0 � i � dN=re � 1 and
consider the subproblem(fi; g0i). Using at mostdlog(N +1)e+T (r) comparisons, we can find a claw in(fi; g0i) with
probability at least23 , provided there is one. We do that
by using binary search to find the minimumj for whichg(j) � f(ir+1), at the cost ofdlog(N +1)e comparisons,
and then recursively determining if the subproblem(fi; g0i)
contains a claw at the cost of at mostT (r) additional com-
parisons. There are2 �Nr � subproblems, so by applying am-
plitude amplification we can find a claw among any one of

them with probability at least23 , provided there is one, in
the number of comparisons given in equation (1).

We pick r = dlog2(N)e. SinceT (r) � 
(pr) =
(logN), equation (1) impliesT (N) � 
00rNr T (r); (2)

for some constant
00. Furthermore, our choice ofr implies
that the depth of the recursion defined by equation (2) is on
the order oflog?(N), so unfolding the recursion gives the
theorem. 2
6 Hard problems related to distinctness

In this section, we consider some related problems for
which quantum computers cannot improve upon classical
(probabilistic) complexity.

Parity-collision problem
Given functionf : X ! Z, find the parity of the
cardinality of the setCf = f(x; y) 2 X �X : x <y andf(x) = f(y)g.

No-collision problem
Given functionf : X ! Z, find an elementx 2 X
that is not involved in a collision (i.e.,f�1(f(x)) =fxg).

No-range problem
Given functionf : X ! Z, find z 2 Z such thatz 62 f(X).

We assume thatX = Z = [N ℄, and show that these
problems are hard even for the function-evaluation model.

Theorem 8 The evaluation-complexities of the parity-
collision problem, the no-collision problem and the no-
range problem are lower bounded by
(N).

Note that the hardness of the parity-collision problem
implies the hardness of exactlycountingthe number of col-
lisions. Our proofs use the powerful lower bound method
developed by Ambainis [2]. Let us state here exactly the
result that we require.

Theorem 9 ([2]) LetF = ff : [N ℄ ! [N ℄g be the set of
all possible input-functions, and� : F ! Z be a function
(which we want to compute). LetA;B be two subsets ofF
such that�(f) 6= �(g) if f 2 A andg 2 B, andR � A�B
be a relation such that

1. For everyf 2 A, there exist at leastm differentg 2 B
such that(f; g) 2 R.



2. For everyg 2 B, there exist at leastm0 differentf 2 A
such that(f; g) 2 R.

3. For everyf 2 A andx 2 [N ℄, there exist at mostl
differentg 2 B such that(f; g) 2 R andf(x) 6= g(x).

4. For everyg 2 B andx 2 [N ℄, there exist at mostl0
differentf 2 A such that(f; g) 2 R andf(x) 6= g(x).

Then any quantum algorithm computing� with probability

at least2=3 requires
(qmm0ll0 ) evaluation-queries.

We now give our proof of Theorem 8.

Proof To apply Theorem 9, we will describe a relationR
for each of our problems. For functionsf : [N ℄! [N ℄ andg : [N ℄ ! [N ℄, we denote byd(f; g) the cardinality of the
setfx 2 [N ℄ j f(x) 6= g(x)g. For each problemR will be
defined byR = f(f; g) 2 A�B j d(f; g) = 1g;
for some appropriate setsA andB.

Parity-collision problem Here we suppose that4 dividesN . LetA be the set of functionsf : [N ℄ ! [N ℄ such
that jCf j = N=4 and

��f�1(z)�� � 2 for all z 2 [N ℄.
LetB be the set of functionsg : [N ℄ ! [N ℄ such thatjCg j = N=4 + 1 and

��g�1(z)�� � 2 for all z 2 [N ℄.
Then a simple computation gives that the relationR
satisfiesm = �(N2), m0 = �(N2), l = �(N), andl0 = �(N).

No-collision problem Now we suppose thatN is odd. LetA = B be the set of functionsf : [N ℄ ! [N ℄ such
that jCf j = (N � 1)=2, and

��f�1(z)�� � 2, for allz 2 [N ℄. ThenR satisfies thatm = m0 = �(N) andl = l0 = �(1).
No-range problem Let A = B be the set of functionsf :[N ℄ ! [N ℄ such thatCf = f(1; 2)g. Then a similar

computation givesm = m0 = �(N) and l = l0 =�(1).
Note that the no-collision problem and the no-range prob-
lem are not functions in general (several outputs may be
valid for one input), but that theyare functions on the setsA andB chosen above (there is a unique correct output for
each input). Thus, Theorem 9 implies a lower bound of
(N) for the evaluation-complexity of each of our three
problems. 2
7 Finding a triangle in a graph

Finally we consider a related search problem, which is to
find a triangle in a graph, provided one exists. Consider an

undirected graphG = (V;E) on jV j = n nodes withm =jEj edges. There areN = �n2� edge slots inE, which we
can query in a black box fashion (see also [11, Section 7]).
The triangle-finding problem is:

Triangle-finding problem
Given undirected graphG = (V;E), find distinct ver-
ticesa; b; 
 2 V such that(a; b); (a; 
); (b; 
) 2 E.

