
QUANTUM ALGORITHMS FOR ELEMENT DISTINCTNESS�HARRY BUHRMANz, CHRISTOPH D�URRy, MARK HEILIGMANx , PETER H�YER{,FR�ED�ERIC MAGNIEZk, MIKLOS SANTHA��, AND RONALD DE WOLFyyAbstrat. We present several appliations of quantum amplitude ampli�ation for deidingwhether all elements in the image of a given funtion are distint, for �nding an intersetion oftwo sorted tables and for �nding a triangle in a graph. Our tehniques generalize and improvethose of Brassard, H�yer, and Tapp. This shows that in the quantum world element distintness issigni�antly easier than sorting, in ontrast to the lassial world.1. Introdution. In the last deade, quantum omputing has beome a promi-nent and promising area of theoretial omputer siene. Realizing this promise re-quires two things: atually building a quantum omputer and disovering tasks wherea quantum omputer is signi�antly faster than a lassial omputer. Here we areonerned with the seond issue. Few good quantum algorithms are known to date.The two main examples are Shor's algorithm for fatoring [24℄, whih ahieves an ex-ponential speed-up over the best known lassial fatoring algorithms, and Grover'ssearh algorithm [15℄, whih ahieves a quadrati speed-up over lassial searh al-gorithms. Whereas the �rst so far has remained a seminal but somewhat isolatedresult, the seond has been applied as a building blok in quite a few other quantumalgorithms [6, 8, 9, 10, 21, 20, 7, 12℄.The seurity of the widely used ryptosystem RSA is based on the assumption thatit is hard to fator integers. Shor's algorithm solves preisely this task. In the sameavor, the seurity of digital signatures is based on the assumption that it is diÆultto �nd two items whih map to the same value for some partiular funtion. Thismotivates the researh on the quantum omplexity of this task. We de�ne di�erentvariants of this problem. Though we do not improve the bounds for the followingproblem, we de�ne it �rst to start our explanation. We use [N ℄ to denote f1; : : : ; Ng.Collision Probleminput f : [N ℄ ! [M ℄ whih is 2-to-1, i.e. 8i 2 [N ℄9!j 2 [N ℄; i 6= j :f(i) = f(j)output i; j 2 [N ℄ with i 6= j and f(i) = f(j)omplexity Classially the bounded-error query omplexity is �(N1=2).For a quantum omputer the bounded-error query omplexityis �(N1=3): In 1997 Brassard, H�yer, Tapp [8℄ gave a bounded-error quantum algorithm using O(N1=3) queries to f and in 2002Shi [23℄ showed the mathing lower bound.�A preliminary version of this paper appeared in Proeedings of the 16th IEEE Conferene onComputational Complexity, pp. 131{137, 2001.Researh partially supported by the EU 5th framework programs QAIP IST-1999-11234, andRAND-APX IST-1999-14036.zCWI, P.O.Box 94079, Amsterdam, the Netherlands. Also aÆliated with the University of Am-sterdam. Email: buhrman�wi.nl.yUniversit�e Paris-Sud, LRI, 91405 Orsay, Frane. Email: durr�lri.fr.xNSA, Suite 6111, Fort George G. Meade, MD 20755, USA. Email: miheili�nsa.gov.{Dept. of Comp. Si., University of Calgary, Alberta, Canada T2N 1N4. Email:hoyer�ps.ualgary.a. Researh onduted while at BRICS, University of Aarhus, Denmark.kCNRS{LRI, UMR 8623 Universit�e Paris-Sud, 91405 Orsay, Frane. Email: magniez�lri.fr.��CNRS{LRI, UMR 8623 Universit�e Paris-Sud, 91405 Orsay, Frane. Email: santha�lri.fr.yyCWI, P.O.Box 94079, Amsterdam, the Netherlands. Email: rdewolf�wi.nl.1



