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3Laboratoire d’Information Quantique, Université libre de Bruxelles CP 225, Boulevard du Triomphe, 1050
Brussels, Belgium. Email: smassar@ulb.ac.be

4CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands. Email: rdewolf@cwi.nl

November 2, 2011

Abstract
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1 Introduction

In 1986–1987 there were attempts to prove P = NP by giving a polynomial-size LP that would
solve the traveling salesman problem (TSP). Due to the large size and complicated structure of
the proposed LP for TSP, it was difficult to show directly that the LP was erroneous. In a ground-
breaking effort to prevent such attempts, Yannakakis [1988] (see Yannakakis [1991] for the journal
version) proved that every symmetric LP for the TSP has exponential size. Here, an LP is called
symmetric if every permutation of the cities can be extended to a permutation of the variables of the
LP that preserves the LP. Because the proposed LP for TSP was symmetric, it could not possibly
be correct.

In his paper, Yannakakis left as a main open problem the question of proving that the TSP
admits no polynomial-size LP, symmetric or not. We solve this question by proving a super-
polynomial lower bound on the number of inequalities in every LP for the TSP. Moreover, we
also prove such unconditional super-polynomial lower bounds for the maximum cut and maxi-
mum stable set problems. Therefore, it is impossible to prove P = NP by giving a polynomial-size
LP for any of these problems. Our approach builds on a close connection between semidefinite
programming reformulations of LPs and one-way quantum communication protocols, that we
introduce here.1

1.1 State of the Art

Solving a Problem Through an LP A combinatorial optimization problem such as the TSP
comes with a natural set of binary variables. When we say that an LP solves the problem, we
mean that there exists an LP over this set of variables plus extra variables that returns the correct
value for all instances over the same set of natural variables, that is, for all choices of weights for
the natural variables.

From Problems to Polytopes When encoded as 0/1-points in Rd, the feasible solutions of a com-
binatorial optimization problem such as the TSP yield a polytope that is the convex hull of the
resulting points. Solving an instance of the problem amounts to optimizing a linear function over
this polytope. (For background on polytopes, see Appendix A.1.)

Extended Formulations Even for polynomially solvable problems, the associated polytope may
have an exponential number of facets. By working in an extended space, it is often possible to
decrease the number of constraints. In some cases, a polynomial increase in dimension can be
traded for an exponential decrease in the number of facets. This is the idea underlying extended
formulations. Formally, an extended formulation (EF) or extension of a polytope P ⊆ Rd is another
polytope2 Q ⊆ Re such that P is the image of Q under a linear map. Optimizing a linear function f
over P amounts to optimizing the linear function f ◦π over its EF Q, where π : Rd → Re is a linear
map that projects P onto Q. We define the size of an EF Q as the smallest number of inequalities
defining Q.3

The Impact of Extended Formulations EFs have for a long time pervaded discrete optimization
and approximation algorithms. Indeed, Balas’ disjunctive programming [Balas, 1985], the Sherali-
Adams hierarchy [Sherali and Adams, 1990], the Lovász-Schrijver closures [Lovász and Schrijver,

1For convenience we only consider quantum states and measurements with real entries.
2We could allow unbounded polyhedra here, but it makes little difference because every EF of a polytope with a

minimum number of facets is also a polytope.
3Notice in particular that the number of equalities in the description of Q has no influence on the size of Q. Another

possible definition of size is the sum of the number of variables and total number of constraints (equalities or inequal-
ities) defining the EF. Again, this makes little difference because if P ⊆ Rd has an EF with r inequalities, then it has an
EF with d + r variables, r inequalities and at most d + r equalities.
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1991], lift-and-project Balas et al. [1993] and configuration LPs are all based on the idea of work-
ing in an extended space. Recent surveys on EFs in the context of combinatorial optimization
and integer programming are Conforti et al. [2010], Vanderbeck and Wolsey [2010], Kaibel [2011],
Wolsey [2011].

Symmetry Matters Yannakakis [1991] proved a 2Ω(n) lower bound on the size of any symmetric
EF of the TSP polytope TSP(n) (defined in Section 5). Although he remarked that he did “not think
that asymmetry helps much”, it was recently shown by Kaibel et al. [2010] (see also Pashkovich
[2009]) that symmetry is a restriction in the sense that there exist polytopes that have polynomial-
size EFs but no polynomial-size symmetric EF. This revived Yannakakis’s tantalizing question
about unconditional lower bounds. Those are bounds which apply to the extension complexity of a
polytope P, defined as the minimum size of an EF of P.

0/1-polytopes with a Large Extension Complexity The strongest unconditional lower bounds
so far were obtained by Rothvoß [2011]. By a counting argument inspired by Shannon’s theo-
rem [Shannon, 1949], he proved that there exist 0/1-polytopes in Rd whose extension complexity
is at least 2d/2−o(1). However, Rothvoß’s technique does not provide explicit 0/1-polytopes with
an exponential extension complexity.

The Factorization Theorem Yannakakis [1991] discovered that the extension complexity of a
polytope P is determined by certain factorizations of an associated matrix, called the slack matrix
of P, that records for each pair (F, v) where F is a facet and v is a vertex the algebraic distance of v
to a hyperplane supporting F. Defining the nonnegative rank of a matrix M as the smallest natural
number r such that M can be expressed as M = UV where U and V are nonnegative matrices
with r columns and r rows, respectively, it turns out the extension complexity of every polytope
P is exactly the nonnegative rank of its slack matrix. This factorization theorem led Yannakakis
to explore connections between EFs and communication complexity. Let S = S(P) denote the
slack matrix of the polytope P. He observed that: (i) every deterministic protocol of complexity
k computing S gives rise to an EF of P of size at most 2k, provided S is a 0/1-matrix; (ii) the
nondeterministic communication complexity of the support matrix of S is a lower bound on the
extension complexity of P, or more generally, the nondeterministic communication complexity of
the support matrix of every nonnegative matrix M is a lower bound on the nonnegative rank of
M.

