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Abstract ing block in quite a few other quantum algorithms [6, 8, 10,

11, 18, 7]. For a general introduction to quantum computing
We present several applications of quantum amplitude we refer to [19].

amplification to finding claws and collisions in ordered or One of the earliest applications of Grover's algorithm
unordered functions. Our algorithms generalize those of \y35 the algorithm of Brassard, Hayer, and Tapp [8] for find-
Brassard, Hayer, and Tapp, and imply 8 N3/*log N) ing acollisionin a 2-to-1 functionf. A collision is a pair
quantum upper bound for the element distinctness problemgt distinct elements, y such thatf(z) = f(y). Suppose
in the comparison complexity model. This contrasts with the sjze off’s domain isN. For a classical randomized al-
O(Nlog N) classical complexity. We also prove a lower gorithm,®(NN'/2) evaluations of the function are necessary
bound of2(v/N) comparisons for this problem and derive  and sufficient to find a collision. The quantum algorithm
bounds for a number of related problems. of [8] finds a collision using)(N'/3) evaluations off. No
non trivial quantum lower bound is known for this problem.
A notion related to collisions is that of daw. A claw in
1 Introduction functionsf andg is a pair(m,y) such thatf (z) = g(y). If
f andg are permutations ofV] = {1,..., N}, then the
. function on[2N] that maps the first half of the domain ac-
In the last decade, quantum computing has become acording tof and the second half accordinggpis a 2-to-1

prominent E.m.d promising area of t.heoreticallcomputer SC- function. Thus the algorithm of Brassard, Hayer, and Tapp
ence. Realizing this promise requires two things: (1) actu- .o 2iso find a claw in suchandg usingO(N'/3) evalua-
ally building a quantum computer and (2) discovering tasks of f andg

where a quantum computer is significantly faster than a , i i
classical computer. Here we are concerned with the sec- '_n _thls.pa.per we CO”SId?r the_quantum Complexny of
ond issue. Few good quantum algorithms are known to cplhsmn-fmdmg or claw-finding with a_nd without restric-
date, the two main examples being Shor's algorithm for tions on t_he functiong andg. In Section 3 we consider
factoring [20] and Grover's algorithm for searching [14]. the situation whergf : [N] — Z andg : [M] — Z are
Whereas the first so far has remained a seminal but some@rPitrary. Ouraim s to find a claw betwe¢randg, if one

what isolated result, the second has been applied as a build€XiSts. For now, let us assumié = M (in the body of the
paper we treat the general case). The complexity measure
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of comparisons. This shows that it does not matter much In Section 6 we give some problems related to the el-

for our results whether we count comparisons or function- ement distinctness problem for which quantum computers

evaluations. cannot help. We then, in Section 7, give bounds for the
A simple yet essentially optimalassicalalgorithm for ~ number of edges a quantum computer needs to query in or-

this general claw-finding problem is the following. Viewing der to find atriangle in a given graph (which, informally,

f as alist ofV items, we can sort it using log N + O(N) can be viewed as a collision between three nodes). Finally,

Comparisons_ Onc‘é is Sorted’ we can for a g|veJ]€ [N] we end with some COﬂCluding remarks in Section 8.

find anz such thatf(z) = ¢(y) provided such am exists,

usinglog N comparisons (by utilizing binary search g 2 Preliminaries

Thus exhaustive search on gllyields anO(N log N) al-

gorithm for flndlng a claw with Certainty, prOVided one ex- We consider the fo”owing pr0b|ems:

ists. ThisN log N is optimal up to constant factors even

for bounded-error classical algorithms, as follows frora th  Claw-finding problem

classicalQ(N log N) bounds for theelement distinctness Given two functionsf : X — Zandg : Y — Z, find

problem, explained below. In this paper we show that apair(z,y) € X x Y such thatf(z) = g(y).

a quantum computer can do better: we exhibit a quan-

tum algorithm that finds a claw with high probability using

O(N?/*log N') comparisons. We also prove a lower bound

for this problem of Q(N'/2) comparisons for bounded-

Collision-finding problem
Given a functionf : X — Z, find two distinct ele-
mentsz,y € X such thatf(z) = f(y).

error quantum algorithms arfd(V) for exact quantum al- We assume thak = [N] = {1,...,N} andY =
gorithms. [M]={1,...,M}with N < M.