In the following problem we remove the assumption about the input. The birthdayparadox gives a simple relation between both problems. A random subset of size pNof the domain of any 2-to-1 funtion ontains with high probability a ollision pair.Therefore any bounded-error algorithm for Element Distintness using O(N�) queriesimplies a bounded-error algorithm for the Collision Problem using O(N�=2) queries.Element Distintnessinput f : [N ℄! [M ℄output i; j 2 [N ℄ with i 6= j and f(i) = f(j), or \all distint" if fis injetiveomplexity We present a bounded-error quantum algorithm whihmakes O(N3=4) queries. It dates from early 2000, and �rst ap-peared in [11℄. However, reently the bounded-error quantumquery omplexity was shown to be �(N2=3): The lower boundfollows from Shi [23℄ by the observation above and an algorithmmathing this bound was found in 2003 by Ambainis [3℄ using aquantum walk. The lassial bounded-error query omplexity is�(N) by a trivial redution from the OR-problem: For an OR-instane x 2 f0; 1gN we de�ne the funtion f : [N+1℄! [N+1℄where f(N + 1) = 0 and for all i 2 [N ℄ f(i) = (1 � xi)i. NowOR(x) = 1 i� f ontains a ollision pair.The element distintness problem has been well studied lassially [25, 18, 14, 5℄.It is partiularly interesting beause its lassial omplexity is related to that of sort-ing, whih is well known to require N logN+�(N) omparisons in the lassial world.If we sort f , we an deide element distintness by going through the sorted list one,whih gives a lassial upper bound of N logN +O(N) omparisons. Conversely, ele-ment distintness requires 
(N logN) omparisons in ase of lassial bounded-erroralgorithms (even in a muh stronger model [14℄), so sorting and element distintnessare essentially equally hard lassially. On a quantum omputer, the best known up-per bound for sorting is 0:53 N logN omparisons [13℄, and suh a linear speed-up isbest possible: quantum sorting requires 
(N logN) omparisons, even if one allowsa small probability of error [16℄. Aordingly, our O(N3=4 logN) upper bound showsthat element distintness is signi�antly easier than sorting for a quantum omputer,in ontrast to the lassial ase.In this paper we also give algorithms for related problems. Typially, web searhengines like Google assoiate to every word a list of pages ontaining it, sorted in orderof its page rank, and when the query is \Rolling Stones" for example, then the searhengine must output the intersetion of the lists assoiated to the words \Rolling" and\Stones". Now imagine a searh engine implemented on a quantum omputer. Thismotivates the following problem.List Intersetioninput f; g : [N ℄! [M ℄ eah is monotone inreasingoutput i; j 2 [N ℄ with i 6= j and f(i) = f(j), or \lists disjoint" ifthe images of f and g are disjointomplexity We present a bounded-error quantum algorithm whihmakes O(pNlog�N ) queries to f for some onstant  > 1. Atrivial lower bound 
(pN) an be obtained by a redution fromthe OR-problem: given an OR-instane x 2 f0; 1gN , de�nef; g : [N ℄ ! [2N + 1℄ by f(i) = 2i + 1 and g(i) = 2i + xifor all i 2 [N ℄. Then f and g are ordered, and OR(x) = 1 i� the2



List Intersetion problem has a solution. The same redu-tion shows that the lassial bounded-error query omplexity is�(N).The funtion log?(N) is de�ned as the minimum number of iterated applia-tions of the logarithm funtion neessary to obtain a number less than or equal to 1:log?(N) = minfi � 0 j log(i)(N) � 1g, where log(i) = log Æ log(i�1) denotes the ithiterated appliation of log, and log(0) is the identity funtion. Even though log?(N) isexponential in log?(N), it is still very small in N , in partiular log?(N) 2 o(log(i)(N))for any onstant i � 1.To a funtion f : [N ℄ ! [M ℄ we an assoiate a ollision graph G(V;E) withV = [N ℄ and (i; j) 2 E if i 6= j and f(i) = f(j). The Element Distintness problemsimply onsists of �nding an edge in G. An interesting problem is to ask whether Gontains some �xed subgraph. A simple, yet non-trivial subgraph is the triangle, i.e.the omplete graph on 3 verties.Triangle Findinginput the symmetri adjaeny matrix M : [n℄ � [n℄ ! f0; 1g of agraph with m edgesoutput u; v; w 2 [N ℄ suh that M(u; v) = M(v; w) = M(w; u) = 1or \failure" if the graph ontains no triangleomplexity We present a bounded-error quantum algorithm whihneeds O(n+pnm) queries. A better algorithm has been foundin 2003, with O(n1:3) bounded-error query quantum omplex-ity [19℄, while Yao [26℄ showed a lower bound of 