The Clique vs. Stable Set Problem When P is the stable set polytope STAB(G) of a graph G
(see Section 5), the slack matrix of P contains an interesting row-induced 0/1-submatrix that is
the communication matrix of the clique vs. stable set problem (also known as the clique vs. indepen-
dent set problem): its rows correspond to cliques and its columns to stable sets (or independent
sets) and the entry for a clique K and stable set S equals 1 − |K ∩ S|. Yannakakis [1991] gave an
O(log2 n) deterministic protocol for the clique vs. stable set problem, where n denotes the num-

ber of vertices of G. This gives a 2O(log2 n) = nO(log n) size EF for STAB(G) whenever the whole
slack matrix is 0/1, that is, whenever G is perfect. An intriguing open problem is to determine the
(deterministic or nondeterministic) communication complexity of the clique vs. stable set prob-
lem. This is a notoriously hard problem. (For recent results that explain why this problem is
hard, see Kushilevitz and Weinreb [2009a,b].) The best lower bound to this day was obtained by
Huang and Sudakov [2010]: they obtained a 6

5 log n−O(1) lower bound.4 Furthermore, they state

a graph-theoretical conjecture that, if true, would imply a Ω(log2 n) lower bound, and hence set-
tle the communication complexity of the clique vs. stable set problem. Moreover, it would give a

4All logarithms in this paper are computed in base 2.
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worst case nΩ(log n) lower bound on the extension complexity of stable set polytopes. However, a
solution to the Huang-Sudakov conjecture seems a distant possibility.

A Tighter Connection to Communication Complexity Faenza et al. [2011] proved that the base-2
logarithm of the nonnegative rank of a matrix equals, up to a small additive constant, the mini-
mum complexity of a randomized communication protocol (with nonnegative outputs) that com-
putes the matrix in expectation. In particular, every EF of size r can be regarded as such a protocol
of complexity log r +O(1) that computes a slack matrix in expectation.

1.2 Contribution

Our contribution in this paper is three-fold.

• First, we generalize the factorization theorem to conic EFs, that is, reformulations of an LP
through a conic program. In particular, this implies a factorization theorem for semidefinite EFs:
the semidefinite extension complexity of a polytope equals the positive semidefinite rank (shortly:
PSD rank) of its slack matrix. To our knowledge, this generalization was also obtained by P. Par-
illo and R. Thomas (unpublished).

• Second, we generalize the tight connection between linear5 EFs and classical communication
complexity found by Faenza et al. [2011] to a tight connection between semidefinite EFs and
quantum communication complexity. We show that any rank-r PSD factorization of a (nonneg-
ative) matrix M gives rise to a one-way quantum protocol computing M in expectation that
uses log r + O(1) qubits and, vice versa, that any one-way quantum protocol computing M in
expectation that uses q qubits results in a PSD factorization of M of rank 2q. Via the semidefinite
factorization theorem, this yields a characterization of the semidefinite extension complexity of
a polytope in terms of the minimum complexity of quantum protocols that compute the corre-
sponding slack matrix in expectation.

Then, we give a complexity log r + O(1) quantum protocol for computing a nonnegative ma-
trix M in expectation, whenever there exists a rank-r matrix N such that M is the entry-wise
square of N. This implies in particular that every d-dimensional polytope with 0/1 slacks has a
semidefinite EF of size O(d), a result implicit in Gouveia et al. [2010].

Finally, inspired by earlier work [de Wolf, 2003], we construct a 2n × 2n matrix S = S(n) that
provides an exponential separation between classical and quantum protocols that compute S in
expectation. On the one hand, our quantum protocol gives a rank-O(n) PSD factorization of S.
On the other hand, the nonnegative rank of S is 2Ω(n) because the nondeterministic communica-
tion complexity of the support matrix of S is Ω(n). This second part follows from an adaptation
of the well-known result of Razborov [1992] on the disjointness problem, see [de Wolf, 2003].

• Third, we use the matrix S = S(n) and a small-rank PSD factorization of S to prove a 2Ω(n)

lower bound on the extension complexity of the cut polytope CUT(n) (see Section 5). That is,
every linear EF of the cut polytope has an exponential number of inequalities. Via reductions,
we infer from this: (i) an infinite family of graphs G such that the extension complexity of the

corresponding stable set polytope STAB(G) is 2Ω(n1/2), where n denotes the number of vertices

of G; (ii) that the extension complexity of the TSP polytope TSP(n) is 2Ω(n1/4). In addition to
settling simultaneously the open problems of Yannakakis [1991] and Rothvoß [2011] described
above, our results provide a lower bound on the extension complexity of stable set polytopes

5Henceforth, an EF (in the sense of the previous section) is called a linear EF. The use of adjectives such as “linear”,
“semidefinite” or “conic” will help us distinguishing the different types of EFs.
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that goes well beyond what is implied by the Huang-Sudakov conjecture. Finally, we point out
that although our lower bounds are strong, unconditional and apply to explicit polytopes that
are well-known in combinatorial optimization, they have very accessible proofs.

1.3 Related Works

Yannakakis’s paper has deeply influenced the TCS community. In addition to the works cited
above, it inspired a whole series of papers on the quality of restricted approximate EFs such as those
defined by the Sherali-Adams hierarchies and Lovász-Schrijver closures that started with Arora et al.
[2002] (Arora et al. [2006] for the journal version), see Buresh-Oppenheim et al. [2006], Schoenebeck et al.
[2007], Fernandez de la Vega and Mathieu [2007], Charikar et al. [2009], Georgiou et al. [2009, 2010],
Benabbas and Magen [2010]. We would also like to point out, that the lower bounds established in
Section 5 are essentially based on an efficient PSD factorization or, equivalently, an efficient one-
way quantum communication protocol. In this sense our classical lower bounds stem from quan-
tum considerations somewhat similar in style to Kerenidis and de Wolf [2003], Aaronson [2004],
Aharonov and Regev [2004] (see Drucker and de Wolf [2011] for a survey of this line of work).