Our algorithm for claw-finding also yields an For general details about quantum computing we refer
O(N?3/*1og N') bounded-error quantum algorithm for find-  to [19]. We formalize a comparison betwegfr) andf (y)
ing a collision for arbitrary functions. Note thdecidingif as an application of the following unitary transformation:
a collision occurs inf is equivalent to deciding whethgr
maps alk: to distinct elements. This is known as #lement |z, y,0) — |2,y, 0@ [f(2) < f(y)]),

distinctnesproblem and has been well studied classically,
see e.g. [21, 16, 13, 4]. Element distinctness is partitular
interesting because its classical complexity is relatatiadb

of sorting, which is well known to requir® log N + ©(N)
comparisons. If we sorf, we can decide element distinct-
ness by going through the sorted list once, which gives a
classical upper bound oV log N + O(N) comparisons.

Conversely, element distinctness requif¢a log N') com- rithms, which are required to solve the problem with prob-

parisons in case of classical bounded-error algorithmer(ev ability at least2/3, for every input. We us@s(P) and

in a much stronger model, see [13]), so sorting and eIementQ (P) for the worst-case number of comparisons required
distinctness are equally hard for classical computers. On a.*> P d

quantum computer, the best known upper bound for sort- for solving problemP by exact and bounded-error quantum

ing is roughly0.53 N log N comparisons [12], and it was algorithms, respecpvely. (Thg subscripis and '2' refer
) ; to exact computation and 2-sided bounded-error computa-
recently shown that such a linear speed-up is the best pos-

sible: quantum sorting requird(N' log N') comparisons tion, respectively.) In our algorithms we make abundant use
even. ifqone allows a gma?l probabil(i)t%/ of errorp[15] A(':- of quantumamplitude amplificatiori7], which generalizes
cordingly, ourO(N*/4 log N') quantum upper bound s.hows guantum search [14]. The essence of amplitude amplifica-

N S : . tion can be summarized by the following theorem.
that element distinctness is significantly easier tharireprt y 9
for a quantum computer, in contrast to the classical case. Theorem 1 (Amplitude amplification)

In Section 4, we consider the case wh¢rés ordered  There exists a quantum algorith@Bearchwith the follow-
(monotone non-decreasing)f(1) < f(2) < --- < ing property. Let4 be any quantum algorithm that uses
f(N). In this case, the quantum complexity of claw- no measurements, and lgt: Z — {0,1} be any Boolean
finding and collision finding drops fro®(N3/*1og N) to function. Letp denote the initial success probability af
O(N'/?log N). In Section 5 we show how to remove the of finding a solution (i.e., the probability of outputting
log N factor (replacing it by a near-constant function) if s.t. x(z) = 1). Algorithm QSearchfinds a solution us-
both f andg are ordered. The lower bound for this restricted ing an expected number 6f(1/,/p) applications of4 and
case remainQ(N'/?). A~Lif p > 0, and otherwise runs forever.

whereb € {0,1} and[f(z) < f(y)] denotes the truth-value
of the statementf(z) < f(y)". We formalize comparisons
betweenf (x) andg(y) similarly.

We are interested in the number of comparisons required
for claw-finding or collision-finding. We will consider the
complexity ofexactalgorithms, which are required to solve
the problem with certainty, as well &®unded-erroralgo-



Very briefly, QSearch works by iterating the unitary
transformatior) = —.AS, A~ S, anumber of times, start-
ing with initial state.4|0). HereS, |z) = (—~1)X(*)|z), and
Sol0) = —|0) andSp|z) = |z) for all z # 0. The analysis
of [7] shows that doing a measurement aft&fl/,/p) it-
erations of@ will yield a solution with probability close to
1. The algorithmQSearchdoes not need to know the value
of p in advance, but ip is known, then a slightly modified
QSearchcan find a solutionvith certaintyusingO(1/,/p)
applications of4 and.A~!.