(n2=3 log1=6 n).Classially a simple redution from the OR-problem shows thatthe bounded-error query omplexity is �(n2), even if m = O(n).2. Preliminaries. We assume the reader is familiar with the formalism of quan-tum omputing, otherwise we refer to [22℄. The quantum ingredient of our algorithmsis amplitude ampli�ation [7℄, whih generalizes quantum searh [15℄. The essene ofamplitude ampli�ation an be summarized by the following theorem.Theorem 2.1 (Amplitude ampli�ation). There exists a quantum algorithmQSearh with the following property. Let A be any quantum algorithm that uses nomeasurements, and mapping j0i to a superposition Px2X �xjxi, for some set X. Letg : X ! f0; 1g be a funtion testing whether a basis state represents a solution or not.Let p be the suess probability of A, i.e. p2 =Px:g(x)=1 j�xj2. Let Sg be an operatorimplementing g s.t. Sgjxi = (�1)g(x)jxi for every x 2 X. Then algorithm QSearh�nds a solution using an expeted number of O(1=pp) appliations of A, A�1 and Sgif p > 0, and otherwise runs forever.Note that when an algorithm A does make measurements during its omputationthen there is a standard trik whih transforms it into an equivalent algorithm A0whih does not. We replae every measurement with an operator writing the value,whih would be the result of the measurement, in a new register, whih initially wasall zero. In the rest of the omputation, every omputation depending on the resultof the measurement will depend rather on the ontent of this register.QSearh works by iterating the unitary transformation Q = �AS0A�1Sg anumber of times, starting with initial state Aj0i. The operator S0 is de�ned as S0j0i =�j0i and S0jxi = jxi for all x 6= 0. The analysis of [7℄ shows that a measurement after�(1=pp) iterations of Q yields a solution with probability lose to 1. The algorithmQSearh does not need to know the value of p in advane, but if p is known, then aslight modi�ation �nds a solution with ertainty using O(1=pp) appliations of A,3



A�1 and Sg.Grover's algorithm for searhing a spae of N items is a speial ase of ampli-tude ampli�ation, where A is the Hadamard transform on eah qubit. This A hasprobability p � 1=N of �nding a solution (if there is at least one), so amplitude am-pli�ation implies an O(pN) quantum algorithm for searhing the spae. We refer tothis proess as \quantum searhing".3. Element Distintness.Algorithm: Find a ollision pair in f : [N ℄! [M ℄1. Partition the domain of f into disjoint sets S1; : : : ; SpN of size O(pN) eah.2. Apply amplitude ampli�ation to the following inner blok(a) Selet a random subset Sk of the partition.(b) Query all values f(i) for i 2 Sk, and build a binary searh tree over theset f(Sk) := ff(i) : i 2 Skg. If Sk ontains a ollision pair, output it.() Otherwise searh j 2 [N ℄nSk suh that f(j) 2 f(Sk). Use the quantumsearh proedure whih sueeds with probability at least 1=2 providedSk ontains one element of a ollision pair. In ase of suess, outputthe ollision pair.Theorem 3.1. If f has a ollision pair i; j then the previous algorithm �nds itafter an expeted number of O(N3=4) queries to f .Proof. With probability at least 1=pN , step 2a selets a subset ontaining i orj. Suppose this is the ase. Then either the set ontains a ollision pair or it doesnot. If it does, then step 2b �nds it, and if it does not, then with probability at least1=2, step 2 �nds a ollision pair. Therefore amplitude ampli�ation will run O(N1=4)expeted number times the inner loop until suess. Eah of step 2b and step 2 useO(pN) queries, from whih we onlude the laimed omplexity.A weaker model is