1.4 Outline

In Section 2 we state and prove the factorization theorem for arbitrary convex cones. In Section 3
we establish the equivalence of PSD factorizations of a nonnegative matrix M and one-way quan-
tum protocols that compute M in expectation, and give an efficient quantum protocol in the case
where some entry-wise square root of M has small rank. This is used in Section 4 to provide an
exponential separation between quantum and classical protocols for computing a matrix in ex-
pectation, or equivalently, an exponential separation between nonnegative rank and PSD rank. In
Section 5 we prove strong lower bounds on the extension complexity of the cut polytope, the sta-
ble set polytope, and the traveling salesman polytope. Concluding remarks are given in Section 6.
Background on polytopes as well as some of the proofs can be found in Appendix A.

2 Conic and Semidefinite EFs

Let Q = {(x, y) ∈ Rd+k | Ex + Fy = g, y ∈ C} for some closed convex cone C ⊆ Rk, where
E ∈ Rp×d, F ∈ Rp×k, and g ∈ Rp. Let C∗ := {z ∈ Rk | zTy > 0, ∀y ∈ C} denote the dual cone of
C. We define the projection cone of Q as CQ := {µ ∈ Rp | FTµ ∈ C∗} and projx(Q) := {x ∈ Rd |
µTEx 6 µTg, ∀µ ∈ CQ}. In a first step we show that projx(Q) equals πx(Q) := {x ∈ Rd | ∃y ∈
Rk : (x, y) ∈ Q}, the projection of Q onto the x-space. See Appendix A.2 for the proof.

Lemma 1. We have πx(Q) = projx(Q).

Let P = {x ∈ Rd | Ax 6 b} = conv(V) be a polytope, with A ∈ Rm×d, b ∈ Rm and
V = {v1, . . . , vn} ⊆ Rd. Then Q = {(x, y) ∈ Rd+k | Ex + Fy = g, y ∈ C} is a conic EF of P w.r.t. C
if P = πx(Q). Throughout this paper we use Mi and Mj to denote, respectively, the i-th row and
j-th column of M. For convenience we define [n] := {1, . . . , n} for n ∈ N.

Definition 2. Let P, Ax ≤ b and V be as above. Then S ∈ R
m×n
+ defined as Sij := bi − Aivj with i ∈ [m]

and j ∈ [n] is the slack matrix of P w.r.t. Ax 6 b and V. We sometimes refer to the submatrix of the slack
matrix induced by rows corresponding to facets and columns corresponding to vertices simply as the slack
matrix of P, and denote it by S(P).

Recall that the extension complexity of polytope P is the minimum size (i.e., number of in-
equalities) of a linear EF of P. We denote this by xc(P). This is also the minimum r for which P has
a conic EF w.r.t. C = Rr

+ (see, e.g., Fiorini et al. [2011]). Recall moreover that a rank-r nonnegative
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factorization of a matrix M is a factorization M = UV where U and V are nonnegative matrices
with r columns and r rows, respectively. The nonnegative rank of M, denoted by rank+(M), is the
minimum rank of a nonnegative factorization of M. For linear EFs, the following factorization
theorem was proved by Yannakakis. It can be stated succinctly as: xc(P) = rank+(S(P)).

Theorem 3 (Yannakakis [1991]). Let P = {x ∈ Rd | Ax 6 b} = conv(V) be a polytope. Then the slack
matrix S of P w.r.t. Ax 6 b and V has a rank-r nonnegative factorization if and only if there exists a linear
EF of the form Q = {(x, y) ∈ Rd+r | Ex + Fy = g, y > 0}.

We would like to remark that even though the size of a polytope is measured as the minimal
number of inequalities defining it, we will not restrict the slack matrix to have rows and columns
corresponding only to the facet-defining inequalities and the vertices. For the purposes of our
discussion, this is not an issue since (i) existence of an EF including redundant inequalities im-
plies the existence of a smaller EF, and (ii) the nonnegative rank of a matrix is always at least the
nonnegative rank of any of its submatrices.

We now prove a factorization theorem for the slack matrix of polytopes with respect to more
general closed convex cones. The proof of the theorem can be found in Appendix A.2. Yan-
nakakis’s result can be obtained as a corollary of our result by taking C = Rk

+, and using Theorem
4 together with the fact that (Rk

+)
∗ = Rk

+.

Theorem 4. Let P = {x ∈ Rd | Ax 6 b} = conv(V) be a polytope defined by m inequalities and n
points respectively, and let S be the slack matrix of P w.r.t. Ax 6 b and V. Also, let C ⊆ Rk be a closed
convex cone. Then, the following are equivalent:

(i) There exist T, U such that (the transpose of) each row of T is in C∗, each column of U is in C, and
S = TU.

(ii) There exists a conic EF Q = {(x, y) ∈ Rd+k | Ex + Fy = g, y ∈ C} such that P = πx(Q).

For a positive integer r, we let Sr
+ denote the cone of r × r symmetric positive semidefinite

matrices embedded in Rr(r+1)/2 in such a way that, for all y, z ∈ Sr
+, the scalar product zTy is

the Frobenius product6 of the corresponding matrices. A semidefinite EF of size r is simply a conic
EF w.r.t. C = Sr

+. The semidefinite extension complexity of polytope P, denoted by xcSDP(P), is the
minimum r such that P has a semidefinite EF of size r. Observe that (Sr

+)
∗ = Sr

+. Hence, taking
C := Sk

+ and k := r(r + 1)/2 in Theorem 4, we obtain the following factorization theorem for
semidefinite EFs.