Grover’s algorithm for searching a space fitems is
a special case of amplitude amplification, whetds the
Hadamard transform on each qubit. Thishas probability
p > 1/N offinding a solution (if there is one), so amplitude
amplification implies arO(N'/?) quantum algorithm for
searching the space. We sometimes refer to this process
“quantum searching”.

3 Finding claws if f and g are not ordered

First we consider the most general case, wher@nd
g are arbitrary, possibly unordered functions. Our claw-
finding algorithms are instances of the following generic
algorithm, which is parameterized by an integer <

min{N, \/M}

Algorithm: Generic claw-finder
1. Select a random subsétC [N] of size/
2. Select a random subsBtC [M] of size/?
3. Sort the elements iA according to theirf-value
4

. For a specifié € B, we can check if there is ane A
such that(a, b) is a claw using classical binary search
on the sorted version of. Combine this with quantum
search on thé-elements to search for a claw.ihx B.

5. Apply amplitude amplification on steps 1-4

We analyze the comparison-complexity of this algo-
rithm. Step 3 just employs classical sorting and
hence takedlogf¢ + O(¢) comparisons. Step 4 takes
O(/|B]log|A|) = O(flog¢) comparisons, since testing
if there is anA-element colliding with a giveh € B takes
O(log A) comparisons (via binary search on the sortfd
and the quantum search ne&d6,/|B|) such tests to find
a B-element that collides with an element occurring4n
(if there is one). In total, steps 1-4 také/ log ¢) compar-
isons.

If no claws betweenf and g exist, then this algo-

as

then step 4 will find this (or some other) collision with
probability at leasl /2 in at mostO(¢log ¢) comparisons.
Hence the overall success probability of steps 1-4 is at leas
p = (3/2N M, and the amplitude amplification of step 5
requires an expected number®@f./ N M /£3) iterations of
steps 1-4. Accordingly, the total expected number of com-

parisons to find a claw i©(4/ % log ¢), provided there is
one. In order to minimize the number of comparisons, we
maximize/, subject to the constrairt < min{N, /M}.
This gives upper bounds @(N'/2M'/*1og N) compar-
isonsifN < M < N2, andO(M'/?log N) if M > N2,
What aboutower bounds for the claw-finding problem?
We can reduce th®R-problem to claw-finding as follows.
Given a functiong : [M] — {0, 1}, by definitionOR(g)
is 1 if there is an such thatg(i) = 1. To determine this
value, we sefV = 1 and definef(1) = 1. Then there is
a claw betweery andg if and only if OR(g) = 1. Thus
if we can find a claw using comparisons, we can decide
OR using2c¢ queries tog (two g-queries suffice to imple-
ment a comparison). Using known lower bounds for the
OR-function [5, 3], this gives aMm(M) bound for exact
quantum and aft(v/M) bound for bounded-error quantum
algorithms. The next theorem follows.

Theorem 2 The comparison-complexity of the claw-
finding problem is

e Q(M'/?) < Qs(Claw)

< O(N'2MY*1og N)if N < M < N?
=1 O(M'?logN)if M > N?

e Q(M) < Qg(Claw) < O(M log N).

The bounds for the cask/ > N? and the case of ex-
act computation are tight up to tHeg NV term, but the
caseM < N2 is nowhere near tight. In particular, for
N = M the complexity lies somewhere betwei/? and
N3/*log N.