the omparison model, where we are only allowed to askquery f(i) � f(j) for given indies i; j, rather than the atual values f(i); f(j). Theprevious algorithm an be adapted to that model with the prie of an O(logN) fatorin steps 2b and 2. In ontrast, for lassial (exat or bounded-error) algorithms,element distintness is as hard as sorting and requires �(N logN) omparisons.4. List intersetion. We are given two monotone inreasing funtions f; g :[N ℄ ! [M ℄ and searh for i; j 2 [N ℄ suh that f(i) = g(j). A simple algorithmwould be to make a quantum searh for i 2 [N ℄ suh that there exists j 2 [N ℄ withf(i) = g(j). The quantum searh of i will need O(pN) iterations and the binarysearh of j O(logN) queries. This gives a bounded-error quantum algorithm usingO(pN logN) queries. We now show how to get rid of most of the log fator byexploiting the fat that both funtions are monotone inreasing.Our quantum algorithm solves the problem using O�pNlog?(N)� omparisons forsome onstant  > 0. We de�ne a set of subproblems suh that the original problem(f; g) ontains a ollision pair if and only if at least one of the subproblems ontainsone. We then solve the original problem by running the subproblems in quantumparallel and applying amplitude ampli�ation.Let 1 � r < N be an integer. For the purpose of de�ning subproblems we extendthe funtions f and g to the domain [1; N+r℄, mapping f(N+i) = maxff(N); g(N)g+i and g(N+i) = f(N+i)+r for all 1 � i � r, extending at the same time the range off and g to [M +2r℄. We also de�ne the insertion point of some integer x < h(N +1)in a monotone inreasing funtion h : [N + r℄! [M +2r℄ as the smallest index i suhthat h(i) � x. 4



We de�ne 2 �Nr � subproblems as follows. For eah 0 � i � dN=re�1, onsider thesubproblem (fi; g0i) where fi denotes the restrition of f to subdomain [ir+1; (i+1)r℄,and g0i the restrition of g to [j; j + r � 1℄ where j is the insertion point of f(ir + 1)in g.Similarly, for eah 0 � j � dN=re � 1, let be the subproblem (f 0j ; gj) where gjdenotes the restrition of g to [jr+1; (j+1)r℄, and f 0j the restrition of f to [i; i+r�1℄where i is the insertion point of g(jr + 1) in f .Lemma 4.1. If i; j 2 [N ℄ is a ollision pair for (f; g) then it is also a ollisionpair for one of the subproblems.Proof. Let be k = bi=r + 1 and k0 be the insertion point of f(k) in g. Ifj 2 [k0; k0 + r � 1℄ then (i; j) is also a ollision pair for the subproblem (fk; g0k).Otherwise let be ` = bj=r+ 1. We have f(k) � g(`) � f(i). Therefore the insertionpoint `0 of g(`) in f satis�es i 2 [`0; `0+ r� 1℄, from whih we onlude that (i; j) is aollision pair for the subproblem (f 0̀; g`).Theorem 4.2. There exists a quantum algorithm that outputs a ollision pairbetween f and g with probability at least 23 provided one exists, using O�pNlog?(N)�queries, for some onstant  > 1.Proof. Let T (N) denote the worst-ase number of queries required if f and g havedomain of size N . We show thatT (N) � 0rNr �dlog(N + 1)e+ T (r)�; (4.1)for some (small) onstant 0. Let 0 � i � dN=re � 1 and onsider the subproblem(fi; g0i). To �nd the insertion point of f(bi=r+ 1) in g we need dlog(N + 1)e queriesby using binary searh. Then we need additional T (r) queries at most to �nd aollision pair for (fi; g0i). There are 2 �Nr � subproblems, so by applying amplitudeampli�ation we an �nd a ollision pair among any one of them with probability atleast 23 , provided there is one, using the number of queries laimed in equation (4.1).We pik r = dlog2(N)e. Sine T (r) � 
(pr) = 