Corollary 5. Let P = {x ∈ Rd | Ax 6 b} = conv(V) be a polytope. Then the slack matrix S of P w.r.t.
Ax 6 b and V has a factorization S = TU so that (Ti)

T, U j ∈ Sr
+ if and only if there exists a semidefinite

EF Q = {(x, y) ∈ Rd+r(r+1)/2 | Ex + Fy = g, y ∈ Sr
+} such that P = πx(Q).

Analogous to nonnegative factorizations and nonnegative rank, we can define PSD factor-
izations and PSD rank. A rank-r PSD factorization of an m × n matrix M is a collection of r × r
symmetric positive semidefinite matrices T1, . . . , Tm and U1, . . . , Un such that the Frobenius prod-
uct Tr

[

(Ti)
TU j

]

= Tr
[

TiU
j
]

equals Mij for all i ∈ [m], j ∈ [n]. The PSD rank of M is the minimum
r such that M has a rank-r PSD factorization. We denote this rankPSD(M). By Corollary 5, the
semidefinite extension complexity of a polytope P is equal to PSD rank of S(P): xcSDP(P) =
rankPSD(S(P)). In the next section we will show that rankPSD(M) can be expressed in terms of
the quantum communication complexity of computing M in expectation (Corollary 7).

6The Frobenius product is the component-wise inner product of two matrices. For matrices M and N of the same
dimensions, the Frobenius product is equal to Tr

[

MT N
]

. When M is symmetric this can also be written Tr [MN] .
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3 Quantum Communication and PSD Factorizations

For a general introduction to quantum computation we refer to Nielsen and Chuang [2000], Mermin
[2007], and for quantum communication complexity we refer to de Wolf [2002], Buhrman et al.
[2010]. For our purposes, an r-dimensional quantum state ρ is an r × r PSD matrix of trace 1.7 A
k-qubit state is a state in dimension r = 2k. If ρ has rank 1, it can be written as an outer product
|φ〉〈φ| for some unit vector |φ〉, which is sometimes called a pure state.

A quantum measurement (POVM) is described by a set of PSD matrices {Eθ}θ∈Θ, each labeled
by a real number θ, and summing to the r-dimensional identity: ∑θ∈Θ Eθ = I. When measuring
state ρ with this measurement, the probability of outcome θ is given by Tr [Eθρ]. Note that if
we define the PSD matrix E := ∑θ∈Θ θEθ, then the expected value of the measurement outcome is

∑θ∈Θ θTr [Eθρ] = Tr [Eρ].
A one-way quantum protocol with r-dimensional messages can be described as follows. On input i,

Alice sends Bob an r-dimensional state ρi. On input j, Bob measures the state he receives with a

POVM {E
j
θ} for some nonnegative values θ, and outputs the result. We say that such a protocol

computes a matrix S in expectation, if the expected value of the output on respective inputs i and j,
equals the matrix entry Sij. We will show that such quantum protocols are essentially equivalent
to PSD factorizations of S:

Theorem 6. Let S ∈ R
m×n
+ be a matrix. Then the following holds:

(i) A one-way quantum protocol with r-dimensional messages that computes S in expectation, gives a
rank-r PSD factorization of S.

(ii) A rank-r PSD factorization of S gives a one-way quantum protocol with (r+ 1)-dimensional messages
that computes S in expectation.

Proof. The first part is straightforward. Given a quantum protocol as above, define Ej := ∑θ∈Θ θE
j
θ.

Clearly, on inputs i and j the expected value of the output is Tr
[

ρiE
j
]

= Sij.
For the second part, suppose we are given a PSD factorization of a matrix S, so we are given

PSD matrices T1, . . . , Tm and U1, . . . , Un satisfying Tr
[

TiU
j
]

= Sij for all i, j. In order to turn this
into a quantum protocol, define τ = maxi Tr [Ti]. Let ρi be the (r + 1)-dimensional quantum state
obtained by adding a (r + 1)st row and column to Ti/τ, with 1 − Tr [Ti] /τ as (r + 1)st diagonal
entry, and 0s elsewhere. Note that ρi is indeed a PSD matrix of trace 1, so it is a well-defined
quantum state. For input j, derive Bob’s (r + 1)-dimensional POVM from the PSD matrix U j as

follows. Let λ be the largest eigenvalue of U j, and define E
j
τλ to be U j/λ, extended with a (d+ 1)st

row and column of 0s. Let E
j
0 = I − E

j
τλ. These two operators together form a well-defined POVM.

The expected outcome (on inputs i, j) of the protocol induced by the states and POVMs that we just

defined, is τλTr
[

E
j
τλρi

]

= Tr
[

TiU
j
]

= Sij, so the protocol indeed computes S in expectation.

We obtain the following corollary which summarizes the characterization of semidefinite EFs:

Corollary 7. For a polytope P, the following are equivalent:

(i) P has a semidefinite EF Q = {(x, y) ∈ Rd+r(r+1)/2 | Ax + Fy = b, y ∈ Sr
+};

(ii) the slack matrix S(P) has a rank-r PSD factorization;

(iii) there exists a one-way quantum communication protocol with (r + 1)-dimensional messages (i.e., us-
ing ⌈log(r+ 1)⌉ qubits) that computes S(P) in expectation (for the converse we consider r-dimensional
messages).

7For simplicity we will restrict to real rather than complex entries here, which doesn’t significantly affect the results.
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3.1 A general upper bound on quantum communication

Now, we provide a quantum protocol that efficiently computes a nonnegative matrix S in expec-
tation, whenever there exists a low rank matrix M whose entry-wise square is S. The quantum
protocol is inspired by [de Wolf, 2003, Section 3.3].

Theorem 8. Let S be a matrix with nonnegative real entries, M be a rank-r matrix of the same dimensions
such that Sij = M2

ij. Then there exists a one-way quantum protocol using (r + 1)-dimensional pure-state

messages that computes S in expectation.