Now consider the problem of finding @llision for an
arbitrary functionf : [N] — Z, i.e., to find distinct
x,y € [N] such thatf(z) = f(y). A simple modification
of the above algorithm for claw-finding works fine to find
such(z, y)-pairs if they exist (puy = f and avoid claws of
the form (z, z)), and gives a bounded-error algorithm that
finds a collision using)(N?3/*1og N) comparisons. This
algorithm may be viewed as a modification of the Generic
claw finder with|A| = ¢ = O(v/N) andB = [N]\ A. Note
that now the choice ofi determinesB, so our algorithm

only has to stored and sort it, which means that tispace
requirement of steps 1-3 (/N log N) qubits. The am-

rithm does not terminate. Now suppose there is a claw plitude amplification of step 4 requires not more space than

(x,y) € X xY. Then(z,y) € A x B with proba-
bility (¢/N) - (¢2/M), and if indeed(z,y) € A x B,

the algorithm that is being amplified, so the total space com-
plexity of our algorithm isO(v/N log N) as well.



As mentioned in the introduction, the problem of de-
ciding if there is a collision is equivalent to the element

Step 1 take€)(N?3/*1log N) comparisons, steps 2 and 3
each takeD(N'/?log N') comparisons. If there is a claw

distinctness (ED) problem. The best known lower bounds (z,y, z) with z € A, theny € B with probability1/v/N,

follow again via reductions from th®R-problem: given
X € {0,1}", we definef : [N +1] — {0,...,N} as
f@)=i(1—=;)andf(N +1) =0. NowOR(X) = 1if

and only if f contains a collision. Thus we obtain:

Theorem 3 The comparison-complexity of the element dis-
tinctness problem is

e Q(N'/?) < Q2(ED) < O(N*/41og N)
e Q(N) < Qp(ED) < O(Nlog N).

In contrast, for classical (exact or bounded-error) algo-

so step 4 require®(N'/*) rounds of amplitude amplifi-
cation, hence steps 1-4 together tékeV?/* log N') com-
parisons. Steps 1-4 have probabiligy 1/N'/* of find-
ing a claw, so step 5 in turn requir€xN'/®) rounds of
amplitude amplification. In total, the algorithm thus takes
O(N"/8log N) comparisons. More generally, finding a
claw amongk functions can be done i@(Nl_zl_k log N)
comparisons (for fixed).

4 Finding claws if f is ordered

Now suppose that functiofiis ordered:f(1) < f(2) <

rithms, element distinctness is as hard as sorting and re-... < f(V), and that functiom : [M] — Z is not necessar-

quires®(N log N') comparisons.

Collision-finding requires fewer comparisons if we know
that some valuee € Z occurs at leask times. If we
pick a random subset of 10N/ k of the domain, then with
high probability at least two pre-images efwill be con-
tained inS. Thus running our algorithm o will find
a collision with high probability, resulting in complexity
O((N/k)*/*log(N/k)). Also, if f is a 2-to-1 function, we
can rederive th©) (N'/? log N') bound of Brassard, Hgyer,
and Tapp [8] by taking = N'/3. This yields constant suc-
cess probability after steps 14 in the generic algorithnd, a
hence no further rounds of amplitude amplification are re-

quired. As in the case of [8], this algorithm can be made ex-

act by using the exact form of amplitude amplification (the

success probability can be exactly computed in this case, so

exact amplitude amplification is applicable).

In another direction, we may extend our results by con-
sidering the problem of finding a claw betwetee un-
ordered functiond, g, h with domains of sizeV. That is,
we want to findz,y, z such thatf(z) = h(y) = g(2).
Classically, the best algorithm requir€g N log N) com-
parisons. The following quantum algorithm solves the prob-
leminO(N7/%log N') comparisons and bounded error:

Algorithm: Claw-finder for 3 functions

Select a random subsatof N3/4 elements from the
domain of f and sort these according to th¢hvalue

1.

. Select a random subsBt of size N'/2 from the do-
main of g and sort these according to thgivalue

. Search the domain df for an element that forms a
claw with a pairinA x B

. Apply amplitude amplification on steps 2—3

. Apply amplitude amplification on steps 1-4

ily ordered. In this case, given sompec [M], we can find
anz € [N] such that(z,y) is a claw using binary search
on f. Thus, combining this with a quantum search on all
y € [M], we obtain the upper bound 6f(v/M log N) for
finding a claw inf andg. The lower bounds of the last sec-
tion via theOR-reduction still apply, and hence we obtain
the following theorem.