(logN), equation (4.1) impliesT (N) � 00rNr T (r); (4.2)for some onstant 00. Furthermore, our hoie of r implies that the depth of the re-ursion de�ned by equation (4.2) is on the order of log?(N), so unfolding the reursiongives the theorem.5. Triangle-�nding. Finally we onsider a related searh problem. Consideran undireted graph G = (V;E) on jV j = n nodes with jEj = m edges. There areN = �n2� edge slots in E, whih we an query in a blak box fashion (see also [10,Setion 7℄). The goal is now to �nd distint verties a; b;  2 V suh that (a; b); (a; );(b; ) 2 E. Sine there are �n3� triples a; b; , and we an deide whether a giventriple is a triangle using 3 queries, we an use Grover's algorithm to �nd a trianglein O(n3=2) queries. Below we give an algorithm whih has the same omplexity fordense graphs m = O(n2) but is more eÆient for sparse graphs. In partiular whenm = O(n), then the algorithm uses only O(n) queries, while any lassial bounded-error algorithm needs 
(n2) queries by a sensitivity argument for distinguishing thestar graph, with the same graph augmented by a single edge.5



Algorithm: Find a triangle1. Use the bounded-error quantum ounting proedure from [7, Theorem 18℄ toget a fator-2 estimation m0 of the number of edges m, with O(n) expetednumber of queries.2. Apply amplitude ampli�ation to the following inner blok, interrupting ifafter O(pm0) alls to the inner blok(a) Use quantum searh to �nd an edge (a; b) 2 E among all �n2� potentialedges, using at most O(n=pm0) queries.(b) Use quantum searh to �nd a node  2 V suh that a; b;  is a triangle,using at most (n) queries.3. Repeat until a triangle is foundQuantum searh of an edge (a; b) 2 E sueeds after O(n=pm) expeted numberof queries. Sine amplitude ampli�ation forbids any observation in the inner blok,we need step 2 to get an estimation of m, whih determines the number of queriesafter whih step 2a will be interrupted.Theorem 5.1. If the graph ontains a triangle, then the previous algorithm �ndsone after O(n +pnm) expeted number of queries.Proof. Suppose step 2 �nds the orret estimation of m. Suppose the graphontains a triangle. Let an edge be golden if it is part of a triangle. Then step 2a�nds one with probability at least 1=2m. Given this event step 2b �nds a trianglewith probability at least 1=2. Therefore if amplitude ampli�ation step sueeds withprobability at least 1=2.Step 2 sueeds with probability at least 1=2, so the total algorithm needs only aonstant expeted number of repetitions.Eah iteration osts O(n + pnm0) queries, where m0 is the random outome ofstep 2 with expetation m. This establishes the laimed omplexity.6. Conluding remarks. An interesting related problem that is still wide openis the issue of time-spae tradeo�s for element distintness. Suh tradeo�s have beenstudied for lassial algorithms by Yao [25℄, Ajtai [2℄, Beame, Saks, Sun, and Vee [5℄,and others. In partiular, Yao shows that the time-spae produt of any lassial de-terministi omparison-based branhing program solving element distintness satis�esTS � 
(N2�"(N)), where "(N) = 5=plnN . An upper bound TS = O((N logN)2) isahievable lassially.Ignoring logarithmi fators, the quantum algorithm presented here uses timeT = N3=4 and spae S = N1=2. An alternative quantum algorithm is to searh thespae of all �N2 � (x; y)-pairs to try and �nd a ollision. This algorithm has roughlyT = N and S = logN . Thirdly, Ambainis's new algorithm has T = N2=3 andS = N2=3. All these algorithms satisfy T 2S � N2. In fat, for every spae boundS less than N2=3, one an �nd an algorithm whose time (or query) omplexity Tsatis�es T 2S � N2. We onjeture that this lose to optimal. Proving this would bevery interesting, sine no non-trivial quantum time-spae tradeo� lower bounds areknown for any deision problem (some tradeo�s for multiple-output problems may befound in [17℄). REFERENCES[1℄ S. Aaronson, Quantum lower bound for the ollision problem, in Proeedings of 34th ACMSymposium on Theory of Computing (STOC), pp. 635{642, 2002. quant-ph/0111102.6
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