Proof. Let MT = UΣV be the singular value decomposition of the transpose of M; so U and V are
unitary, Σ is a matrix whose first r diagonal entries are nonzero while its other entries are 0, and
〈j|UΣV|i〉 = Mij. Define |φi〉 = ΣV|i〉. Since only its first r entries can be nonzero, we will view
|φi〉 as an r-dimensional vector. Let ∆i = ‖φi‖ and ∆ = maxi ∆i. Add one additional dimension

and define the normalized (r+ 1)-dimensional pure quantum states |ψi〉 = (|φi〉/∆,
√

1 − ∆2
i /∆2).

Given input i, Alice sends |ψi〉 to Bob. Given input j, Bob applies a 2-outcome POVM {E
j

∆2 , E
j
0 =

I − E
j

∆2} where E
j

∆2 is the projector on the pure state U∗|j〉 (which has no support in the last

dimension of |ψi〉). If the outcome of the measurement is E
j

∆2 then Bob outputs ∆2, otherwise he
outputs 0. Accordingly, the expected output of this protocol on input (i, j) is

∆2 Pr[outcome E
j

∆2 ] = ∆2〈ψi|E
j

∆2 |ψi〉 = 〈φi|E
j

∆2 |φi〉 = |〈j|U|φi〉|
2 = |〈j|UΣV|i〉|2 = M2

ij = Sij.

The protocol only has two possible outputs: 0 and ∆2, both nonnegative. Hence it computes S in
expectation with an (r + 1)-dimensional quantum message.

Note that if S is a 0/1-matrix then M = S, hence any low-rank 0/1-matrix can be computed
in expectation by an efficient quantum protocol. We obtain the following corollary (implicit in
Theorem 4.2 of Gouveia et al. [2010]) which also implies a compact semidefinite EF for the stable
set polytope of perfect graphs, reproving the previously known result by Lovász [1979, 2003].

Corollary 9. Let P be a polytope such that S(P) is a 0/1 matrix. Then xcSDP(P) 6 dim(P) + 2.

4 Exponential Separations: Quantum vs Classical Communication, and

PSD vs Linear Factorizations

In the last section we described a close connection between PSD factorizations of a given matrix,
and the dimension of quantum messages needed to compute (the entries of) that matrix in expec-
tation. We will now look at a specific example for which we also prove an exponentially larger
lower bound on the number of classical bits of communication needed to compute it as compared
to the quantum communication complexity. Thus we obtain an exponential separation between
quantum and classical communication needed to compute S in expectation. By the connection
of the last section, this exponential separation in communication also provides an exponential
separation between the ranks of PSD factorizations and nonnegative factorizations.

Recall that the classical nondeterministic communication complexity of a binary communica-
tion matrix is defined as ⌈log B⌉, where B is the minimum number of 1-rectangles that cover the
matrix, see Kushilevitz and Nisan [1997]. This last quantity is also known as the rectangle covering
bound. The reader should also be reminded that a classical randomized protocol in our setting
computes a matrix in expectation and outputs only nonnegative values, see Faenza et al. [2011].
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Let S be an m× n nonnegative matrix. The support matrix of S, denoted by supp(S), is the m× n
binary matrix with supp(S)ij = 1 iff Sij > 0. Then the following result is obvious (the first part is
implicit in [Yannakakis, 1991] and the second part is essentially proved in Faenza et al. [2011]).

Lemma 10. Let S denote a nonnegative matrix, and let B be the rectangle covering bound of supp(S).
Then the following hold: (i) rank+(S) > B; (ii) the complexity of every classical protocol that computes S
in expectation is at least the classical nondeterministic complexity ⌈log B⌉ of the communication problem
that has S as communication matrix.

Now we turn to the main result of this section.

Theorem 11. For each n, there exists a nonnegative matrix S ∈ R2n×2n
, such that any classical randomized

protocol needs Ω(n) bits to compute S in expectation. Furthermore, there exists a quantum protocol that
computes S in expectation using log n +O(1) qubits.

Proof. Consider the matrix M ∈ R2n×2n
whose rows and columns are indexed by n-bit strings

a and b, respectively, and whose entries are defined as Mab = 1 − aTb. Define S ∈ R
2n×2n

+ by
Sab = M2

ab. Note that M has rank r 6 n + 1 because it can be written as the sum of n + 1 rank-1
matrices. Hence Theorem 8 immediately implies a quantum protocol with (n + 2)-dimensional
messages that computes S in expectation.

In order to prove an exponentially larger classical lower bound, consider the communication
complexity problem whose communication matrix is the support matrix of S. This corresponds to
the Boolean predicate f with f (a, b) = 1 iff aTb 6= 1. By Lemma 10, the classical nondeterministic
complexity of f is a lower bound on the complexity of a protocol that computes S in expecta-
tion. [de Wolf, 2003, Theorem 3.6] proves an Ω(n) lower bound on the classical nondeterministic
communication complexity of f , hence we get the same lower bound on classical protocols that
compute S in expectation.

Together with Theorem 6 and the equivalence of randomized communication complexity (in
expectation) and nonnegative rank established in Faenza et al. [2011], we immediately obtain an
exponential separation between the nonnegative rank and the PSD rank.

Corollary 12. For each n, there exists S ∈ R
2n×2n

+ , with rank+(S) = 2Ω(n) and rankPSD(S) = O(n).

5 Consequences: Strong Lower Bounds on Extension Complexity

Here we prove that the extension complexity of the cut polytope of the n-vertex complete graph
is 2Ω(n), i.e., every linear EF of this polytope has an exponential number of inequalities. Then,
via reductions, we prove super-polynomial lower bounds for the stable set polytope and the TSP
polytope. Our starting point is the matrix S = S(n) used in the previous section to obtain an
exponential separation between nonnegative rank and PSD rank. We use a small-rank PSD fac-
torization of S to embed S as a submatrix of the slack matrix of the cut polytope of Kn+1. The
(classical) nondeterministic complexity of the support matrix of S gives a lower bound on the ex-
tension complexity of the cut polytope, implying a 2Ω(n)-lower bound on the extension complexity
of the cut polytope of Kn.