Theorem 4 The comparison-complexity of the claw-
finding problem with ordered is

e Q(M'?) < Qs(Claw) < O(M'/?1og N)
e Q(M) < Qg(Claw) < O(M log N).

Note that collision-finding for an orderefl: [N] — Z
is equivalent to searching a spaceléf— 1 items (namely
all consecutive pairs in the domain f and hence requires
O©(vV/N) comparisons.

5 Finding claws if both f and g are ordered

Now consider the case where bgthandg are ordered.
Assume for simplicity thatV M. Again we get an
Q(v/N) lower bound via a reduction from ti@R-problem:
given anOR-instanceX € {0, 1}", we definef, g : [N] —

Z by f(i) = 2i+1andg(i) = 2i+z; foralli € [N]. Then
f andg are ordered, an@R(X) = 1 if and only if there is
a claw betweerf andg. The lower bound follows.

We give a quantum algorithm that solves the problem us-

ing O (vV/N cl°&” (N)) comparisons for some constant 0.
The functionlog*(N) is defined as the minimum number
of iterated applications of the logarithm function necegsa
to obtain a number less than or equal to lbg*(N)
min{i > 0 | log(N) < 1}, wherelog? = log o log!* Y
denotes theth iterated application ofog, andlog!® is
the identity function. Even thougH°s” (V) is exponen-
tial in log*(NV), it is still very small in N, in particular



clog”(N) ¢ o(log(i)(N)) for any constant > 1. Thus we them with probability at Ieasg—, provided there is one, in
replace théog IV in the upper bound of the previous section the number of comparisons given in equation (1).
by a near-constant function. Our algorithm defines a set of We pickr = [log?(N)]. SinceT(r) > Q(/r) =
subproblems such that the original probléfng) contains Q(log N), equation (1) implies
a claw if and only if at least one of the subproblems con-
tains a claw. We then solve the original problem py running T(N) < ¢ ET(r), 2
the subproblems in quantum parallel and applying ampli- r
tude amplification.

Letr > 0 be an integer. We defire[ 2] subproblems

as follows.

for some constant’. Furthermore, our choice afimplies
that the depth of the recursion defined by equation (2) is on
the order oflog*(V), so unfolding the recursion gives the
Definition 5 Letr > 0 be an integer andf,g : [N] —» Z. theorem. |
Foreach0 < i < [N/r] — 1, define the subprobleft;, g})
by letting f; denote the restriction of to subdomairfir +
1, (i 4+ 1)r] andg; the restriction ofy to [, j + r — 1] where
j is the minimuny’ € [N] such thay(;') > f(ir + 1).
Similarly, for eachd < j < [N/r] — 1, define the sub-

6 Hard problems related to distinctness

problem ( ]’-,gj) by letting g; denote the restriction of I_n this section, we consider some related problems _for
to[jr+1,(j+1)rl, andfj’. the restriction off to [i, i +r—1] which qg_aqtum compL_Jters cannot improve upon classical
wherei is the minimuni’ € [N] such thatf (i) > g(jr+1). (probabilistic) complexity.
Itis not hard to check that these subproblems all togetherParity-collision problem _ _
provide a solution to the original problem. Given functionf : X — Z, find the parity of the
cardinality of the seC; = {(z,y) € X x X : z <
Lemma 6 Letr > 0 be an integer andf,g : [N] — Z. yandf(z) = f(y)}.

Then(f, g) contains a claw if and only if for someor j in
[0, [N/r] — 1] the subproblentf;, g;) or (f}, g;) contains No-collision problem

aclaw. Given functionf : X — Z, find an element € X
~ o ) that is not involved in a collision (i.ef 1 (f(z)) =
Each of thes@ [7] subproblems is itself an instance of {2}).

the claw-finding problem of size. By running them all
together in quantum parallel and then applying amplitude No-range problem
amplification, we obtain our main result. Given functionf : X — Z, find z € Z such that

, , X).
Theorem 7 There exists a quantum algorithm that outputs 2 ¢ fF(X)
a claw betweerf andg with probability at least: provided We assume thak = Z = [N], and show that these
one exists, using (VN c'°& (M) comparisons, for some  problems are hard even for the function-evaluation model.

constante.