Since there are
�n3� < n3 triplesa; b; 
, and we can de-

cide whether a given triple is a triangle using 3 queries, we
can use Grover’s algorithm to find a triangle inO(n3=2)
queries. Below we give an algorithm that works more effi-
ciently for sparse graphs.

Algorithm: Triangle-finder

1. Use quantum search to find an edge(a; b) 2 E among
all
�n2� potential edges.

2. Use quantum search to find a node
 2 V such thata; b; 
 is a triangle.

3. Apply amplitude amplification on steps 1–2.

Step 1 takesO(pn2=m) queries and step 2 takesO(pn) queries. If there is a triangle in the graph, then the
probability that step 1 finds an edge belonging to this spe-
cific triangle is�(1=m). If step 1 indeed finds an edge of
a triangle, then with probability at least 1/2, step 2 finds a
 that completes the triangle. Thus the success probability
of steps 1–2 is�(1=m) and the amplitude amplification of
step 3 requiresO(pm) iterations. The total complexity is
henceO((pn2=m+pn)pm) which isO(n+pnm). If G
is sparse in the sense thatm = jEj 2 o(n2), theno(n3=2)
queries suffice. Of course for dense graphs our algorithm
will still require�(n3=2) queries.

We again obtain lower bounds by a reduction from the

OR-problem. Consider anOR-input X 2 f0; 1g(n2) as a
graph onn edges. LetG be the graph obtained from this by
adding an(n + 1)-th node and connecting this to all othern nodes. NowG hasjX j + n edges, andOR(X) = 1 if
and only ifG contains a triangle. This gives
(n2) bounds
for exact quantum and bounded-error classical, and an
(n)
bound for bounded-error quantum. We have shown:

Theorem 10 If 
(n) � jEj � �n2�, then the edge-query-
complexity of triangle-finding is� 
(n) � Q2(Triangle) � O(n +pnm)� QE(Triangle) = �(n2)
wheren = jV j andm = jEj for G = (V;E).

Note that for graphs with�(n) edges, the bounded-error
quantum bound becomes�(n) queries, whereas the classi-
cal bound remains�(n2). Thus we have a quadratic gap for
such very sparse graphs.



8 Concluding remarks

The main problem left open by this research is to close
the gap between upper and lower bounds for element dis-
tinctness. We find it hard to conjecture what the true
bound is. None of the known methods for proving quantum
lower bounds seem to be directly applicable to improve the
(pN) lower bound, and we feel that if element distinct-
ness is strictly harder than unordered search, then provingit
will require new ideas.

An interesting direction could be to take into account si-
multaneouslytimecomplexity andspacecomplexity, as has
been done for classical algorithms by Yao [21], Ajtai [1],
Beame, Saks, Sun, and Vee [4], and others. In particu-
lar, Yao shows that the time-space product of any classical
deterministic comparison-based branching program solving
element distinctness satisfiesT � S � 
(N2�"(N)),where"(N) = 5=plnN . A possible extension of this result to
quantum computation could be that the timeT and spaceS of any quantum bounded-error algorithm for element dis-
tinctness satisfiesT 2 � S � 
(N2�"(N)); (3)

for some appropriate function"(N) = o(N). For the al-
gorithms of this paper, the comparison complexity and the
time complexity are equal up to logarithmic factors. Ig-
noring such logarithmic factors, the algorithm for element
distinctness we presented in Section 3 hasT = N3=4 andS = N1=2 and hence would satisfy Equation (3) up to log-
arithmic factors. An alternative quantum algorithm is to
search the space of all

�N2 � (x; y)-pairs to try and find a col-
lision. This algorithm has roughlyT = N andS = logN
and hence also satisfies Equation (3) up to logarithmic fac-
tors. In fact, for all other(T; S)-pairs in between these two
cases (i.e., withlogN � S � pN andT 2 � S � N2) there
exists an analogous quantum algorithm with roughly those
amount of time and space as well.
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