5.1 Cut Polytopes

Let Kn = (Vn, En) denote the n-vertex complete graph. For a set X of vertices of Kn, we let δ(X)
denote the set of edges of Kn with one endpoint in X and the other in its complement X̄. This set
δ(X) is known as the cut defined by X. For a subset F of edges of Kn, we let χF ∈ REn denote
the characteristic vector of F, with χF

e = 1 if e ∈ F and χF
e = 0 otherwise. The cut polytope CUT(n)

8



is defined as the convex hull of the characteristic vectors of all cuts in the complete graph Kn =
(Vn, En). That is, CUT(n) := conv{χδ(X) ∈ REn | X ⊆ Vn}.

We will not deal with the cut polytopes directly, but rather with polytopes that are affinely
isomorphic to them. The correlation polytope (or boolean quadric polytope) COR(n) is defined as the
convex hull of all the rank-one binary symmetric matrices of size n× n. In other words, COR(n) :=
conv{bbT ∈ Rn×n | b ∈ {0, 1}n}. We will use the following known result:

Theorem 13 (De Simone [1989/90]). For all n, COR(n) and CUT(n + 1) are affinely isomorphic.

In Section 4, we defined a 2n × 2n nonnegative matrix S = S(n) with rows and columns in-
dexed by n-bit strings such that Sab = (1 − aTb)2 for all a, b ∈ {0, 1}n . We give an explicit PSD
factorization of S. Up to normalization, this PSD factorization of S coincides with that provided by
the protocol in the proof of Theorem 8. The PSD factorization is given in our next lemma, whose
proof can be found in Appendix A.3.

Lemma 14. If, for each a, b ∈ {0, 1}n , we let Ua := ( 1
−a)(

1
−a)

T
and Vb := (1

b)(
1
b)

T
, then the matrices

{Ua}a∈{0,1}n and {Vb}b∈{0,1}n define a PSD factorization of S.

Letting 〈·, ·〉 denote the Frobenius product, we can write, for all a, b ∈ {0, 1}n : Sab = 〈Ua, Vb〉 =
1 − 〈2 diag(a)− aaT , bbT〉, where the first equality comes from Lemma 14 and the last equality is a
simple rewriting that uses the fact that b is a binary vector. This proves the next lemma.

Lemma 15. For all a ∈ {0, 1}n , the inequality

〈2 diag(a)− aaT , x〉 6 1 (1)

is valid for COR(n). Moreover, the slack of vertex x = bbT with respect to (1) is precisely Sab.

We remark that (1) is implied by the hypermetric inequality [Deza and Laurent, 1997] 〈diag(a)−
aaT , x〉 6 0. Now, we go on to prove the main result of this section.

Theorem 16. There exists some constant C > 0 such that, for all n,

xc(CUT(n + 1)) = xc(COR(n)) > 2Cn .

In particular, the extension complexity of CUT(n) is 2Ω(n).

Proof. The equality is implied by Theorem 13. Now, consider any system of linear inequalities
describing COR(n) that starts with the 2n inequalities (1) where a ∈ {0, 1}n , and a slack matrix
of COR(n) w.r.t. this system and {bbT | b ∈ {0, 1}n}. Next, delete from this slack matrix all
rows except the 2n first rows. By Lemma 15, the resulting matrix is S. By combining the fact
that the nonnegative rank of any matrix is always greater or equal to the nonnegative rank of any
of its submatrices with the factorization theorem (see Theorem 3 above) we find xc(COR(n)) >

rank+(S). The nonnegative rank of S is bounded from below by the rectangle covering bound
for S. By [de Wolf, 2003, Theorem 3.6], the latter is 2Ω(n). Hence, we have rank+(S) > 2Cn for
some constant C. The theorem follows.

5.2 Stable set polytopes

A stable set S (also called an independent set) of a graph G is a subset S ⊆ V of the vertices such
that no two of them are adjacent. For a subset S ⊆ V, we let χS ∈ Rn denote the characteristic
vector of S, with χS

v = 1 if v ∈ S and χS
v = 0 otherwise. The stable set polytope, denoted STAB(G),

is the convex hull of the characteristic vectors of all stable sets in G, i.e., STAB(G) := conv{χS ∈
RV(G) | S stable set of G}. The proof of the next lemma can be found in Appendix A.3. Recall that
a polytope Q is a linear EF of a polytope P if P is the image of Q under a linear projection.
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Lemma 17. For each n, there exists a graph Gn with O(n2) vertices such that STAB(Gn) contains a face
that is a linear EF of CUT(n).

Consider a polytope P, and a polytope Q that is a linear EF of P. Obviously xc(P) 6 xc(Q).
Next, consider a face F of P. Then, F is the projection of some face G of Q, and so G is a linear EF
of F. Hence xc(F) is at most the number of facets of G, which is at most the number of facets of Q.
Since this holds for any linear EF Q of P, we have xc(F) 6 xc(P). (Recall that the size of a linear
EF is defined as the number of facets of the EF.) Therefore, Lemma 17 implies the following result.

Theorem 18. For all n, one can construct a graph G′
n with n vertices such that the linear extension

complexity of STAB(G′
n) is 2Ω(n1/2).

5.3 TSP Polytopes

The traveling salesman polytope of Kn = (Vn, En), denoted by TSP(n), is defined as the convex hull
of the characteristic vectors of all subsets F ⊆ En that define a tour of Kn. That is, TSP(n) :=
conv{χF ∈ REn | F ⊆ En is a tour of Kn}. It is known that for every graph G with n vertices,
STAB(G) is the linear projection of a face of TSP(n′) with n′ = O(n2), see the proof of [Yannakakis,
1991, Theorem 6]. This together with Theorem 18 gives us the following:

Theorem 19. The linear extension complexity of TSP(n) is 2Ω(n1/4).