Theorem 8 The evaluation-complexities of the parity-
Proof LetT'(N) denote the worst-case number of compar- cojlision problem, the no-collision problem and the no-

iions required iff andg have domain of siz&/. We show  range problem are lower bounded By N).
that
N Note that the hardness of the parity-collision problem
T(N) < c/\/i ([log(N +1)]+ TO‘)) , (1) implies the hardness of exacttpuntingthe number of col-
T lisions. Our proofs use the powerful lower bound method
for some (small) constat. Let0 < i < [N/r] — 1 and developed by Amt_)ainis [2]. Let us state here exactly the
consider the subproblenf;, g!). Using at mosflog(N + result that we require.

1)] +T_(?~) compari2sons,V\{e can find a_lclawaﬁi,g;) with Theorem 9 ([2]) Let F = {f : [N] — [N]} be the set of
probability at least;, provided there is one. We do that o hossible input-functions, andl : F — Z be a function
by using binary search to find the minimugmfor which (which we want to compute). Let B be two subsets oF

9(j) > f(ir + 1), at the cost oflog(N + 1)] comparisons, ¢ ch tha®d(f) # ®(g) if f € Aandg € B, andR C Ax B
and then recursively determining if the subprobléfn g;) be a relation such that -

contains a claw at the cost of at m@&{r) additional com-
parisons. There a&[%] subproblems, so by applyingam- 1. For everyf € A, there exist at least differentg € B
plitude amplification we can find a claw among any one of such that(f, g) € R.



2. Foreveryy € B, there exist at least/’ differentf € A
such that(f, g) € R.

3. Foreveryf € A andxz € [N], there exist at most
differentg € B suchthat f,g) € Randf(z) # g(z).

4. For everyg € B andz € [N], there exist at most
differentf € A suchthaff,g) € Randf(z) # g(x).

Then any quantum algorithm computistgvith probability

at least2/3 requiresf(/ ”}T”,") evaluation-queries.

We now give our proof of Theorem 8.

Proof To apply Theorem 9, we will describe a relatigh
for each of our problems. For functiotfs: [N] — [N] and
g : [N] = [N], we denote byi(f, g) the cardinality of the
set{z € [N]| f(z) # g(x)}. For each problen® will be

defined by

R={(f.9) € Ax B|d(f,g) =1},
for some appropriate setsand B.

Parity-collision problem Here we suppose thdtdivides
N. Let A be the set of functiong : [N] — [N] such
that|Cy| = N/4 and|f~1(z)| < 2forall z € [N].
Let B be the set of functiong : [N] — [N] such that
|Cyl = N/4+1and|g~'(z)| < 2forall z € [N].
Then a simple computation gives that the relat®n
satisfiesn = O(N?%), m' = O(N?),1 = ©(N), and
I'=0(N).

No-collision problem Now we suppose tha¥ is odd. Let
A = B be the set of functiong : [N] — [N] such
that|Cy| = (N —1)/2, and|f~!(z)| < 2, for all
z € [N]. ThenR satisfies thatn = m' = O(N) and
I=1'"=06().

No-range problem Let A = B be the set of functiong :
[N] = [N] such thatC'; = {(1,2)}. Then a similar
computation givesn = m' = O(N) andl = I' =
e(1).

undirected grapli = (V, E) on |V | = n nodes withm =
|E| edges. There ard = (7) edge slots inE, which we
can query in a black box fashion (see also [11, Section 7]).

The triangle-finding problem is:

Triangle-finding problem
Given undirected grap& = (V, E), find distinct ver-
ticesa, b, c € V such thafa, b), (a,c), (b,c) € E.

Since there ar¢?) < n® triplesa, b, ¢, and we can de-
cide whether a given triple is a triangle using 3 queries, we
can use Grover's algorithm to find a triangle @(n?/?)
gueries. Below we give an algorithm that works more effi-
ciently for sparse graphs.

Algorithm: Triangle-finder

1. Use quantum search to find an edggb) € E among
all () potential edges.

2. Use quantum search to find a nadee 1V such that
a, b, cis atriangle.

3. Apply amplitude amplification on steps 1-2.

Step 1 takesO(,/n?/m) queries and step 2 takes
O(y/n) queries. If there is a triangle in the graph, then the
probability that step 1 finds an edge belonging to this spe-
cific triangle is®(1/m). If step 1 indeed finds an edge of
a triangle, then with probability at least 1/2, step 2 finds a
¢ that completes the triangle. Thus the success probability
of steps 1-2 i®(1/m) and the amplitude amplification of
step 3 require®)(,/m) iterations. The total complexity is
henceO((y/n?/m++/n)/m) whichisO(n++/nm). If G
is sparse in the sense that= |E| € o(n?), theno(n?/?)
gueries suffice. Of course for dense graphs our algorithm
will still require ©(n?/?) queries.

We again obtain lower bounds by a reduction from the
OR-problem. Consider a®R-input X € {0, 1}(3) as a
graph omn edges. Let be the graph obtained from this by
adding an(n + 1)-th node and connecting this to all other
n nodes. NowG has|X| + n edges, andR(X) = 1 if
and only ifG contains a triangle. This givé$(n?) bounds

lem are not functions in general (several outputs may bepoynd for bounded-error quantum. We have shown:

valid for one input), but that thegre functions on the sets

A andB chosen above (there is a unique correct output for Theorem 10 If ©(n) < |E| < (), then the edge-query-
each input). Thus, Theorem 9 implies a lower bound of complexity of triangle-finding is

Q(N) for the evaluation-complexity of each of our three

problems.

7 Finding a triangle in a graph

e Q(n) < Q2(Triangle) < O(n + /nm)
e Qp(Triangle) = ©(n?)
wheren = |V| andm = |E|forG = (V, E).

Note that for graphs witl® (rn) edges, the bounded-error
guantum bound becomé€éXn) queries, whereas the classi-

Finally we consider a related search problem, which is to cal bound remain®(n?). Thus we have a quadratic gap for
find a triangle in a graph, provided one exists. Consider ansuch very sparse graphs.



8 Concluding remarks

The main problem left open by this research is to close

the gap between upper and lower bounds for element dis-

tinctness. We find it hard to conjecture what the true
bound is. None of the known methods for proving quantum
lower bounds seem to be directly applicable to improve the
Q(V/N) lower bound, and we feel that if element distinct-
ness is strictly harder than unordered search, then pratving
will require new ideas.

An interesting direction could be to take into account si-
multaneouslyimecomplexity andspacecomplexity, as has
been done for classical algorithms by Yao [21], Ajtai [1],
Beame, Saks, Sun, and Vee [4], and others. In particu-
lar, Yao shows that the time-space product of any classical
deterministic comparison-based branching program sglvin
element distinctness satisfigs- S > Q(N?~<(V)),where
e(N) = 5/vVInN. A possible extension of this result to
guantum computation could be that the tiffleand space
S of any quantum bounded-error algorithm for element dis-
tinctness satisfies

T?-5 > QN> W), 3
for some appropriate functiot(N) = o(NN). For the al-
gorithms of this paper, the comparison complexity and the
time complexity are equal up to logarithmic factors. Ig-
noring such logarithmic factors, the algorithm for element
distinctness we presented in Section 3 fias: N3/ and
S = N'/? and hence would satisfy Equation (3) up to log-
arithmic factors. An alternative quantum algorithm is to
search the space of dlf}) (z,y)-pairs to try and find a col-
lision. This algorithm has roughly’ = N andS = log N
and hence also satisfies Equation (3) up to logarithmic fac-
tors. In fact, for all othe(T', S)-pairs in between these two
cases (i.e., withog N < S < /N andT? - S > N?) there
exists an analogous quantum algorithm with roughly those
amount of time and space as well.
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