6 Concluding Remarks

In addition to proving the first unconditional super-polynomial lower bounds on the size of EFs
for the cut polytope, stable set polytope and TSP polytope, we demonstrate that the rectangle
covering bound can prove strong results in the context of EFs. In particular, it can be super-
polynomial in the dimension and logarithm of the number of vertices of the polytope, settling an
open problem of Fiorini et al. [2011].

The exponential separation between nonnegative rank and PSD rank that we prove here (see
Theorem 11) actually implies more than a super-polynomial lower bound on the extension com-
plexity of the cut polytope. As noted in Theorem 13, the polytopes CUT(n) and COR(n − 1) are
affinely isomorphic. Let P(n) denote the polyhedron isomorphic (under the same affine map) to
the polyhedron defined by (1) for a ∈ {0, 1}n . Then (i) every polytope (or polyhedron) that con-
tains CUT(n) and is contained in P(n) has exponential extension complexity; (ii) there exists a
low complexity spectrahedron that contains CUT(n) and is contained in P(n). A spectrahedron is
an intersection of the positive semidefinite cone with an affine subspace.

An important problem —also left open in Yannakakis [1991]— is whether the perfect match-
ing polytope has a polynomial-size linear EF. Yannakakis proved that every symmetric EF of this
polytope has exponential size, a striking result given the fact that the perfect matching problem
is polynomially solvable. He conjectured that asymmetry also does not help in the case of the
perfect matching polytope. Because it is based on the rectangle covering bound, our argument
would not yield any super-polynomial lower bound on the extension complexity of the perfect
matching polytope. Even though a polynomial-size linear EF of the matching polytope would not
prove anything as surprising as P=NP, the existence of a polynomial-size EF or an unconditional
super-polynomial lower bound for it remains open.

We hope that the new connections developed here will inspire more research, in particular
about approximate EFs. Here are two concrete questions we leave open for future work: (i) find a
slack matrix that has an exponential gap between nonnegative rank and PSD rank; (ii) prove that
the cut polytope has no polynomial-size semidefinite EF.
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A Background and Proofs

A.1 Background on Polytopes

A (convex) polytope is a set P ⊆ Rd that is the convex hull conv(V) of a finite set of points V. Equiv-
alently, P ⊆ Rd is a polytope if and only if P is bounded and the intersection of a finite collection
of closed halfspaces. This is equivalent to saying that P is bounded and the set of solutions of
a finite system of linear inequalities (or equalities, each of which can be represented by a pair of
inequalities).

Let P be a polytope in Rd. A closed halfspace H+ that contains P is said to be valid for P. In
this case the hyperplane H that bounds H+ is also said to be valid for P. A face of P is either P
itself or the intersection of P with a valid hyperplane. Every face of a polytope is again a polytope.
A face is called proper if it is neither the empty face nor the polytope itself. A vertex is a minimal
nonempty face. A facet is a maximal proper face. An inequality cTx 6 δ is said to be valid for P if it
is satisfied by all points of P. The face it defines is F := {x ∈ P | cTx = δ}. The inequality is called
facet-defining if F is a facet. The dimension of a polytope P is the dimension of the affine space aff(P)
containing P.

Every (finite or infinite) set V such that P = conv(V) contains all the vertices of P. Conversely,
letting vert(P) denote the vertex set of P, we have P = conv(vert(P)). Suppose that P is full-
dimensional, that is, dim(P) = d. Then, every (finite) system Ax 6 b such that P = {x ∈ Rd |
Ax 6 b} contains all the facet-defining inequalities of P, up to scaling by positive numbers. Con-
versely, P is described by its facet-defining inequalities. In case P is not full-dimensional, these
statements have to be adapted in the following way. Every (finite) system describing P contains
all the facet-defining inequalities of P, up to scaling by positive numbers and adding an inequal-
ity that is satisfied with equality by all points of P. Conversely, a linear description of P can be
obtained by picking one facet-defining inequality per facet and adding a system of equalities de-
scribing the affine hull of P.

For more background on polytopes, see the standard reference Ziegler [1995].

A.2 Proofs From Section 2

Lemma 1. We have πx(Q) = projx(Q).

Proof. Let α ∈ πx(Q). Then there exists y ∈ C with Eα + Fy = g. Pick any µ ∈ CQ. Then,
µTEα + µTFy = µTg holds. Since FTµ ∈ C∗ and y ∈ C we have that (FTµ)Ty = µTFy > 0.
Therefore µTEα 6 µTg holds for all µ ∈ CQ. We conclude α ∈ projx(Q) and as α was arbitrary
πx(Q) ⊆ projx(Q) follows.

Now suppose πx(Q) 6= projx(Q). Then there exists α such that α ∈ projx(Q) but α /∈ πx(Q).
In other words there is no y ∈ C such that Fy = g − Eα or, equivalently, the convex cone F(C) :=
{Fy | y ∈ C} does not contain the point g − Eα. Since C is a closed cone, so is F(C). Therefore,
by the Strong Separation Theorem there exists µ ∈ Rp such that µTz > 0 is valid for F(C) but
µT(g − Eα) < 0. Then µTz = µT(Fy) = (µTF)y > 0 is valid for C, i.e., (µTF)y > 0 holds for all
y ∈ C, implying FTµ ∈ C∗. As µT(g − Eα) < 0 we have µTEα > µTg. On the other hand we
have FTµ ∈ C∗ so that µ ∈ CQ implying µTEα 6 µT g; a contradiction. Hence, πx(Q) = projx(Q)
follows.

Theorem 4. Let P = {x ∈ Rd | Ax 6 b} = conv(V) be a polytope defined by m inequalities and n
points respectively, and let S be the slack matrix of P w.r.t. Ax 6 b and V. Also, let C ⊆ Rk be a closed
convex cone. Then, the following are equivalent:

(i) There exist T, U such that (the transpose of) each row of T is in C∗, each column of U is in C and
S = TU.
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(ii) There exists a conic EF Q = {(x, y) ∈ Rd+k | Ex + Fy = g, y ∈ C} such that P = πx(Q).

Proof. We first show that a factorization induces a conic EF. Suppose there exist matrices T, U as
above. We claim that Q with E := A, F := T and g := b has the desired properties. Let vj ∈ V,

then Sj = TU j = b − Avj and so it follows that (vj, U j) ∈ Q and vj ∈ πx(Q). Now let x ∈ πx(Q).
Then, there exists y ∈ C such that Ax + Ty = b. Since Tiy > 0 for all i ∈ [m], we have that x ∈ P.
This proves the first implication.

For the converse, suppose P = πx(Q) with Q being a conic EF of P. By Lemma 1, πx(Q) =
{x ∈ Rd | µTEx 6 µTg, ∀µ ∈ CQ}, where CQ = {µ ∈ Rp | FTµ ∈ C∗}. It suffices to prove that the
submatrix of S induced by the rows corresponding to the inequalities of Ax 6 b that define facets
of P admits a factorization. Thus, we assume for the rest of the proof that all rows of S correspond
to facets of P. For simplicity, we also assume that P is full-dimensional. Then, for any facet-
defining inequality Aix 6 bi of P there exists µi ∈ CQ such that Ai = µT

i E and bi = µT
i g. (This

follows from the fact that CQ is closed; see also [Lemaréchal and Hiriart-Urruty, 1996, Theorem
4.3.4].) We define Ti := µT

i F for all i; in particular (Ti)
T ∈ C∗ as µi ∈ CQ. Now let vj ∈ V. Since

P = πx(Q), there exists a yj ∈ C such that Evj + Fyj = g and so µT
i Evj + µT

i Fyj = µT
i g. With

the above we have Aivj + Tiyj = bi and as vj ∈ πx(Q) we deduce Tiyj > 0. The slack of vj w.r.t.

Aix 6 bi is bi − Aivj = µT
i g − µT

i Evj = µT
i Fyj = Tiyj. This implies the factorization S = TU with

Ti = µT
i F and U j = yj.

A.3 Proofs From Section 5

Lemma 14. If, for each a, b ∈ {0, 1}n , we let Ua := ( 1
−a)(

1
−a)

T
and Vb := (1

b)(
1
b)

T
, then the matrices

{Ua}a∈{0,1}n and {Vb}b∈{0,1}n define a PSD factorization of S.

Proof. We have

Tr
[

UaVb
]

= Tr

[

(

1

−a

)(

1

−a

)T(1

b

)(

1

b

)T
]

= (1 − aTb) · Tr

[

(

1

−a

)(

1

b

)T
]

= (1 − aTb) · Tr

[

(

1

b

)T( 1

−a

)

]

= (1 − aTb)2

= Sab.

Lemma 17. For each n, there exists a graph Gn with O(n2) vertices such that STAB(Gn) contains a face
that is a linear EF of CUT(n).

Proof. Because CUT(n) and COR(n − 1) are affinely isomorphic (see Theorem 13), it suffices to
prove the result with COR(n − 1) instead of CUT(n). Consider the complete graph Kn−1 with
vertex set Vn−1 := {1, . . . , n − 1} = [n − 1]. For each vertex i of Kn−1 we create two vertices
labeled ii, ii in Gn and an edge between them. For each edge ij of Kn−1, we add to Gn four vertices
labeled ij, ij, ij, ij and all possible six edges between them. We further add the following eight
edges to Gn:

{ij, ii}, {ij, jj}, {ij, jj}, {ij, ii}, {ij, jj}, {ij, ii}, {ij, ii}, {ij, jj}.
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Figure 1: The edges and vertices of Gn corresponding to vertices i, j and edge ij of Kn−1.

See Fig. 1 for an illustration. The number of vertices in Gn is 2(n − 1) + 4(n−1
2 ).

Thus the vertices and edges of Kn−1 are represented by cliques of size 2 and 4 respectively in
Gn. We will refer to these as vertex-cliques and edge-cliques respectively. Consider the face F = F(n)
of STAB(Gn) whose vertices correspond to the stable sets containing exactly one vertex in each
vertex-clique and each edge-clique. (The vertices in this face correspond exactly to stable sets of
Gn with maximum cardinality.)

Consider the linear map π : RV(Gn) → R(n−1)×(n−1) mapping a point x ∈ RV(Gn) to the point
y ∈ R(n−1)×(n−1) such that yij = yji = xij for i 6 j. In this equation, the subscripts in yij and yji

refer to an ordered pair of elements in [n − 1], while the subscript in xij refers to a vertex of Gn that
corresponds either to a vertex of Kn−1 (if i = j) or to an edge of Kn−1 (if i 6= j).

We claim that the image of F under π is COR(n − 1), hence F is a linear EF of COR(n − 1)
(and thus of CUT(n)). Indeed, pick an arbitrary stable set S of Gn such that x := χS is on face F.
Then define b ∈ {0, 1}n−1 by letting bi := 1 if ii ∈ S and bi := 0 otherwise (i.e., ii ∈ S). Notice
that for the edge ij of Kn−1 we have ij ∈ S if and only if both vertices ii and jj belong to S.
Hence, π(x) = y = bbT is a vertex of COR(n − 1). This proves π(F) ⊆ COR(n − 1). Now pick
a vertex y := bbT of COR(n − 1) and consider the unique maximum stable set S that contains
vertex ii if bi = 1 and vertex ii if bi = 0. Then x := χS is a vertex of F with π(x) = y. Hence,
π(F) ⊇ COR(n − 1). Thus π(F) = COR(n − 1). This concludes the proof.
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